Int J Softw Tools Technol Transfer (2015) 17:757-781
DOI 10.1007/s10009-015-0372-3

@ CrossMark

VERIFYTHIS 2012

Witnessing the elimination of magic wands

Stefan Blom - Marieke Huisman

Published online: 31 March 2015

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract This paper discusses static verification of pro-
grams that have been specified using separation logic with
magic wands. Magic wands are used to specify incomplete
resources in separation logic, i.e., if missing resources are
provided, a magic wand allows one to exchange these for the
completed resources. One of the applications of the magic
wand operator is to describe loop invariants for algorithms
that traverse a data structure, such as the imperative ver-
sion of the tree delete problem (Challenge 3 from the Veri-
fyThis@FM2012 Program Verification Competition), which
is the motivating example for our work. Most separation
logic-based static verification tools do not provide support
for magic wands, possibly because validity of formulas con-
taining the magic wand is, by itself, undecidable. To avoid
this problem, in our approach the program annotator has to
provide a witness for the magic wand, thus circumventing
undecidability due to the use of magic wands. A witness
is an object that encodes both instructions for the permis-
sion exchange that is specified by the magic wand and the
extra resources needed during that exchange. We show how
this witness information is used to encode a specification
with magic wands as a specification without magic wands.
Concretely, this approach is used in the VerCors tool set:
annotated Java programs are encoded as Chalice programs.
Chalice then further translates the program to BoogiePL,
where appropriate proof obligations are generated. Besides
our encoding of magic wands, we also discuss the encoding
of other aspects of annotated Java programs into Chalice, and
in particular, the encoding of abstract predicates with permis-

S. Blom () - M. Huisman
University of Twente, Enschede, The Netherlands
e-mail: s.c.c.blom@utwente.nl

M. Huisman
e-mail: m.huisman@utwente.nl

sion parameters. We illustrate our approach on the tree delete
algorithm, and on the verification of an iterator of a linked
list.

Keywords Formal methods - Program verification -
Correctness proofs - Mechanical verification - Specification
techniques - Separation logic

1 Introduction

Verification of sequential programs with pointers has signifi-
cantly profited from the advance of separation logic. Separa-
tion logic is an extension of classical Hoare logic that allows
compositional reasoning about the heap, by explicitly con-
sidering only the part of global memory that is relevant for
a specification [1]. In particular, heaps are modeled as par-
tial maps from locations to values. Heaps can be composed
when their domains are disjoint. This makes the logic highly
suitable to reason about pointer structures, because it allows
one to reason concisely about heap locations and (absence
of) aliases.

The main contribution of this paper is that it discusses how
two advanced features of separation logic, namely abstract
predicates with parameters, and the magic wand operator,
can be encoded in basic separation logic, thus making it pos-
sible to use existing separation logic verification tools that
do not support these advanced features. We also discuss how
these transformations are implemented in our VerCors tool
set [2] and provide a few examples of verified code.

1.1 Basic separation logic

In classical Hoare logic [3], a program is annotated with
properties about its intermediate states, where states consist

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-015-0372-3&domain=pdf

758

S. Blom, M. Huisman

of a stack and global variables. States are modeled as a global
store, which is a mapping from variable names to values. In
separation logic, the state consists of a stack and a heap. The
stack is modeled as a store and the heap as a partial map from
locations to values.

The main challenge when reasoning about heaps is alias-
ing, i.e., the possibility that two variables point to the same
location on the heap. To handle this challenge, separation
logic restricts access to the heap only to locations for which
this access is explicitly allowed, i.e., the logic ensures that
a program can only access a location for which it has an
access permission. The key property of separation logic is
that heaps can only be composed when they are disjoint.
In particular, the separating conjunction of two formulas
over the heap is only true if the heap can be divided into
two parts, such that the first formula holds for the first
part and the second formula holds for the second part.
Therefore, if at some point in the program, it has access
to both the location pointed to by variable x and to the
location pointed to by variable y, respectively, then x and
y cannot be aliases, i.e., they cannot refer to the same
location. The standard mathematical notation for this sep-
arating conjunction operator is %, and our textual notation
1S k.

Explicit access to a heap location is not only needed to
evaluate a variable in executable code, but also to evalu-
ate variables in specifications. A specification formula is
only well defined, if there are appropriate access permis-
sions to evaluate it, i.e., the formula should be self-framed.
Most separation logics employ a syntactic restriction that
immediately guarantees that every formula is self-framed:
field names cannot occur anywhere in formulas, except as
the first argument to a points-to predicate x — v, mean-
ing that one has access to the heap location denoted by x,
and that this location contains the value v. However, in this
paper, we use the syntax of Implicit Dynamic Frames [4],
which was incorporated into a separation logic called Total
Heaps Permission Logic (TPL) [5]. In these two logics self-
framing is not guaranteed by the syntax. Instead, formu-
las contain explicit access permission expressions, and are
only well defined when sufficient access permissions are
provided.

In addition, access permissions are defined as frac-
tional permissions. This allows one to explicitly distinguish
between read and write access to a location. This distinc-
tion is in particular useful to reason about concurrent pro-
grams, but can also be meaningful for sequential programs,
because it provides support to specify that a data structure
is immutable. The examples in this paper are all sequen-
tial, but since they are annotated in the language of the Ver-
Cors tool set [2], which ultimately targets the verification
of concurrent programs, they are annotated using fractional
permissions.

@ Springer

1.2 Advanced separation logic

Besides access permissions and the separating conjunction,
several more-advanced separation logic constructs have been
developed, such as abstract predicates and magic wands.
Abstract predicates Commonly used extensions of separa-
tion logic are abstract predicates [6]. An important purpose
of abstract predicates is to add recursive definitions to sepa-
ration logic formulas, making it possible to define and reason
about access permissions on unbounded data structures, such
as linked data structures. Abstract predicates also provide
control over the visibility of specifications, which allows one
to encapsulate implementation details. Another useful fea-
ture of abstract predicates is that they can be declared with-
out providing a definition (similar to abstract methods, e.g.,
Java). This allows one to use abstract predicates as tokens in
specifications. This is used for example to specify behavior
of a program as an abstract state machine, e.g., to specify
mutual exclusion by requiring a token which is unique and
thus cannot be held by more than one thread.

Since abstract predicates can be used to represent tokens,
they define more than just a set of access permissions. There-
fore, we will use the general term resource when referring to
abstract predicates and/or access permissions.

Abstract predicates can have parameters, which can be
program variables or fractions. The latter can be used, for
example, to specify different access permissions to different
parts of a data structure.

Magic wands Another feature of separation logic is the magic
wand operator, also known as the separating implication,
usually written —+ (or —x* in our textual notation). Intuitively,
the formula ¢p; —+ ¢» is a resource that allows the required
resource ¢ to be replaced by the ensured resource ¢, once.
Thus, given a heap for which both ¢; and ¢; —+ ¢> holds,
these formulas can be consumed, such that a formula ¢, is
produced. This replacement is sometimes called applying
the magic wand. This is in contrast to the normal implication
— (or==>), for which ¢; = ¢, is a boolean claim that
states that ¢ can be replaced by ¢ an unbounded number
of times. In particular, if for a given heap ¢ and ¢ = ¢»
holds, then we can conclude that for this heap ¢1, ¢», and
¢1 = ¢, holds.

One of the applications of the magic wand is to spec-
ify loop invariants for iterative algorithms that explore data
structures: knowledge about the current location in the data
structure can potentially be exchanged for knowledge about
the complete data structure explored so far, which is useful
for programs that start at the entry point to a data structure,
iteratively search for the correct place and then read and/or
modify the structure. Before returning, suitable permissions
and properties on the entry point must be re-established. The
magic wand can naturally express that such a change is pos-

Witnessing the elimination of magic wands

759

sible and applying the magic wand will perform the change.
We show how this is done, by giving a loop invariant with a
magic wand for challenge 3 from the VerifyThis@FM2012
Program Verification Competition [7]. This challenge is to
verify an iterative tree delete algorithm: the removal of the
element with the minimal key in a binary search tree.

In the literature, several other examples that illustrate the
usefulness of the magic wand operator can be found, e.g., to
specify an iterator protocol [8,9] (discussed in Sect. 6.2), to
reason about sharing in data structures [10], and to specify
several common object-oriented design patterns [11]. The
magic wand also shows up in other places, such as type sys-
tems [12].

1.3 Separation logic tool support

There are several tools that allow reasoning about programs
annotated using separation logic, or its variants, such as
Implicit Dynamic Frames [4]. Among the most prominent
are VeriFast[13,16], SmallFoot [14], jStar [15], Chalice [17],
Carbon [18], Silicon [19], and our own VerCors tool set [2].
All of these tools support basic separation logic, many sup-
port abstract predicates, but magic wands typically have lim-
ited or no support. We first briefly discuss the support pro-
vided by the different tools, and then the next subsection
discusses how we add support for these advanced features in
our own VerCors tool set.

SmallFoot and jStar support basic separation logic, with-
out fractional permissions, as described above. They both
support predicates, but neither supports the magic wand oper-
ator.

VeriFast supports reasoning about concurrent Java and C
programs, and combines separation logic with fractional per-
missions. VeriFast provides support for abstract predicates
with arguments. However, it provides no support for full
magic wands; it only provides support for lemmas, which
have the same functionality as the normal implication in sep-
aration logic (see Sect. 7.1 for more information).

Chalice supports reasoning about a limited object-oriented,
concurrent language, using a special separation logic-like
specification language, featuring explicit access permissions.
It generates proof obligations to ensure that the annotations
are self-framed. Further, it provides support for abstract pred-
icates without arguments, except for the implicit this argu-
ment. It provides no support for magic wands.

Carbon and Silicon are the verifiers of the Viper project [20,
21]. Carbon is similar to Chalice and employs verification
condition generation through Boogie. Silicon is similar to
VeriFast and employs symbolic execution. An experimen-
tal version of the Silicon tool exists, which supports magic
wands [22]. The basic approach to magic wands taken by
Silicon is the same as the one employed in this paper. The
difference is in how the basic approach is applied. The Sili-

con developers are aiming at a solution which is highly auto-
mated, whereas our solution aims at generality both in term
of ability to specify programs and the ability to use multi-
ple back-end verification tools. A more technical comparison
can be found in Sect. 7.1.

In general, the validity of a magic wand formula is unde-
cidable [23]. This leaves several obvious paths to work
towards a solution: look for a suitable subset which is decid-
able, look for heuristics that are good enough in practice or,
as we have chosen to do, require the program annotator to
provide extra information about the correctness of the use of
the magic wand formula.

1.4 Contribution

The VerCors tool set As mentioned above, we extended the
VerCors tool set with support to reason about abstract predi-
cates with parameters and magic wands. VerCors supports the
verification of concurrent (Java) programs, using permission-
based separation logic, i.e., separation logic extended with
fractional permissions to distinguish between read and write
access.

For the design of our tool set, we leverage existing ver-
ification technology. Specifically, we implemented VerCors
as a tool that compiles its input into the input language of a
back end, then uses the back end to do the actual verification,
and finally translates any error messages or warnings back
to the input program. We use Chalice as a back end, because
it allows for a relatively straightforward encoding of most
separation logic constructs.!

Our specification language has been designed to remain
as close as possible to the JML specification language
for sequential programs [24], but with several separation
logic extensions to make it suitable to reason about multi-
threaded pointer programs. As mentioned above, in par-
ticular, the VerCors tool set supports abstract predicates
with parameters and magic wands. However, the Chalice
back end does not support this, and therefore this paper
presents the transformations that we developed to support
reasoning about these advanced separation logic constructs in
VerCors.

— The first transformation converts a program with predi-
cates with arguments to a logically equivalent program
with predicates without arguments.

— The second transformation takes a program with magic
wands and converts it to an equivalent program without
magic wands.

I We also considered VeriFast as a back end, but this would require more
specification rewriting due to the strict separation between program state
and logical state in VeriFast.

@ Springer

760

S. Blom, M. Huisman

These two transformations are the main contribution of this
paper.

Approach To define the transformations, we introduce the
notion of a witness objects that encode instances of abstract
predicates with arguments and magic wand formulas.

The witness object for an abstract predicate instance stores
the values of the predicate arguments. The witness class
defines a predicate without arguments that holds for a wit-
ness object if and only if the original predicate instance with
arguments holds.

The witness object for amagic wand encodes a description
of how to convert the required resources of the magic wand
into the ensured resources. To apply this conversion, a magic
wand witness defines a predicate that specifies the additional
resources that are needed to perform this conversion once.
This predicate is encoded into the witness object for magic
wands in the same way as it is done with witness objects for
predicates. When a magic wand witness is generated, the user
has to provide a proof script to define: (i) a constructor that
behaves in the same way as a magic wand introduction rule
in separation logic, and (ii) an apply method that behaves in
the same way as a magic wand elimination rule in separa-
tion logic. To specify this proof script, VerCors provides a
dedicated proof annotation syntax. Notice that, because the
user is required to provide a proof script, it no longer matters
whether the existence of a proof is decidable or not.

We also use the proof script to construct our encoding in
such a way that the result of executing the original program is
the same as executing the encoded program. Due to this exe-
cutability, our transformation can not only be used for static
checking, but also for run-time checking. Moreover, it has
the potential to be extended into a translation from programs
specified in separation logic into programs specified in first-
order logic. This would allow alternative static checkers to
be used, and it would also provide a way of using first-order
logic run-time checkers for separation logic (by transforming
a program annotation with separation logic into a program
specified with first-order logic, and then using a run-time
checker for first-order logic).

It should be noted that the first transformation is simi-
lar to a transformation that has already been described by
Jost and Summers [25], in a paper that considers translating
VeriFast specifications into Chalice. Our transformation is
slightly more complicated, but also slightly more general. A
more technical comparison can be found in Sect. 7.1.

Finally, we would like to emphasize that our solution to
the verification problem of the magic wand was inspired by
the Curry—Howard isomorphism [26], which turns a verifi-
cation problem into a type-checking problem by encoding
a proof as a program. This intuition is further emphasized
by the way that we write annotations: formulas are typically
manipulated using logical rules, while witnesses are manip-
ulated by methods defined on them. Thus, the encoding of

@ Springer

magic wand formulas in this paper transforms the program
verification problem into the programmatic manipulation of
specification-only (or ghost) objects. We believe that this
approach is attractive for software engineers who are already
comfortable with an imperative way of thinking about pro-
gram behavior, but may need to invest a lot of time to get
comfortable with logical manipulation of complex formulas.

Overview The remainder of this paper is organized as follows.
First, we provide a more detailed introduction to our variant
of separation logic, and how this is supported in Chalice and
the VerCors tool set. Section 3 presents the tree delete chal-
lenge of the VerifyThis 2012 competition and discusses an
intuitive solution for the challenge that uses a magic wand.
Section 4 focuses on the encoding of predicates with parame-
ters. We continue in Sect. 5 with the elimination of the magic
wand. Then in Sect. 6, we present machine-checked versions
of the challenge and of an additional example, namely an
iterator protocol. Finally, we conclude and discuss related
and future work.

2 Background

This section introduces the logical formulas that we use in this
paper, and how this is concretely supported by the VerCors
specification language. We also discuss a few extra annota-
tions that help the proving process. Then, we briefly introduce
the Chalice tool, which is the target of our transformation,
and the overall architecture of our VerCors tool set.

2.1 Deterministic separation logic

Our logical formulas are based on those in Total Heaps Per-
mission Logic (TPL) [5], which is a merge of separation
logic and Implicit Dynamic Frames [4]. Compared to TPL,
we have added infinitesimal permissions and predicates [6],
while we restrict to disjunction-free resource formulas. We
will call our logic Deterministic Separation Logic (DSL).?
As semantics for this logic, we use Implicit Dynamic Frames
with fractional permissions. That is, our semantic framework
is that of Chalice [28].

Our notion of infinitesimal permission corresponds to
what is called an infinite supply of infinitesimal permissions
in the underlying theory of Chalice [28]. That is, the infini-
tesimal fraction € is a permission value that is non-zero, so
it suffices for reading, but it is smaller than any fraction. In
practice, this means that any location for which we hold an
infinitesimal permission is immutable.

2 So named because we disallow disjunctions and because we suspect
that all formulas in this logic are supported [27].

Witnessing the elimination of magic wands

761

Table 1 Grammar of the VerCors specification language

Formulas

¢ = Java constant expression

A := Java side effect free operator

x = local variable or parameter

e u=cla|A(er,....en) | fler,...,en) | e.fler,... en)
| seq<T>{eq,...,e,} | \unfoldingr \ine

b =e | bl&&bg ‘) | b1 ||b2 | b1::>b2
| (\forall T v;by;b2)

r =:=1b| Perm(e.f,e) | Value(e.f)
‘ 71 %% To | 1 —%7T9 | b?’l‘l ‘T2
| e.P(er,...,en) | Ple,. ., em)
T ::= Java type | resource | frac | seq<T">

Function f and predicate P

T f(T1U17"' >Tnvn) =€
resource P(Tiv1, - ,Thvn) =7;

To keep the resources specified with the logic determin-
istic, we eliminated all sources for non-determinism, such
as disjunction, existential quantification and negation over
resource formulas. This restriction only applies to specifica-
tions of resources. We do allow negation, disjunction and
existential quantification over values. To achieve this, we
define two classes of formulas: boolean formulas (B, typical
elements b;) and resource formulas (R, typical element r;).
Boolean formulas state properties over values only and can
be written in full first-order logic. Access permissions can
only be used as part of resources formulas, which includes
all boolean formulas, and can be combined using separating
conjunction and magic wand. Note that, the separating con-
junction on resources is not commutative, as Chalice requires
all formulas to be self-framed.

DSL as VerCors specification language The VerCors program
specification language is DSL, but with some convenience
syntax added. In addition, we introduce a few useful VerCors
annotation constructs.

VerCors specifications are embedded in comments using
syntax that is borrowed from JML [24]. That is, all comments
that start with a @ are part of the specification. This holds for
both single-line (/@ ...) and multiple-line (/+@ ... /) com-
ments. Table 1 gives the complete grammar of our property
annotation language.

Note that, if a method contract contains multiple requires
clauses then that is equivalent to requiring the separating
conjunction of those clauses. The same is true for ensures.

The VerCors tool supports the implication operator ==>
both as a boolean operator and with a boolean formula as
the condition and a resource formula as the conclusion. The
latter case is syntactic sugar, defined in terms of the if-then-
else operator:

b==>R¥b?R:true

In addition, VerCors provides syntactic sugar for the follow-
ing common specification pattern for predicate pred:

(e != null) ==> e.pred(ey,. . .,e,)

This construct will be abbreviated as:

e—>pred(ey,. . .,en)

In addition to Java’s standard primitive types, the specifi-
cation language has two additional primitive types: resource
and frac to type permission and fraction expressions, respec-
tively. As in Chalice, the domain of frac is a value between
1 and 100, where 100 means a full write permission and
any value less than 100 denotes a read-only permission. This
restriction is made because we use Chalice as a back end, not
because the encoding requires it. In principle, the techniques
described in this paper work over any separation algebra [29].
Note that, the syntactic domain of frac does not include the
infinitesimal fraction €. Hence, we denote permission € on
the location / by Value().

For specification convenience, the tool also provides a
built-in polymorphic list or sequence type seq<T>, where T
can be any type (not necessarily a class). This type translates
directly to the Chalice type of the same name. The syntax for
a constant list borrows from the syntax for a constant array,
e.g., the list [1,2,3] is written as
seq<int>{1,2,3}

Several standard operations on sequences are available.
Given sequences s,t, we have:

— concatenation: s + t;

first element: head(s);
other elements: tail(s); and
length: s.length.

Only expressions that do not have observable side effects
are safe to use in specifications. Such expressions are called
pure. In JML, it is possible to specify and verify that a method
is pure. The VerCors tool supports this too, but within the
context of this paper, we will limit ourselves to functions. A
function is a method that simply returns an expression. Func-
tions are defined inductively, ensuring that their evaluation
always terminates.

Because functions can only return expressions, we use an
abbreviated syntax for them. The formal parameter decla-
ration uses the same syntax as a Java method declaration,
but instead of the method body we write = followed by the
expression that defines the function. The same syntax is used
for predicates. For example, in Fig. 1, line 4, we first define
the resource predicate state, which defines write access to
field x. Then, we define the function get that returns x in
lines 8, 9. Note that, the function get requires the state()
predicate to be allowed to access x. Also note that although
it is not explicitly written, the function get does in fact

@ Springer

762

S. Blom, M. Huisman

VerCors

class Get {
2 int x;
/*@
4 resource state()=Perm(x,100);
@x/

/+Q@
8 requires state();
int get()=x;
10 ©x/
}

Fig. 1 Simple getter example

ensure state() too, because by definition functions cannot lose
resources.

In method contracts, we will often employ ghost parame-
ters and ghost return values. These are declared by given
and yields clauses that precede the method declaration. For
example, an integer ghost parameter x and a boolean ghost
return value b for a method m are specified as:

given int x;
yields boolean b;
intm() ...

Implicitly, a method contract is universally quantified over
the variables in the given clause, and existentially quantified
over the variables in the yields clause, similar to how a normal
method contract is universally quantified over its parameters
and existentially quantified over its return value.

When a method with ghost parameters is called, the para-
meters must be passed and the results may be stored. For this
purpose, we use the keywords with followed by a block, and
keyword then followed by a block. A parameter is passed by
setting it in the with block. A result is received by assigning
it to a ghost variable in the then block. For example, invok-
ing method m with 37 as the ghost argument and storing the
ghost return value in a ghost variable gres is written as

//@ boolean gres;

int res;
res=m() /x@ with { x=37; } then { gres =b ; } «/;

When using predicates, there is no semantic difference
between a predicate invocation and an instantiation of its def-
inition. However, automatic provers cannot simply replace
defined objects by their definitions, as this would lead to
an infinite search space, which might cause the prover to
become non-terminating. As a consequence, in many cases
the equivalence between a defined object and its definition
cannot be proven automatically. To overcome this limitation,
VerCors supports proof hints that tell the prover to explicitly
convert between the two forms. The operation of replacing a
predicate invocation by its definition is called unfold, and the
reverse operation is called fold. Sometimes, it is necessary to

@ Springer

unfold a predicate temporarily in an expression. The syntax
to do that is \unfolding pred() \in expr.

This completes the overview of the features of the speci-
fication and annotation language that we need to discuss the
witness transformations in this paper. The tool supports more
features. For example, in boolean formulas both existential
and universal quantifications have been added with the same
syntax as JML, and in resource formulas, universal separat-
ing conjunction has been added to be able to make state-
ments about permissions to elements of arrays. The tool also
supports inheritance using the theory of abstract predicates
and inheritance by Parkinson and Bierman [30], but cannot
use the full power of that theory because specifications are
restricted to monotone predicate families, as introduced by
Haack and Hurlin [31,32].

In the examples below, whenever necessary, we will
explain more details of the specification syntax.

2.2 Chalice

As mentioned above, Chalice is a tool for the verification
of concurrent programs [17]. Its input language is a sim-
ple object-oriented language with built-in specification fea-
tures. Features of the Chalice language are basic classes
(no static members or inheritance), fields and three kinds of
‘methods’:

— standard methods, which can be used in executable code;

— functions, i.e., to evaluate a property about the state,
which cannot have side effects, and can, therefore, be
used both in executable code and in specifications; and

— predicates, which specify the access permissions that
both methods and functions require and can only be used
in specifications.

The specification language of Chalice supports field per-
missions in the same way as DSL above, albeit with a dif-
ferent syntax (acc instead of Perm, rdx instead of Value, and
&& is used as a connective for permissions, instead of sx).
Standard boolean expressions and functions can be used in
specifications. In addition, Chalice has support for (recursive)
predicates. However, these predicates cannot have explicit
parameters, i.e., they are limited to the implicit parameter
this. Both functions and predicate definitions should termi-
nate.

In Chalice, all unfoldings of predicates in Chalice func-
tions must be explicitly written. For example, the get function
in Fig. 1 is translated to the Chalice code

function get():int
requires this.state;

unfolding this.state in this.x

}

Witnessing the elimination of magic wands

763

Java

{} VerCors
Tool

Common Object Language

I I
A %

Chalice | >| Boogie | >|SAT/SMT

Fig. 2 VerCors tool set architecture

input language

back ends

Folding and unfolding of predicates in method bodies in
Chalice are done using the same keywords as for VerCors.
The Chalice tool verifies annotated code by generating an
annotated Boogie program [33], for which the Boogie verifier
subsequently generates first-order logic proof obligations.

2.3 Architecture of the VerCors tool set

As mentioned above, the VerCors tool set leverages existing
verification technology, and encodes annotated concurrent
Java programs into Chalice and Boogie.

Input for the tool is source code annotated with method
contracts. These contracts are translated via Chalice and Boo-
gie into the formalism used by a back-end prover. The diag-
nostic messages provided by the back-end tool are then (par-
tially) reverse engineered to provide diagnostic output mes-
sages to the user. Each failure can optionally be accompanied
by the full details provided by the underlying verification
engine.

The VerCors tool set is built along the classical pattern
of a compiler. That is, the input programs are parsed into
an abstract syntax tree on which several transformations are
applied before they are passed on to one of the back ends.
The arrows in Fig. 2 indicate the possible paths a problem can
take from input to solver. They reflect that Chalice works by
translating its input into Boogie and Boogie in turn works by
generating a problem for an SMT solver, such as Z3 [34]. The
direct arrows from the intermediate format (Common Object
Language) to Chalice and Boogie indicate that (depending on
the precise verification task) the tool will transform programs
into input programs for Chalice, or for Boogie directly. In this
paper, we only consider the encoding via Chalice.

3 The tree delete challenge

As a motivating example for our work, we use the iterative
removal of the element with the least key from a binary search
tree, i.e., challenge 3 from the VerifyThis@FM?2012 Program
Verification Competition [7]:

Given: a pointer t to the root of a non-empty binary
search tree (not necessarily balanced). Verify that the
procedure in Fig. 4 removes the node with the mini-
mal key from the tree. After removal, the data structure
should again be a binary search tree.

In Fig. 3, we show the fully specified listing of the recur-
sive solution of the problem. We will discuss that listing and
then sketch the iterative solution.

Input for the tree delete algorithm is a binary search tree,
in our case this tree is represented in the class Tree with an
integer data field and left and right sub trees (lines 2—4). The
goal of the algorithm is to delete the element with the smallest
key, i.e., the left-most node from the tree, and the challenge
is to prove that the resulting tree remains a binary search tree.

To provide a specification for the algorithm, we first add
the following definitions to the Tree class:

— the predicate state, representing permissions to the field
locations making up the tree (lines 7-10);

— the function contents, capturing the list of integers stored
in the tree (lines 12-20);

— the predicate contains, expressing the permissions and the
stored values simultaneously (lines 22-23); and

— the functions sorted_list and sorted stating that the repre-
sented list is sorted (lines 25-29).

The state predicate defines the permissions on the tree. If
one holds the state predicate, one has write permission on the
fields data, left and right, and recursively also on the subtrees
pointed to by left and right, provided they are not null. The
pure method contents defines the contents of a tree to be the
contents of the nodes’ data fields, read from left to right.

Using these specifications, the method del_min, which
implements the deletion of the element with the minimal key
is specified in lines 31-33. This contract states that given a
non-empty tree, the algorithm removes the first element of
the list that is represented by a tree. Moreover, if the input
represents a sorted list then the output represents a sorted list
too. From this, we can derive that the requirements of the
challenge hold using a few well-known facts about binary
search trees. First, for a binary search tree the list it repre-
sents is ordered. Therefore, removing the first element is the
same as removing the least element. Moreover, the permis-
sions used are full write permissions, which implies that the
underlying linked data structure is tree shaped. If state() holds
on a node, we have full permission on the data field of that
node. If the same node occurs twice in the tree (or on a cycle),
then we would have two full permissions (or more) on that
node. That is impossible, so there cannot be any shared node
in the data structure, see also [35].

Finally, lines 3545 of Fig. 3 contain a recursive imple-
mentation of this algorithm. It is easy to see, and to verify,

@ Springer

764

S. Blom, M. Huisman

__ VerCors

public class Tree {
2 public int data;
public Tree left;

4 public Tree right;

6 /x@
public resource state()=
8 Perm(data,100) s
Perm(left,100) s left —>state() *x
10 Perm(right,100) == right—>state() ;

12 requires t—>state();
ensures tl=null ==> \result.length > 0;
14 public seq<int> contents(Tree t)=
(t==null)
16 7seq<int>{}
:\unfolding t.state() \in
18 (contents(t.left)
+seq<int>{t.data}+
20 contents(t.right));

22 public resource contains(Tree t, seq<int> s)=
t—>state() ** contents(t)==s;
24
public boolean sorted _list(seq<int> s)=
26 (\Morallinti;1<i&&i<|s|;s[li—1] <=sli]);

28 requires t—>state();
public boolean sorted(Tree t)=sorted_list(contents(t));
30
requires t!=null xx t.state();

32 ensures contains(\result,tail(\old(contents(t))));
ensures \old(sorted(t)) ==> sorted(\result);
34 @x/

public Tree del_min(Tree t){
36 //@ unfold t.state();
if (t.left==null) {

38 //@ assert contents(t.left) == seq<int>{};
return t.right;
40 } else {
t.left=del_min(t.left);
42 //@ fold t.state();
return t;
44 }
}
46 }

Fig. 3 The recursive implementation of minimal element deletion

that this implementation respects the specification of del_min.
To illustrate this, we have decorated this recursive implemen-
tation with the annotations that are needed for the VerCors
tool to verify that this implementation respects the specifi-
cation above: essentially all that is needed is opening of the
state predicate at the beginning of the method, closing of
the state predicate at the end of the method body, and an
explicit assertion that if t.left is null then the contents of t.left
are the empty list. The assertion, while logically superflu-

@ Springer

ous, guides the underlying prover towards the solution. With-
out it, verification results in an inconclusive verdict due to a
timeout.

In contrast to the recursive version, the verification of the
iterative version of this algorithm, as requested by the actual
challenge description, is much more involved. One needs to
specify an appropriate loop invariant that retains all permis-
sions on the entire tree data structure during the iterations that
compute the left-most node in the tree. The invariant must be
written in such a way that the deletion of the left-most node
afterwards is allowed and that the permissions on the whole
tree can be recovered.

The core of the problem is the treatment of permissions,
which are given in the form of a tree. In each iteration, the
focus on the tree (i.e., the variable current) is shifted by one
step. However, once you have reached the left-most node,
you want to move back the focus to the root of the tree,
i.e., after the loop has finished, the method should continue
with access to the root of the tree. The magic wand is highly
suited to handle this: all the permissions on the traversed path
(including all its unvisited subtrees) are stored “inside” the
magic wand, and by giving up the focus on the current node,
focus on the root can be retrieved. That is, we build a magic
wand that allows exchanging full permission on the tree with
the focus on the current node by full permission on the tree
with the focus on the root.

Figure 4 contains the iterative implementation of the tree
delete algorithm, with the key loop invariants necessary to
verify this method. Note that, rather than using the compe-
tition version verbatim, we have eliminated a superfluous
variable and renamed all variables to make the code more
understandable. Also note that while our ultimate goal is to
further develop the tool set in such a way that this code can be
verified essentially as it is written in Fig. 4, the current ver-
sion of our tool set needs a lot more annotations. The fully
annotated version, which can actually be verified with the
VerCors tool set, can be found in Fig. 18 (on page 776).

The variables in the algorithm denote the following:

— top is the pointer to the root of the complete tree;
— cur is the currently explored node; and
— left is the left subtree of cur.

The loop invariant expresses the following:

— the program holds permissions for the currently explored
node (state predicate);

— the currently explored node is the root of a tree (state
predicate);

— left is the left subtree of cur; and

— a promise (by means of a magic wand) that if cur is
modified to represent a tree with the left-most element
removed, and if the program holds access permissions

Witnessing the elimination of magic wands

pseudo VerCors

Tree del_min (Tree top) {
2 if (top.left == null) {
return top.right;
1 }else{
Tree cur = top;

6 Tree left = cur.left;
s loop_invariant cur.state();
loop_invariant cur.left==left;
10 loop_invariant wand:
contains(cur,tail(contents(cur))) —sx
12 contains(top,tail(\old(contents(top))));
while (left.left != null) {
14 cur = left;
left= cur.left;
16 }

cur.left = left.right;
18 apply wand,;
return top;

20 }

Fig. 4 The iterative implementation of minimal element deletion

to this tree, then this can be exchanged to access per-
missions on a larger tree, which also has the left-most
element removed compared to the tree at the start of the
procedure.

With this loop invariant, we can correctly capture suffi-
cient “promises” about the rest of the data structure to verify
correctness of the algorithm.

To make this proof amenable to automated tool support,
we need an encoding of the magic wand formula using
classes, separating conjunction and the points-to predicate.
To be able to do this encoding, the user has to provide some
evidence that the magic wand is indeed correct, i.e., that the
required resources can indeed be exchanged for the promised
resources. We introduce this encoding in two steps. First, we
introduce the basic idea behind encoding formulas as objects
using the witness encoding of predicates with parameters.
Second, we show how magic wands can be encoded in a
similar style. Finally, we show how we can use this approach
to complete the verification of the tree delete challenge.

4 The encoding of predicates

In this section, we show how predicates with explicit parame-
ters, different from the implicit this parameter, are encoded
in Chalice. This problem was also considered by Jost and
Summers as part of their translation from VeriFast to Chal-
ice [25]. In that paper, it is explained how some resource
predicates with arguments can be rewritten as combinations
of resource predicates without arguments and boolean func-

765
_ VerCors
class List {

2 int val;

List next;
4 /*@

resource state(frac p,frac q)
6 = Perm(val,p)

s« Perm(next,q)

s sk rec:next—>state(p,q);

*/
10 }

Fig. 5 Recursive state predicate with permission parameters

tions with arguments. This does not always work, so they
also have a way of encoding predicate arguments as fields of
the original object. Our encoding goes one step further and
encodes the arguments as fields in separate objects, called
witness objects. The original predicate with arguments can
then be redefined as a predicate on the witness object that
refers to fields instead of referring to arguments and it thus
needs no arguments. The reason that it is beneficial to have
this more complicated version is that, if the arguments are
encoded inside the object, it may be complicated to encode
situations where different predicate instances must be held
on an object. Such situations occur naturally in many styles
of parallel programs, e.g., in divide-and-conquer style pro-
grams. Using a different witness objects for every instance
held, we can handle this situation in a very simple way.

We describe the witness approach first for simple predi-
cates, and then for recursive predicates. Then, we describe
the encoding algorithm. Finally, we consider the soundness
and completeness of the transformation.

4.1 Predicate witnesses

Suppose, we wish to define a predicate that captures that you
have fraction p to access the elements stored in the list (via
the val pointer), and fraction g to traverse the next pointer to
the next element in the list, as is done in Fig. 5. This predicate
cannot be rewritten to fall within Chalice’s syntax for formu-
las. To get around this problem, we introduce the notion of
witness. This witness is a carefully encoded object, contain-
ing a valid predicate, which holds for the witness object if
and only if the original predicate holds. Witnesses can be
constructed and manipulated using Chalice (ghost) code.

4.1.1 Witnesses for non-recursive predicates

To describe how this witness object is constructed and rea-
soned about, we first consider the encoding of a very sim-
ple predicate, whose body is just true. Class Twice in Fig. 6
defines such a predicate, called state.

@ Springer

766

S. Blom, M. Huisman

pseudo VerCors

public class Twice {
2 //@ resource state(frac p)=true;

4 /*@ given frac p;
requires state(p);
o ensures state(p); */

void m(){};

/+@ given frac q;

10 requires state(q);
ensures state(q); */
12 void twice(){
m();

14 m();

}
16}

Fig. 6 Simplified class Twice

Figure 7 shows the definition of the witness object in Chal-
ice that encodes the state predicate declared in class Twice.
The witness object is an instance of the class Twice_state.
This class definition is generated by the VerCors tool set. The
class has two fields: ref refers to the object where the original
predicate is defined, and p holds the value of the parame-
ter p. Furthermore, it defines a predicate valid that encodes
the original state predicate, but using the fields of the wit-
ness object, instead of the original predicate’s parameters. In
addition, the class contains a function check that compares
the predicate parameters in the original specification with
the values in the fields of the witness object, and expresses
that they are the same. If o is the witness object for a predi-
cate state, then an assertion this.state(p) becomes essentially
o.valid() * o.check(this,p) in the encoding (see for example
Lines 3, 4, 9, and 10 in Fig. 9). To complete the description

Fig. 7 Chalice encoding of the ___ Chalice

of the class Twice_state, it also defines getter functions for all
fields in the class.

Using the witness object of the predicate, we wish to show
that class Twice in Fig. 6 is correct. For a human, it is easy to
see that the body of twice satisfies its contract: the pre- and
postconditions of m and twice are all the same, and the calls
to m thus can be put in sequence.

To ensure that the tool can establish the correctness of
twice, we need to decorate it with some additional proof anno-
tations, as shown in Fig. 8. First of all, every usage of pred-
icate state has been prefixed with a label, which refers to a
witness (an instance of the class Twice_state after encoding).
Thus, for example in lines 8 and 9, in1 is used to refer to the
witness object for predicate state that is passed as argument
to the call of m, while out1 is used to refer to the witness
object for the predicate returned by this call.

To be able to refer within the body of method twice to the
witness object returned by the first call to m, in line 21, we
use the witness keyword and the same labeling notation to
declare tmp as a variable that can refer to a witness. Note how
the argument of the predicate is a wildcard %, meaning that
its value is irrelevant.

The with block instantiates the variables declared in the
given block for the method (in this case frac p), and the wit-
ness object associated with the precondition of this call. The
then block assigns the witnesses that are returned by the
method call to the appropriate variables.

Finally, Fig. 9 shows the encoding of class Twice in Chal-
ice. Notice how the state predicate is encoded as a com-
bination of valid and check. The information from the with
block is used to generate parameters for the Chalice method
calls. The information from the then block is used to gener-
ate assignments for the returned values of the Chalice method
calls. Also notice that the witness names in1 and out1 have
become an argument and a return parameter of the method m,

witness class Twice_state class Twice state {

2 var ref : Twice;
var p : int;

4 predicate valid

{

6 rds«(this.p) && rdx(this.ref) && this.ref |= null && 0 < this.p && this.p <= 100

}

s function check(object: Twice,p: int):bool

requires this.valid;

unfolding this.valid in this.ref == object && this.p == p

12 }
function get_ref(): Twice
14 requires this.valid;

16 unfolding this.valid in this.ref

15 function get_p():int
requires this.valid;
20 {
unfolding this.valid in this.p
22 }
}

@ Springer

Witnessing the elimination of magic wands

767

_ VerCors
public class Twice {

2 /*@

resource state(frac p)=true;
1+ ©x/
6 /+@

given frac p;
s requires inl:state(p);

ensures outl:state(p);
10 ©x/

void m(){

12 //@ outl=inl;

14

/*@
16 given frac q;
requires in2:state(q);
18 ensures out2:state(q);
©x/

20 void twice(){
//@ witness tmp:state (x);
22 m() /*@ with{p=q; in1=in2;} then{tmp=outl;}x/;
m() /*@ with{p=q; inl=tmp;} then{out2=outl;}x/;
24 }
¥

Fig. 8 Fully annotated class Twice

respectively (in VerCors syntax, these are ghost parameters
declared with given and yields, respectively).

4.1.2 Witnesses for recursive predicates

When a predicate is recursively defined, such as the state
predicate on linked lists in Fig. 5, the witness encoding results
in an object that is recursive too. For every recursive invoca-
tion of the predicate in the predicate definition, the witness
contains a field that refers to the witness that provides the evi-
dence for the recursive call. Thus, the witness for a predicate
being valid on an object is actually a tree of witness object

Chalice.

witness to Ist.state():
ref | rec ref | rec ref | rec

- - g_{

Y Y
val

Y
val val |next

Fig. 10 Example witness structure for linked list

next

list object Ist:

instances, whose structure matches the calling structure of the
evaluation of the original predicate. This tree is a finite object
because in our restricted case predicate definitions always ter-
minate. For example, in Fig. 10, the linked list of witnesses at
the top reflects that the definition of rec:state(p,q) applied to
the list of three elements at the bottom makes two recursive
calls. The definition of the witness object is given in Fig. 11,
where the field rec refers to the witness object for the recur-
sive call of the predicate. Note further how the conditional
part of the valid predicate in line 9 matches the conditional
invocation rec:next—>state(p,q) in the original predicate def-
inition.

4.2 Recipe for the encoding

As presented above, the encoding into Chalice generates a
witness class for every predicate definition, replaces predi-
cate invocations in logical statements by validity checks on
witnesses, and adds getter functions for use by witness classes
as well as variables that are needed to store witness objects.

The complete recipe for the encoding (as a VerCors to
VerCors program transformation) is as follows:

1. Every predicate definition
resource pred(typel argt,...,typeN argN) = body;
declared inside class Class gives rise to the declaration
of a sibling of Class, called Class_pred, containing:

Fig. 9 Chalice encoding of

class Twice class Twice {

2 method m(p: int,inl: Twice_state) returns (outl: Twice_state)
requires inl != null && inl.valid && inl.check(this,p);
4 ensures outl != null && outl.valid && outl.check(this,p);

{

6 outl :=inl;

s method twice(q: int,in2: Twice_state) returns (out2: Twice_state)
requires in2 |= null && in2.valid && in2.check(this,q);
10 ensures out2 != null && out2.valid && out2.check(this,q);

{
12 var tmp : Twice state;
call tmp := this.m(q,in2);
14 call out2 := this.m(q,tmp);

16 method Twice_init() returns ()
{
18 }
}

@ Springer

768

S. Blom, M. Huisman

Chalice.

Fig. 11 Fragment of the

List_state witness encoding class List_state {
2 var ref : List;
var p : int;
4 var q : int;
var rec : List_state;
6 predicate valid

{
s rd«(this.rec) && rd«(this.q) && rd«(this.p) && rdx(this.ref) && (acc(this.ref.val,this.p) && acc(this.ref.next,this.q)
&& (this.ref.next = null ==> this.rec |= null && this.rec.valid && this.rec.check(this.ref.next,this.p,this.q)))
10 && this.ref I= null && 0 < this.p && this.p <= 100 && 0 < this.q && this.q <= 100

}

12 function check(object: List,p: int,q: int):bool

requires this.valid;

unfolding this.valid in this.ref == object && this.p == p && this.q == q

16 }

— a field Class ref to refer to the object for which the
validity of the original predicate is encoded;

— fields type1 argf, ..., typeN argN to store the parame-
ters of the original predicate;

— a predicate valid, whose definition is the separating
conjunction of write access to the fields of the predi-
cate class and the translation of the body of pred;

— a function check(Class ref,type1 arg1, ..., typeN argN)
that can validate if the reference and parameters
match; and

— getter functions for all fields.

2. In the method specifications and other annotations, every
predicate invocation name:field. pred(args) is replaced by
the following separating conjunction:
name!=null xx name.valid #x name.check(field,args)

This encoding depends on name being defined, therefore,
some additional declarations are necessary, depending on
where the invocation occurred:

— in arequires clause: add a parameter
Class_pred name to the given clause;

— in an ensures clause: add a return value
Class_pred name to the yields clause; or

— in the body of a predicate definition: add a field
Class_pred name to the definition of Class_pred and
also add Perm(name,100) to the valid predicate of the
class Class_pred.

3. The original class is modified as follows:

— the predicate definition is removed;
— every occurrence of

unfold name:obj.pred(expri, ..., exprN)

is replaced by unfold name.valid; and
— every occurrence of

fold name:obj.pred(expri, ..., exprN);

is replaced by the block
{

name = new Class_pred();
name.ref = obj;

@ Springer

name.arg1 = expri;

name.argN = exprN;
fold name.valid;

}

4.3 Soundness and completeness of the encoding

The soundness of the witness encoding for predicates follows
from the fact that o.pred(arg;, ..., argy) is valid in a state if
and only if w.valid() && w.check(o, argy, ..., argy), where
w is a witness of the former formula.

In our restricted setting (terminating predicates only), we
also have completeness because witnesses can be constructed
by induction on the call graph of the predicate invocation
o.pred(argy, ..., argy) by following the recipe for the encod-
ing described in the previous section. When using fixed-point
semantics, not all predicates have finite call graphs. Hence,
our method is not complete under fixed-point semantics for
predicates.

5 The encoding of magic wands

Now that we have seen how predicates with parameters are
encoded in Chalice using witness objects, we discuss how
magic wands are encoded based on a similar approach. The
encoding requires the user to provide a proof script, which
provides sufficient information to create a magic wand wit-
ness object and to apply it. The proof script language will
also be discussed.

5.1 General idea

The general idea behind our encoding is that a magic wand
encapsulates two features. First, like a predicate, it can store
resources. Second, like a lemma, it can describe how the
stored resources combined with the additionally required
resources (left-hand side formula) can produce the ensured

Witnessing the elimination of magic wands

769

resources (right-hand side formula). As in the previous sec-
tion about predicates, the encoding results in a witness object.

Following that idea, what we want to do is as follows: each
magic wand formula is encoded as an instance of the class
Wand. Assuming that we have a data type that can contain
formulas, the formulas describing the required and ensured
resources of the magic wand are fields of this class. A formula
field is also used to describe the extra resource needed to
transform the required resources into the ensured resources.
In addition, a description of how the required resources can
be exchanged for the ensured resources is stored in a field of
type proof.

The extra resources are given to the constructor and stored
inside the magic wand object (in the extra field) by folding
them into the valid predicate, which is given back to the cre-
ator of the Wand object. The extra resources are now hidden
and cannot be accessed directly any more. The only way to
retrieve them is using the _apply method. The specification of
the _apply method requires the required formula of the magic
wand, as well as the valid predicate and ensures the ensured
formula, while its body is the exchange description.

Correctness of the _apply method w.r.t. its specification
ensures that the resources declared in the extra field and stored
in the valid predicate of the wand, together with the required
resources are sufficient to establish the ensured resources of
the magic wand. Figure 12 shows the definition of this wand
class. The precondition of the _apply method ensures that
the method is invoked no more than once, because the valid
predicate has to be given up during the call.

Notice that this is not a valid encoding, as it uses types such
as Formula and Proof, which are not supported in the specifica-
tion language. Neither is there support for the eval operator
for evaluating a formula as part of a resource expression.
Therefore, below we discuss how the ideas of this idealized
encoding can be realized by a correct Chalice class.

5.2 Encoding of magic wands in Chalice

This section discusses how the idea described above is used
to generate a specific class for each type of wand formula
that is used. Moreover, the proof script cannot be passed
as a parameter, instead we encode it by an identifier, and
generate a body of _apply that selects the appropriate proof
script, depending on the value of the identifier.

Consider for example the BoxedInt class in Fig. 13. This
class implements a field x, and setter and getter functions for
that field. The contracts are written to enforce a non-standard
set/get protocol,® which was inspired by the iterator protocol
of Hurlin and Haack [9]. Every BoxedInt object can be in

3 We chose this protocol for illustrative purposes, not because of its
practical value. However, more meaningful protocols can be treated in
a similar way, as shown in Sect. 6.2.

pseudo VerCors

class Wand {
2 Formula f1;
Formula f2;
4 Formula extra;
Proof p;

6
resource valid()=eval(extra);

requires eval(extra);
10 ensures this.fl == f1 && this.f2 == f2;

ensures this.p == p && this.extra==extra;
12 ensures valid();
Wand(Formula f1, Formula f2,
14 Formula extra, Proof p)
{
16 this.f1 = f1;
this.f2 = f2;
18 this.extra = extra;
this.p = p;
20 fold valid();
}
22
requires valid() = eval(fl);
24 ensures eval(f2);
void _apply() {
26 unfold valid();
P():
28 }
}

Fig. 12 Idealized wand encoding

two states: read mode and write mode. When an instance is
created, it is created in write mode. In write mode, the only
method that can be called is set. After setting, the object
is in read mode. In read mode, the only method that can be
called is get, and the object stays in read mode. However, it is
always possible to reset the object to a different value. To do
so, write mode must be re-established. Hence, the set method
ensures not just the predicate readonly(), but in addition also
the magic wand readonly()—xwriteonly(), which can be applied
to enable writing. Figure 13 also defines a method demo to
illustrate how the magic wand is used.

The code is mostly self-explanatory, but three elements
are worth noting:

— Every magic wand is given a label, which is used to be
able to identify which magic wand is addressed. In this
example, the labels recover and wand are used (in lines
21 and 38, respectively).

— The syntax for creating a magic wand is
create {

proof script
qed wand formula;

}

@ Springer

770

S. Blom, M. Huisman

__ VerCors

2

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

class BoxedInt {
int x;
/+@
resource readonly()=Perm(x,25);
resource writeonly()=Perm(x,100);
©x/
//@ ensures writeonly();
BoxedInt(){
//@ fold writeonly();
}
//@ requires readonly();
//@ ensures readonly();
public int get(){
//@ unfold readonly();
return x;
//@ fold readonly();
}
/+@
requires writeonly();
ensures readonly();
ensures recover:(readonly()—xwriteonly());
©x/
void set(int v){
//@ unfold writeonly();
X=V;
//@ fold readonly();
/x@
create {
unfold readonly();
use Perm(this.x,75);
fold writeonly();
qed recover:(readonly()—s*writeonly());
}
©x/
}

void demo(){
//@ witness wand:(readonly()—xwriteonly());
BoxedInt d=new BoxedInt();
int i=1;
//@ loop_invariant d.writeonly();
while(true){
d.set(i) /*@ then { wand=recover; } x/;
i=d.get()+d.get();
//@ apply wand:(readonly()—swriteonly());

Fig. 13 Class BoxedInt

To write the proof script, the usual proof hints (fold/
unfold/etc.) are allowed, and in addition two new state-
ments are introduced: use R; and qged R;. The use state-
ment asserts that formula R holds at the time the magic
wand is created and stores the resources represented by
this formula inside the magic wand. For example, the
proof in lines 28-33 stores 75 % of the permission on
the field x by means of the statement use Perm(this.x,75).

@ Springer

The qed statement ends the proof script for the magic
wand.

Our encoding declares a class for the witness object, called
Wand_readonly_for_writeonly, as shown in Fig. 14, to represent
the magic wand. Moreover, it rewrites the BoxedInt class to
replace magic wand formulas by manipulations of the witness
object (see Fig. 15).

Instances of Wand_readonly_for_writeonly are used as wit-
nesses to the validity of all magic wands that match
e1l.readonly() —x e2.writeonly() for arbitrary expressions el
and e2. Because in the encoding proofs are checked when
a magic wand is applied and not when it is created, we num-
ber all proofs and store the proof number in the lemma field.
Also, the values of e1 and e2 at the time of the creation of
the magic wand are stored in the fields in_1 and out_1, which
have matching getter functions. The values of other variables
that are used in the proof are also stored in the object. In this
case, the value of this for lemma 1 is the only value needed
and it is stored in the field this_1.

The contract of the _apply method (Fig. 14; lines 18-21
essentially requires the wand to be valid, and the readonly
predicate on in_1 to hold. It ensures the writeonly predicate
on out_1. The actual code uses getters and has to deal with
non-null issues as well.

The body of the _apply method consists of an unfold state-
ment, followed by a case distinction over the proofs that have
to be verified. For each proof, the proof hints that form the
actual proof are copied into the corresponding branch in the
_apply method. That is, the use keywords and the qed key-
word are dropped. For example, from the body of the create
in lines 28-33 in Fig. 13, only the unfold and the fold are
copied to the body of the _apply method in lines 23-32 in
Fig. 14.

The valid predicate specifies (write) access to all fields in
the object and for every proof it has a conditional require-
ment that all of the required permissions and properties
hold. For our example, this means that for example if
lemma is 1, then we have 75 % permission on this_1.x and
this_1 == in_1 == out_1. Finally, the predicate valid also states
that lemma must contain a valid proof number.

In Java, the logical way of creating new witness objects
is to have an overloaded constructor for every proof script.
That is not possible in Chalice, so instead we generate a
factory method with a unique name for every proof script.
These methods are placed in the class that calls them. Thus,
in our case, the factory method Wand_readonly_for_writeonly_
lemma_1, which requires the permissions and properties used
in the proof and ensures a magic wand witness, is put into
the Boxedint class.

We do not include a full listing of the generated Chalice
code; however, it can be generated using the online version
of the VerCors tool set [36].

Witnessing the elimination of magic wands

771

____intermediate VerCors

class Wand_readonly_for_writeonly{
2 int lemma;

BoxedInt in_1;
4 /%@
requires this.valid_wand();
6 ensures \result != null;
Q@x/

s BoxedInt get_in_1()=in_1;

10 BoxedInt out_1;

/%@
12 requires this.valid_wand();
ensures \result != null;
4 Ox/
BoxedInt get_out_-1()=out_1;
16
/%@
18 requires this.valid_wand();
requires get_in_1().readonly();
20 requires get_out_1() != null;

ensures \old(get_out_1()).writeonly();
22 Qx/
void _apply(){
24 //@ unfold this.valid_wand();
if (lemma == 1) {

26 /x@
unfold this_1.readonly();
28 fold this_1.writeonly();
Qx/
30 return;
}
32 }
34 BoxedInt this_1;
/%@
36 predicate resource valid_wand()=
Value(lemma) % 1 <= lemma #x
38 Value(in_1) #x in_1 != null %x
Value(out_1) s out-1 != null *x
40 Value(this_1) #x
(lemma == 1 ==>
42 this_1 = null xx Perm(this_1.x , 75) s
in_1 == this_1 % out_1 == this_1
44) %
lemma <= 1;
16 */
s /%0
ensures PointsTo(lemma , 100, 0);
50 ensures PointsTo(in_1, 100 , null);
ensures PointsTo(out_1, 100 , null);
52 ensures PointsTo(this_1, 100 , null);
Qx/
s Wand_readonly_for_writeonly(){
lemma=0;
56 in_1=null;
out_l=null;
58 this_1=null,
}
60 }

Fig. 14 Encoding of the wand formula in class BoxedInt

5.3 Correctness of the encoding

When Chalice is used as the back end, the semantics used for
formulas is Implicit Dynamic Frames with fractional permis-
sions. This logic does not define a magic wand and, there-
fore, the magic wand is no more than syntactic sugar for our
encoding. The obvious question is if the magic wand as we
implement it really is the same magic wand as in separation
logic.

In this section, we provide an argument as to why our
encoding is a correct implementation of the magic wand. We
will do so based on the view that a static verifier is a tool that,
given a program with specifications, establishes the existence
of a correctness proof of those specifications. For example,
for a sequential program it would establish the existence of a
Hoare logic proof. Therefore, we will show that the program
before the witness transformation can be proven correct if
and only if the program after the witness transformation can
be proven correct.

The result is that our encoding correctly implements the
magic wand of any logic whose semantics extends that of
IDF and in which the two proof rules for the magic wand
that we use are sound.

To avoid unnecessary clutter, we will ignore scoping and
visibility rules for variables, as it is well known how to fix
these issues. Moreover, we will focus on the places where
magic wands are introduced and eliminated. In proofs, magic
wands can also occur in many other places, as they are car-
ried along in proofs and specifications. However, as long as
amagic wand is not introduced or eliminated, there is no dif-
ference between it and any other formula and thus requires
no special treatment, while showing the correctness of the
encoding.

The existence of proofs in a proof system is denoted with
the symbol F. That is,

Fr,....F, -G

denotes that there is a proof that G logically follows from
Fi x --- % F,. The introduction and elimination rules for
magic wands on which our tool support is based are the fol-
lowing [32]:
F,.G+F Gy
FEGy — Gy
FiIEG —+ Gy FoF Gy

Fi,Fh =Gy

I —)

E —)

These rules are used in low level proofs to show that one
claim logically follows from the previous one. These low
level proof can be used as part of Hoare Logic proofs by
embedding them. For example, if we can derive F F G then
we can write

@ Springer

772 S. Blom, M. Huisman

intermediate VerCors

class BoxedInt{

2 int x;
/+@
1 predicate resource readonly()=Perm(x , 25);
predicate resource writeonly()=Perm(x , 100);
6 */
/%@
8 ensures this.writeonly();
@x/

10 BOXed'ﬂt(){
//@ fold this.writeonly();

/%@
14 requires this.readonly();
ensures this.readonly();
16 @*/
int get(){
18 //@ unfold this.readonly();
return x;

20 //@ fold this.readonly();
}

22 /*@

requires this_1 != null xx Perm(this_.1.x , 75);
24 requires in_1 != null #x in_1 == this_1;

requires out_1 != null xx out_1 == this_1;
26 ensures \result != null *x \result.valid_wand();

ensures \result.get_in_1() == in_1 ** \result.get_out_1() == out_1;
28 @*/

Wand_readonly_for_writeonly Wand_readonly_for_writeonly_lemma_1(BoxedInt this_1,BoxedInt in_1,BoxedInt out_1){

30 Wand_readonly_for_writeonly wand=Wand_readonly_for_writeonly.Wand_readonly_for_writeonly();

wand.lemma=1;
32 wand.this_1=this_1;
wand.in_1=in_1;

34 wand.out_1=out_1;
//@ fold wand.valid_wand();
36 return wand;
}
s /%@
requires this.writeonly();
40 yields Wand_readonly_for_writeonly recover;
ensures this.readonly();
12 ensures (recover != null xx recover.valid_wand() *x recover.get_in_1() == this *x* recover.get_out_1() == this);
Qx/

a2 void set(int v){
//@ unfold this.writeonly();

16 X=V;
//@ fold this.readonly();
48 //@ recover=Wand_readonly_for_writeonly_lemma_1(this, this, this);
}
50
void demo(){
52 //@ Wand_readonly_for_writeonly wand;
BoxedInt d=BoxedInt.BoxedInt();
54 int i=1;
//@ invariant d.writeonly();
56 while(true) {
d.set(i)/*@ then { wand=recover; } x/;
58 i=d.get() + d.get();
//@ wand._apply();
60 }
}
62 }

Fig. 15 Class BoxedInt after introducing witness objects

@ Springer

2

2

Witnessing the elimination of magic wands

773

{F}
// because F + G
(G}
Consider the following two fragments that use our create and
apply annotations to reason about magic wands:
{H x F}
create {
use F;
// because F, Gi - G,
ged G| — Go;
1
{H * (G1 =+ G2)}

and

{H x G1 » (G| = G2)}
apply G| — Go;

{H » Gy}

The meaning of these fragments is, by definition, the same
as the following two fragments that are motivated using the
formal rules:

{H x F}

// because F, G + G,
// by application of I —+

{H * (G1 —+ G2)}
and
{H * Gl * (Gl —* Gz)}
// by application of E —
{H x Gy}

We show that we can eliminate the magic wand formulas
from these fragments by transforming them into magic wand-
free equivalents. We also show that each transformation step
is reversible. As a first step, we lift the proof script and the
application of the magic wand formula from the fragments
into a separate class Wand:

Wand { // version 1
resource valid()=G; — G»;
requires F;
ensures valid();
Wand(){

{F}

// because F, Gy + G,

// by application of I —

{G1 — G2}

fold valid();

{valid()}

}

requires G; * valid();
ensures G»;
void _apply(){
{G1 *valid()}
unfold valid();
{G1 * (G = G)}
// by application of E —

{Ga}

Using this class, the fragments can be rewritten to
{H x F}

Wand witness=new Wand();

{H »witness.valid()}
and

{H » G| » witness.valid()}

witness._apply();

{H Ga}
Instead of using a magic wand in the fragments directly, we
now have encapsulated the magic wand in the valid predi-
cate of the ghost class Wand. Note how the resources needed
to prove the magic wand (F') are explicitly required in the
contract of the constructor. The reverse of this first program
transformation step is inlining, which is known to be cor-
rect, so this first step preserves correctness of the annotated
program.

The remaining occurrences of the magic wand are now in
the ghost class Wand, and in particular in the definition of
the predicate valid. As a second step, we eliminate the magic
wand from the definition of valid, by moving the proof of the
magic wand from the constructor to the _apply method. The
result is that instead of having a magic wand stored in the
valid predicate, we now have the resources needed to create
the magic wand stored in the valid predicate.

Wand { // version 2
> resource valid()=F;
requires F;
4 ensures valid();
Wand(){
6 {F}
fold valid();
8 {valid()}
}

10 requires G » valid();

ensures Go;
2 void apply(){
{G1 = valid()}
14 unfold valid();
{G1 * F}

16 // because F, G| + G,
// by application of I —+

18 {G1 x (G1 — Gp)}
// by application of E —
20 {G2}
}
2}

Clearly, since the specifications of the constructor and
method _apply did not change compared to the encoding in
version 1 of class Wand, any client programs can be proven
correct in the context of the first Wand encoding if and only
if it can be proven correct in the context of the Wand version
2 encoding.

Finally, as a last step to get to the encoding that we have
actually presented above, we can let the magic wand intro-
duction and elimination steps cancel each other and simplify
the annotated body of the _apply method as follows:

{G1 = valid()}
unfold valid();
{G1 = F}

@ Springer

774

S. Blom, M. Huisman

// because F, G| - G,
{G2}

This removes the last occurrence of the magic wand from the
annotated code.

We have sketched how a program correctness proof of a
specified and annotated program before the witness encod-
ing can be transformed into a program correctness proof of
the same program after the witness encoding and back. This
means that if we start with a specified program, apply the wit-
ness encoding to it and then use Chalice to show that there
exists a proof of the transformed program, we can transform
the proof whose existence was proven by Chalice back to
a proof of correctness of the original program. Hence, our
encoding is correct.

The transformation is sound and complete with respect to
the specifications and annotations on the original program.
This does not mean that our transformation is complete for all
programs that have been specified with magic wands. There
might be a specified program, which is correct, but which
cannot be proven correct using our method. To prove the
absence of such programs, i.e., completeness of the annota-
tions and encoding, several proof theoretic questions would
have to be answered. For example, the proof rules for magic
wand would have to be proven complete and also a cut elim-
ination theorem would have to be proven.

For this correctness sketch, we have conveniently forgot-
ten about visibility of fields and methods. However, the actual
implementation does take care of those. Similarly, the imple-
mentation takes care of multiple proofs by having multiple
factory methods instead of a single constructor and using a
case distinction in the bodies of the valid predicate and _apply
method to distinguish between the different proof resources
and proofs.

5.4 Recipe for the encoding

Next, we sketch the complete translation algorithm from a
program that has been annotated using magic wands into
a program that is annotated using witnesses. This requires
to translate all occurrences of magic wand formulas and all
occurrences of magic wand proof scripts. In this sketch, we
use the notation & to abbreviate the list/vector o, ..., Q.

The implementation supports magic wand formulas where
both the required formula and the ensured formula are a sep-
arating conjunction of predicate invocations. For this presen-
tation, we limit ourselves to a single required predicate and
a single ensured predicate. We can do this without loss of
generality because any formula can be turned into a single
predicate formula, where the predicate body is the separating
conjunction of the individual formulas and where the para-
meters are the free variables in the formulas.

Thus, we assume magic wands of the form:

@ Springer

class Wand_P _for_Q {

—

2 Tpars pPaTS
int lemma;
— —

a T free}
— —

6 Tt free}

s resource valid()=
"read access to all fields”

10 #% 1 <= lemma ** lemma <= L
xx (lemma==1 ==> extra})

12 .
xx (lemma==L ==> extral) ;

14
for every field T f:
16 requires valid();
T get f()=1;
18
requires valid();
20 requires P(get_in_1(),---);
ensures Q(old(get_out_1()), --);

22 void _apply(){
unfold valid();

24 if (lemma==1) { script] }

26 if (lemma==L) { script} }

}
s}

Fig. 16 Template for a witness class

name : P(¢) —x Q(7)

For every magic wand formula that uses the same combi-
nation of predicates, we use the same witness class, whose
template is given in Fig. 16. First, we generate a list of field
declarations for the witness class, declaring all the parame-
ters used in the magic wand formula:

— fori =1---7¢|: typeof(e;) in_i:
—
— fori =1---| f|: typeof (f;) out_i;

where rypeof is a meta-operator that extracts the type of an
expression.

Furthermore, the witness class defines getters for all of its
fields. This allows us to replace the magic wand formula

name : P(¥) —+ Q(f)

with a formula that states that name is a valid witness of this
formula:

Witnessing the elimination of magic wands

775

VerCors template
requires extra,,

2 ensures \result!=null s« \result.valid();

ensures % — \result.get_f()==f;

fepars, free’
1+ Wand._..._create_id(Tpars pars, T free'){
Wand result=new Wand();
6 result.lemma=id;
—_— !
for(f € pars, free’){
8 result.f = f;

}
10 fold valid();
return result;

12 }

Fig. 17 Factory method for a witness

name != null xx name.valid() *x

-
el |

* =l

1 name.get_out_j()==f;

= =

‘*1 name.get_in_i()==e; **
Note that, the quantifiers in this formula have to be

expanded at code generation time because they use math-

ematical meta-notation that is not part of our syntax.

The annotated program will contain several proof scripts
to create a witness, all matching the following template.
create {

script;
ged name : P(¥) —x Q(7);
}

Let the total number of proof scripts be L, and let the
scripts be numbered 1, ..., L.

For each script, we compute the list of free variables
used in the script and/or the wand formula (1%2) and their
respective types (7). The list of free variables by definition
contains this. To avoid name clashes, we prime all variable

names, resulting in the list];;Z’ . Each proof script is then
replaced with a call to a factory method, using an appropri-
ate proof script identifier id to generate a unique name, as
defined in Fig. 17:

name = Wandf\ldotsfcreatefid(mlﬁ_e)e);

The given proof script script;; is used to construct the for-
mula extra; ; and the proof script script; ;, as follows:

— For every occurrence of use ¢ in script; , a conjunct ¢’
is added to extra; ;.

— Every other proof hint is renamed by priming all variables
and then added to the proof script script; ;.

When turning magic wands into witnesses, witness vari-
ables must be declared for each usage of the magic wand
formula.

— when used in requires, the variable is declared in the
given of this method;

— when used in ensures, the variable is declared in the
yields clause of this method; and

— when used in witness or loop_invariant, the variable is
declared as a local variable.

Finally, every application of a magic wand
apply name : P(?) —+ Q(7);
is replaced by a call to the _apply method of the witness:
name._apply();

This completes the description of the encoding, as it is
implemented.

5.5 Applicability of the transformation

We have described two transformations: one that introduces
witnesses for predicates and one that introduces witnesses
for magic wands. Both transformations are implemented as
separate passes in the VerCors tool. The tool first applies the
magic wand transformation and then it applies the predicate
transformation. As aresult of this, the tool can deal with pred-
icates that do not use magic wands in their definitions and
magic wands defined on top of those predicates. To verify
larger systems, this might not be enough. One could imag-
ine that on top of the magic wands, there would be another
layer of predicates, and maybe on top of that even another
layer of magic wands. A typical example of this situation
would be when we use a predicate to hide the fact that a class
wraps another class, and that other class uses magic wands
in its contracts. We can easily extend the tool to support this
alternation of predicates and magic wands by alternating the
encodings and in each step encoding the outermost layer of
predicates or magic wands. However, note that this process is
not able to deal with an inductively defined predicate, where
the predicate occurs nested inside a magic wand, such as in
the following (contrived) example:

resource nested(x)= x>0 ==> (true —x nested(x—1));

It is an open question if the two transformations can be
merged in order to be able to deal with this pattern.

Our implementation of the transformations was tested in
combination with the Chalice tool. In principle, both trans-
formations can also be used in combination with VeriFast
as a back end. In practice, it is not a good idea to use the
witness transformation for predicates for VeriFast because
VeriFast can deal with those predicates itself and thus more
effectively. However, in the case of alternating predicates and
magic wands, there has to be a way for the outer predicate
to manage the inner magic wand witness, which requires the
use of witnesses for those predicates. It is ongoing work to
implement VeriFast as a back end and to search for a better
solution.

@ Springer

776 S. Blom, M. Huisman

VerCors

//@ requires top!=null xx top.state();
2 //@ ensures contains(\result,tail(\old(contents(top))));
//@ ensures \old(sorted(top)) ==> sorted(\result);
1 public Tree del_min(Tree top){
//@ seq<int> orig_contents=contents(top);

6 //@ seq<int> target_contents=tail(contents(top));
//@ unfold top.state();
8 if (top.left == null) {
return top.right;
10 } else {
Tree cur, left;
12 cur = top;
left = top.left;
14 //@ seq<int> cur_contents=orig_contents;
//@ assert cur_contents == contents(left) + seq<int>{top.data} + contents(top.right);
16 //@ unfold left.state();
/+@
18 loop_invariant Perm(cur.left,100) xx Perm(cur.data,100) *x Perm(cur.right,100);
loop_invariant cur.left==left ** cur.right—>state() ;
20 loop_invariant Perm(left.left,100) s+ Perm(left.data,100) ** Perm(left.right,100);
loop_invariant left.left—>state() s left.right—>state();
22 loop_invariant cur_contents == (contents(left.left) + seq<int>{left.data} + contents(left.right))
+ seq<int>{cur.data} + contents(cur.right);
24 loop_invariant wand:(contains(cur,tail(cur_contents)) —x contains(top,target_contents)); @x/
while (left.left != null) /+@ with {
26 create {} wand:(contains(top,target_contents) —x contains(top,target_contents));
} @/
28 { /+@ Tree prev = cur;
seq<int> prev_contents = cur_contents; */
30 cur = left;
left = cur.left;
32 /*@
unfold left.state();
34 cur_contents = contents(left.left) 4+ seq<int>{left.data} + contents(left.right);
cur_contents = cur_contents + seq<int>{cur.data} + contents(cur.right);
36 assert prev_contents.length > 0 ;
assert cur_contents.length > 0 ;
38 assert prev_contents == cur_contents + seq<int>{prev.data} + contents(prev.right);
create {
10 use prev_contents.length > 0 ;
use cur_contents.length > 0 ;
12 use Perm(prev.left,100)*+Perm(prev.data,100);
use Perm(prev.right,100)sxprev.right—>state();
14 use prev.left==cur;
use prev_contents == cur_contents + seq<int>{prev.data} + contents(prev.right);
16 fold prev.state();
apply wand:(contains(prev,tail(prev_contents)) —x contains(top,target_contents));
18 ged wand:(contains(cur,tail(cur_contents)) —x contains(top,target_contents));
}
50 @x/
52 cur.left = left.right;
//@ fold cur.state();
54 //@ assert contents(cur)==tail(cur_contents);

//@ apply wand:(contains(cur,tail(cur_contents)) —x contains(top,target_contents));
56
return top;

58 }
60 }

Fig. 18 Fully annotated version of iterative tree delete algorithm

6 Magic wand examples tree delete challenge. Second, we consider an iterator pro-

tocol for iterators on a list of integers. For both examples,
This section presents two more involved examples that use ~ we show how to provide full annotations, so that they can be
the magic wand in their annotations. First, we consider the verified by the VerCors tool set.

@ Springer

Witnessing the elimination of magic wands

6.1 Verification of the tree delete challenge

Using the encoding, we can verify the tree delete challenge.
Taking the annotated algorithm in Fig. 4 as a starting point,
we have to provide proof scripts whenever we create a magic
wand formula to make it verifiable. The resulting fully anno-
tated version of the tree delete algorithm can be found in
Fig. 18.

Since the magic wand formula is used in the loop invariant
(and a new instance of it is needed with every iteration of the
loop), we actually require witnesses for the creation of magic
wand objects in two places in the annotated program: we need
a witness to create a magic wand formula to show that the
loop invariant holds upon loop initialisation, i.e., before the
loop is actually executed (see line 26), and in addition we
need to provide a witness to create a magic wand formula
inside the loop body, to show that every iteration of the loop
preserves the loop invariant (see lines 39—49). In each of the
places where the apply method is used (see Lines 47 and 55),
it could be either of the proofs that is used (depending on
how many iterations, the loop needs). Hence, it would not be
possible to encode each proof in a separate class.

The online version of the VerCors tool set [36] can be used
to inspect the full Chalice encoding of this example. Using
the Chalice encoding, the VerCors tool can verify the itera-
tive tree delete algorithm without any problems. The entire
example verifies in 13 min on an Intel 17-2600 (3.40 GHz).

6.2 The iterator protocol

As a second example, we present a variant of the iterator
protocol from Haack and Hurlin [9]. To simplify our presen-
tation, we have chosen to work with a list of integers rather
than a list of objects.

The iterator protocol uses the following three states: ready,
readyForNext and readyForRemove. The entire protocol is dis-
played in Fig. 19. When an iterator is created, permissions on
the current list are folded in the ready state. In this state, one
may apply a magic wand to recover the permissions on the
current list, or one may call hasNext to test for the existence
of a next element. If such an element exists, the next state
is readyForNext, otherwise the next state is ready. If the state
is readyForNext, the next method can be used to retrieve the

hasNext()
new /}\B
———
readyForNext
e

%
. remove() next()
readyForRemove

Fig. 19 State machine for the iterator protocol

——= method call
- - = magic wand

777
_ VerCors
class List {
2 /%@
resource state()
4 ©x/
6 /*@
ensures state();
8 ©x/
public List();
10
/+@
12 requires state();
ensures state();
14 ©x/

public void put(int v);

Fig. 20 Specification of an integer list

current element and the next state will be readyForRemove.
In the readyForRemove state, one can use either the remove
method or the magic wand provided by next to go back to the
ready state.

The specifications of the integer list and the list iterator can
be found in Figs. 20 and 21, respectively. We have annotated
implementations of these interfaces, which have been verified
with the VerCors tool set. The fully annotated versions are
available from the same website as the tree delete example.

We have also verified a small example that illustrates the
usage of the list and the iterator, see Fig. 22. In this example,
we create a list containing [—1, 0, 1] and then use an iterator
to remove the negative elements. The entire example verifies
in 19 s on an Intel 17-2600 (3.40 GHz).

7 Conclusions

In this paper, we have introduced two witness transforma-
tions from Java with separation logic annotations into a form
that can be checked with Chalice. The first transformation
replaces predicates with parameters by witness objects with
parameter-free predicates (except for the implicit this para-
meter). The second transformation replaces magic wands by
witness objects. To overcome undecidability when reason-
ing about magic wands, the user has to provide a proof script
that can be used to check that resources are indeed correctly
exchanged by the magic wand. Both transformations are not
Chalice-specific, i.e., in principle they can be used as an
encoding for any object-oriented language with separation
logic annotations. This is reflected in the implementation,
which will remove the witness extensions and replace them
with objects and simpler predicates. In this process, unknown
expressions and annotation are simply copied, which means
that the current implementation will work for other similar

@ Springer

778

S. Blom, M. Huisman

VerCors

public class Listlterator {
2 /*@
resource ready()
4+ resource readyForNext()
resource readyForRemove()
6 ©x/

8 List iteratee;
Node current;

10 /*@
requires |!=null xx |.state();
12 ensures ready();
ensures wand:(ready() —x* l.state());
1 Ox/
public Listlterator(List I)
16 requires ready();
ensures \result ==> readyForNext();
18 ensures !\result ==> ready();
©x/
20 boolean hasNext()
/+@
22 requires readyForNext();
ensures readyForRemove();
24 ensures wand:(readyForRemove() —x* ready());
©x/
26 int next()
/+@
28 requires readyForRemove();
ensures ready();
30 ©x/

void remove()

Fig. 21 Specification of the list iterator

back ends without modification. However, it might require
additional or different proof hints.

In this paper, we have shown that the transformations that
we define are sound and complete, i.e., the original specifi-
cation is correct, if and only if the transformed specification
is correct.

It should be emphasized that all examples in this paper
have been machine checked, however, we feel it is too early
to make any claim about the class of programs that can be
validated with our approach: the fact that a proof exists does
not always mean that it can be found automatically by a
prover.

To illustrate our approach, we have presented two larger
examples: the tree delete example, which demonstrates how
magic wands can be used in loop invariants, and the iterator
example, which shows how a magic wand is used to enforce
that method calls happen in the prescribed order. Both exam-
ples with full annotations are automatically verified by the
VerCors tool set. In this paper, we have not presented an
example that uses both witness transformations at the same
time, but such an example is available online [36].

@ Springer

VerCors
/+@
2 requires |!=null xx |.state();
ensures |!=null xx |.state();
4 ©x/
void main(List 1){
6 boolean b;
I.put(1);
s I.put(0);
l.put(—1);
10 Listlterator i;

//@ witness recover:(i.ready() —x l.state());
12 //@ witness keep:(i.readyForRemove() —x i.ready());
i=new Listlterator(l) /@ then { recover=wand; } */;
14 b=i.hasNext();

/%@
16 loop_invariant b ==> i.readyForNext();
loop_invariant |b ==> i.ready();
18 Qx/
while(b){
20 int tmp=i.next() /+@ then { keep = wand ;} */;
if (tmp<0) {
22 i.remove();
} else {
24 //@ apply keep:(i.readyForRemove() —x i.ready());
26 b=i.hasNext();

//@ apply recover:(i.ready() —= l.state());

IS
@

Fig. 22 Example that uses the list and iterator

7.1 Related work

The tree delete challenge Our use of the magic wand to ver-
ify the iterative implementation of the tree delete algorithm
is just one of the ways of solving the tree delete challenge.
Another way of solving the problem is using Tiirk’s rule for
loops [37], which effectively offers the possibility of writ-
ing loop annotations as if the loop were a recursive func-
tion. In other words, the loop body can contain a block of
proof hints, whose application is delayed, forming a stack of
delayed proof steps. When the loop exits, all delayed steps
are applied. As these steps can implicitly set aside resources
too, each delayed step is equivalent to a magic wand. The
advantage of using magic wand syntax rather than the Tiirk
rule is that magic wands can be used in any location in the
code, whereas the Tiirk rule is only applicable to loops. Yet
another mechanism for specifying the iterative version of the
tree delete problem is using specified blocks [38]. The Kraka-
toa tool [39] implements this generalization of the Tiirk rule,
which allows attaching pre- and postconditions to arbitrary
statement blocks, instead of just to loop bodies.

The tree delete challenge can also be addressed using
the Zipper data structure from functional programming [40].

Witnessing the elimination of magic wands

779

This is an alternative way to treat the shift of focus: with little
effort it allows to write the invariant in such a way that in each
iteration the focus is shifted by one step. Once the left-most
node is removed, the Zipper structure allows to move the
focus back to the root. To use a Zipper structure, one would
have to write the basic data structure, which requires quite a
few lines of specification, but which can easily be automated.
For those cases where the pre-defined functions work, the
annotation work load would then be limited to a few instruc-
tions that move the focus. However, if a non-standard move
is required, it would have to be spelled out completely at a
considerable specification effort, because only pre-defined
moves would be automatically generated.

Tool support While jStar does not implement the magic wand
at the moment, the coreStar [41] framework, that is used to
implement it, is in principle capable of supporting the magic
wand and its proof rules.

The VeriFast tool implements lemmas [13], which are
equivalent to a subset of magic wands. That is, lemmas can
transform sets of resources, just like magic wand can. But
magic wands can exchange resources as well, for example,
a magic wand can express the capability to exchange a read-
only permission for accessing a location on the heap to a full
write permission for the same location. If one were to express
this using a lemma, the lemma would have to be paired with
a predicate that captures the extra permissions to match the
functionality of the magic wand.

Jost and Summers [25] have written a tool that translates
VeriFast specifications to Chalice. They analyze VeriFast
predicates to see if they can be split into a parameterless
permission predicate and a boolean function. If such a split
is impossible they resort to use ghost variables in the object
to represent the predicate parameters. The advantage of such
an approach is that it leads to a simpler encoding that requires
less annotations to be verified. The disadvantage is that the
encoding does not work if the same predicate must be held
more than once on the same object, whereas our encoding
supports this. Their approach could be extended to support
multiple predicates using multiple sets of ghost variables,
but then one would have to keep track of which set of vari-
ables is used making their encoding more complicated than
ours.

Schwerhoff and Summers [22] more or less simultane-
ously have implemented support for magic wands in the Sili-
con verifier. Their support is very similar in the sense that we
both use the idea to apply a magic wand (keyword apply). But
in their approach, creating a magic wand (keyword package)
is based on automatically computing the extra resources of
a magic wand, whereas our create blocks require the user
to explicitly specify those (using the use keyword). How-
ever, the other proof script statements in our create blocks
could be translated to package expressions automatically.

This means that a Silicon back end for the VerCors tool could
offer the best of both worlds: simple magic wand instances
can be handed off to Silicon directly, and in cases that Silicon
cannot deal with a magic wand automatically then our more
detailed witness annotations and transformations can be used
to guide the Silicon prover through the difficult proof. We are
currently investigating this idea in more detail.

Automated proving for special cases of the magic wand
is being worked on. For example, in the setting of the logic
of boolean bunched implications (a close relative of sepa-
ration logic), Park et al. [42] have given an algorithm for
deciding the validity of a formula with magic wands. Fur-
thermore, Atkey has shown that for a restricted magic wand
syntax it is possible to directly derive verification conditions
[8]. Formally, the fragment used in that paper is incompa-
rable to ours: magic wands may not occur nested on the
left-hand side of another, which is allowed but not imple-
mented for our encoding, but it is allowed to use disjunction
in certain places, which our fragment does not allow. More-
over, the paper focusses on statements about execution time
and memory usage and not functional verification in gen-
eral.

The transformation that turns magic wands into objects is
a variant of defunctionalization of closures in a functional
programming language (see for example [43]). Defunction-
alization transforms higher order functions (functions that
take functions as arguments) into normal functions. A magic
wand is a function that operates on permissions (that may
be executed at most once). This makes the apply operator a
higher order function and subsequently our encoding of the
apply function ends up being an instance of defunctionaliza-
tion.

Finally, the specification style of the generated object,
defining a valid predicate is inspired by the standard method-
ology for Boogie of Barnett et al. [44].

7.2 Future work

Annotation generation Clearly, the major drawback of our
approach is the large number of (long) annotations that the
user has to provide at the moment. To address this issue,
we will first of all investigate heuristics to come up with
good default specifications. We will also investigate if meth-
ods for automatically deriving specifications can be adapted
to our situation. For example, it might be possible to use
the constraint-solving algorithm developed by Ferrara and
Miiller [45] to infer a large number of the witness manage-
ment annotations.

In addition, as mentioned above, the approach taken by
Jost and Summers in their translation of VeriFast to Chalice
can deal with a number of cases with less annotation load.
We will study if we can integrate their work, so that the
simple cases can take advantage of their encoding, while the

@ Springer

780

S. Blom, M. Huisman

encoding of this paper can be used for more complicated
cases.

The current implementation of the witness transformation
for magic wands requires that all the resources that are stored
inside the magic wand are explicitly mentioned using the
use keyword. The problem of finding out which resources
have to be stored is similar to the problem of finding out
which resources to pass to a method during a call and which
resources to keep. Therefore, we will study the techniques
for solving this, such as the use of frame inference and bi-
abduction [46], and see if they can be reused and/or adapted
to our approach.

Extensions The witness encodings presented in this paper
require verification tools that support the Perm predicate of
separation logic. These basic permissions can be encoded by
a verifier as a map from locations to fractions, representing
the fractions held. We believe that by adding such a map
to our encoding, we create a transformation from programs
specified in separation logic to programs specified in first-
order logic. This would make it possible to reuse existing
first-order tools. In the case of static checkers, this might
not be very practical due to the added annotation workload.
However, by exploiting existing run-time checkers for JML
and reflection in Java it should be possible to put together a
run-time checker for separation logic specifications. In this
case, no extra annotations are needed because formulas can
simply be evaluated.

The witness transformations proposed in this paper trans-
form the formulas and proof script annotations to get rid
of predicate arguments and magic wands completely. This
allows us to use back ends that do not support those fea-
tures at all. However, there are also verifiers that can be used
as a back end that support some features at least partially.
By putting in intermediate stages in the transformation, we
may be able to exploit those features. E.g., VeriFast supports
predicates with argument and lemmas. Thus, we could add
an intermediate step in which each magic wand is translated
into a pair of a predicate and a lemma. This would allow us
to pass a version to VeriFast with less encoding, which might
be more efficient than a fully encoded version.

Finally, we are currently investigating how permission-
based separation logic can be used to reason about Scala
programs. This requires the possibility to specify the behav-
ior of closures. We are investigating, if we can extend our
approach also to encode closure specifications.

Acknowledgments The work presented in this paper is supported by
ERC grant 258405 for the VerCors project.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

@ Springer

References

1. Reynolds, J.C.: Separation logic: a logic for shared mutable data
structures. In: Logic in Computer Science, pp. 55-74. IEEE Com-
puter Society, Washington, DC (2002)

2. Blom, S., Huisman, M.: The VerCors tool for verification of con-
current programs. In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.)
FM. Lecture Notes in Computer Science, vol. 8442, pp. 127-131.
Springer (2014)

3. Hoare, C.A.R.: An axiomatic basis for computer programming.
Commun. ACM 12(10), 576-580 (1969)

4. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ACM
Trans. Program. Lang. Syst. 34(1), 2 (2012)

5. Parkinson, M.J., Summers, A.J.: The relationship between sepa-
ration logic and implicit dynamic frames. Log. Methods Comput.
Sci. 8(3:01), 1-54 (2012)

6. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction.
In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 247-258. ACM, New York (2005)

7. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis verification
competition 2012—organizer’s report. In: Technical Report 2013-
01, Department of Informatics, Karlsruhe Institute of Technology
(2013). http://digbib.ubka.uni-karlsruhe.de/volltexte/ 1000034373

8. Atkey, R.: Amortised resource analysis with separation logic. In:
Gordon, A.D. (ed.) ESOP. Lecture Notes in Computer Science, vol.
6012, pp. 85-103. Springer, New York(2010)

9. Haack, C., Hurlin, C.: Resource usage protocols for iterators. J.
Object Technol. 8(4), 55-83 (2009)

10. Hobor, A., Villard, J.: The ramifications of sharing in data struc-
tures. In Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 523-536. ACM, New York (2013)

11. Krishnaswami, N.R., Aldrich, J., Birkedal, L., Svendsen, K.,
Buisse, A.: Design patterns in separation logic. In: Kennedy, A.,
Ahmed, A. (eds.) TLDI, pp. 105-116. ACM, New York (2009)

12. Maeda, T., Sato, H., Yonezawa, A.: Extended alias type system
using separating implication. In: Proceedings of the 7th ACM SIG-
PLAN Workshop on Types in Language Design and Implementa-
tion, TLDI "11, pp. 29-42. ACM, New York (2011)

13. Jacobs, B., Smans, J., Piessens, F.: VeriFast: imperative pro-
grams as proofs. In: VSTTE Workshop on Tools & Experiments
(2010)

14. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular auto-
matic assertion checking with separation logic. In: de Boer, E.S.,
Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) FMCO. Lecture
Notes in Computer Science, vol. 4111, pp. 115-137. Springer, New
York (2005)

15. DiStefano, D., Parkinson, M.: jStar: towards practical verification
for Java. In: ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, pp. 213-226. ACM Press,
New York (2008)

16. Jacobs, B., Piessens, F.: The VeriFast program verifier. In: Techni-
cal Report CW520, Katholieke Universiteit Leuven (2008)

17. Leino, K.R.M., Miiller, P., Smans, J.: Verification of concurrent
programs with Chalice. In: Lecture Notes of FOSAD. LNCS, vol.
5705, pp. 195-222. Springer, New York (2009)

18. Heule, S., Kassios, I.T., Miiller, P., Summers, A.J.: Verification
condition generation for permission logics with abstract predicates
and abstraction functions. In: Castagna, G. (ed.) ECOOP. Lecture
Notes in Computer Science, vol. 7920, pp. 451-476. Springer, New
York (2013)

19. Kassios, loannis T., Miiller, Peter, Schwerhoff, Malte: Comparing
verification condition generation with symbolic execution: an expe-
rience report. In: Joshi, Rajeev, Miiller, Peter, Podelski, Andreas

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000034373

Witnessing the elimination of magic wands

781

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

(eds.) VSTTE. Lecture Notes in Computer Science, vol. 7152, pp.
196-208. Springer, New York (2012)

Chair of Programming Methodology, ETH Ziirich: Viper project
website. http://www.pm.inf.ethz.ch/research/viper

Juhasz, U., Kassios, I.T., Miiller, P., Novacek, M., Schwerhoff, M.,
Summers, A.J.: Viper: a verification infrastructure for permission-
based reasoning. In: Technical report, ETH Zurich (2014)
Schwerhoff, M., Summers, A.J.: Lightweight support for magic
wands in an automatic verifier. In: Technical Report. ETH, Ziirich
(2014)

Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Inf.
Comput. 211, 106-137 (2012)

Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D.R.,
Miiller, P., Kiniry, J., Chalin, P.: JML Reference Manual, February
2007. Department of Computer Science, lowa State University.
http://www.jmlspecs.org (2007)

Jost, D., Summers, A.J.: An automatic encoding from VeriFast
predicates into implicit dynamic frames. In: Verified Software:
Theories, Tools and Experiments (VSTTE) (2013)

Howard, W.: The formulae-as-types notion of construction, pp.
479-490. ACM, New York (1980) (original paper manuscript from
1969)

Reynolds, J.C.: Lecture Notes for the FIRST PhD Fall School on
Logics and Semantics of State. ITU University, Copenhagen (2008)
Leino, K.R.M., Miiller, P.: A basis for verifying multi-threaded
programs. In: Castagna, Giuseppe (ed.) ESOP. Lecture Notes in
Computer Science, vol. 5502, pp. 378-393. Springer, New York
(2009)

Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract
separation logic. In LICS, pp. 366-378. IEEE Computer Society,
‘Washington, DC (2007)

Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and
inheritance. In: Necula, G.C., Wadler, P. (eds.) POPL, pp. 75-86
(2008). ACM, New York

Haack, C., Hurlin, C.: Separation logic contracts for a Java-like
language with fork/join. In: Meseguer, J., Rosu, G. (eds.) Algebraic
Methodology and Software Technology. LNCS, vol. 5140, pp. 199—
215. Springer, New York (2008)

Hurlin, C.: Specification and Verification of Multithreaded Object-
Oriented Programs with Separation Logic. Ph.D. thesis, Université
Nice Sophia Antipolis (2009)

Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino,
K.R.M.: Boogie: a modular reusable verifier for object-oriented
programs. In: Formal Methods for Components and Objects.
LNCS, vol. 4111, pp. 364-387. Springer, New York (2005)
Mendonga de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver.
In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS. LNCS, vol. 4963,
pp- 337-340. Springer, New York (2008)

36.
37.

38.

39.

40.
41.

42.

43.

44,

45.

46.

47.

48.

. Bornat, R., Calcagno, C.. O’Hearn, P.W., Parkinson, M.J.: Permis-

sion accounting in separation logic. In Palsberg J, Abadi M (eds.)
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 259-270. ACM, New
York (2005)

The VerCors tool online. http://www.utwente.nl/vercors/ (2014)
Tiirk, T.: Local reasoning about while-loops. In: Joshi, R., Mar-
garia, T., Miiller, P., Naumann, D., Yang, H. (eds.) VSTTE 2010.
Workshop Proceedings, pp. 29-39. ETH, Ziirich (2010)

Hehner, E.C.R.: Specified blocks. In: Meyer, B., Woodcock, J.
(eds.) VSTTE. Lecture Notes in Computer Science, vol. 4171, pp.
384-391. Springer, New York (2005)

Filliatre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform
for deductive program verification. In: Damm, W., Hermanns, H.
(eds.) CAV. Lecture Notes in Computer Science, vol. 4590, pp.
173-177. Springer, New York (2007)

Huet, G.P.: The Zipper. J. Funct. Program. 7(5), 549-554 (1997)
Botin¢an, M., Distefano, D., Dodds, M., Grigore, R., Parkinson,
M.J.: Corestar: the core of jstar. In: Boogie. CiteSeer, Princeton
(2011)

Park, J., Seo, J., Park, S.: A theorem prover for boolean BI. In: Gia-
cobazzi, R., Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
pp- 219-232 (2013)

Reynolds, J.C.: Definitional interpreters for higher-order program-
ming languages. High. Order Symb. Comput. 11(4), 363-397
(1998)

Barnett, M., DeLine, R., Fihndrich, M., Leino, K.R.M., Schulte,
W.: Verification of object-oriented programs with invariants. J.
Object Technol. 3(6), 27-56 (2004)

Ferrara, P., Miiller, P.: Automatic inference of access permissions.
In: Proceedings of the 13th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI 2012).
LNCS, pp. 202-218. Springer, New York (2012)

Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Composi-
tional shape analysis by means of bi-abduction. J. ACM 58(6), 26
(2011)

Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’13, Rome, 23-25 January 2013. ACM, New
York (2013)

Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, 12—14 January 2005. ACM,
New York (2005)

@ Springer

http://www.pm.inf.ethz.ch/research/viper
http://www.jmlspecs.org
http://www.utwente.nl/vercors/

	Witnessing the elimination of magic wands
	Abstract
	1 Introduction
	1.1 Basic separation logic
	1.2 Advanced separation logic
	1.3 Separation logic tool support
	1.4 Contribution

	2 Background
	2.1 Deterministic separation logic
	2.2 Chalice
	2.3 Architecture of the VerCors tool set

	3 The tree delete challenge
	4 The encoding of predicates
	4.1 Predicate witnesses
	4.1.1 Witnesses for non-recursive predicates
	4.1.2 Witnesses for recursive predicates

	4.2 Recipe for the encoding
	4.3 Soundness and completeness of the encoding

	5 The encoding of magic wands
	5.1 General idea
	5.2 Encoding of magic wands in Chalice
	5.3 Correctness of the encoding
	5.4 Recipe for the encoding
	5.5 Applicability of the transformation

	6 Magic wand examples
	6.1 Verification of the tree delete challenge
	6.2 The iterator protocol

	7 Conclusions
	7.1 Related work
	7.2 Future work

	Acknowledgments
	References

