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Abstract This tutorial paper surveys the main features of
Uppaal SMC, a model checking approach in Uppaal family
that allows us to reason on networks of complex real-timed
systems with a stochastic semantic. We demonstrate the mod-
eling features of the tool, new verification algorithms and
ways of applying them to potentially complex case studies.
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1 Introduction

Computer systems play a central role in modern societies
and their errors can have dramatic consequences. Prov-
ing the correctness of computer systems is therefore a
highly relevant activity, on which both industry and aca-
demics invest a considerable amount of effort. Among
such techniques, one finds (1) testing [14], the traditional
approach that detects bugs by exercising the real system
with test cases, and (2) formal methods, e.g., model check-
ing [17], that is a more mathematical approach that can
guarantee the absence of bugs in the system design. Both
approaches have been largely deployed on complex case
studies.

Originally, formal verification was devoted to software
and hardware systems by considering their discrete behav-
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iors. However, the past years shown that real-time aspects
play central roles in systems, and that this feature should be
taken into account in the verification process. Developing
formal techniques for such systems has thus been the subject
of intensive studies. One of the prominent results on the topic
was the introduction of model checking techniques for timed
automata [1], a natural model to capture real-time systems
whose behaviors depends on clocks that can be reset. Among
all the tools that have been developed to implement the timed
automata theory, one finds Uppaal, which has now become
the leader in the area.

Uppaal is a toolbox for verification of real-time systems
represented by (a network of) timed automata extended with
integer variables, structured data types, and channel synchro-
nization. The tool is jointly developed by Uppsala Univer-
sity and Aalborg University. It has been applied success-
fully in case studies ranging from communication protocols
to multimedia applications (see [4] and [5] for concrete exam-
ples). The first version of Uppaal was released in 1995 [37].
Since then it has been in constant development. In the same
spirit as any other professional model checker such as SPIN,
Uppaal proposes efficient data structures [36], a distributed
version of Uppaal [10,13], guided and minimal cost reach-
ability [11,12,35], work on UML Statecharts [25], acceler-
ation techniques [29], and new data structures and memory
reductions [9,15].

Unfortunately, timed automata is not a panacea. In fact,
albeit powerful, the model is not expressive enough to cap-
ture behaviors of complex cyber-physical systems. Indeed,
the continuous time behaviors of those systems often rely
on rich and complex dynamics as well as on stochastic
behaviors. The model checking problem for such systems is
undecidable, and approximating those behaviors with timed
automata [28] was originally the best one could originally do
in Uppaal.
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In this paper, we introduce Uppaal SMC that proposes
an alternative to the above-mentioned problem. This new
branch of Uppaal proposes to represent systems via net-
works of automata whose behaviors may depend on both
stochastic and non-linear dynamical features. Concretely, in
Uppaal SMC, each component of the system is described
with an automaton whose clocks can evolve with various
rates. Such rates can be specified with, e.g., ordinary differ-
ential equations.

To allow for the efficient analysis of probabilistic per-
formance properties, Uppaal SMC proposes to work with
statistical model checking (SMC) [38,41], an approach that
has been proposed as an alternative to avoid an exhaustive
exploration of the state-space of the model. The core idea
of SMC is to monitor some simulations of the system, and
then use results from the statistics area (including sequen-
tial hypothesis testing or Monte Carlo simulation) to decide
whether the system satisfies the property with some degree of
confidence. By nature, SMC is a compromise between testing
and classical model checking techniques. Simulation-based
methods are known to be far less memory and time intensive
than exhaustive ones, more expressive and are oftentimes
the only option. SMC has been implemented in a series of
tools that have been applied to a wide range of case stud-
ies. Unlike more “academic” exhaustive techniques, SMC
gets widely accepted in various research areas such as sys-
tems biology [16,20,32–34], energy-centric systems [21],
automotive/avionics, or software engineering, in particular
for industrial applications. There are several reasons for this
success. First, it is very simple to implement, understand and
use (especially by industry, software engineers, and gener-
ally all people that are not pure researchers but customers
of our results and tools) [3,4,8]. Second, it does not require
extra modeling or specification effort, but simply an opera-
tional model of the system that can be simulated and checked
against state-based properties. Third, it allows to model check
properties that cannot be expressed in classical temporal log-
ics. Aside from this, the flexibility of SMC allows it to be
used in other areas than verification, including planning and
robotics.

In this paper, SMC is presented as a technique for fully
stochastic models thus it validates performance properties of
a given deterministic (or stochastic) controller in a given sto-
chastic environment. However, we note that SMC is applica-
ble to systems exhibiting non-determinism (transitions with
undefined probability distributions): for instance the SMC
tool Cosmos has been used to find optimal schedulers for
Markov decision processes [26] and in a more recent work
[22] an experimental version of Uppaal SMC was used for
synthesizing controllers for priced timed Markov decision
processes.

This paper is a complete tutorial on Uppaal SMC for
hybrid and fully stochastic systems. We illustrate most of

the modeling features of the tool, the usage of the graphical
interface and of the simulation framework. We discuss the
SMC algorithms that are available, and introduce some tech-
niques to deal with dynamical systems. Finally, we present
some modeling features and tricks.

2 Modeling formalism

The modeling formalism of Uppaal SMC is based on a sto-
chastic interpretation and extension of the timed automata
(TA) formalism [1] used in the classical model checking ver-
sion of Uppaal [4]. For individual TA components the sto-
chastic interpretation replaces the non-deterministic choices
between multiple enabled transitions by probabilistic choices
(that may or may not be user-defined). Similarly, the non-
deterministic choices of time delays are refined by probability
distributions, which at the component level are given either
uniform distributions in cases with time-bounded delays or
exponential distributions (with user-defined rates) in cases of
unbounded delays.

Consider the three TAs A1, A2 and A3 from Fig. 1. Ignor-
ing (initially) the weight annotations on locations and edges,
the END locations in the three automata are easily seen to
be reachable within the time intervals [6, 12], [4, 12] and
[0,+∞). The stochastic interpretation of the three TAs pro-
vides probability distributions over the reachability time. For
A1, the delay of the three transitions will all be (automati-
cally) resolved by independent, uniform distributions over
[2, 4]. Thus the overall reachability time is given as the sum
of three uniform distributions as illustrated in Fig. 2a. For A2,
the delay distributions determined by the upper and lower

(a) A1.

(b) A2.

(c) A3.

Fig. 1 Three stochastic timed automata
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(a)

(b)

(c)

Fig. 2 Distributions of reachability time, a A1 arrival to END,
b A2 arrival to END, c A3 arrival to END

path to the END location are similarly given by sums of uni-
form distributions. Subsequently, the combination ( 1

6 to 5
6 )

of these as illustrated in distribution of the overall delay is
obtained by a weighted Fig. 2b. Finally, in A3—in the absence
of invariants—delays are chosen according to exponential
distributions with user-supplied rates (here 1

2 , 2 and 1
4 ). In

addition, after the initial delay a discrete probabilistic choice
( 1

4 versus 3
4 ) is made. The resulting distribution of the overall

reachability time is given in Fig. 2c.
Importantly, the distributions provided by the stochastic

semantics are in agreement with the delay intervals deter-
mined by the standard semantics of the underlying timed
automata. Thus, the distributions for A1 and A2 have finite
support by the intervals [6, 12] and [4, 12], respectively.
Moreover, as indicated by A3, the notion of stochastic timed
automata encompasses both discrete and continuous time
Markov chains. In particular, the class of reachability time
distributions obtained from the stochastic timed automata
(STA) of Uppaal SMC includes that of phase-type distrib-
utions.

Networks As in Uppaal, a model in Uppaal SMC con-
sists of a network of interacting component STAs. Here, it

A1

A0
x<=1

a!

B1

B0
y<=2

b!
T1

T3

T0

C’==2

C’==4
a?

b?

A B T

Fig. 3 An NSTA, (A|B|T )
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Fig. 4 Cumulative probabilities for time and Cost-bounded reachabil-
ity of T3

is assumed that these components are input-enabled, deter-
ministic (with a probability measure defined on the sets of
successors), and non-Zeno. The component STAs commu-
nicate via broadcast channels and shared variables to gener-
ate Networks of Stochastic Timed Automata (NSTA). The
communication is restricted to broadcast synchronizations
to keep a clean semantics of only non-blocked components
which are racing against each other with their corresponding
local distributions.

Figure 3 shows an NSTA with three parallel components
A, B, and T as specified using the Uppaal GUI. One can
easily see that the composite system (A|B|T ) has a transition
sequence:

((A0, B0, T0), [x = 0, y = 0,C = 0]) 1−→ a!−→
((A1, B0, T1), [x = 1, y = 1,C = 4]) 1−→ b!−→
((A1, B1, T2), [x = 2, y = 2,C = 6]) ,

demonstrating that the final location T3 of T is reachable. In
fact, location T3 is reachable within cost 0 to 6 and within total
time 0 and 2 in (A|B|T ) depending on when (and in which
order) A and B choose to perform the output actions a! and
b!. Given that the choice of these time delays is governed by
probability distributions, a measure on sets of runs of NSTAs
is induced, according to which quantitative properties such
as “the probability of T3 being reached within a total cost-
bound of 4.3” become well defined (Fig. 4).

For components, as stated in the previous section,
Uppaal SMC applies uniform distributions for bounded
delays and exponential distributions where a component STA
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can remain indefinitely in the same location. In a network of
STAs, the components repeatedly race against each other,
i.e., they independently and stochastically decide on their
own how much to delay before outputting, with the “winner”
being the component that chooses the minimum delay. For
instance, in the NSTA of Fig. 3, A wins the initial race over
B with probability 0.75.

As observed in [23], though the stochastic semantic of
each individual STA in Uppaal SMC is rather simple (but
quite realistic), arbitrarily complex stochastic behavior can
be obtained by their composition when mixing individual
distributions through message passing. The beauty of our
model is that these distributions are naturally and automati-
cally defined by the network of STAs.
Train crossing example Uppaal SMC takes as input NSTAs
as described above. Additionally, there is support for all other
features of the Uppaal model checker’s input language such
as integer variables, data structures and user-defined func-
tions, which greatly ease modeling. Uppaal SMC allows the
user to specify an arbitrary (integer) rate for the clocks on any
location. In addition, the automata support branching edges
where weights can be added to give a distribution on discrete
transitions. It is important to note that rates and weights may
be general expressions that depend on the states and not just
simple constants.

To illustrate the extended input language, we consider a
train-gate example adapted from [42]. The example model
is distributed together with Uppaal SMC tool. A number
of trains are approaching a bridge on which there is only
one track. To avoid collisions, a controller stops the trains.
It restarts them when possible to make sure that trains will
eventually cross the bridge. There are timing constraints for
stopping the trains modeling the fact that it is not possible
to stop trains instantly. The interesting point w.r.t. SMC is
to define the arrival rates of these trains. Figure 5a shows
the template for a train. The location Safe has no invari-
ant and defines the rate of the exponential distribution for
delays. Trains delay according to this distribution and then
approach by synchronizing on appr[i] with the gate con-
troller. Here, we define the rational 1+id

N2 where id is the
identifier of the train and N is the number of trains. Rates
are given by expressions that can depend on the current
states. Trains with higher id arrive faster. Taking transitions
from locations with invariants is given by a uniform distri-
bution over the time interval defined by the invariant. This
happens in locations Appr, Cross, and Start, e.g., it takes
some time picked uniformly between 3 and 5 time units to
cross the bridge. Figure 5b shows the gate controller that
keeps track of the trains with an internal queue data structure
(not shown here). It uses functions to queue trains (when
a train approaches and the bridge is occupied in Occ) or
dequeue them (when some train leaves and the bridge is
free).

(a)

appr[e]?

leave[e]?

appr[e]? dequeue()

enqueue(e)
stop[tail()]!

go[front()]!

Occ

Stopping

Free

e == front()

e:id_t

e : id_t

e : id_t

enqueue(e)

len == 0

len > 0

(b)

Fig. 5 Templates for the train-gate example, a train, b gate controller

3 Query language

In addition to the standard model checking queries—i.e.,
reachability, invariance, inevitability and leads-to, which
are still available—Uppaal SMC provides a number of
new queries related to the stochastic interpretation of timed
automata. Uppaal SMC allows the user to visualize the val-
ues of expressions (evaluating to integers or clocks) along
simulated runs. This gives insight to the user on the behav-
ior of the system so that more interesting properties can be
asked to the model checker. The concrete syntax applied in
Uppaal SMC is as follows:

simulate N [ < = bound] {E1, .., Ek}

where N is a natural number indicating the number of simula-
tions to be performed, bound is the time bound on the sim-
ulations, and E1, ..,Ek are the k (state-based) expressions
that are to be monitored and visualized. To demonstrate this
on our previous train-gate example, we can monitor when
Train(0) and Train(5) are crossing as well as the length of the
queue. The query is
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Gate.len
Train[5].Cross
Train[0].Cross

time

va
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Fig. 6 Visualizing the gate length and when Train(0) and Train(5) cross
on one random run

simulate 1 [<=300]
{Train(0).Cross, Train(5).Cross, Gate.len}

This gives us the plot of Fig. 6. Interestingly, Train(5)
crosses more often (since it has a higher arrival rate).
Secondly, it seems unlikely that the gate length drops
below 3 after some time (say 20), which is not an obvi-
ous property from the model. We can confirm this by ask-
ing Pr[<= 300](<> Gate.len < 3 and t > 20) and adding
a clock t. The probability is in [0.102, 0.123].

For specifying properties over NSTAs, we use a weighted
extension of the temporal logic MITL [2] expressing prop-
erties over runs [6], defined by the grammar:

ϕ:: = ap |¬ϕ| ϕ1 ∧ ϕ2 |Oϕ| ϕ1Ux
≤dϕ2

where ap is a conjunction of predicates over the state of a
NSTA, d is a natural number and x is a clock. Here, the
logical operators are interpreted as usual, and O is a next state
operator. A weighted MITL formula ϕ1Ux

≤dϕ2 is satisfied by
a run if ϕ1 is satisfied on the run until ϕ2 is satisfied, and
this will happen before the value of the clock x exceeds d.
As usual ¬(ϕ1 ∧ ϕ2) = ¬ϕ1 ∨ ¬ϕ2 and we use standard
MITL abbreviations tt = ϕ ∨ ¬ϕ, ♦x≤dϕ = ttUx

≤dϕ and
�x≤dϕ = ¬♦x≤d¬ϕ.

For an NSTA M , we define PM (ϕ) to be the probabil-
ity that a random run of M satisfies ϕ. The problem of
checking PM (ϕ) ≥ p (p ∈ [0, 1]) is undecidable in gen-
eral.1 For the sub-logic of cost-bounded reachability prob-
lems PM (♦x≤Cap) ≥ p, where x is a clock andC is a bound,
Uppaal SMC approximates the answer using simulation-
based algorithms known under the name of statistical model
checking [41] algorithms (SMC). We briefly recap statistical
algorithms permitting to answer the following three types of
questions:

1. Probability estimation
What is the probability PM (♦x≤Cap) for a given NSTA
M?

1 Exceptions being stochastic TAs with 0 or 1 clocks and with p being
0 or 1.

P

1

0
estimates

probability

Fig. 7 True probability P and confidence intervals

2. Hypothesis testing
Is the probability PM (♦x≤Cap) for a given NSTA M
greater or equal to a certain threshold p ∈ [0, 1] ?

3. Probability comparison
Is the probability PM (♦x≤Cap1) greater than the proba-
bility PM (♦y≤Dap2)?

From a conceptual point of view solving the above ques-
tions using SMC is simple. First, each run of the system is
encoded as a Bernoulli random variable that is true if the
run satisfies the property and false otherwise. Then a statis-
tical algorithm groups the observations to answer the three
questions. For the quantitative question (1), we will use an
estimation algorithm that resemble the classical Monte Carlo
simulation, while for the qualitative questions (2 and 3) we
shall use sequential hypothesis testing. The two solutions are
detailed hereafter.

Probability estimation The probability estimation algo-
rithm [30] computes the number of runs needed to produce
an approximation interval [p − ε, p + ε] for p = Pr(ψ)

with a confidence 1 − α. A frequentist interpretation of this
result tells us that if we repeat the interval estimation N times,
then the estimated confidence interval p±ε contains the true
probability at least (1−α)N times in the long run (N → ∞).
Figure 7 shows the relation between the estimated probability
confidence intervals and the true (unknown) probability P.

The original algorithm for interval estimation decides the
number of runs apriori based on the values of ε and α using
Chernoff–Hoeffding inequality [18,31], however for practi-
cal purposes this inequality is too conservative. Moreover,
the result can be even more improved when the probabil-
ity is further from 1

2 . Uppaal SMC implements a sequential
method where a probability confidence interval (for given α)
is derived with each new simulation measurement and the
simulation generation is stopped when the confidence inter-
val width is less than 2ε. The confidence interval is derived
using Clopper–Pearson “exact” method [19] using the fact
that the measurements are always binary (the property is
either satisfied or not) and thus the result follows binomial
distribution. The confidence level is also adjusted for one-
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Fig. 8 The Verifier of Uppaal SMC

sided intervals, where the measured property is always true
or always false.

In Uppaal SMC, the probability confidence interval can
be estimated by the following query:

Pr[bound] (ap)

Example 1 Recall the Train Crossing example of the previ-
ous section. The following queries estimates the probabilities
that Train(0) and Train(5) will be in the crossing before 100
time units:

Pr[<= 100](<> Train(0).Cross)

Pr[<= 100](<> Train(5).Cross) (1)

Figure 8 shows how these (and other) queries are entered
in the “Query” field of the Verifier tab of Uppaal SMC. In
the “Overview” field the answers are provided: [0.502421,

0.602316] and [0.902606, 1] are the two 95 % confidence
intervals obtained from 383 and 36 runs, respectively. This
shows—as we would expect—that the more eager Train(5)

has a higher probability of reaching the crossing than Train(0)

within the given time limit. Right clicking on the answers
provide easy access to more detailed information in terms of
(cumulative, confidence interval, frequency histogram) prob-
ability distribution of the time-bounded reachability property,
e.g., Fig. 9.

Hypothesis testing This approach reduces the qualitative
question to e test the null-hypothesis:

H :p = PM(ψ) ≥ θ

against the alternative hypothesis:

K :p = PM(ψ) < θ

To bound the probability of making errors, we use strength
parameters α and β and we test the hypothesis H0:p ≥ p0

Fig. 9 The cumulative probability distribution of
Pr[<=T ](<> Train(5).Cross)

and H1:p ≤ p1 with p0 = θ + δ0 and p1 = θ − δ1. The
interval p0 − p1 defines an indifference region, and p0 and
p1 are used as thresholds in the algorithm. The parameter α

is the probability of accepting H0 when H1 holds (false posi-
tives) and the parameter β is the probability of accepting H1

when H0 holds (false negatives). The above test can be solved
by using Wald’s sequential hypothesis testing [40]. This test
computes a proportion r among those runs that satisfy the
property. With probability 1, the value of the proportion will
eventually cross log(β/(1 − α) or log((1 − β)/α) and one
of the two hypothesis will be selected. In Uppaal SMC, we
use the following query:

Pr[bound] (ψ) >= p0

where bound defines how to bound the runs. The three ways
to bound them are (1) implicitly by time by specifying <=M
(where M is a positive integer), (2) explicitly by cost with
x<=M where x is a specific clock, or (3) by number of
discrete steps with # <=M . In the case of hypothesis testing
p0 is the probability to test for. The formula ψ is either <>q
or []q where q is a state predicate.

Remark 1 Bounding runs for a number of discrete steps guar-
antees termination of the simulation. Bounding over time
may however result in non-termination if the model is not
time diverging. Similarly, bounding over a non-diverging
clock can result in non-termination.

UppaalSMC cannot detect if a clock (or time) is diverging
in a model thus the modeler needs to ensure this.

Example 2 Returning to the Train Crossing example, we
may not be directly interested in the actual probability of
Train(0) crossing within 100 time units, but merely whether
this unknown probability is above 0.2, as reflected by the
following query (see also Fig. 8):

Pr[<= 100](<> Train(0).Cross) >= 0.2

Within a number of runs significantly smaller than that of esti-
mating the same probability (383 runs), this property may be
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confirmed. The number of runs needed by Wald’s sequen-
tial hypothesis testing method varies, e.g., posing the above
query 5 times, the property was confirming within 66, 62, 65,
67, and 49 runs, respectively, with 5 % level of significance.

Probability comparison This algorithm, which is detailed in
[23], exploits an extended Wald testing. In Uppaal SMC, we
use the following query:

Pr[bound1](ϕ1) >= Pr[bound2](ϕ2).

Example 3 In the train-gate example, it might be sufficient to
confirm that the probability that Train(5) reaches the crossing
within 100 time units is larger than that of Train(0). Posing
the query:

Pr[<= 100](<> Train(5).Cross)

>= Pr[<= 100](<> Train(0).Cross)

confirms this belief within 120 (132, 144, 108, 174) runs with
5 % level of significance.

In addition to those three classical tests,UppaalSMC also
supports the evaluation of expected values of min or max of
an expression that evaluates to a clock or an integer value.
The syntax is as follows:

E[bound; N ](min:expr)
or

E[bound; N ](max:expr)
where bound is as explained in this section, N gives the num-
ber of runs explicitly, and expr is the expression to evaluate.
Also for these properties a confidence interval is given using
the fact that measurements follow Student’s t-distribution
(approaching Normal distribution when N → ∞).

Example 4 As an interesting property of the Train Crossing
example, we want to know the average of the maximum num-
ber of trains that are stopped within the first 20 time units:

E[ <=20; 20000]
(max: sum(i : id_t) Train(i) .Stop)

Using the explicitly required 20.000 runs, this average is esti-
mated to be in the confidence interval 3.64775 ± 0.0126354.
Right clicking gives easy access to more detailed views, e.g.,
the frequency histogram in Fig. 10.

Full weighted MITL Regarding the implementation, we note
that both the above statistical algorithms are trivially imple-
mentable. To support the full logic of weighted MITL is
slightly more complex as our simulation engine needs to rely
on monitors for such logic. In [7], we proposed an exten-
sion of Uppaal SMC that can handle arbitrary formulas of
weighted MITL. Given a property ϕ, our implementation

Fig. 10 Frequency histogram of maximum number of trains stopped
within 20 time units

first constructs deterministic under- and over-approximation
monitoring PTAs for ϕ. Then, it puts these monitors in par-
allel with a given model M , and applies SMC-based algo-
rithms to bound the probability that ϕ is satisfied on M . More
recently [6], the exact evaluation of whether the generated run
satisfies a given weighted MITL formula is done online by
constantly rewriting the formula during generation of the run.

The probability of satisfying an MITL property ψ is esti-
mated by Uppaal SMC using the query Prψ , where

ψ :: = BExpr

|(ψ && ψ)| (ψ | | ψ)

|(ψ U[a, b] ψ)| (ψ R[a, b] ψ)

|(<>[a, b] ψ)| ([][a, b] ψ)

a, b ∈ N, a ≤ b and BExpr is a Boolean expression over
clocks, variables and locations.

Example 5 The following query:

Pr( <>[10,100] ([ ][0,5] Train(0) .Stop) )

asks for the probability that Train(0) will stopped for at least
5 consecutive time units somewhere in the time interval
[10, 100]. Within 738 runs [0.880894, 0.980894] is returned
as a 95 % confidence interval indicating that this happens
with a very high probability.

4 Extension to hybrid systems

Uppaal SMC allows for statistical model checking of sto-
chastic hybrid systems, i.e., extensions of (stochastic) timed
automata, where the rate of clocks may be given by general
expressions involving clocks, thus effectively using ODEs.

To illustrate the various aspects of the (extended) model-
ing formalism supported by Uppaal SMC, we consider the
case of two independent rooms that can be heated by a single
heater shared by the two rooms, i.e., at most one room can
be heated at a time. Figure 11a shows the automaton for the
heater. It turns itself on with a uniform distribution over time
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(a) (b) (c)

Fig. 11 A simple two-room example with an autonomous heater, a stochastic heater, b room 0, c room 1

Fig. 12 Evolution of the temperatures of the two rooms (color figure
online)

in-between [0, 4] time units. With probability 1/4 room 0 is
chosen and with probability 3/4 room 1. The heater stays on
for some time given by an exponential distribution (rate 2 for
room 0, rate 1 for the room 1). In summary, one may say that
the controller is more eager to initiate the heating of room
1 than room 0, as well as less eager to stop heating room 1.
The rooms are similar and are modeled by the same template
instantiated twice as shown in Fig. 11b, c. The room is initial-
ized to its initial temperature and then depending on whether
the heater is turned on or not, the evolution of the temper-
ature is given by T ′

i = −Ti/10 + ∑
j=0,1 Ai, j (Tj − Ti ) or

T ′
i = K − Ti/10 + ∑

j=0,1 Ai, j (Tj − Ti ) where i, j = 0, 1
are room identifiers. The sum expression corresponds to an
energy flow between rooms and matrix A encodes the energy
transfer coefficient between adjacent rooms. Furthermore,
when the heater is turned on, its heating is not exact and is
picked with a uniform distribution of K ∈ [9, 12], realized
by the update K=9+random(3).

This example illustrates the support for stochastic hybrid
systems in Uppaal SMC with extended arithmetic on clocks
and generalized clock rates.

Uppaal SMC takes as input networks of stochastic hybrid
automata as described above. In addition, the automata sup-
port branching edges where weights can be added to give a
distribution on discrete transitions. It is important to note that
rates and weights may be general expressions that depend on
the states and not just simple constants.

Remark 2 The ODE solver implemented within
Uppaal SMC is fixed time step Euler’s integration method
thus the results may be sensitive to the discretization step size.

Euler’s method is known to be unstable for stiffs systems thus
care must taken when deciding on the discretization step size
controlled in the settings of statistical parameters.

4.1 Floating-point support

The syntax has been extended to support a double precision
floating-point type (double). This type can be used mixed
with clocks for computing or storing arithmetic expressions.
Its rate cannot be changed. When using floating-point types
or operations in a model, the model is marked as being hybrid.
For such models, model checking is disabled, unless the
clocks are declared to be hybrid clock and these clocks nor
the floating-point variables affect the control of the automata,
i.e., such variables are inactive and used as costs.

4.2 Example

All the new queries of Uppaal SMC described in Sect. 3 are
available for stochastic hybrid systems. We illustrate this by
a number of queries related to the two-room example from
the previous section.

We can simulate and plot the temperatures of the two
rooms with the query

simulate 1 [<= 600] {T[0], T[1]}
The query request the checker to provide one simulate run
over 600 time units and plot the temperatures of Room(0) and
Room(1). The heater in this example is purely stochastic and
is not intended to enforce any particular property. Yet, the
simulation obtained from this query in Fig. 12 shows that the
heater is able to maintain the temperatures within (mostly)
distinct intervals.

We can evaluate on a shorter time scale the probability
for the temperature of Room(0) to stay below 30 and the
temperature of Room(1) to stay above 5 with the queries

Pr[<=100] ([ ] Room(0).Init || T[0] <= 20)
Pr[<=100] ([ ] Room(1).Init || T[1] >= 7)

The results are, respectively, in [0.45, 0.55] and [0.65,

0.75]. The precision and confidence of confidence intervals
are user-defined (see later) and influence the number of runs
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needed to compute the probability. In this example, for hav-
ing the precision to be ±0.05 and a confidence of 95 %, we
needed 738 runs. In fact, if we are only interested in knowing
if the second probability is above a threshold it may be more
efficient to test the hypothesis

Pr[<=100] ([ ] Room(1).Init || T[1] >= 7)
>= 0.69

which is accepted in our case with 902 runs for a level of
significance of 95 %. To obtain an answer at comparable level
of precision with probability evaluation, we would need to
use a precision of ±0.005, which would require 73778 runs
instead.

We can test the hypothesis that the heater is better at keep-
ing the temperature of Room(1) above 8 than keeping the tem-
perature of Room(0) below 20 by the following comparison
query:

Pr[<=100] ([ ] Room(1).Init || T[1] >= 7) >=
Pr[<=100] ([ ] Room(0).Init || T[0] <= 20)

which is accepted in this case with 95 % level of significance
with just 258 runs.

Remark 3 As it can be observed, the MITL specifications
allowed in Uppaal SMC are bounded properties. That is
specifications only depend on a run up to a given time-bound,
step-bound or bound on some other quantity defined in the
model. Thus, specifications only express properties of tran-
sient behavior of systems, and may or may not be indicative
of safety of a deployed system in steady operational state,
depending on how long the system takes to settle. However,
given knowledge of the size of the model, estimation of prob-
ability of unbounded properties may be obtained from the
observation of finite runs as shown in [39].

5 Extension to dynamic creation of processes

An underlying assumption of networks of timed automata is
that computer systems are statically encoded. This is how-
ever not reality. Instead, systems are composed of a number
of threads/processes that interact and capable of spawning
other processes/threads. Modeling such dynamic systems in
standard Uppaal requires the modeler to model an underly-
ing resource manager. In addition, the model would consist
of a large number of components in an inactive state avail-
able for the resource manager to “start” whenever a spawn
request was made in the model. A necessary assumption for
modeling this resource manager is thus that the maximum
number of spawned threads during any execution is known in
advance (or can be safely over-approximated). This does not
only make modeling tedious but also affects analysis time.
Uppaal SMC supports instantiating dynamic processes out

(a) (b)

(c)

Fig. 13 Modeling a server with dynamic spawning, a server, b client,
c clientSpawner

Fig. 14 Plot of the number of waiting clients and total num-
ber of clients. The plot was obtained with the query simulate
1[<= 100]{numOf(Client), sum (c : Client)(c.Wait)} (color figure
online)

of the box. Any automata in the system can spawn instances
of templates of the model that has been declared to be spawn-
able. Dynamically created instances act within the system as
the static instances with the exception that they at any time
may terminate, and thus remove themselves from the system.

In Fig. 13 is a high-level model of a client–server architec-
ture. The model consists of a number of servers (10), shown in
Fig. 13a, that listens on all possible input channels req. When
a request arrives all the servers will “race” to acknowledge the
connection over the channel ack[c]. The winner will proceed
to communicate with the client (we abstract from this part),
while the others return to their listening state. When a client
has finished communication with the server it will terminate
the connection by synchronizing on term[c]. Afterwards, the
server returns to its listening state.

In Fig. 13b, we show the client side of the model. A client
is given an id when spawned which tells it what channel to
connect on (req[id]). A client is first attempting to get a con-
nection, then it awaits an acknowledgment from a server and
then do some work taking less than ten time units. Finally,
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Fig. 15 Plot showing the life span of each client in the server example
(color figure online)

it disconnects from the server by synchronizing on term[id]
and at the same time tears itself down using the exit() con-
struction.

Clients are spawned by the template in Fig. 13c using the
spawn Client(next++) update. This instantiates a client and
passes the value of next as a parameter to the client which
binds that value to its own local variable id.

Remark 4 We realize that the template in Fig. 13c may cre-
ate an unbounded number of clients, whereas the number of
communication channels are bounded. For our particular use
this is not a problem as we know the number of spawned
clients will not exceed the number of communication chan-
nels within the time limit we work with in our queries.

5.1 Syntax in Uppaal SMC

A template that will be dynamically spawned must be
declared as a dynamic template. This is done in the global
declaration of theUppaalmodel using the dynamic keyword.
The declaration for the Client template would for instance
be dynamic Client (int id). The template takes one parame-
ter id. Parameters to spawnable templates are restricted to
be pass-by-value parameters or a reference to a broadcast
channel. The reasoning behind this restriction is that tem-
plates may cease to exist—invalidating any references to
its local variables that it could have passed on to spawned
templates.

The actual behavior of a spawnable template is defined as
usual in the editor. Note, however, that there must be a corre-
spondence between the parameters defined in the dynamic
declaration and the definition. In the Client example this
means that the parameters both in the dynamic declaration
and the definition must be int id.

Spawnable templates may be spawned by any template
during a transition using the spawn keyword. For instance,
adding spawn Client (2) to the update expression of an edge
will spawn an instance of the template Client with parameter
2. Obviously, there must be parameter compatibility between
the actual and the formal parameters.

A spawnable template can tear itself down during a transi-
tion. This is expressed by adding the exit() expression to the
update of an edge.

5.2 Extensions for queries

Having extended the modeling language of Uppaal SMC
to allow dynamically spawning templates, we also need an
extended specification formalism.

For the statically defined components specifications are
made as described in Sect. 3. For the dynamically created
components of the system three additional constructions are
available:

forall (i : T) (q),

exists (i : T) (q) and

sum (i : T) (a),

that may be used anywhere in a specification.
The predicate forall (i : T) ( q ) asserts that q is true for all

the dynamically created instances of T. The name i may be
used anywhere in q to refer to the variables of the instances
of T, i.e., the name i is temporally bound to the instances of
T while evaluating q. The construct exists (i : T) ( q ) is the
dual of forall.

Example 6 Returning to the server example from before, we
may consider the probability that a client is not served for 5
time units, i.e., that it is working in the Wait location for 5
time units. In the extended specification formalism this can
be checked using the query:

Pr(<>[0,20] (exists (c : Client)
(([ ][0,5]c.Wait) ) ) )

The expression sum (i : T) (a) can be used in arithmetic
expressions and simply evaluates a for all the instances
of T. In the Server example, we can for instance count the
number of clients that are waiting for a connection with
the expression sum (c : Client) (c.Wait). The sum construc-
tion can also be used to count the number of active clients
sum (c : Client) (1). An optimized version of this is available
as numOf(Client). In Fig. 14, we show one simulation, 100
time units long, where we observe these two expressions.

The sum operator is useful for computing aggregate data
about all components of a given type but cannot give the
exact value of each component. For instance, sum cannot
be used to plot the location of each client. If this is wanted
Uppaal SMC supports the query:

simulate 1 [<=100] {foreach (c : Client)
(3*C.id+c.Wait+2*c.Work)}

The foreach statement is here used to tell the plotting facility
of Uppaal SMC to plot the expression
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Fig. 16 The concrete simulator in Uppaal

(3*c.id+c.Wait+2*c.Work) for each of the dynamically instances
of Client. The actual expression is just a smart way to obtain
a “Gantt-like” chart of each client. The result of the query
is shown in Fig. 15 where each colored line correspond to a
client.

6 Graphical interface

We focus in this section on the main features of the inter-
face related to SMC. For a more complete overview of the
interface the reader is referred to [4].
Overview The graphical interface of Uppaal is divided into
an editor, two simulators, and a verifier. The editor serves
the purpose to define the automata and declaration of vari-
ables and functions. The verifier is used to specify and check
different queries, and to get the results. Then there are two
simulators, one is the well-known symbolic simulator that
has been available in Uppaal since the birth of this interface.
The second simulator is a concrete simulator that was origi-
nally used in Uppaal- tiga. This simulator allows the user
to simulate a system with concrete values of clocks, which is
more intuitive than with the symbolic simulator. This simu-
lator is shown in Fig. 16. The choice of transition is situated

in the upper-left corner. The user chooses with one click a
transition (vertical choice) and a delay (horizontal choice).
The simulator shows the automata and a message sequence
chart on the right. On the lower left corner is the trace corre-
sponding to the current simulation. The central view shows
the variables and the user can show and hide variables in dif-
ferent scopes. In the example, only the clocks of Train(2) and
Train(4) are shown.

The concrete simulator also supports Gantt chart visu-
alization of the interactive concrete trace. Figure 17 shows
a sample use case of Gantt chart for the train-gate exam-
ple. The chart is defined in system declarations (Fig. 17a),
where each chart line is defined by a statement separated by a
semicolon. Each statement consists of a line label (e.g., gate
and train) and a comma-separated list of predicates imply-
ing color numbers. For example, a line gate is painted in
color #0 (red) whenever Gate.Occ is true and in color #1
(green) whenever Gate.Free. The colors are mixed when the
corresponding predicates are true at the same time. It is also
possible to define a chart line for a whole range of discrete val-
ues at once, like the parameterized definition of train(i :id_t),
where the temporary variable i has a range of type id_t. For
example, the first 32 colors can be rendered by the following
definition: gantt { C(i:int[0,31]): true - > i ; }.
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(b)

(a)

Fig. 17 Gantt chart, a definition in system declarations, b trace visu-
alization in concrete simulator

SMC options Under the menu Options the user can choose
Statistical parameters. This opens the window shown in
Fig. 18.

– −δ and +δ: When testing for hypothesis of the form
Pr(ϕ) ≥ θ , the algorithm behind tests for two hypoth-
esis. They are 1) H0 : Pr(ϕ) ≥ θ + δ+ and 2) H1 :
Pr(ϕ) ≤ θ − δ−. These parameters define the region of
indifference.

– α and β: α and β are used for hypothesis testing. The
probability of accepting H1 instead of H0 is α and con-
versely for β. In the case of probability evaluation, α is
also used and it is then the probability to be outside the
result interval of probability. For probability comparison,
the use of α and β is the same as for hypothesis testing.

– ε is the uncertainty for probability evaluations. The tool
evaluate some probability μ and outputs the result [μ −
ε, μ + ε].

– u0 and u1 are the lower and upper bounds used in prob-
ability comparison. Similarly to hypothesis testing, the
algorithm tests two hypotheses: H0 : Pr(ϕ1)

Pr(ϕ2)
≥ u1 and

H1 : Pr(ϕ1)
Pr(ϕ2)

≤ u0. These parameters define the region of
indifference for comparing probabilities.

– Histogram parameters: If the bucket width is set to a pos-
itive value, its value determines the width of the bars in
the histogram and the number of bars depends on the
range of the obtained results. Otherwise if the bucket
count is positive then the number of bars is set to this
value and the width of the bars depends on the range of
the obtained result. Otherwise if both parameters are set
to zero (default), the number of bars in the histogram is
set to the square root of the number of runs used to obtain
the graph.

Fig. 18 The statistical parameters from the options menu

Fig. 19 Visual data comparison in the plot composer

– Trace resolution: When computing a simulation using the
simulate query, the tool filters out the data on-the-fly and
retains points that are distinguishable w.r.t. a certain reso-
lution when plotted on a screen. This parameter controls
the maximum width of the plot in pixels.

– Discretization step: This is used for integration when
ODEs are used in the model. We note that defining rates
as constants does not qualify as ODE, but having x’==y
does.

Plotting and composing Most of SMC queries also provide
quick result visualization in a form of data plots accessible
in the Verifier by right clicking on a selected property and
choosing one of the available plots from a pop-up menu. Sim-
ulation queries display all the requested trajectories in one
plot with different colors assigned to various expressions.
Statistical queries result in a number of different histograms
showing the data scattered along time, cost or discrete transi-
tions horizontal axis. The displayed plot elements (like title,
legend, transparency, comments and logarithmic scale) can
be customized by right clicking on the plot and choosing
appropriate items from a pop-up menu. The plotted data can
be exported as either a picture or a text file using the same
plot pop-up menu. The size of the exported plot can be cus-
tomized by resizing the plot window. Note that larger window
will result in smaller fonts when rescaled for inclusion into
a document, so smaller window will result in fewer details
but clearer picture with larger fonts. The dark-colored areas
are printer-friendlier when the plot is brightened by choosing
Areas/Bright in the plot pop-up menu.
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Different data can also be contrasted and compared in one
plot using the Plot Composer from the Tools menu. Figure 19
shows a sample Plot Composer window with data from sev-
eral verifications already loaded. The bottom panel on the
right shows the resulting plot and the data is organized in the
tree on the left. Each verification data is appended to the tree
to its corresponding query. For example, simulate query has
been checked four times and each result contains one plot
with two datasets. The data can be added to the composite
plot by ticking its checkbox and its drawing properties can
be customized in the top-right panel when it is selected in
the tree. For example E2 and E4 are ticked in Fig. 19 and
E2 is selected and drawing properties can be changed. The
main plot attributes like the title and the labels of both axis
can be changed by selecting the root node and changing its
properties in the upper panel on the right. It is also possible
to edit several composite plots at the same time by invoking
Plot Composer several times from the Tools menu.

7 Modeling tricks

7.1 How to convert channel synchronizations into broadcast
synchronizations

Problem It is common that a user wants to analyze per-
formance of a given model previously model checked with
Uppaal. This model may contain ordinary channel synchro-
nizations that work by hand shake. The problem is that the
SMC extension does not support them as explained in Sect. 2.
Here, we present a translation to convert these models so that
they can be analyzed by Uppaal SMC.
Translation We distinguish three cases: the basic simple one-
to-one synchronization, the one-to-any synchronization, and
a problematic case.

The common simple case is of one process synchroniz-
ing with exactly one other process on a channel as shown in
Fig. 20. The sender in state A may have an invariant or not.
The receiver in state Loc2 does not have an invariant. The
synchronization may be guarded by, resp. g1() and g2(), for
resp. the sender and the receiver. To convert this model, the
user should redeclare the channel a as broadcast, move the
guard of the receiver to the sender,2 and make the actual loca-
tion visible from the sender using a simple encoding with the
extra integer variable recvLoc. Other encodings may be used,
e.g., with booleans, but the integer presents the advantage to
keep the translation of several synchronizations simple. The
integer allows the user to map each location to a unique value
that is used by the sender to allow the synchronization only
in the right state. The example illustrates the update of this

2 This may require moving local variables to the global scope to make
the state visible.

⇓

Fig. 20 Basic case of a one-to-one channel synchronization and its
translation to a broadcast channel synchronization

variable for some other peripheral locations Loc0, Loc1, and
Loc4.

The second more general case is of one process synchro-
nizing with one process out of several ones. There is a choice
of one-to-any synchronization shown in Fig. 21. Here as well,
the receiver is in a location without invariants. In this case,
the same principle as the simple case is used with in addition
a renaming of the channel. The initial transition in the sender
has a copy with a unique channel name for each possible
synchronization that is possible in the original model. Each
copy uses the right associated guard and looks up the state of
the right process. In the example, we illustrate with the use
of an array a generic encoding where there would be several
instances of the same template for the receiver. If the guards
g2() and g3() are generic or depend on some id used to instan-
tiate the receivers, the select construct can be used, in which
case the original transition is not copied and the channel a is
renamed as a[id] with an array.

The last case is the problematic one where a receiver has
an invariant as shown in Fig. 22. Any translation of this model
will violate the independent progress condition because here
a receiver would force another sender process to synchro-
nize. Not synchronizing would result in a deadlock. We note
that if there is an output from that location, i.e., some b! syn-
chronization, then there is no problem.

The last technical detail to take care of is to add expo-
nential rates to the locations without invariants and that have
output synchronizations (or tau transitions). This is the rate
of the exponential distribution used for picking delays.
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⇓

Fig. 21 Extended case of a one-to-any channel synchronization (only
two here) and its translation to a broadcast channel synchronization

Fig. 22 Problematic case
where the translation to
broadcast channel is not
possible

7.2 How to encode custom distributions

Problem Sometimes, the default uniform or exponential dis-
tributions available inUppaalSMC are not enough. The user
needs a simple way to encode any distribution into the model
to generalize the ones illustrated in Fig. 2.

Encoding The pattern for encoding general distributions is
given in Fig. 23. The principle is that upon entry of a given
location Wait where the actual custom delay is to take place,
the actual delay is computed and stored into a clock delay.
The function f() that computes this delay returns a floating-
point value of type double. The automaton will then delay for
this amount and take the transition. The location Wait has its
invariant set to x <= delay and delay’==0. The clock delay
is used here only for storage. This technique is similar to
the one used for computing stochastic simulations in Modest
[27].

Implementation of f() The function that computes the delay
may use the random(n) function with n being a floating-point
value. The function returns a number in [0, n[ with a uni-

Fig. 23 Result from modeling a Gaussian distribution

Fig. 24 Pattern for custom delay distributions

form distribution. This can then be transformed to return
a delay with another distribution. We note that the func-
tion may keep a state as well, by storing what it wants
into global variables (also of type double), which allows
the encoding of virtually any distribution. For example, to
generate random numbers according to a normal distribu-
tion using the Box-Müller method, we can use the following
function:

The distribution obtained is shown in Fig. 24 together with
the parameters used.

Remark The reader may wonder why the pattern proposes to
use a clock for the variable delay instead of a variable of type
double. In fact, it is possible to use double, which saves the
trouble of setting its rate to 0. However, the performance of
the model checker may drop. In its current implementation,
Uppaal SMC uses a fined-grained discretization if guards or
invariants contain a “general” floating-point expression. The
syntax analyzer will not recognize that the discretization is
not needed in this case. Using clocks alleviates the problem.

7.3 How to model physics

ProblemThe formalism of UppaalSMC is stochastic hybrid
automata so modeling physics is a simple matter of writing
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the ODEs in the model. However, only first-degree deriva-
tives are allowed.

Modeling To model an n-degree derivative, the user should
use a clock variable for every intermediate derivative. This
is standard renaming technique used in other tools, e.g.,
Matlab. For example, instead of modeling y’’==-9.81 for a
falling object, the user should declare y’==v and v’==-9.81.
Using different clocks or arithmetic expressions mixing dou-
ble typed variables is also supported.

7.4 How to model biochemistry

Problem Cyber-physical systems may involve chemical and
even biological processes and hence there is a need to eval-
uate the performance of control systems in such a context.
Suppose the reaction involves a mixed solution of materials
A and B and produce C and D with reaction speed of γ :

A + 2B
γ−→ C + 3D

Here, we show how this reaction can be modeled as either
probabilistic or dynamical system. The containment of reac-
tions and other interactions can be modeled by adding addi-
tional locations, edges and channel synchronizations.

Stochastic model Figure 25 shows a stochastic model of the
reaction and its behavior. The discrete quantities (molecules)
of the materials involved are counted by the correspond-
ing integers A, B, C and D. The reaction rate is represented
by the double precision floating-point variable gamma. The
automaton in Fig. 25b captures the interaction between chem-
icals A and B in the following way:

– The automaton takes a discrete transition when the reac-
tion happens.

– The reaction requires at least one molecule of A and at
least two molecules of B, hence the edge is guarded by
an expression A > 0&&B > 1.

– Each reaction consumes A and 2B and produces C and
3D, hence the edge has the update A--, B-=2, C++, D+=3.

– In a well-mixed (homogeneous) compound the probabil-
ity of a reaction is proportional to its speed γ and the
probability of meeting the required three molecules (A,
B and another B) in one place. The probability of reaction
remains the same as long as the conditions (quantities and
temperature) do not change, hence the reaction is a Pois-
son process and the delay until the next reaction follows
an exponential distribution with the rate gamma∗A∗B∗B.

If there are more reactions, then they have to be modeled
by another parallel process. The trajectory of the quantities
can be inspected by the following query:
simulate 1[<= 5]{A, B, C, D}. The resulting plot is shown

(a)

(c)(b)

Fig. 25 Stochastic model and its behavior, a declarations, b automa-
ton, c simulation (color figure online)

(b)

(c)

(a)

Fig. 26 Scaled stochastic model and its scaled behavior, a scaled dec-
larations, b scaled rate, c scaled trajectories (color figure online)

in Fig. 25c: A and B are slowly decaying, replaced by C
and D. We notice that the trajectory is jittery and can be
slightly different with every new simulation due to proba-
bilistic nature of the stochastic process and relatively small
amounts of molecules. The trajectories are smoother when
quantities are much larger and approach the limit of the con-
tinuous dynamics.
Scaling Usually, chemical reactions involve huge numbers
of molecules with different orders of magnitude and thus
some scaling of dimensions may be desired. Note that if
the quantities are scaled by 1,000, then the exponential rate
gamma∗A∗B∗B has to be scaled by 106 (while the dynamical
coefficients are scaled by 109) and thus it is very easy to over-
flow the default range of int. Figure 26 shows the same model
but with molecule quantities scaled by 1,000. The simulated
trajectories are divided by s back down to a comparable scale
as in previous and next example. The simulated behavior is
smoother and closer to the dynamical model (shown next).
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The default integer range is rather small (±216), thus
one may need to broaden it by defining a custom range.
Uppaal supports integer ranges up to 32 bits, hence the
type declaration typedef int[−(1 << 31), (1 << 31) − 1]
int32_t; corresponds to a range of signed 32 bit integer. The
range can be expanded further to a double precision float-
ing point, but note that its precision is limited to 52 bits
(≈4.5×1012) and hence beyond that point minor increments
(like +1) will not affect the variable value anymore.
Dynamical model The same reaction can be rewritten using
a set of differential equations describing the rate of change
of the quantities:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[A]
dt

= − γ · [A] · [B]2

d[B]
dt

= − γ · [A] · [B]2 · 2

d[C]
dt

= γ · [A] · [B]2

d[D]
dt

= γ · [A] · [B]2 · 3

The idea here is that the rate of change in quantities is propor-
tional to the speed of reaction and concentration of materials.
The contribution to various materials is then scaled by coef-
ficients from the original reaction. We have one equation per
each material mentioned. If there are more reactions then
their contributions can be added up to the same system of
differential equations either as separate extra terms or a sep-
arate equation for each new chemical. Figure 27 shows the
dynamical model and its behavior. The quantities are cap-
tured by dynamical clock variables A, B, C and D and the
same reaction coefficient gamma. The differential equations
are then typeset as a single invariant of derivative expressions
in Lagrange’s prime notation (Fig. 27b). We also added an
escape transition if/when the quantity of A reaches zero, i.e.,
the reaction stops. The trajectories can be inspected by the
same simulation query as previously and the result is shown
in Fig. 27c. Notice that the trajectory is smoother, very close
to the scaled-up stochastic simulation, and is the same every
time (deterministic), because ordinary differential equations
have one fixed solution for the same initial conditions. Some
ODE systems might require tuning the discrete integration
step in the Statistical parameters from the Options menu: the
smaller the step the more precise simulation is, but it is also
computationally more expensive. Stiff systems may require
smaller integration steps. A more complicated biochemical
model can be found in a study of a circadian rhythm genetic
oscillator [20,24].

7.5 How to obtain distributions over costs

When the user checks queries to evaluate probabilities, e.g.,
Pr[<= 100](<> Proc.Goal), Uppaal SMC keeps track of

(b)

(c)

(a)

Fig. 27 Dynamical model and its behavior, a declarations, b automa-
ton, c simulation (color figure online)

(a) (b)

(c)

Fig. 28 Cost estimation in terms of energy, a model, b trajectories of
energy and power, c estimated energy probability distribution (color
figure online)

when the runs satisfy the specified goal state and uses this
information to build a frequency histogram. Specifically,
what is counted is the number of runs that were satisfied
at a given “time” as defined by the bound of the run. When
no explicit variable is used, e.g., <= 100, the plot is the count
of satisfied runs as a function of time, discretized in the his-
togram bars (so in fact in function of time intervals). When a
clock variable is used, the plot is in function of this variable.
Alternatively, the runs can be bound by number of discrete
steps of the form # <= 100.

Now suppose that we want to estimate a cost expressed
as some energy consumption. To illustrate this, let us con-
sider the example in Fig. 28a. In this model, a random power
level is chosen stochastically and the corresponding energy
consumption is integrated by Uppaal SMC. The evolution
of the energy is naturally expressed by the equation E’==P.
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Figure 28b shows one stochastic simulation bounded
by two time units obtained with the query
simulate 1[<= 2]{E, P}. Every run will have its own energy
consumption. The question is to know the mean of the
energy consumption and its distribution over runs bounded
by two time units. To obtain this we check the query
Pr[E <= 10](<> t == 2). The trick is that first we bound
the actual energy by a high enough bound that covers the
reachable range for all runs. It could be E <= 1000 if the
user is unsure. Second, the goal state is the time bound that
will be reached since time progresses.3 The result probability
is one but this is not the point. The point is the distribution
generated by this query. Uppaal SMC will record “when”
(in function of the bound) the runs reach the goal, here t==2.
We obtain now a distribution of energy consumption on runs
bounded by two time units as shown in Fig. 28c.

Remarks If the suggested query is checked with the default
settings the obtained histogram will have poor precision
because Uppaal SMC does not need many runs to conclude
that the result probability is one. The user should increase
the precision by changing the SMC options as described in
Sect. 6. Specifically, Fig. 28c was obtained from 7598 runs
using α = 0.001 and ε = 0.0005.

It is also possible to estimate discrete costs even though
the tool does not support integers as bounds. Users can use
clocks for this purpose by maintaining their rates to zero
and updating them manually. For example, if c is a counter,
then it is declared as a clock. Then the user adds one process
with one location and no transition with the invariant c’==0.
Finally, the increment c = c + 1 is used wherever necessary
and the bound c <= 100 can now be used.

7.6 How to model custom discretizations

Problem Sometimes users want to use a custom integration
method or want to change the integration granularity at the
level of locations.Uppaal SMC uses a global time step when
it detects that some integration is needed. It may be better for
performance or precision to change this step depending on
the locations and the type of equation to integrate.

ModelingThe modeling trick consists of using a “high” expo-
nential rate on the locations where the manual discretization
is needed. The tool will then take small delay steps, albeit ran-
dom according to an exponential distribution with high rate,
which allows for custom discretization. Figure 29 shows an
example of the temperature of a room that can have a heater
turned on or off.4 The value of RATE controls the precision.
The functions for cooling and heating are depicted in Listing

3 Uppaal SMC detects Zeno runs and rejects models producing them.
4 The actual controller is not important for this example and is not given
here.

(a)

(b) (c)

Fig. 29 The temperature of a heated room with a manual discretization
using a high exponential rate RATE,a variable and function declarations,
b the model, c temperature trajectories

29a. The value of the clock dt is the time elapsed and is used
for the integration. KHEAT and KCOOL are constants used
in the model. The result of a simulation is shown in Fig. 29.
This manual encoding replaces, resp., T’==-T/KCOOL and
T’==KHEAT-T/KCOOL for, resp., cooling and heating. The
example also illustrates a recent new feature of the language,
namely initializers for clocks with the declaration T = T0[i],
where T0 is declared as const double T0={70.0,60.0}.

8 Conclusion

This paper presented Uppaal SMC as an efficient tool for
evaluating performance properties of stochastic hybrid sys-
tems. The modeling language has been extended to han-
dle dynamical behaviors, discrete probabilities, a stochas-
tic interpretation for timed delays and even dynamic process
creation—far beyond analytically tools reach. Most impor-
tantly the old Uppaal models require only small changes to
benefit also from Uppaal SMC features, thus it is straight-
forward to gain also performance measures in addition to
firm results. The paper also includes tricks for handling more
problematic corner cases to satisfy Uppaal SMC assump-
tions and in particular how to transform handshake synchro-
nization to broadcast synchronization. The query language
has been expanded to request simulation trajectories, com-
pute probabilistic aspects and evaluate weighted MITL for-
mulas.

In the future, we intend to include better ODE solvers to
improve dynamical simulations and improve the interactive
concrete run simulator including a Gantt chart visualization
of a run.
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