Int J Softw Tools Technol Transfer (2015) 17:121-123
DOI 10.1007/s10009-014-0360-z

INTRODUCTION

Runtime verification: the application perspective

Ylies Falcone - Lenore D. Zuck

Published online: 25 November 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract In the past decade, runtime verification (RV) has
gained much focus, from both the research community and
practitioners. RV combines a set of theories, techniques and
tools aiming towards efficient analysis of systems’ execu-
tions and guaranteeing their correctness using monitoring
techniques. Major challenges in RV include characterizing
and formally expressing requirements that can be monitored,
offering intuitive and concise specification formalisms, and
monitoring specifications efficiently for functional and non-
functional behavior. Despite the major strides made in recent
years, much effort is still needed to make RV an attractive
and viable methodology for industrial use and to apply it
to wider application domains, such as security, bio-health,
power micro-grids. This special issue of STTT proposes
extended versions of four papers that have been selected from
the runtime verification track at ISOLA 2012 (Margaria and
Steffen, Proceedings of the 5th international symposium on
leveraging applications of formal methods, verification and
validation, 2012).

Keywords Runtime verification - Applications - Statistical
model checking - Expressiveness - Efficiency

The work of the L. D. Zuck was funded in part by NSF award
CCF-0916438.

Y. Falcone ()

Laboratoire d’Informatique de Grenoble,
University of Grenoble I (UJF), Grenoble, France
e-mail: ylies.falcone @ujf-grenoble.fr

L. D. Zuck
University of Illinois at Chicago, Chicago, USA
e-mail: lenore @cs.uic.edu

1 Introduction

Static methods can guarantee program correctness. They
are, however, not always applicable to a variety of sys-
tems and properties. Often the size of the system ren-
ders static methods prohibitively expensive. Systems to
which static techniques are applied are those where cor-
rectness is to be proven under all circumstances, such as
safety critical systems. In contrast, many ‘“real-life” sys-
tems may be occasionally faulty, especially when the fault
is not catastrophic (or even very expensive) and the sys-
tem can recover from it. Similarly, static techniques are
applicable to systems that are built top down and are
often applied at the design stages. In contrast, many ‘“real-
life” systems are developed ad hoc so that their prop-
erties are not always known a priori, yet, they may be
learnt during the systems’ execution. For these and many
other reasons, RV offers an interesting alternative to static
methods.

In the past decade, runtime verification (RV) has gained
much focus from both research community and practition-
ers [4,5,8,9,12,13]. RV combines a set of theories, tech-
niques and tools aiming towards efficient analysis of sys-
tems’ executions and guaranteeing their correctness using
monitoring techniques. While some of the techniques used
in RV have been applied in several areas, mainly by the test-
ing community, it had only recently became a first-class citi-
zen in the formal-method community after a 2001 workshop
(now a conference), carrying the name runtime verification,
which was initiated by Klaus Havelund (who authors in this
special issue of STTT) and Grigore Rosu.

This issue of STTT presents some new directions in RV.
Two papers focus on the exploration of the expressiveness-
efficiency spectrum [1], that is, the observed duality between
the expressiveness of the specification language and the

@ Springer



122

Y. Falcone, L. D. Zuck

resource consumption made by runtime monitors. They sup-
port the common conjecture that the more expressive the
specification formalism is, the more complex (and resource
consuming) the associated monitoring algorithm is.

The other two papers focus on statistical model check-
ing (see [14]), which augments runtime verification with
statistics. When one has access to several executions of the
system under scrutiny, statistical model checking allows to
complement runtime verification of properties using models
of stochastic behavior to model the uncertainty of a system
and to better assess the overall correctness of the system by
applying statistical inference to reason on several execution
traces.

2 The expressiveness/efficiency spectrum

2.1 On piggyback runtime monitoring of object-oriented
programs (Hallé et al.)

The work in [6] proposes an original approach to the quest
for expressive and efficient runtime monitors. It relies on
the observation that when monitoring Java programs, many
of the properties on the usage of data structures (usually
addressed in benchmarks) are already monitored by the
object instances at runtime. More precisely, the authors
study the extent that the fields of an object carry infor-
mation that can be piggybacked by a monitor to take a
decision on the satisfaction of the property under verifi-
cation. The authors also address the general question of
how a monitor can use the information in the object’s
member fields. They empirically evaluate the benefit of
piggyback monitoring and highlight the benefits of their
approach.

2.2 Rule-based runtime verification revisited (Havelund)

Inspired by the RETE algorithm ([2]), Havelund [7] pro-
poses to revisit rule-based monitoring. While rule-based
RV employs somewhat less efficient runtime monitors, it
offers for a concise and elegant expression of specifi-
cations. In both RV and artificial intelligence, a rule is
specified by a collection of facts, or events, that trigger
some actions. The paper shows that the RETE algorithm
can be made an efficient solution to the event-matching
problem, and thus to the problem of (efficiently) dis-
patching events carrying data value to the related monitor
instances. It also shows how to adapt and optimize RETE
for monitoring purposes. An implementation of the modified
RETE is proposed in the Scala-based tool LOGFIRE, whose
performance is compared to state-of-the-art ruled-based
systems.

@ Springer

3 Statistical model checking: augmenting runtime
verification with statistics

3.1 Statistical model checking QoS properties of systems
with SBIP (Nouri et al.)

The work in [11] proposes SBIP—a stochastic extension of
the Behavior Interaction Priority (BIP) framework which is
an expressive and rigorous component-based design flow for
the hierarchical construction of systems. Adding stochastic
features to BIP allows to better assess the correctness of the
system as well as to model uncertainty stemming from faults
or assumptions on the runtime platform. As Nouri et al. [11]
shows, SBIP allows to combine the results from different
executions with statistical inference algorithms so as to add
confidence measurement on the satisfaction of properties. To
overcome the restrictions of using statistical model check-
ing, the authors propose to consider properties expressed in
Bounded Linear Temporal Logic and to eliminate the non-
determinism in the system by randomizing transitions. Two
case studies conducted with SBIP are presented.

3.2 Schedulability of Herschel-Planck revisited using
statistical model checking (David et al.)

The work in [3] proposes a schedulability analysis of
Herschel-Planck satellite system using symbolic model
checking and statistical model checking. The paper shows
the complementarity of these techniques for proving that a
run is either realizable or that a deadline violation exists.
It is demonstrated that statistical model checking improves
performance analysis by providing response times when a
system is schedulable, and probability of deadline violation
otherwise.

Acknowledgments We would like to thank the organizing commit-
tees of ISOLA 2012 for setting up such a successful event, the pro-
gramme committee and reviewers of the conference and the special
issue of STTT for helping with the selection of papers, and all authors
who contributed to the track. We would especially like to thank the
authors for providing us with such excellent papers, and the referees for
their diligent work.

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard,
D.: Quantified event automata: towards expressive and efficient
runtime monitors. In: FM 2012, 18th International Symposium on
Formal Methods, Paris, France, 27-31 August 2012. Lecture Notes
in Computer Science, vol. 7436, pp. 65-79 (2012)

2. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for
run-time monitoring: from Eagle to RuleR. J. Log. Comput. 20(3),
675-706 (2010)



Runtime verification

123

. David, A., Larsen, K.G., Legay, A., Mikucionis, M.: Schedulability
of Herschel-Planck revisited using statistical model checking. In:
STTT (2014)

. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of
safety-progress properties. In: Bensalem, S., Peled, D. (eds.) Run-
time Verification, 9th International Workshop, RV 2009, Grenoble,
France, 26-28 June 2009. Selected Papers. Lecture Notes in Com-
puter Science, vol. 5779, pp. 40-59. Springer, New York (2009)

. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime ver-
ification. In: Broy, M., Peled, D., Kalus, G. (eds.) Engineering
Dependable Software Systems. NATO Science for Peace and Secu-
rity Series D, vol. 34. Information and Communication Security,
pp- 141-175. 10S Press, Amsterdam (2013)

. Hallg, S., Vallet, J., Tremblay-Lessard, R.: On piggyback runtime
monitoring of object-oriented programs. In: STTT (2014)

. Havelund, K.: Rule-based runtime verification revisited. In: STTT
(2014)

. Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B., Wood-
cock, J. (eds.) VSTTE. Lecture Notes in Computer Science, vol.
4171, pp. 374-383. Springer, New York (2005)

10.

11.

12.

13.

14.

. Leucker, M., Schallhart, C.: A brief account of runtime verification.

J. Log. Algebraic Progr. 78(5), 293-303 (2008)

Margaria, T., Steffen, B. (eds.) Proceedings of the 5th International
Symposium on Leveraging Applications of Formal Methods, Veri-
fication and Validation, ISOLA 2012, Amirandes, Heraclion, Crete,
15-18 October2012. Lecture Notes in Computer Science. Springer,
New York (2012)

Nouri, A., Bensalem, S., Bozga, B.D.M., Jegourel, C.,Legay, A.:
Statistical model checking QOS properties of systems with SBIP.
In: STTT (2014)

Pnueli, A., Zaks, A.: PSL model checking and run-time verification
via testers. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM. Lec-
ture Notes in Computer Science, vol. 4085, pp. 573-586. Springer,
New York (2006)

Runtime Verification: http://www.runtime- verification.org (2001-
2014). Accessed 4 Jan 2014

Younes, H.L.S.: Verification and planning for stochastic processes
with asynchronous events. PhD thesis, Carnegie Mellon (2005)

@ Springer


http://www.runtime-verification.org

	Runtime verification: the application perspective
	Abstract 
	1 Introduction
	2 The expressiveness/efficiency spectrum
	2.1 On piggyback runtime monitoring of object-oriented programs (Hallé et al.)
	2.2 Rule-based runtime verification revisited (Havelund)

	3 Statistical model checking: augmenting runtime verification with statistics
	3.1 Statistical model checking QoS properties of systems with SBIP (Nouri et al.)
	3.2 Schedulability of Herschel--Planck revisited using statistical model checking (David et al.)

	Acknowledgments
	References


