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Abstract In the past decade, runtime verification (RV) has
gained much focus, from both the research community and
practitioners. RV combines a set of theories, techniques and
tools aiming towards efficient analysis of systems’ execu-
tions and guaranteeing their correctness using monitoring
techniques. Major challenges in RV include characterizing
and formally expressing requirements that can be monitored,
offering intuitive and concise specification formalisms, and
monitoring specifications efficiently for functional and non-
functional behavior. Despite the major strides made in recent
years, much effort is still needed to make RV an attractive
and viable methodology for industrial use and to apply it
to wider application domains, such as security, bio-health,
power micro-grids. This special issue of STTT proposes
extended versions of four papers that have been selected from
the runtime verification track at ISOLA 2012 (Margaria and
Steffen, Proceedings of the 5th international symposium on
leveraging applications of formal methods, verification and
validation, 2012).
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1 Introduction

Static methods can guarantee program correctness. They
are, however, not always applicable to a variety of sys-
tems and properties. Often the size of the system ren-
ders static methods prohibitively expensive. Systems to
which static techniques are applied are those where cor-
rectness is to be proven under all circumstances, such as
safety critical systems. In contrast, many ‘“real-life” sys-
tems may be occasionally faulty, especially when the fault
is not catastrophic (or even very expensive) and the sys-
tem can recover from it. Similarly, static techniques are
applicable to systems that are built top down and are
often applied at the design stages. In contrast, many ‘“real-
life” systems are developed ad hoc so that their prop-
erties are not always known a priori, yet, they may be
learnt during the systems’ execution. For these and many
other reasons, RV offers an interesting alternative to static
methods.

In the past decade, runtime verification (RV) has gained
much focus from both research community and practition-
ers [4,5,8,9,12,13]. RV combines a set of theories, tech-
niques and tools aiming towards efficient analysis of sys-
tems’ executions and guaranteeing their correctness using
monitoring techniques. While some of the techniques used
in RV have been applied in several areas, mainly by the test-
ing community, it had only recently became a first-class citi-
zen in the formal-method community after a 2001 workshop
(now a conference), carrying the name runtime verification,
which was initiated by Klaus Havelund (who authors in this
special issue of STTT) and Grigore Rosu.

This issue of STTT presents some new directions in RV.
Two papers focus on the exploration of the expressiveness-
efficiency spectrum [1], that is, the observed duality between
the expressiveness of the specification language and the
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resource consumption made by runtime monitors. They sup-
port the common conjecture that the more expressive the
specification formalism is, the more complex (and resource
consuming) the associated monitoring algorithm is.

The other two papers focus on statistical model check-
ing (see [14]), which augments runtime verification with
statistics. When one has access to several executions of the
system under scrutiny, statistical model checking allows to
complement runtime verification of properties using models
of stochastic behavior to model the uncertainty of a system
and to better assess the overall correctness of the system by
applying statistical inference to reason on several execution
traces.

2 The expressiveness/efficiency spectrum

2.1 On piggyback runtime monitoring of object-oriented
programs (Hallé et al.)

The work in [6] proposes an original approach to the quest
for expressive and efficient runtime monitors. It relies on
the observation that when monitoring Java programs, many
of the properties on the usage of data structures (usually
addressed in benchmarks) are already monitored by the
object instances at runtime. More precisely, the authors
study the extent that the fields of an object carry infor-
mation that can be piggybacked by a monitor to take a
decision on the satisfaction of the property under verifi-
cation. The authors also address the general question of
how a monitor can use the information in the object’s
member fields. They empirically evaluate the benefit of
piggyback monitoring and highlight the benefits of their
approach.

2.2 Rule-based runtime verification revisited (Havelund)

Inspired by the RETE algorithm ([2]), Havelund [7] pro-
poses to revisit rule-based monitoring. While rule-based
RV employs somewhat less efficient runtime monitors, it
offers for a concise and elegant expression of specifi-
cations. In both RV and artificial intelligence, a rule is
specified by a collection of facts, or events, that trigger
some actions. The paper shows that the RETE algorithm
can be made an efficient solution to the event-matching
problem, and thus to the problem of (efficiently) dis-
patching events carrying data value to the related monitor
instances. It also shows how to adapt and optimize RETE
for monitoring purposes. An implementation of the modified
RETE is proposed in the Scala-based tool LOGFIRE, whose
performance is compared to state-of-the-art ruled-based
systems.
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3 Statistical model checking: augmenting runtime
verification with statistics

3.1 Statistical model checking QoS properties of systems
with SBIP (Nouri et al.)

The work in [11] proposes SBIP—a stochastic extension of
the Behavior Interaction Priority (BIP) framework which is
an expressive and rigorous component-based design flow for
the hierarchical construction of systems. Adding stochastic
features to BIP allows to better assess the correctness of the
system as well as to model uncertainty stemming from faults
or assumptions on the runtime platform. As Nouri et al. [11]
shows, SBIP allows to combine the results from different
executions with statistical inference algorithms so as to add
confidence measurement on the satisfaction of properties. To
overcome the restrictions of using statistical model check-
ing, the authors propose to consider properties expressed in
Bounded Linear Temporal Logic and to eliminate the non-
determinism in the system by randomizing transitions. Two
case studies conducted with SBIP are presented.

3.2 Schedulability of Herschel-Planck revisited using
statistical model checking (David et al.)

The work in [3] proposes a schedulability analysis of
Herschel-Planck satellite system using symbolic model
checking and statistical model checking. The paper shows
the complementarity of these techniques for proving that a
run is either realizable or that a deadline violation exists.
It is demonstrated that statistical model checking improves
performance analysis by providing response times when a
system is schedulable, and probability of deadline violation
otherwise.
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