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Abstract Several graph libraries have been developed in
the past few decades, and they were basically designed to
work with a few graphs. However, there are many problems
in which we have to consider all subgraphs satisfying certain
constraints on a given graph. Since the number of subgraphs
can increase exponentially with the graph size, explicitly
representing these sets is infeasible. Hence, libraries con-
cerned with efficiently representing a single graph instance
are not suitable for such problems. In this paper, we develop
Graphillion, a software library for very large sets of (vertex-)
labeled graphs, based on zero-suppressed binary decision
diagrams. Graphillion is not based on a traditional repre-
sentation of graphs. Instead, a graph set is simply regarded
as a “set of edge sets” ignoring vertices, which allows us to
employ powerful tools of a “family of sets” (a set of sets) and
permits large graph sets to be handled efficiently.We also uti-
lize advanced graph enumeration algorithms, which enable
the simple family tools to understand the graph structure.
Graphillion is implemented as a Python library to encour-
age easy development of its applications,without introducing
significant performance overheads. In experiments, we con-
sider two case studies, a puzzle solver and a power network
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optimizer, in which several operations and heavy optimiza-
tion have to be performed over very large sets of constrained
graphs (i.e., cycles or forests with complicated conditions).
The results show that Graphillion allows us tomanage a huge
number of graphs with very low development effort.

Keywords Graph · Set · Software library · Family algebra ·
Frontier-based search · Binary decision diagram

1 Introduction

A graph is a representation of a set of edges, each of which
connects a pair of vertices. Graphs are often used as a math-
ematical model for a variety of problems. Researchers have
developed many sophisticated graph libraries, but the design
focuses on handling a small number of graphs. Thus they
cannot work with very large sets of graphs, even though the
set can grow exponentially with graph size since a graph
with N edges induces up to 2N subgraphs. A graph library
that could efficiently manage very large and complex sets of
graphs within a small amount of memory would provide a
novel way for powerful graph operations; e.g., an optimizer
that efficiently finds the best graph from a non-convex graph
set, and a graph database that can select all matched graphs
from a very large set. To the best of our knowledge, there is
no library that has been designed to handle such large sets of
graphs.

In this paper, we introduce Graphillion, a software library
optimized for very large sets of graphs. Traditional graph
libraries maintain each graph individually, which leads
to poor scalability, while Graphillion handles a set of
graphs collectively without considering graphs individually.
Graphillion concentrates on edge-induced subgraphs of a
given (vertex-)labeled graph G = (V, E), and a set of
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graphs is reduced to a set of edge collections,1 or a fam-
ily of sets of edges more formally; i.e., a set of graphs,
{G1 = (V, E1),G2 = (V, E2)}, is regarded as a set of edge
collections, {G1 = E1,G2 = E2}. This reduction loses the
properties of each vertex, but allows programmers to apply a
powerful theory on the family [8]. A set of collections can be
represented in a compressed form by sharing common parts
of similar collections, so a huge number of graphs can be
stored in a small amount of memory. We also employ effi-
cient algebra called family algebra [6], in order to perform
optimization (i.e., finding minimum or maximum weighted
graphs), selection, and modification on very large graph sets;
the efficiency is due to the fact that they can be executedwith-
out decompressing the data.

This family theory, of course, is unconcerned about graph
structure like a tree or a path, since it considers a graph
to be just an edge collection with no structure. We rectify
this omission by employing the graph enumeration algorithm
called frontier-based search [4,5,10,13]. The algorithm lists
all graphs that have a specified structure, and then the listed
graphs (edge collections) are handled by family algebra. The
number of graphs listed, of course, can be very enormous, but
a recent development in enumeration algorithms allows us to
output the graphs in compressed form without enumerating
them one by one. This compressed form is easily converted
into the compressed form of the family theory [15], and so
there is no difficulty to adopt family algebra.

Graphillion is implemented in Python language because
of its high productivity. Python is a high-level program-
ming language with a rich set of libraries (or “modules” in
the Python terminology) including NumPy/ SciPy (mathe-
matical computation) [17] and NetworkX (network analy-
sis) [2]. Moreover, Python can be extended by using C or
C++ for high-performance numerical computation, and it is
well-suited to scientific and engineering code [12]. How-
ever, Python objects must be reinterpreted in every extended
function call (e.g., Python’s built-in set object can reinter-
pret all elements in some function calls), and this overhead
would be unacceptable if a very large graph setwere involved.
Graphillion, in contrast, deals with a whole graph set directly
without considering individual graphs, and so only a refer-
ence to the set is reinterpreted regardless of the number of
graphs in it. In this way, our graph set representation allows
us to establish an efficient computation scheme for graph sets
via Python’s extension mechanism.

We evaluate the performance and productivity of
Graphillion in experiments. We first measure the per-
formance on simple operations. The results show that
Graphillion needs only 500MB of memory to process a very

1 In order to describe a set of setswithout confusion, theword collection
is used to indicate an “inner” set like an edge set, while set is used for
an “outer” set like a graph set.

large set of 1037 trees in 10 s (just one second for some opera-
tions).We then present two case studies, a puzzle solver and a
power network optimizer, and reveal thatGraphillion reduces
the lines of code by 90% with an acceptable performance
overhead. In the power network optimization, our optimizer,
which only needs a thousand lines of code, searches a non-
convex set of 1058 feasible graphs and finds the optimal graph
in just 1 min.

The rest of this paper is organized as follows: Section 2
gives an overview of Graphillion. Sections 3 and 4 discuss
the theoretical aspects of Graphillion. Section 5 describes
its implementation, and Sect. 6 reports the experiments and
results. Section 7 summarizes related work, and Sect. 8 con-
cludes the paper.

2 Overview

We describe below a design overview of Graphillion (Fig. 1),
along with our goals, high performance and high productiv-
ity.

– High performanceGraphillion processes very large sets
of graphs efficiently in terms of both space and time. It is
implemented as a Python module with C++ extensions.
A set of graphs is represented in a compressed form of
a C++ object, which is created by frontier search (Fig.
1a) and is manipulated by family algebra (Fig. 1b). Since
only the reference to the set is exposed to the Python
world, the function call overhead is very small and its
impact is independent of the size of the C++ object. Only
minimum necessary graphs are extracted from the set
through iterators, so there is no need to restore all the
graphs in the object (Fig. 1c).

– High productivity Graphillion makes it easy to develop
applications that deal with very large graph sets.
Graphillion follows the programming interface of the
built-in set class in Python (Fig. 1b, c), and so it is very
easy for Python programmers to use. Since we redesign
family algebra to suit graph sets, it is tractable to write
complicated operations over graph sets, such as opti-
mization, selection, and modification. Since Python is
a general-purpose programming language with a rich set
of modules, programmers can implement their tasks just
using Python and they are freed from the need to coordi-
nate multiple programs in different languages. We eval-
uate the productivity by the number of code lines in this
paper.

3 Representations of a graph and the set

This section formulates a graph set as a set of edge collec-
tions. Figure 2 shows an example of the representation used
in this section.
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Fig. 1 Overview of Graphillion
with a code example. The
compressed graph set objects
are maintained in the C++
world, while only minimum
necessary objects are exposed to
the Python world to reduce the
overhead

U = (Vu, Eu) =
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Fig. 2 Examples of our graph representation

3.1 Representation of a graph

We first introduce a special graph that defines our universe
(Fig. 2a),

U = (Vu, Eu).

We can set an arbitrary labeled graph as the universe. A graph
G used in Graphillion must be an edge-induced subgraph of
the universe (Fig. 2d),

G = E ⊆ Eu,

where edge collection E alone defines the graph, and vertices
V are ignored. This simplification puts a limitation on ver-
tices: vertices without edges cannot be recognized. However,

graphs are mainly characterized by edge structures in many
applications, and so this limitation is not a serious concern
in most cases.

Our graphmodel puts no restriction on edge type,2 but this
paper treats only simple undirected edges with no self-loops
for simplicity. Edges can be weighted.

3.2 Representation of a set of graphs

A set of graphs, G, is represented by a set of collections of
Eu (Fig. 2b, c):

G ⊆ 2Eu ,

where 2Eu is the power set of Eu . A graph used inGraphillion
is defined by G ∈ 2Eu .

The maximum size of a graph set, 2|Eu |, increases expo-
nentially with universe size. In order to represent a graph
set efficiently, we utilize a compressed form of a set of col-
lections, which is named the zero-suppressed binary deci-
sion diagram, or ZDD [8]. A ZDD greatly compresses a very
large set of collections without information loss, by sharing
the common parts of similar collections. We show an exam-
ple of the great compression capability yielded by ZDD in
Table 1, which presents the number of trees rooted at a cor-
ner of a grid graph versus the amount of memory needed to
store them in a ZDD (theoretical value ignoring implementa-
tion overhead). The amount of memory increases muchmore
slowly than the number of trees.3

2 Edges can be either directed or undirected. They can also be self-
loops. Multiple edges can be placed between a same pair of vertices if
they are distinguishable. Edges can be hyper edges, which can include
any number of vertices.
3 There is no rigorous theory that can estimate the compression ratio
of binary decision diagrams, but it is believed that they will work well
in most practical data applications [18].
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Table 1 Number of trees versus memory needed by ZDD

Grid size Number of trees Memory of ZDD [byte]

2 × 2 10 990

3 × 3 750 9,870

4 × 4 7,37,354 61,830

5 × 5 8,96,59,81,766 3,35,190

6 × 6 1,33,41,22,53,35,91,284 23,64,750

7 × 7 2,41,75,10,62,60,51,12,
71,73,092

1,81,68,510

8 × 8 53,14,03,15,31,28,26,65,03,
00,53,06,20,174

5,63,21,790

9 × 9 1,41,30,43,45,22,30,40,66,
55,78,92,21,37,31,29,70,
09,012

20,71,15,950

4 Creation and manipulation of a set of graphs

This section describes the creation of a graph set using fron-
tier search and the use of family algebra to manipulate set
contents.

4.1 Creation of a set of graphs

We build a ZDD representing a set of graphs by using a graph
enumeration algorithm called frontier-based search [13].4

Frontier search finds all graphs that have a specified structure.
It outputs the enumerated graphs in a compressed form

that is easily converted into a ZDD [15]. The time complexity
is determined by the size of the compressed form (slightly
larger than that of corresponding ZDD), not by the number
of graphs being output.

We briefly describe frontier search. Consider a tree that
represents a set of graphs. On the tree, a node of depth i
corresponds to i-th edge of universe (ei ∈ Eu), and a branch
incident from the node is labeled to indicate whether the i-th
edge is included to the collection (ei ∈ E). A path from the
root to a leaf corresponds to an edge collection (E ⊆ Eu), and
a leaf indicates whether the path is included to the set. Two
tree nodes can be shared if their subtrees are identical, which
compresses the tree into a directed acyclic graph. Frontier
search constructs such a directed acyclic graph by examining
the universe graph without backtracking. A branch is pruned
if all the paths through the branch cannot lead to the specified
structure.

Frontier search was originally limited to simple struc-
tures like trees, but it has been generalized to support various
structures [5,10]. Table 2 shows the structures supported by
Graphillion. The search space can be restricted to a given

4 While this enumeration algorithm had no name originally, it was
named in [10].

Table 2 Creation methods for graph sets

Structure Parameters

Tree A root vertex, spanning or not

Forest Root vertices, spanning or not

Path Terminal vertices, Hamiltonian or not

Cycle Hamiltonian or not

Clique Size

Connected component Vertices to be connected

Table 3 Selection operations for graph sets

Operation Definition

Union G1 ∪ G2 = {G|G ∈ G1 ∨ G ∈ G2}
Intersection G1 ∩ G2 = {G|G ∈ G1 ∧ G ∈ G2}
Difference G1\G2 = {G|G ∈ G1 ∧ G /∈ G2}
Symmetric
difference

G1 ⊕ G2 = (G1\G2) ∪ (G2\G1)

Subgraphs G1�G2 = {G1 ∈ G1|∃G2 ∈ G2(G1 ⊆ G2)}
Supergraphs G1�G2 = {G1 ∈ G1|∃G2 ∈ G2(G1 ⊇ G2)}
Maximal graphs G↑ = {G1 ∈ G|G2 ∈ G ∧ G1 ⊆ G2 → G1 = G2}
Minimal graphs G↓ = {G1 ∈ G|G2 ∈ G ∧ G1 ⊇ G2 → G1 = G2}

graph set; graphs not included in the given set are not enu-
merated by frontier search [4].

Some simple sets of graphs can be created by ZDD’s
primitives without frontier search: e.g., the empty set and
the power set are given by the ZDD’s primitives, and small
graph sets can be created by explicitly specifying the graphs
(edge collections).

4.2 Manipulation of a set of graphs

Family algebra defines several operations on sets of collec-
tions, and the operations can be efficiently performed over
ZDDs [6]. Surprisingly, these operations can be executed
directly on the compressed data, so they are highly efficient.
In this subsection, we describe the operations for optimiza-
tion, selection, and modification, in the context of graph sets.

We begin with selection operations. Several selection
operations are defined for a set of collections, and their
semantics makes sense for graph sets without change. The
first four operations in Table 3 are ordinary set operations.
Each graph in a set is regarded as an opaque element with-
out inner structure, and the operations are performed over
the sets. It is worth noting that intersection can be used for
a membership query: to test if graph G is in set G (Fig. 3a),
check,

{G} ∩ G �= ∅.
The other four operations in the table select graphs based

on their structures. They do what their names suggest (they
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(A) membership query: e.g.,       is found in

{ } { }, = { }

(B) search: e.g., structure        is found in  

{ }, { } = { }

{ },

(C) graft: e.g., edges       are added to

{ }, = { },

{ },

Fig. 3 Examples of graph set manipulation via family algebra

Table 4 Modification operations for graph sets

Operation Definition

Graft (join �) G � {E} = {G ∪ E |G ∈ G}
Remove (meet �) G � {Ec} = {G ∩ Ec|G ∈ G}
Flip (delta �) G � {E} = {G ⊕ E |G ∈ G}

are originally called subsets or maximal sets in family alge-
bra). The supergraphs operation can be used for search: to
explore G for graphs that include given structure G (Fig. 3b),
look at,

G�{G}.
We now move on to modification. All graphs in a set can

be modified at once by slightly modifying family algebra.
Table 4 shows the modification operations (original opera-
tion names in family algebra are shown in parentheses for
reference). To graft edge(s) E to all graphs in set G, we uti-
lize the join operation defined in the family algebra, as shown
in Table 4 (Fig. 3c). Similarly, edge(s) E can be removed by
performing the meet operation against the complement edge
set Ec = Eu\E (i.e., Ec are edges not to be removed in this
context). The flip operation flips edge status in all graphs.

Optimization is provided by the search algorithm of fam-
ily algebra that finds a maximum or minimum weighted
edge collection (graph) in the set. Since this search algo-
rithm returns just a single best graph, we employ the differ-
ence operation to obtain multiple graphs in descending (or
ascending) order of weight; the search algorithm is applied
repeatedly while removing the previous best graph from the
set by the difference operation as follows.

for i = 1 → k do // find top-k graphs from G
G = find_max(G) // get best G from G
// do something with G
G = G \ {G} // remove G for the next iteration

end for

Graphillion defines other operations like hitting sets [16],
random sampling, and counting graphs in a set, but we do
not describe them here due to limited space.

5 Implementation

This section describes the implementation of Graphillion.
Frontier search and family algebra are implemented in C++,
while the programming interface is written in Python. This
interface is based on Python’s set; e.g., the size query
(len function in Python),membership query (in operation),
iterators (for operation), and general set operations (e.g.,
union). We add graph-specific operations to this interface
likesupergraphs,graft, and the graph-weight optimiz-
ers. Our implementation requires 14,965 lines of code in C++
and 2,251 lines in Python.

A graph set object in Python maintains a reference to the
corresponding ZDD object of C++ (see Fig. 1). The graph set
object is very lightweight, since it has no attribute other than
the reference. The selection methods return a new graph set
object that refers to the associated ZDDobject. Themodifica-
tionmethods just replace their referencewith a new reference
to the new ZDD object. The optimizers are implemented as
a Python iterator, which runs a loop step-by-step and yields
the best graphs one at a time instead of extracting all of them
at once.

Vertices and edges are simply indexed by integers in C++
to improve the efficiency, while any hashable object can be
used as a vertex in Python for better productivity5 (an edge
is just a tuple of two vertex objects). Graphillion provides
a transparent mechanism to convert between integers and
objects by maintaining the mapping. The mapping is created
automatically at universe registration, which must be done at
the beginning of the code. If edges not found in the universe
are used, an exception is raised.

In order to enhance productivity further, any type of graph
object (e.g., aNetworkXgraph) can be used inGraphillion. A
graph object is transparently converted into the Graphillion’s
internal representation (an edge collection) by user-defined
converters. Programmers can use Graphillion as an enhance-
ment tool for their favorite graph modules simply by regis-
tering the converters.

6 Experiments

In this section, we consider the performance of Graphillion’s
operations. We then discuss two case studies, a puzzle solver
and a power network optimizer, to examine the tradeoff
between performance and productivity.All experimentswere
conducted with Python 2.7 and GCC 4.7 on Linux 2.6 using
a single core in Intel Xeon E31290 (3.60 GHz) with 32 GB
of RAM.

5 This is analogous to Python’s built-in set, which accepts any hash-
able object as an element.
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Creation Selection Modification Optimization
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Fig. 4 CPU time and memory usage for the basic operations with and without Graphillion. The operations are executed over trees rooted at a
corner on a grid graph. The grid size on the horizontal axis indicates N of the N × N grid

6.1 Basic performance

We evaluate the performance by using a set of trees rooted
at a corner on a grid graph. The set size is shown in Table
1. Creation performance is measured by building a set of the
trees. Selection performance is evaluated by calculating the
union of two sets of trees; trees in one set are rooted at a
corner while those in the other set are rooted at the diago-
nally opposite corner. Modification performance is evaluated
by grafting an edge to all trees. Finally, optimization perfor-
mance is measured by finding the top-3 weighted trees with
the maximization operation.

Wemeasured theCPU time and thememory usage of these
operations with and without Graphillion. In the implemen-
tation without Graphillion, graphs are created as NetworkX
objects, and are stored in Python’s built-in set object (the
union operation is provided by the built-in set, but the other
operations were added by us). In order to evaluate Python’s
overhead, we developed a pure C++ implementation of the
operations just for the experiments.

The results are shown in Fig. 4. The implementation with-
out Graphillion could not finish any operation for a 5 × 5
grid within an hour due to the very large number of trees.
Graphillion performs somewhat poorly on the small grids
due to the overhead of object mapping and conversion, but
the overhead is negligible for the larger grids. Graphillion
finished all operations in less than 10 seconds with 500 MB
of memory even for the 9 × 9 grid, which has 1037 trees.
Examining the performance of Graphillion’s operations in
detail, we found that ZDDs accounted for most of the mem-
ory usage in the larger grids, while Python’s initial memory
becomes dominant for the smaller grids (thismakes themem-
ory usage nearly constant among the smaller grids). Selection

2
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0

2

33

2
0

3

0

0

0

2

3

Fig. 5 An example of the Slitherlink problem (left) and its solution
(right) on 6× 8 grid; adjacent dots are connected with vertical or hori-
zontal lines, and a cycle is formed satisfying given hints, which indicate
the number of lines surrounding it while empty cells may be surrounded
by any number of lines

required the largest memory capacity since it involves two
sets of trees,6 Creation consumes the least memory; this is
because frontier search builds a ZDDdirectly, while the other
operations have to rely on interim results of family algebra.
Optimization took the longest CPU time, because it calls
the “difference” operation at every iteration as discussed in
Sect. 4.2. CPU times of other operations are ruled by ZDD
size, though they differ slightly according to the operation’s
complexities; e.g., selection is the simplest and fastest, while
creation requires a little more time due to frontier search.

6.2 Puzzle solver

The first case study is the Slitherlink puzzle,7 which is a
logic puzzle to find a cycle that satisfies given hints (Fig. 5).
We have previously developed a Slitherlink solver [19]; it
was the fastest solver that could list all solution cycles. The

6 Selection requires 500 MB of memory, which is slightly larger than
double the theoretical value (207 MB), shown in Table 1, because of
the unused slots in the hash table used to maintain ZDDs.
7 http://www.nikoli.com/en/puzzles/slitherlink/.
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3 ,{ 1 3 1 , 3 1 , 3 1 }
3{ 1 }

1 13 ,{ 3 , ... }
13{ }, 13 , ...

= { }13cycles in

Solutions of                   are given as follows:3 1

2Eu= 

1= { }3 , 13 , ..., 13

G

G
Fig. 6 An example of Slitherlink solution by Graphillion. Here, we
define G1 ��G2 = G1\(G1�G2). For the hint of “3”, the solutions must
include (be supergraphs of) three edges around the hint (2nd line), but

must not include more edges (3rd line). Similarly, the hint of “1” is
processed (4th and 5th lines). Finally, cycles are found by frontier search
(7th line)

Table 5 Lines of code for Slitherlink solvers

Implementation C++ Python

w/o Graphillion 2,116 0

w/ Graphillion 0 153

solver employs frontier search redesigned for Slitherlink and
has special algorithms to process hints. The solver consists
of 2,116 lines of C++ code.

We developed another solver with Graphillion but without
a dedicated frontier search for Slitherlink. This new solver
first enumerates subgraphs that satisfy the hints (2nd to 5th
lines of Fig. 6), and then runs frontier search over the hint-
satisfying subgraphs to select solution cycles (7th line of Fig.
6). Thanks to the generality of Graphillion, the new solver
consists of just 153 lines of Python. This is a 93% reduction
in the number of code lines, and it is, in addition, written in
easy Python, rather than in complicated C++ (Table 5).8

We measured the CPU time and memory usage for three
problems found in a Slitherlink book [11], all of which
have just a single solution. We also conduct an experiment
against a modified problem in which ten hints were ran-
domly removed to permit multiple solutions. Figure 7 shows
the results. Both solvers scaled similarly with problem size,
and their memory usages were roughly comparable. The
Graphillion solver is slightly outperformed in terms of CPU
time due to the special algorithms in the dedicated solver, but
the tradeoff between performance and productivity is accept-
able.

8 We should be careful when comparing the numbers of lines between
Python and C++, since they have different grammars and syntaxes:
e.g., Python does not require opening and closing brackets while C++
does. However, in our experiments, the average line length in C++ is
not significantly shorter than that in Python (26.0 characters per line
in C++ compared with 32.2 characters in Python). Moreover, they both
use the object-oriented programming model. We, therefore, believe that
our evaluation roughly measures the productivity.
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Fig. 7 CPU time and memory usage of the dedicated solver and the
Graphillion solver on Slitherlink problems

Power substation
Town block
Power line w/ switch

Fig. 8 Anexample of power distribution network,which is represented
by a graph; the power flow can be configured by the switches

We can obtain the top-k longest or shortest cycles with
Graphillion’s iterators, when the problem has multiple solu-
tion cycles. It took just another 0.24 s to find the three longest
cycles from among the 117059496 solutions to the modified
problem.

6.3 Power network optimizer

The second case study is power loss minimization in a dis-
tribution network; this is a discrete non-convex optimization
problem involving hundreds of variables [7]. A power dis-
tribution network can be represented by a graph in which a
vertex corresponds to a town block or a power substation and
an edge corresponds to a power line with a switch (Fig. 8).
The power flow is configured by changing the open/closed
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{ }, , , , ,

({ } { })
spanning forests

not including infeasible trees

={ }, ,

Fig. 9 An example of optimization algorithms for power networks in Fig. 8; feasible solutions are obtained as the spanning forests with no
infeasible trees, and then the optimal one is determined (not shown in the figure)

status of switches. Itmust be cycle-free to avoid short circuits,
and must cover all blocks to avoid blackouts; the power flow,
as a consequence, forms a spanning forest, in which each
tree is rooted at a power substation. The flow also must sat-
isfy complicated electrical constraints on line capacity and
voltage drop: roughly speaking, very large or tall trees are
forbidden. The network is operated to minimize resistive line
losses while satisfying these constraints.

In previous work [3], we developed a power loss opti-
mizer that utilized frontier search and family algebra in an
ad-hoc manner without the unified concept discussed in this
paper. The loss optimizer first enumerates all spanning forests
rooted at substations by frontier search (1st line of Fig. 9).
It then enumerates all electrically-infeasible trees for each
substation by conducting complicated power calculations
(2nd line of Fig. 9). Family algebra selects forests that do
not include the infeasible trees (3rd line of Fig. 9). Finally,
the minimum-loss forest is found from the selected feasible
forests; since the search space consists of only the feasible
forests, the search algorithm does not need to consider the
complicated constraints. To handle the nonlinear nature of
the power loss, a dedicated search algorithm had been devel-
oped (the one in family algebra was not used). Our past work
implemented a part of frontier search and of family algebra
in 6,856 lines of C++ code, while the complicated power
calculations, including nonlinear optimization, consisted of
1,221 lines of Python code. Intermediate data are serialized
into a file, which is exchanged between the C++ program and
the Python program.

We developed another power loss optimizer that imple-
ments the same algorithms but employs Graphillion for fron-
tier search and family algebra; we are allowed to focus on
the power calculation and the nonlinear optimization. Since
this optimizer is implemented as a single program, it does not
need to exchange intermediate data. It consists 1,164 lines
of Python code without C++. This Python code is shorter
than the original, because it does not require serialization
and object mapping. In total, we achieved a 86% reduction
in the number of code lines (Table 6).

The two optimizers were compared for the power distribu-
tion networks used in [3]; the largest network has 432 blocks
(vertices) and 468 power lines (edges). The results are shown

Table 6 Lines of code for power network optimizers

Implementation C++ Python

w/o Graphillion 6,856 1,221

w/ Graphillion 0 1,164
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Fig. 10 CPU time and memory usage of power network optimizers
with and without Graphillion

in Fig. 10. Both implementations demonstrate comparable
performance in terms of CPU time and memory usage (the
memory usage includes both C++ and Python programs for
the implementation without Graphillion). The Graphillion
optimizer was slightly faster due to its omission of data
exchange, while it required a bit more memory because of
the full Python implementation. This memory overhead is
negligible compared to the productivity improvement, which
allows programmers to focus on their own problems with-
out considering complicated graph operations. Surprisingly,
more than 1058 feasible forests were handled with only 1.5
GB memory in the largest network. Graphillion needed just
one thousand code lines to find an optimal solution from a
non-convex set of 1058 graphs in just one minute.

Additionally, Graphillion can be used as a graph database
of feasible forests. We issued queries specifying an open or
closed switch to select all the forests matching the queries, as
shown in Fig. 3b. Graphillion processed the queries within
just 1.5 s for a closed switch and within 0.5 s for an open
switch in the largest network.
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7 Related work

There are several existing graph libraries, including Net-
workX [2] and Boost Graph Library [14], which are widely
used for graph analysis. They are, however, designed for a
small number of graphs or a simple power set of edges: that
is, they can find a shortest path from just a power set of edges
without constraints. In contrast, Graphillion can find shortest
paths from a large and complex set of graphs;

given a constrained set of graphs, which could be created
by Graphillion operations, we first select paths from the con-
strained set (see Sect. 4.1) and then find minimum weighted
paths from them (see Sect. 4.2).

We often use general optimizers like CPLEX9 for graph
optimization. However, they require us to describe the con-
straints in simple formulae, but many practical problems are
too complicated to permit this. The algebraic approach pro-
vided by Graphillion sometimes works well as shown by
the power network optimization, which cannot be solved by
general optimizers. In addition, general optimizers are not
designed to search for multiple solutions, while Graphillion
provides iterators that yield the top-k solutions.

Graph databases [1] store multiple graphs and provide
selection methods based on graph structure. However, they
cannot store as many graphs as Graphillion can, because they
do not employ an efficient graph set representation.

VSOP [9] employs family algebra like Graphillion, but
it provides an abstraction for combinatorial item sets, not
graph sets. Frontier search is, of course, not implemented in
VSOP, and so it does not create graph sets of a given structure
efficiently. SinceVSOP runs on its own interpreter,we cannot
utilize Python’s rich collection of libraries.

8 Conclusions

In this paper, we have introducedGraphillion, which is a soft-
ware library designed for very large sets of graphs. Our rep-
resentation of a graph set allows us to utilize the theory of the
“family of sets”, which can compress graph sets and manip-
ulate them efficiently. Graphillion is implemented in Python
and provides a sophisticated but easy-to-use interface. Exper-
iments showed the excellent performance of Graphillion.
Two case studies showed that programmers can handle very
large graph sets with just a small number of lines of code.
Graphillion can also be used for railway analysis.10

Future work includes a plug-in mechanism for operation
customization, generalized design for directed graphs and

9 http://www.ibm.com/software/commerce/optimization/cplex-optim
izer/.
10 http://www.nysol.jp/en/home/apps/ekillion.

hyper graphs, and analysis of compression ratio on graph set
characteristics.

Since we would like to discover more applications for
which Graphillion works well, we make it publicly available
online at Graphillion’s page11 and PyPI (the Python Package
Index).12

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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