Int J Softw Tools Technol Transfer (2015) 17:429-456
DOI 10.1007/s10009-014-0349-7

@ CrossMark

SMC

Sound statistical model checking for MDP using partial order

and confluence reduction

Arnd Hartmanns - Mark Timmer

Published online: 1 October 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Statistical model checking (SMC) is an analy-
sis method that circumvents the state space explosion prob-
lem in model-based verification by combining probabilistic
simulation with statistical methods that provide clear error
bounds. As a simulation-based technique, it can in general
only provide sound results if the underlying model is a sto-
chastic process. In verification, however, models are very
often variations of nondeterministic transition systems. In
classical exhaustive model checking, partial order reduction
and confluence reduction allow the removal of spurious non-
deterministic choices. In this paper, we show that both can
be adapted to detect and discard such choices on-the-fly dur-
ing simulation, thus extending the applicability of SMC to a
subclass of Markov decision processes. We prove their cor-
rectness in a uniform way and study their effectiveness and
efficiency using an implementation in the modes simulator
for the MODEST modelling language. The examples we use
highlight the different strengths and limitations of the two
approaches. We find that runtime may be affected by unnec-
essary recomputations, and thus also investigate the feasibil-
ity of caching results to speed up simulation at the cost of
increased memory usage.

Keywords Statistical model checking - Simulation -
Markov decision processes - Partial order reduction -
Confluence reduction

A. Hartmanns (B<)
Saarland University, Saarbriicken, Germany
e-mail: arnd @cs.uni-saarland.de

M. Timmer
University of Twente, Enschede, The Netherlands

1 Introduction

Traditional and probabilistic model checking have grown to
be useful techniques for finding inconsistencies in designs
and computing quantitative aspects of systems and protocols.
However, model checking is subject to the state space explo-
sion problem, with probabilistic model checking being par-
ticularly affected due to its additional numerical complexity.
Several techniques have been introduced to stretch the limits
of model checking while preserving its basic nature of per-
forming state space exploration to obtain results that uncondi-
tionally, certainly hold for the entire state space. Two of them,
partial order reduction (POR) and confluence reduction, work
by selecting a subset of the transitions of a model—and thus a
subset of the reachable states—in a way that ensures that the
reduced system is in some sense equivalent to the complete
system.

A very different approach for probabilistic models is
statistical model checking (SMC) [24,28,41]: instead of
exploring—and storing in memory—the entire state space, or
even areduced version of it, discrete-event simulation is used
to generate traces through the state space. This comes at con-
stant memory usage and thus circumvents state space explo-
sion entirely, but cannot deliver results that hold with absolute
certainty. Statistical methods such as sequential hypothesis
testing are then used to make sure that the probability of
returning the wrong result is below a certain threshold. As a
simulation-based approach, however, SMC is limited to fully
stochastic models such as Markov chains.

In this paper, we present two approaches to extend SMC
and simulation to the nondeterministic model of Markov
decision processes (MDP). In both, simulation proceeds as
usual until a nondeterministic choice is encountered; at that
point, an on-the-fly check is performed to find a singleton
subset of the available transitions that satisfies either the

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-014-0349-7&domain=pdf

430

A. Hartmanns, M. Timmer

ample set conditions of probabilistic POR [4,12] or that is
probabilistically confluent [19,37,38]. If such a set is found,
simulation can continue that way with the guarantee that
ignoring the other transitions does not affect the verification
results, i.e. the nondeterminism was spurious.

The ample set conditions are based on the notion of inde-
pendence of actions, which can in practice only feasibly be
checked on a symbolic/syntactic level (using conditions such
as J1 and J2 in [8]). This limits the approach to resolve spuri-
ous nondeterminism only when it results from the interleav-
ing of behaviours of concurrently executing (deterministic)
components.

It is absolutely vital for the search for a valid single-
ton subset to succeed: one choice that cannot be resolved
means that the entire analysis fails and SMC cannot safely be
applied to the given model at all. Therefore, any additional
reduction power is highly welcome. Confluence reduction
has recently been shown theoretically to be more powerful
than branching time POR [19]. Furthermore, in practice, con-
fluence reduction is easily implemented on the level of the
concrete state space alone, without any need to go back to
the symbolic/syntactic level for an independence check. As
opposed to the POR-based approach, it thus allows even spu-
rious nondeterminism that is internal to components to be
ignored during simulation. However, confluence preserves
branching-time properties and can show only nonprobabilis-
tic (i.e. Dirac) transitions to be confluent. As we can use the
less restrictive linear-time notion of POR during simulation,
the two approaches are thus incomparable.

Contributions, sources and outline After the introduction of
the necessary preliminaries in Sect. 2, we highlight the prob-
lems of applying SMC to nondeterministic models like MDP
in Sect. 3. Two approaches to overcome these problems are to
use either partial order or confluence reduction on-the-fly to
detect spurious nondeterminism. They have been introduced
in two conference papers before [8,22]. In this article, we
give newly formulated, general criteria for the correctness of
any such reduction function-based method, in Sect. 4. This
allows us to present the two approaches in a unified and uni-
form manner, including the correctness arguments, in Sects.
5 and 6. For the POR-based approach, this required a signifi-
cant revision compared to [8] and the replacement of much of
the original argumentation. For confluence, we only needed
to formulate a new proof for the overall correctness (Theorem
6) that was not previously in [22]. Based on our observations
when evaluating the approaches on three case studies (one
from [8], extended, and two from [22]) in Sect. 7, we have
built a new set of small models (Example 2) that we use from
the start in this article to highlight the differences in reduction
capabilities of the two approaches. Inspired by feedback we
received on [22], in Sect. 8 we finally investigate the effects
of caching the results of the reduction functions that were

@ Springer

previously computed over and over again on-the-fly. These
caching resolvers are a recent addition to the modes tool
implementation. We conclude the article in Sect. 9.

Related work Aside from an approach that focuses on plan-
ning problems and infinite-state models [27], we are aware
of three other techniques to attack the problem of nonde-
terminism in SMC: Henriques et al. [23] first proposed the
use of reinforcement learning, a technique from artificial
intelligence, to actually learn the resolutions of nondetermin-
ism (by memoryless schedulers) that maximise probabilities
for a given bounded LTL property. While this allows SMC
for models with arbitrary nondeterministic choices (not only
spurious ones), scheduling decisions need to be stored for
every explored state. Memory usage can thus be as in tradi-
tional model checking, but is highly dependent on the struc-
ture of the model and the learning process. However, several
problems in their algorithm w.r.t. to convergence and cor-
rectness have recently been described [29]. Similar learning-
based methods have been picked up again by Brizdil et
al. [10]. They propose two techniques that require different
amounts of information about the model, but provide clear
error bounds. Memory usage can again be as high as in model
checking but depends on the model structure. Finally, Legay
and Sedwards [29] suggest to not only sample over paths, but
also over schedulers. To achieve the necessary memory effi-
ciency, they propose an innovative O(1) encoding of a subset
of all (memoryless or history-dependent) schedulers. How-
ever, their method cannot guarantee that the optimal sched-
ulers are contained in the encodable subset and, therefore,
cannot provide an error bound for the optimal probability.

Our approaches based on confluence and POR have the
same theoretical memory usage bound as the learning-based
ones, but use comparatively little memory in practice. They
do not introduce any additional overapproximation and thus
have no influence on the usual error bounds of SMC.

2 Preliminaries

We begin by giving the necessary mathematical notation and
definitions from probability theory. We then define the model
of Markov decision processes that we focus on in this paper,
as well as a symbolic variant with variables. We finally out-
line the kinds of properties we want to verify, namely proba-
bilistic reachability, and briefly summarise the available ver-
ification techniques of exhaustive and SMC.

2.1 Mathematical notation and definitions

We use angle brackets for tuples: (2, 1) is a pair. We also
write functions as sets {a — b,c +— d, ...} of mappings
from the values in their domain to values in their range.
f|s denotes the restriction of function f’s domain to the

Sound statistical model checking

431

set S. Given an equivalence relation R € § x S for a set S,
we write [s]g for the equivalence class induced by s, i.e.
[slrk ={s" € S| (s,s") € R}. We denote the set of all such
equivalence classes by S/R.

Probability theory basics A (discrete) probability distribu-
tion over a countable set S is a function u € § — [0, 1]
s.t. D cegm(s) = 1. We denote by Dist (S) the set of all
discrete probability distributions over S. For & € § and
w € Dist (5), let u(S) = > . n(s). We denote by
support(u) = {s € S| u(s) > 0} the supportof u. We write
D(s) for the Dirac distribution for s, i.e. the function {s —
1 }. Given two probability distributions s, s’ € Dist (S) and
an equivalence relation R € S x §, we overload notation
by writing (i, u’) € R to denote that u([s]g) = u'([s]r)
for all s € S. For a finite set S = {s1,...,s, }, we denote
by U(S) = {s1 — % R % } the uniform distribu-
tion over S. The product of two discrete probability distri-
butions w1 € Dist (S1), ua € Dist (52) is determined by
m1 X u2((s1, $2)) = p1(s1) - ma(s2).

A family X of subsets of a set §2 is a o-algebra over
2 if 2 € XY and X is closed under complementation and
countable union. A set B € X is called measurable, and the
pair (§2, X') is called a measurable space. Given a family
of sets A, by o (A) we denote the o-algebra generated by
A, that is the smallest o-algebra containing all sets of .A.
Given a measurable space (§2, X'), afunction u: X — [0, 1]
is a probability measure if w(Wicy Bi) = Xy u(Bj) for
countable index sets I and ©(£2) = 1.

Variables and expressions When dealing with models with
(discrete) variables, we need the following notions: For a set
of variables Var, we let Val(Var) denote the set of variable
valuations, i.e. of functions Var — |, oy, Dom(x) where
v € Val(Var) = Vx € Var : v(x) € Dom(x). When Varis
clear from the context, we may write Val in place of Val(Var).
By Exp(Var) we denote the set of expressions over the vari-
ables in Var. When Varis clear from the context, we may
write Exp in place of Exp(Var). We write e(v) for the evalu-
ation of expression e in valuation v. The set of assignments
is Asgn(Var) = Var x Exp(Var), or just Asgnif Varis clear
from context, such that (x, e) € Asgn = Vv € Val : v(e) €
Dom(x). The modification of a valuation v according to an
assignment u is written as [[u]l(v). A set of assignments is
called an update, and all the notation for assignments can be
lifted to updates. We consider two restricted classes of expres-
sions: Boolean expressions Bxp C Exp such asi == 1 and
arithmetic expressions Axp such as 2.5 4+ x or ceil(y).

2.2 Markov decision processes

A Markov decision process incorporates both nondetermin-
istic and probabilistic choices on a discrete state space. Its

transitions are labelled, and several transitions can be enabled
in one state. The target of a transition is a probability distri-
bution over states. Formally,

Definition 1 A Markov decision process (MDP) is a 6-tuple
(S, A, T, sinit , AP, L),

where

e S is a countable set of states,

e A D {r}isthe alphabet, a countable set of transition labels
(or actions) that includes the silent action t,

T € S — P(A x Dist (S)) is the transition function,
Sinit € S is the initial state,

AP is a set of atomic propositions, and

L € S — P(AP) is the state labelling function.

Unless we say otherwise, we use the symbols from the defini-
tion above to directly refer to the components of a given MDP.
We say that an MDP is finite if its set of states is finite and
the transition function maps every state to a finite set of pairs
(a, n). We call the pairs (a, u) € T(s) the transitions of s
and the triples (s, a, i) such that (a, u) € T (s) the transi-
tions of M. We overload notation by writing (s, a, u) € T(s)
for (a, u) € T(s) and also write s % p for the transition
(s,a, u). We assume that all MDP are deadlock-free, i.e.
there is at least one outgoing transition in every state.
Graphically, we represent transitions in MDP as lines with
an action label that lead to an intermediate node from which
the branches of the probabilistic choice lead to the respective
successor states. We omit the intermediate node and proba-
bility 1 for transitions that lead to a Dirac distribution.

Definition 2 A transition {a, u) € T(s) for s € S is non-
probabilisticif s’ : u = D(s"), and probabilistic otherwise.
A state s is deterministic if |T (s)| = 1, and nondeterminis-
tic otherwise. Likewise, an MDP is nonprobabilistic if all its
transitions are nonprobabilistic, and deterministic if all its
states are deterministic. A deterministic MDP is a discrete-
time Markov chain (DTMC). We also write T (s) to denote
the single probability distribution u € {v | (a,v) € T(s)}
in a DTMC.

An end component is a subset of the states and transitions of
an MDP that is strongly connected with transition probabil-
ities greater than 0:

Definition 3 An end component is a pair (S, T,) where
S € Sand T, € S, — P(A x Dist (S)) with T, (s) C T (s)
for all s € S, such that for all s € S, and transitions
(a,u) € T.(s) we have u(s’) > 0 = s’ € S, and the
underlying directed graph of (S,, T¢) is strongly connected.

As we consider closed systems only, a transition is visible if
it changes the state labelling:

@ Springer

432

A. Hartmanns, M. Timmer

Definition 4 A transition (s, a, u) is visible if there exists a
state s’ € support(u) such that L(s) # L(s').

The semantics of an MDP is captured by the notion of paths.
A path represents a concrete resolution of both nondetermin-
istic and probabilistic choices:

Definition 5 A (finite) path in M from sg to s,, of length n €
N is a finite sequence

50 (@0, po) S1 (a1, m1) $2 ... {An—1, n—1) Sn,

where s; € S foralli € {0,...,n}and {(a;, u;) € T(s;) A
wi(sit1) > Oforalli € {0,...,n — 1}. The set of all finite
paths from the initial state si,;; of an MDP M is denoted
Pathsgn (M). An (infinite) path in M starting from sg is an
infinite sequence

50 (a0, (o) s1 (a1, m1) s2. ..,

where for all i € N, we have thats; € S, (a;, u;) € T(s;)
and p;(s;+1) > 0. The set of all infinite paths starting from
the initial state of an MDP M is denoted Paths(M).

Where convenient, we identify a path with the sequence of
transitions (sq, ag, (o) (S1, a1, 11) - - . thatit corresponds to.

In contrast to a path, a scheduler (or adversary, policy
or strategy) only resolves the nondeterministic choices of
an MDP. We only need memoryless schedulers in this paper,
which select one outgoing transition for every state. They can
be generalised to reduction functions, which select a subset
of the outgoing transitions:

Definition 6 A scheduler for an MDP is a function & €
S — A x Dist (S) such that G(s) € T(s) forall s € S.
A reduction function f € S — P(A x Dist (S)) is a func-
tion such that f(s) € T(s) and |f(s)] > O forall s € S.
If | f(s)| = 1 for all states, we say that f is a deterministic
reduction function. The scheduler G corresponds to the deter-
ministic reduction function {s — {&(s)} | s € S}. With
little abuse of notation, we can thus use schedulers wherever
reduction functions f are required. A scheduler & is valid
for a reduction function f if Vs € S: &(s) € f(s). The
reduced MDP for M with respect to f is

def
red(M,) = (Sp. A, fls; Sinit - AP, Lls,).

where S is the smallest set such that
Sinit € Sf N S/ S Sf = Sf 2 U(a’ll’)ef(‘,/)support(ﬂ).

We say that s € Sy is a reduced state if f(s) # T(s). All
outgoing transitions of a reduced state are called nontrivial
transitions. We say that a reduction function is acyclic if
there are no cyclic paths in M starting in any state when
only nontrivial transitions are considered.

As MDP allow nondeterministic choices, we can define
the parallel composition of two MDP using an interleaving
semantics:

@ Springer

M, Mo M3 M || M2 || M3

SR A
O © O 0O

[(6,2,D(7))]= = {(6,2,D(7)), (8,2, D(9)) }
[(77 Ty D(Q)HE = { <6’ 7, D(8)>v <7’ T, D(9)> }

Fig. 1 Transition equivalence = illustrated

Definition 7 The parallel composition of two MDP
M; = (S;i, Ai, Ti, Siniy; » AP;, Li),

i €{l1,2},is the MDP M| || M, defined as

(81 x 82, A1 U A2, T, (Sinit; » Sinit,)» AP1 UAP2, L),

where

o T € (S x8)— P((A UA) xDist (S| x $2))
s.t. (a, u) € T({(s1, s2)) if and only if
a¢ BAIpr:{a, ur) € Ti(s1) A= puy x D(s2)
Vag¢g BATur: {a, u) € Ta(s2) A =D(s1) X u2
VaéeBAIu, u2: (a, mr) € Ti(s)
Ala, u2) € To(s2) A pu = 1 X U2
with B = (A1 N A) \ {r}, and
o L (S x8)—> PAP|LUAPy)
s.t. L({s1, $2)) = Li(s1) U La(s2).

Synchronisation in this notion of parallel composition takes
place over the shared alphabet. The target of a synchronising
transition is the product of the probability distributions of
the individual component transitions, i.e. probabilities are
multiplied. We call the parallel composition of a set of MDP
a network of MDP. Parallel composition can both introduce
and remove nondeterministic choices to a model.

In Sect. 5, we need to identify transitions that appear, in
some way, to be the same. For this purpose, we use equiva-
lence relations = on transitions and denote the equivalence
class of tr = (s, a,) under = by [tr]=. This notation can
naturally be lifted to sets of transitions. If we are working
with a network of MDP, a useful equivalence relation is the
one that has tr = tr’ iff the transitions tr and tr’ in the product
MDP result from the same set of transitions { try, ..., tr,, } in
the component automata according to Definition 7. For illus-
tration, consider the network of MDP { M, M», M3 } shown
in Fig. 1. The product MDP on the right has two equivalence
classes of transitions, as shown below the MDP in the figure:
The transitions labelled a are in the same class because they
both result from the synchronisation of (0, a, D(1)) from
M and (2, a, D(3)) from M>. The two transitions labelled T

Sound statistical model checking

433

belong to the same class because they both result from tran-
sition (4, 7, D(5)) of Mj3.

2.3 MDP with variables

Building MDP models becomes easier when we allow the
inclusion of variables. In the resulting model of Markov deci-
sion processes with variables (VMDP), variables can be read
in guards and changed in updates. The target of an edge is a
symbolic probability distribution.

Definition 8 A VMDP is a 7-tuple
(Loc, Var, A, E, linit , Vinit » VExp),

where

Loc is a countable set of locations,

Varis a finite set of variables with countable domains,

A D {t} is the alphabet,

E € Loc — P(Bxp x A x (P(Asgn) x Loc — Axp))

is the edge function, which maps each location to a set

of edges, which in turn consist of a guard, a label and a

symbolic probability distribution that assigns weights to

pairs of updates and target locations,

e [init € Loc is the initial location,

e Vinit € Val(Var) is the initial valuation of the variables,
and

e VExp C Bxp is the set of visible expressions.

Unless we say otherwise, we use the symbols from the def-
inition above to directly refer to the components of a given
VMDP. We also write | £% m instead of (g, a, m) € E(]).
As for MDP, we may refer to an edge as (/, g, a, m) if
(g,a,m) € E(l).

The semantics of a VMDP is an MDP whose states keep
track of the current location and the current values of all
variables. Based on these values, the symbolic probability
distributions can be turned into concrete ones as follows: let
m € (P(Asgn) x Loc) — Axp. We require that it eval-
uates to a non-zero expression only on a countable range
R C P(Asgn) x Loc. The corresponding concrete probabil-
ity distribution is determined as

m((U, 1)) (v)
Z(U’,l’)eR mU’, 1)) (v)
for valuations v for the variables of the VMDP. For any
reachable valuation v, we need that m((U, [))(v) > 0 for
all (U,l) € R and Z<U,1)5Rm((Uﬁl>)(U) converges to a
positive real value. We consider it a modelling error if this is
not the case.
Definition 9 The semantics of a VMDP is the MDP

Sem(M) = (Loc x Val, A, T, {linit , Vinit), VExp , L),

mgonc((U’ h) =

where

o T € Loc x Vul — P(A x Dist (Loc x Val)) such that
(a, u) € T((l, v)) if and only if
3{g.a,m)e E(): gv) Apu= mgonc
Vva=tAu=DUAB(g,a,m)ec ED:gv) (1)

and
e L € (Loc x Val) — P(VExp) such that V(I, v) € Loc x
Val : L({l,v)) ={e € VExp | e(v) }.

Observe that the second line of Eq. (1) adds aloop to a state in
the MDP in case no edge is enabled. This explicitly ensures
that the result is deadlock-free.

In the parallel composition of VMDP, the symbolic prob-
ability distributions are combined by simply creating multi-
plication expressions:

Definition 10 The parallel composition of two consistent
{1, 2}, is the VMDP M| || M, defined as

(Locy x Locy, Var| U Var,, A U Ay, E,
(linit 15 linit 2)» Vinit 1 U Vinit 2, VExp | U VExp),

where E € (Loc; x Locy) — P(Bxp x AU Ay x SPr)
with SPr = (P(Asgn) x (Loc; x Locy) — Axp) s.t
(g,a,m) € E({l1, 1)) if and only if

a¢ BAIdmy: (g,a,my) € E1(ly)
Am=my x {{lh, D) — 1}
Va¢ BATmy: (g,a,mm) € Ex(ln)
Am={{l,D)— 1} x mp
VaeBAIgl, g,m,my:
(g1,a,my1) € E1(l1) A (g2, a,ma) € Ex(l2)
AN (g =81 NAg)NA(m=myxmy),

where B = (A1 N A»)\ {r} and the product of two consistent
symbolic probability distributions m;, i € { 1,2}, is defined
as

my x my: P(Asgn) x (Loc; x Locy) — Axp
(m1 xm)((Uy U Uy, (I1, 1)) =m (U1, I1) - ma(Uz, I2).

We allow shared variables. This is why we need the two com-
ponents to be consistent. Consistency means that the initial
valuations agree on the shared variables and that there are no
conflicting assignments.

As for MDP parallel composition, a useful equivalence
relation = over the transitions of the MDP semantics of a
network of VMDP is the one that identifies those transitions
that result from the same (set of) edges in the component
VMDP. We denote this relation by =g.

@ Springer

434

A. Hartmanns, M. Timmer

2.4 Probabilistic reachability

In this paper, we consider the verification of probabilistic
reachability properties. Syntactically, we can write such a
property as Ppax (¢ ¢) and Puin (¢ ¢). Intuitively, they rep-
resent a query for the maximum or minimum probability of
reaching a state whose labelling satisfies the state formula ¢
(a ¢-state for short) from the initial state of an MDP. A state
formula can represent undesirable configurations of the sys-
tem (or “bad” states); in that case, we typically want to check
whether the maximum probability of reaching such a state is
sufficiently low. If, on the other hand, it represents desirable
configurations that should be reached in a correct or reli-
able system, then we would like to ensure that the minimum
probability of reaching any of them is high.

The actual probability of reaching a certain set of states
depends on how the nondeterministic choices of an MDP
are resolved, i.e. on which scheduler is used. When ranging
over all possible schedulers, we obtain an interval C [0, 1]
of possible probabilities. As we could see in the examples
above, for verification, it is the interval’s extremal values
that we are interested in, i.e. the minimum and maximum
probabilities. Formally, the semantics is defined as follows':

Definition 11 The semantics of a probabilistic reachability
query Ppax (¢ @) or Ppin (¢ ¢) is defined as

[Prax (0 $)1p & max [P0 &) lheaon. &)

and [Ppin (0 $)]y & min [P0 ¢) hean, &

As usual, we omit the subscript M when it is clear from the
context. Observe that the red(M, &) are DTMC. A proof of
the facts that 1) a scheduler exists that maximises/minimises
the reachability probability and that 2) this scheduler is mem-
oryless can be found in, for example, [5] as the proof of
lemmas 10.102 and 10.113.

In the definition above, we have only dealt with the non-
deterministic choices. In order to define the meaning of
[P (o @) for a DTMC M, we assign probabilities to the
(finite) paths that lead to ¢-states from the initial state. We
need the construct of cylinder sets to properly define a prob-
ability measure on finite paths.

Definition 12 The cylinder set of a finite path 77 € Pathsg, (M)
for a DTMC M is defined as

Cyl(7) def {7 € Paths(M) | 7 is a prefix of 7 }.

Now let Cyl(M) def {Cyl(m) | 7 € Pathsg(M)}
denote the set of all cylinder sets of M. Then the pair
(Cyl(M), o (Cyl(M))) is a measurable space. This allows

! Definitions 11, 12, 13, and 14 are all based on [5].

@ Springer

us to define a probability measure Proby, for M by assigning
probabilities to cylinder sets as follows:

Definition 13 For a DTMC M, Proby, is the probability
measure on the o-algebra (Cyl(M), o (Cyl(M))) uniquely
determined by

Proby (Cyl(so...sn)) = [T(s)Gsit).

0<i<n

where sy = Sipit by definition.

We can informally say that Probj, assigns probabilities to
finite paths, which is what is needed to finally define the
semantics of a probabilistic reachability query on DTMC
resp. deterministic MDP:

Definition 14 The semantics of P (¢ ¢) on a DTMC M is

def .
[P(o)y = Proby (Us ePathsgy (. 10)CYL())

= > Proby(Cyl(®)),
7 €Pathsgy, (¢, M)

where

Pathsqn (¢, M) ={s0...s, € Pathsg, (M)
| (L(sn)) AVO <i <n:—=¢(L(s;))}

is the set of finite paths on which the last state is the only one
whose labelling satisfies ¢.

Since the set Pathsg, (¢, M) is countable, the union of the cor-
responding cylinder sets is a countable union and thus mea-
surable. [P (¢ ¢)]l), is, therefore, well defined. The proba-
bility of the union is equal to the sum of the probabilities of
the individual cylinder sets because they are pairwise disjoint
by the definition of Pathsg, (¢, M).

Temporal logics More complex properties for MDP can be
specified using temporal logics such as PCTL* or proba-
bilistic LTL. What is important for this paper, in particular
for the correctness of the techniques presented in Sects. 5
and 6, is that probabilistic reachability can be expressed in
probabilistic LTL as well as in PCTL*.

2.5 Computing reachability probabilities

Several techniques are available to implement the computa-
tion of actual values [[Ppax (¢ @)1, of probabilistic reacha-
bility properties.

2.5.1 Exhaustive model checking

The classic approach in verification is to perform exhaustive
model checking: First, all reachable states in the MDP are

Sound statistical model checking

435

1 function simulate (M, ¢,d)

2 S 1= Sinit , S€en ;= J

3 fori =1toddo

4 if ¢(L(s)) then return rrue

5 else if s € seen then return false

6 w:="T(s)

7 if w is Dirac then seen := seen U {s}
8 else seen := &

9 s := choose a state s randomly according to p
10 end

1 return unknown

Algorithm 1: Simulation for DTMC

collected and stored, and the ¢-states are identified. Then, a
numeric algorithm is used to obtain the probability of reach-
ing those states from the initial one. Examples of such algo-
rithms are solving a linear programming problem, value iter-
ation, and policy iteration [5, 14]. The results of exhaustive
model checking are exact, or can at least be made arbitrarily
close to the true probabilities. However, it is only applica-
ble to finite MDP and suffers from the state-space explosion
problem: every new variable in a model results in a worst-
case exponential growth of the number of states, which need
to be represented in some form in limited computer mem-
ory. Detailed models of real-world systems quickly grow too
large for exhaustive model checking.

2.5.2 Statistical model checking

An alternative to exhaustive model checking for the fully
stochastic model of DTMC is statistical model checking
(SMC [24,28,41]). The idea is to randomly generate a num-
ber of paths, determine for each whether the relevant set of
states is reached, and then use statistical methods to derive an
approximation of the reachability probability. This approx-
imation is usually associated with some level of confidence
or specific error bounds guaranteed by the particular statis-
tical method used. We refer to the path generation step as
simulation of the DTMC, and refer by SMC to the com-
plete procedure including the statistical analysis. SMC comes
at constant memory usage and thus circumvents state-space
explosion entirely, but cannot deliver results that hold with
absolute certainty. Algorithm 1 shows a simulation proce-
dure for DTMC. It takes as parameters the DTMC M, state
formula of interest ¢ and maximum path length d.

Finite paths for unbounded reachability As we are interested
in probabilistic reachability properties, we need to explore
paths in a way that allows us to determine whether a ¢-
state is eventually reached or not. In particular, it does not
suffice to give up and return unknown in all cases where
no ¢-state is seen up to a certain path length. Algorithm 1
shows a practical solution to this problem: It keeps track of

the states visited since the last non-Dirac choice; when we
return to such a state, we have discovered a (probability 1)
cycle. When this happens, we can conclude that the current
path will never reach a ¢-state. To ensure termination for
models whose non-¢-paths do not all end in a Dirac cycle,
we still include a maximum path length parameter d. This
complication results from the fact that we verify unbounded
reachability properties, yet we can only explore finite prefixes
of paths.

Sample mean and confidence Every run of the function
simulate under these conditions (assuming it never aborts
with unknown) explores a finite path 7 and returns true if 7 €
Pathsgn (¢, M), otherwise false (which in particular means
that no path in Cyl(7) contains a ¢-state). Since the proba-
bility distributions used in line 9 of Algorithm 1 are exactly
those given by the model, the probability of encountering
any one of these paths in a single run is Proby (Cyl(77)).
We let the random variable X be the result of a simulation
run. If we interpret frue as 1 and false as 0, then X follows
the Bernoulli distribution with success parameter, and hence
expected value, of [P (¢ ¢)]. This is the foundation for the
statistical evaluation of simulation data [35, Chapter 7]: a
batch of k simulation runs corresponds to k random variables
that are independent and identically distributed with expected
value p = [P (¢ ¢)]l. The average X = Zf:l X;/k of the k
random variables, the sample mean, is then an approximation
of p. (Itis in fact an unbiased estimator of that actual mean.)

The single quantity of sample mean, however, is fairly
useless for verification. We also need to know how good an
approximation of p it is. They key parameter to influence
the quality of approximation is k, the number of simulation
runs performed. The higher & is, the more confident can we
be that a concrete observed sampled mean X is close to p.
There are various statistical methods to precisely describe
this notion of confidence and determine the actual confidence
for a given set of simulation results. A widely used method
is to compute a confidence interval [35] of width 2¢ around
x with confidence level 100 - (1 — «). Typically, k and « are
specified by the user and € is then derived from « and the
collected observations of the X;. Confidence intervals are not
without problems [1], so we explain the alternative APMC
method in more detail below. This is to provide a complete
context; the techniques we present later in this paper do not
depend on the concrete statistical method used.

The APMC method The approximate probabilistic model
checking (APMC) method was introduced with and origi-
nally implemented in a tool of the same name [24]. The key
idea is to use Chernoff-Hoeffding bounds [25] to relate the
three parameters of approximation €, confidence level §, and
number of simulation runs k in such a way that we have

@ Springer

436 A. Hartmanns, M. Timmer
Input :DTMC M, P(¢ ¢),d € N, two of {k, €, §} 1 function simulate (M, R, ¢,d)
Output : [P (¢ @)l (value in [0, 1]) 2 S 1= Sinit , Seen 1= &
and confidence (k, €, §), or unknown 3 fori = 1toddo
1 compute {k, e, 8} s.t. k> ln(%)/(Z . 62) 4 if ¢ (L(s)) then return true
2 i=0 5 else if s € seen then return false
3 for j = 1tokdo 6 1= R(s) .
4 v:=simulate (M, ¢,d) 7 v := choose (a, v) randomly according to p
5 if v = true then i ':’i _;_ 1 8 if 1« and v are Dirac then seen := seen U {s}
6 else if v = unknown then return unknown 9 else seen := & .
7 end 10 s := choose a state s randomly according to v
s return i /k and (k, €, §) 1 | end
12 return unknown

Algorithm 2: SMC for DTMC with the APMC method

P(IX — p| > €) <6,

i.e. the difference between computed and actual probability
is at most € with probability 1 — §. There are several ways
to relate the three values. The PRISM tool [31], for example,
uses the formula

k>1In2/s)/2 - €. (2)

Algorithm 2, based on [24] and [31], combines this relation-
ship and the simulate function of Algorithm 1 to imple-
ment a complete SMC procedure using the APMC method.

3 SMC versus nondeterminism in MDP

Using SMC to analyse probabilistic reachability properties
on MDP models is problematic: In order to generate a path
through an MDP, we not only have to conduct a probabilistic
experiment in each state, but also resolve the nondeterminism
between the outgoing transitions first. These latter schedul-
ing choices determine which probability out of the interval
between maximum and minimum we actually observe in
SMC. As the only relevant values in verification are the actual
maximum and minimum probabilities, we would need to be
able to use the corresponding extremal schedulers to obtain
useful results. These schedulers are not known in advance,
however.

3.1 Resolving nondeterminism

Extending the DTMC simulation technique of Algorithm 1 to
MDP by also resolving the nondeterministic choices results
in Algorithm 3. The only addition is line 7. It takes as an
additional parameter a resolver ‘R, i.e. a function in § —
Dist (A x Dist (S)) s.t.

(a,) € support(R(s)) = (a, p) € T(s)
for all states s. If we burden the user with the task of spec-

ifying R, SMC for MDP is easy as this would immediately

@ Springer

Algorithm 3: Simulation for an MDP and a resolver

allow the function simulate of Algorithm 3 to be used for
path generation in existing SMC algorithms for DTMC.

Many simulation tools, including e.g. the simulation
engine that is part of the PRISM probabilistic model
checker [26], in fact implicitly use a specific built-in resolver
so users do not even need to bother specifying one. On the
other hand, this means that users are not able to do so if they
wanted to, either. The implicit resolver that is typically used
makes a uniformly distributed choice between the available
transitions:

Runi E (s> UT () | s €S)

However, one can think of other generic resolvers. For exam-
ple, atotal order on the actions (i.e. priorities) can be specified
by the user, with the corresponding resolver making a uni-
form choice only between the available transitions with the
highest-priority label. A special case of this appears when we
consider MDP that model the passage of a unit of physical
time with a dedicated tick action: if we assign the lowest
priority to tick, we schedule the other transitions as soon
as possible; if we assign the highest priority to tick, we
schedule the other transitions as late as possible.

Unfortunately, just performing SMC with some implicit
scheduler as described above is not sound: while a probabilis-
tic reachability property asks for the minimum or maximum
probability of reaching a set of target states, using an implicit
scheduler merely results in some probability in the interval
between minimum and maximum.

Definition 15 An SMC procedure for MDP is sound if,
given any MDP M and property Ppax (¢ @) or Ppyin (¢ @), it
returns a sample mean pgm and a useful confidence statement
relating psme t0 [Pmax (¢ @)1 or [Pmin (¢ @)1, respectively.

Observe that we informally require a “useful” confidence
statement. This is in order to remain abstract w.r.t. the con-
crete statistical method used. We consider e.g. confidence
intervals with small € and « or an APMC confidence (k, €, §)
with small € and § useful. In contrast, merely reporting some
probability between minimum and maximum means that the

Sound statistical model checking

437

t=0 1 2 3 100

tick mtick /‘\tick tick 8T
/ N
{final}

go
{final}

r
tick Otick O tick 8{ﬁnal}

Fig. 2 An anomalous discrete-timed system

potential error can be arbitrarily close to 1. This may still be
of use in some applications, but is not a useful statement for
verification.

Example 1 Figure 2 shows a nonprobabilistic MDP that
models a discrete-timed system with a special tick action
as described above. It contains two nondeterministic choices
between the action go and letting time pass. Let the prop-
erty of interest be one of performance, namely whether a
state labelled with atomic proposition final can be reached
with probability at least 0.5 in time at most ¢, i.e. by taking
at most ¢ transitions labelled tick. When we encode that
number in the atomic propositions as well, we need to check
fori € {0, ..., 100} whether [Ppax (¢ final Ai)]] > 0.5. The
maximum and minimum i for which this is true are then the
maximum and minimum time needed to reach a final state
with probability >0.5.

The results we would obtain via exhaustive model-
checking are a minimum (best-case) time of 2 ticks and a
maximum (worst-case) time of 100 ticks. For an SMC analy-
sis, the nondeterminism needs to be resolved. Using Ryp;,
the result would be around 27 ticks. Note that this is quite
far from the actual worst-case behaviour. In particular, by
adding more “fast” or “slow” alternatives to the model, we
can arbitrarily change the SMC result. Even worse, a very
small change to the model can make quite a big difference: If
the go-labelled transition to the upper branch were available
in the initial state instead of after one tick, the “uniform”
result would be 35 ticks.

Knowing that this is a timed model, we could try the ASAP
and ALAP resolvers. Intuitively, we might expect to obtain
the best-case behaviour for ASAP and the worst-case behav-
iour for ALAP. Unfortunately, the results run counter to this
intuition: ASAP yields a time of 3 ticks, ALAP leads to the
best-case result of 2 ticks, and the worst case of 100 ticks is
completely ignored. This is because the example exhibits a
timing anomaly: it is best to wait as long as possible before
taking go to obtain the minimum time. For this toy exam-
ple, the anomaly can easily be seen by looking at the model,
but similar effects (not limited to timing-related properties)

may of course occur in complex models where they cannot
so easily be spotted.

While problems with the credibility of simulation results
have been observed before [2], most state-of-the-art simu-
lation and SMC tools still implicitly resolve nondetermin-
ism, typically using PRypni. We argue that using some resolu-
tion method under-the-hood in an SMC tool—without warn-
ing the user of the possible consequences—is dangerous. As
a consequence, our modes tool that provides SMC within
the MODEST TOOLSET (cf. Sect. 7) in its default configura-
tion aborts with an error when a nondeterministic choice is
encountered. While it is possible to select between different
built-in resolvers to have modes simulate such models any-
way, including PRypi, this requires deliberate action on part
of the user.

4 Spuriously nondeterministic MDP

The two approaches to perform SMC for MDP in a sound
way we present in this paper exploit the fact that resolving
a nondeterministic choice in one way or another does not
necessarily make a difference for the property at hand. In
such a case, the choice is spurious, and any resolution leads
to the same probability. When all nondeterministic choices
in an MDP are spurious for some reachability property, then
the maximum and minimum probability coincide and SMC
results can be relied upon. Consider the following example:

Example 2 Communication protocols often have to transfer
messages in a broadcast fashion over shared media where
a collision results if two senders transmit at the same time.
In such an event, receivers are unable to extract any use-
ful data out of the ensuing distortion. In Fig. 3, we show
VMDP modelling the sending of a message in such a sce-
nario.? Processes Hl.“ represent the senders, or hosts, which
communicate with two alternative models My, and Mgync
for the shared medium that observes whether a message is
transmitted successfully or a collision occurs. Communica-
tion with M, is by synchronisation on t ick and via shared
variable i, while communication with Mgy is purely by syn-
chronisation. The full models we are interested in are the
networks N¢ = { H{', Hj', M, } for all four combinations of
a € {a,t}and v € {var, sync}.

Seen on their own, the host VMDP as well as their
MDP semantics are deterministic. My, looks nondeter-
ministic as a VMDP but its semantics is a deterministic
MDP, while Mgy, and its semantics are nondeterminis-
tic. If we consider the MDP semantics of the networks,
we can with moderate effort see that they all contain at

2 We omit the t-loops that need to be added to deadlock states for
brevity from now on.

@ Springer

438

A. Hartmanns, M. Timmer

Fig. 3 VMDP modelling hosts
(H) that send on a shared
medium (M)

least one nondeterministic state, namely when both hosts
happen to be in location f3, and possibly more. Still, we
have that Ppjn (¢ success) = Ppax (¢ success) = 0.5 and
Ppin (¢ collide) = Ppax (¢ collide) = 0.25. For the given
atomic propositions, all the nondeterministic choices are thus
spurious. As for the problem highlighted by Fig. 2 previously,
this is relatively easy to see for these small models, but will
usually be anything but obvious for larger, more complex,
and realistic networks of MDP.

4.1 Reduced deterministic MDP

In order to perform SMC for spuriously nondeterministic
MDP as those presented in the previous example, it suffices
to supply a resolver to the path generation procedure of Algo-
rithm 3 that corresponds to a deterministic reduction func-
tion and that preserves minimum and maximum reachability
probabilities. Formally, we want to use a reduction function f
such that

f is a deterministic reduction function
A [Pmax (¢ @)1y = [Pmax(© @) lreaqm,) 3)
A [Prin (© @) lps = [Prmin (© &) reaqm, 1)

The existence of such a reduction function for a given MDP
and property indeed means that the minimum and the maxi-
mum probability are the same:

Proposition 1 Given an MDP M and a state formula ¢ over
its atomic propositions, we have that

3 f satisfying Equation (3)
= [Pmax(© @)y = [Pmin(© &) -

Proof Because f is deterministic,red(M, f)isdeterministic
(i.e. a DTMC). Therefore, we have

[Prnax (¢ ¢)]]red(M,f) = [Pmin (¢ ¢)]]red(M,f)

and it follows by Eq. (3) that

@ Springer

Mo

j=1
tick

{success} {collide}

{'success }

{ collide }

|IPmax(<> ¢)]]M = |IPmin(<> ¢)]]M
O

The existence of a reduction function satisfying Eq. (3) con-
sequently means that all nondeterministic choices in the MDP
can be resolved in such a way that SMC computes the actual
minimum and maximum probability (which are necessarily
the same). Moreover, it means that no matter how we resolve
the nondeterminism, we obtain the correct probabilities:

Theorem 1 Given an MDP M and a state formula ¢ over
its atomic propositions, we have that

3 f satisfying Equation (3)
= VY reduction functions f:
[Pmax (¢ @) 1ps = [Pmax(® @) Nream, 17
A [Prin (© @) ps = [Prmin (¢ @) lreacm, 1)

Proof By contraposition and contradiction using Proposi-
tion 1.

We could also show the same result for resolvers instead of
reduction functions. This means that we could use SRyy; and
obtain correct results, too—that is, if we know that a reduction
function satisfying Eq. (3) exists for the given model and
property. Unfortunately, attempting to find such a function
for all states at once, before we start simulation, would negate
the core advantage of SMC over exhaustive model checking:
its constant or low memory usage.

4.2 Preservation of probabilistic reachability

The reduction functions we are looking for need to satisfy
two relatively separate requirements according to Eq. (3):
they need to be deterministic, and they need to preserve max-
imum and minimum reachability probabilities. The former is
asimple property that appears easy to check or ensure by con-
struction. However, it is not so obvious what kind of criteria
would guarantee the latter.

Sound statistical model checking

439

In exhaustive model checking, equivalence relations that
divide the state space into partitions of states with “equiv-
alent” behaviour have been studied extensively: they allow
the replacement of large state spaces with smaller quotients
under such a relation and thus help alleviate the state-space
explosion problem. We aim to build upon this research to
construct our reduction functions. As we are interested in the
verification of probabilistic reachability properties, we could
potentially use any equivalence relation that preserves those
properties:

Definition 16 An equivalence relation ~ over MDP pre-
serves probabilistic reachability if, for all pairs (M, M>)
of MDP with the same atomic propositions, we have that

My~ My = V¢ [Pnax(¢ ¢)]]M1 = [Pmax(© ¢)]]M2
and also

My~ My = V¢ [Prin(¢ @)y, = [Prmin(© @)y, -

Candidates for ~ would be appropriate variants of trace
equivalence, simulation or bisimulation relations. In fact, it
turns out that there are two well-known techniques to reduce
the size of MDP in exhaustive model checking that appear
promising: partial order reduction [3,16,33,39] and con-
fluence reduction [7,37,38]. Both provide an algorithm to
obtain a reduction function such that the original and the
reduced model are equivalent according to relations that pre-
serve probabilistic reachability. Both algorithms can be per-
formed on-the-fly while exploring the state space [17,34],
which avoids having to store the entire (and possibly too
large) state space in memory at any time. Instead, the reduced
model is generated directly. We, therefore, study in Sects. 5
and 6 whether the two algorithms can be adapted to compute
a reduction function on-the-fly during simulation with little
extra memory usage.

4.3 Partial exploration during simulation

If we compute the reduction function on-the-fly, however, we
only compute it for a subset of the reachable states, namely
those visited during the simulation runs of the current SMC
analysis. We are thus unable to check whether the supposedly
simple first requirement of Eq. (3), determinism, actually
holds for all states of the model, or at least (and sufficiently)
for all states in the reduced state space.

Yet, requiring determinism for all states is more restric-
tive than necessary. Instead of Eq. (3), let us require that the
reduction function f computed on-the-fly during the calls to
function simulatein one concrete SMC analysis satisfies

f is areduction function s.t.

sell = |fs)|=1As ¢l = f(s)=T(s)
A [Pmax(© @) Iy = [Pmax (© @) reacm,)
A [Pmin (¢ @) yr = [Pmin(© @) reaqm, £)»

“

where T is the transition function of M and I7 is the set of
paths explored during the simulation runs and we abuse nota-
tion to write s € IT inplaceof s € {s' € S |3 ...5'... €
I1 }. This means that the function still has to preserve proba-
bilistic reachability, and it still must be deterministic on the
states we visit during simulation, but on all other states, it
is now required to perform no reduction instead. As before,
if we compute f such that M ~ red(M, f) is guaranteed
for a relation ~ that preserves probabilistic reachability, we
already know that the last two lines of Eq. (4) are satisfied.

Although Proposition 1 and Theorem 1 do not hold for
such a reduction function in general, let us now show why it
still leads to a sound SMC analysis in the sense of Definition
15. Recall that, for every MDP M and state formula ¢, there
are schedulers Gax and G, that maximise resp. minimise
the probability of reaching a ¢-state, i.e.

[[Pmax(o ¢)]]M = [[P(O ¢)]]I'ed(M,Gmax)
and []:Pn]in(<> ¢)]]M - []:P(<> ¢)]]I‘ed(M,6min)'

If f is areduction function that satisfies Eq. (4), then there is
at least one such maximising (minimising) scheduler G p,x
(Gmin) that is valid for f. For the states where f is determin-
istic, this is the case due to the third (fourth) line of Eq. (4).
For this scheduler, we, therefore, also have

[[Pmax (<> ¢)]]red(M,f) = |[P(<> ¢)]]red(M,6max)

(and the corresponding statement for Gy). When exploring
the set of paths I7, by following f, the simulation runs also
followed both Gax and Gpiy (due to determinism of f on I7T
and the schedulers being valid for f). The resulting sample
mean is thus the same as if we had performed the simulation
runs on either of the DTMC red(M, Gpax) orred(M, Guin).
In consequence, whatever statement connecting the sample
mean and the actual result we obtain from the ensuing sta-
tistical analysis is correct. In particular, we do not need to
modify the reported confidence to account for nondetermin-
istic choices that we did not encounter on the paths in I7:
We already did simulate the correct “maximal”/“minimal”
DTMC.

We can now adapt the simulation function given in Algo-
rithm 3 to use a procedure 2l instead of a resolver R. 2{ acts as
a function S — (A x Dist (S)) U { L} and on-the-fly com-
putes the output of a reduction function satisfying Eq. (4). It
returns a transition to follow during simulation if the current
state is deterministic or if it can show the nondeterminism
to be spurious. Otherwise, it returns L, which causes both
the current simulation run as well as the SMC analysis to be
aborted. In particular, for the underlying reduction function f
to satisfy Eq. (4), 2l must be implemented in a deterministic
manner, i.e. it must always return the same transition for the
same state. When the SMC analysis terminates successfully

@ Springer

440

A. Hartmanns, M. Timmer

(i.e. 2 has never returned L), 2 will have determined f to
singleton sets for the states visited, and we complete f to
map all other states s to 7' (s) for the correctness argument.

It now remains to find out whether there are such proce-
dures 2l that are both efficient (i.e. they do not destroy the
advantage of SMC in memory usage and they do not exces-
sively increase runtime) and effective (i.e. they never return L
for some practically relevant models). It turns out that at least
acheck inspired by partial order reduction techniques, which
we present in Sect. 5, and checking for confluent transitions
as we show in Sect. 6, work well. We investigate the effi-
ciency and effectiveness of the two approaches using three
case studies in Sect. 7.

5 Using partial order reduction

For exhaustive model checking of networks of VLTS, an effi-
cient method already exists to deal with models containing
spurious nondeterminism resulting from the interleaving of
parallel processes: partial order reduction (POR, [16,33,39]).
It reduces such models to smaller ones containing only those
paths of the interleavings necessary to not affect the end
result. POR was first generalised to the probabilistic domain
preserving linear time properties, including probabilistic LTL
formulas without the next operator X [4,12], with a later
extension to preserve branching time properties without next,
i.e. PCTL*\x [3]. In the remainder of this section, we first
recall how POR for MDP works and then detail how to har-
vest it to compute a reduction function satisfying Eq. (4) on-
the-fly during simulation. The relation ~ between the original
and the reduced model guaranteed by this approach is stut-
ter equivalence, which preserves the probabilities of LTL\x
properties [3].3

5.1 Partial order reduction for MDP

The aim of partial order techniques for exhaustive model
checking is to avoid building the full state space correspond-
ing to a model. Instead, a smaller state space is constructed
and analysed where the spurious nondeterministic choices
resulting from the interleaving of independent transitions are
resolved. The reduced system is not necessarily determinis-
tic, but smaller, which increases the performance and reduces
the memory demands of exhaustive model checking (if the
reduction procedure is less expensive than analysing the full
model right away).

Partial order reduction has first been generalised to the
MDP setting [3] based on the ample set method [33] for non-

3 We mostly cite [3] in the remainder of this section as it nicely sum-
marises both linear-time approaches presented before [4, 12] in addition
to introducing an extension to PCTL*\x.

@ Springer

Table 1 Conditions for the ample sets

A0 For all states s € S, ample(s) C T(s)

Al If s € S and ample(s) # T (s), then no transition in
ample(s) is visible

A2 For every path (try = (s, a, u), ..., tr,, tr,tr,qq,...) in M
where s € Sy and tr is dependent on some transition in
ample(s), there exists an index i € {1, ..., n} such that
tr; € [ample(s)]=

A3 In each end component (S, T,) of M, there exists a state
s € S, that is fully expanded, i.e. ample(s) = T'(s)

A4 If ample(s) # T (s), then |ample(s)| = 1

probabilistic systems. A probabilistic extension of stubborn
sets [39] has been developed later, too [18]. Our approach is
based on ample sets. The essence is to identify an ample set
of transitions ample(s) for every state s € S of the MDP M,
yielding the reduction function

f = fample = {s = {{a,) | s = n € ample(s) } }

such that conditions AO—-A4 of Table 1 are satisfied (where S ¢
denotes the state space of M y = red(M, f), cf. Definition 6).

For partial order reduction, the notion of (in)dependent
transitions* (rule A2)is crucial. Intuitively, the order in which
two independent transitions are executed is irrelevant in the
sense that they do not disable each other (forward stability)
and that executing them in a different order from a given
state still leads to the same states with the same probabilities
(commutativity). Formally,

Definition 17 Two equivalence classes [tr}]= # [tr}]= of
transitions of an MDP are independent iff for all states s €
S with try,try; € T(s), try = (s,ay, 1) € [tr’l]E, trp =
(s, a2, n2) € [tr)]=,

11 s’ € support(iu1) = trp € [T(s')]= and vice-versa (for-
ward stability), and then also

12 > negui(s”) - wsy (8" =2 egmals”) - py (s7) forall
s' € S (commutativity),

where Mf” is the single element of { | {s”, a;, u) € T(s")N
[tri]z }

Checking dependence by testing these conditions on all pairs
of transitions for all states of an MDP is impractical. Partial
order reduction is thus typically applied to the MDP seman-
tics of networks of VMDP where sufficient and easy-to-check
conditions on the symbolic level can be used. In that set-
ting, =g is used for the equivalence relation =. Then, two
transitions tr; and trp in the MDP correspond to two edges

4 By abuse of language, we use the word “transition” when we actually
mean “equivalence class of transitions under =".

Sound statistical model checking

441

e; = (li, gi, ai, m;) on the level of the parallel composition
semantics of the network of VMDP. Each of these edges in
turn is the result of one or more individual edges in the com-
ponent VMDP. We can thus associate with each transition tr;
a (possibly synchronised) edge e; and a (possibly singleton)
set of component VMDP. The following are then an example
of such sufficient and easy-to-check symbolic-level condi-
tions:

J1 The sets of VMDP that tr; and trp originate from are
disjoint, and
J2 for all valuations v,

mi((U, 1) # 0 Ama((Uz, 1)) # 0
= (&2v) = &2([A11(v)
A TATI([A2D(v) = [A2D(TA1TI(v)

and vice-versa.

J1 ensures that the only way for the two transitions to influ-
ence each other is via global variables, and J2 makes sure
that this does not actually happen, i.e. each transition mod-
ifies variables only in ways that do not disable the other’s
guard and the assignments are commutative. This check can
be implemented on a syntactic level for the guards and the
expressions occurring in assignments.

Using the ample set method with conditions AO—A4 and
I1-12 or J1-J2 gives the following result:

Theorem 2 [3] If an MDP M is reduced to an MDP
red(M, fample) using the ample set method as described
above, then M ~ red(M, fample) where ~ is stutter equiva-
lence.

Stutter equivalence preserves the probabilities of LTL\x
properties and thus probabilistic reachability. For simulation,
we are not particularly interested in smaller state spaces, but
we can use partial order reduction to distinguish between
spurious and actual nondeterminism.

5.2 On-the-fly partial order checking

We can use partial order reduction on-the-fly during simu-
lation to find out whether nondeterminism is spurious: for
any state with more than one outgoing transition, we simply
check whether a singleton set of transitions exists that is an
ample set according to conditions AQ through A4. This check
can be used as parameter 2 to Algorithm 4: if a singleton
ample set exists, we return its transition. If all valid ample
sets contain more than one transition, we cannot conclude
that the nondeterminism between them is spurious, and L
is returned to abort simulation and SMC. To make the algo-
rithm deterministic in case there is more than one singleton

1 function simulate (M, 2, ¢, d)

2 S 1= Sinit , Seen ;= J

3 fori =1toddo

4 if ¢(L(s)) then return rrue

5 else if s € seen then return false

6 tr = (s)

7 if tr = L then return unknown

8 (a, u) :==tr

9 if w is Dirac then seen := seen U {s}
10 else seen := &

11 s := choose a state randomly according to p
12 end

13 return unknown

Algorithm 4: Simulation with reduction function

Table 2 On-the-fly conditions for ample sets

A0 For all states s € S, ample(s) C T(s)

Al If s € Sy and ample(s) # T (s), then no transition in
ample(s) is visible

A2 Every path in M starting in s has a finite acyclic prefix
(try, ..., tr,) of length at most kpax (i-€. 7 < kmax) S-t.
tr, € [ample(s)]= and foralli € {1,...,n — 1}, tr; is
independent of all transitions in ample(s)

A3’ If more than / states have been explored, one of the last /
states was fully expanded

A4 If ample(s) # T (s), then |ample(s)| = 1

ample set, we assume a global order on transitions and return
the first set according to this order.

Algorithm The ample set construction relies on conditions
A0 through A4, but looking at their formulation in Table 1,
conditions A2 and A3 cannot be checked on-the-fly with-
out possibly exploring and storing lots of states—potentially
the entire MDP. To bound this number of states and ensure
termination for infinite-state systems, we instead use the con-
ditions shown in Table 2, which are parametric in kyax and /.
Condition A2 is replaced by A2’, which bounds the looka-
head inherent to A2 to paths of length at most kpax. Notably,
choosing knax = 01is equivalent to not checking for spurious-
ness at all but aborting on the first nondeterministic choice.
Instead of checking for end components as in Condition A3,
we use A3’ that replaces the notion of an end component with
the notion of a sequence of at least / states.

We first modify Algorithm 4 to include the cycle check of
Condition A3'. The result is shown as Algorithm 5. A new
variable /.y, keeps track of the number of transitions taken
since the last fully expanded state. It is reset when such a
state is encountered in line 11, and otherwise incremented in
line 14. When [, would reach the bound of condition A3’,
given as parameter /, simulation is aborted in line 13. While
this is so far straightforward and guarantees that condition
A3’ holds when simulatereturns true, the case of return-

@ Springer

442

A. Hartmanns, M. Timmer

function simulate (M, 2, ¢, d, 1)
S 1= Sinit , Seen := empty stack, lo,, =0
fori =1toddo

1
2

3

4 if ¢(L(s)) then return rrue

5 else if s € seen then

6 lencycre =1

7 while seen.pop() # s do lencycie++

8 if lencyele < lcyr then return unknown
9 else return false

10 end

11 if |7 (s)| = 1 then

12 ‘ leyr =0, tr := the single element of 7 (s)
13 else if /., + 1 = [then return unknown
14 else e, ++, tr :=A(s)

15 if tr = L then return unknown

16 (a, u) :==tr

17 if 1 is Dirac then seen.push(s)

18 else seen := empty stack

19 s := choose a state randomly according to u
20 end

21 return unknown

Algorithm 5: Simulation with cycle condition check

1 function resolvePOR (s)

2 foreach ¢ € T'(s) in fixed global order do

3 ‘ if checkAmpleSet ({¢r}) then return tr
4 end

5 return L

¢ function checkaAmpleSet ({s % u})

7 foreach s’ € support(x) do

8 | if L(s) # L(s') then return false

9 end

10 return checkPaths (s, s % u, {5}, 0)

11 function checkPaths (s, trampie, ref seen, steps)

12 if s € seen then return rrue // cyclic path
13 seen ;= seen U {s}

14 if steps > kmax then return false else steps++

15 | foreachtr =s % e T(s)do

16 if equivalent (t7, trgmpre) then continue

17 if dependent (7, trampre) then return false

18 foreach ¢ € support(p) do

19 i := checkPaths (¢, tramples ref seen, steps)
20 if — i then return false

21 end

22 end

23 return frue // all paths satisfy condition A2’

Algorithm 6: On-the-fly partial order check

ing false, which relies on cycle detection, needs special care:
we need to make sure that the detected cycle also contains at
least one fully expanded state. For this purpose, we compute
the length of the encountered cycle and compare it to I in
lines 6 through 9. Finally, whenever a nondeterministic state
is encountered, we call the procedure 2 to check whether the
nondeterminism is spurious in line 14.

In order to complete our partial order-based simulation
procedure, conditions A1 and A2’ remain to be checked. This

@ Springer

can be done by using the resolvePOR function of Algo-
rithm 6 in place of . resolvePORsimply iterates over
the outgoing transitions of the nondeterministic state and
returns the first one that constitutes a valid singleton ample
set according to conditions A1 and A2’. Checking that these
two conditions hold for a candidate ample set is the job of
function checkAmpleSet. It first compares the labelling
of s with that of each successor to make sure that condi-
tion Al holds. If that is the case, checkPathsis called to
verify A2'. checkPaths takes four parameters: the current
state s from which to check all outgoing paths, the single
transition trymple in the potential ample set, a reference to a
set seen of states already visited during this particular POR
check, and a natural number steps counting the number of
transitions taken from the initial nondeterministic state. The
function simply follows all paths starting in s in the MDP
recursively (i.e. implementing a depth-first search) until it
finds a transition that is either equivalent to or dependent on
the one in the candidate ample set (lines 16 and 17). If the for-
mer happens before the latter, the path satisfies the condition
of A2'. On the other hand, if a dependent transition occurs
before an “ample” one, the current path is a counterexample
to the requirements on all paths of A2’ and { trample } iS DOt a
valid ample set. All other transitions are neither equivalent to
trample NOr dependent on it, so we recurse in line 20 with an
incremented step counter value. If this counter reaches the
bound kpyax before an ample or dependent transition is found
(line 14), a counterexample to A2’ (though not necessarily
to A2) has been found, too. Finally, checkPathsignores
cycles of independent transitions (line 12), which is what the
set seen is used for. This means that indeed, only acyclic
prefixes of length up to kpax are considered.

Function checkPaths uses two additional helper meth-
ods that we do not show in further detail: equivalent and
dependent . The former returns frue if and only if its two
parameters are equivalent transitions according to =g. If the
latter returns false, then its two parameters are independent
transitions. equivalent necessarily needs to go back to
the network of VMDP that the MDP at hand originates from
to be able to reason about =p. This is also the case in typ-
ical implementations of dependent that use conditions J1
and J2 (which includes our implementation in modes).

Correctness We can now state the correctness of the on-the-
fly partial order check as described above:

Theorem 3 If an SMC analysis terminates and does not
return unknown

e using function simulateof Algorithm 5 to explore the
set of paths I1

e together with function resolvePORof Algorithm 6 in
place of 2,

Sound statistical model checking

443

then the function f = fpor U {s — T(s) | s ¢ I1}
satisfies Eq. (4), where fpor maps a state s € II to
T (s) if it is deterministic and to the result of the call to
resolvePORotherwise.

Proof By construction and because resolvePORis deter-
ministic, f is a reduction function that satisfies s € [T =
[f(s)l=1As & I1 = f(s) = T(s).Itremains to show that
minimum and maximum probabilistic reachability probabili-
ties for any state formula over the atomic propositions are the
same for the original and the reduced MDP. From Theorem
2, we know that this is the case if f maps every state to a valid
ample set according to conditions A0 through A4. Note that
T (s) is always a valid ample set, so this is already satisfied
for the states s ¢ IT. If conditions A2’ and A3’ hold, then
so do A2 and A3. All the conditions of Table 2 are indeed
guaranteed for the states s € IT:

AQ is satisfied by construction.

Al is checked for nondeterministic states by check
AmpleSet,and does not apply to deterministic states.

A2’ isensured by checkPaths as described previously.

A3’ is checked via Il.yment in the modified simulate
function of Algorithm 5. In case false is returned by
simulate,i.e. acycle is reached, correctness of the
check can be seen directly. In case frue is returned,
¢ (L(s)) has just become true, so the previous transi-
tion was visible. By condition A1, this means that the
very previous state was fully expanded.

A4 is satisfied by construction for the states visited
because we only select singleton ample sets, and by
definition for all other states since we assume no reduc-
tion for those, i.e. ample(s) = T (s). O

5.3 Runtime and memory usage

The runtime and memory usage of SMC with the on-the-fly
POR check depends directly on the amount of lookahead that
is necessary in the function checkPaths. If kpax needs to
be increased to detect all spurious nondeterminism as such,
the performance in terms of runtime and memory demand
will degrade. Note, though, that it is not the actual user-
chosen value of knyax that is relevant for the performance
penalty, but what we denote simply by k: the smallest value
of kmax necessary for condition A2’ to succeed in the model
at hand. If a larger value is chosen for kpmax, A2" will still
only cause paths of length k to be explored.’ The value of
actually has no performance impact.

3> Our implementation in modes therefore uses large default values for
kmax and [so the user usually need not worry about these parameters.
If SMC aborts, the cause and its location is reported, including how it
was detected, which may be that kyax or [was exceeded.

More precisely, the memory usage of this approach is
bounded by b - k where b is the maximum fan-out of the
MDP. We will see that small & tend to suffice in practice, and
the actual extra memory usage stays very low. Regarding run-
time, exploring parts of the state space that are not part of the
current path (up to b¥ states per invocation of A2') induces a
performance penalty. In addition, the algorithm may recom-
pute information that was partially computed beforehand for
a predecessor state, but not stored. The magnitude of this
penalty is highly dependent on the structure of the model. In
practice, however, we expect small values for k, which lim-
its the penalty, and this is evidenced in our case studies (see
Sect. 7).

The on-the-fly approach naturally works for infinite-state
systems, both in terms of control and data. In particular, the
kind of behaviour that condition A3 is designed to detect—
the case of a certain choice being continuously available,
but also continuously discarded—can, in an infinite system,
also come in via infinite-state “end components”. Since A3’
replaces the notion of end components by the notion of suf-
ficiently long sequences of states, this is no problem.

5.4 Applicability and limitations

Although partial order reduction has led to drastic state-space
reductions for some models in exhaustive model checking, it
is only an approximation: whenever transitions are removed,
they are indeed spurious nondeterministic alternatives, but
not all spurious choices may be detected as such. In particular,
when using feasibly checkable independence conditions like
J1 and J2, only spurious interleavings can be reduced. These
restrictions directly carry over to our use of POR for SMC.
Worse yet, while not being able to reduce a certain single
choice during exhaustive model checking leads to the same
verification results at the cost of only slightly higher memory
usage and runtime, the same would make an SMC analysis
abort. More important than any performance consideration is,
therefore, whether the approach is applicable at all to realistic
models. We investigate this question in detail using a set of
case studies in Sect. 7 and content ourselves with a look at the
shared medium communication example introduced earlier
for now:

Example 3 We already saw that all nondeterminism in the
different networks of VMDP modelling the sending of a
message over a shared medium presented in Example 2 is
spurious. However, for which of them would the on-the-fly
POR check work?

First, it clearly cannot work for any of the Ny, networks
that contain the Mgync process: the nondeterministic choice
between snd; and snd; that occurs when both hosts want
to send the message is internal to Mgyne and not a spurious
interleaving. The transitions labelled snd; and snd; would

@ Springer

444

A. Hartmanns, M. Timmer

Fig. 4 MDP semantics of N,

((hl, ha,v1, 0))

snd;

T
p b

1/2 1/2

sndo

1/2

((hg,h; U1,0>) (<h2,h2,01,0>)

((hg,h;,,vl,0>) ((hg,h; U1,0>)

sndq

sndo

(<h3,h1,’l}1,1>) (<h3,h; 1)1,1)) ((hg,hg,’vl,1>)

(<h1, hs,v1, 1))

sndo

(

(h3, h3,v1, 1))

tick

tick
((hs,ha, v, 1)) ((ha,hs, 4,2))
{ success } { collide }

thus be marked as dependent by the function dependent,
since they do not satisfy condition J1.

On the other hand, the nondeterministic choices in both
N{,. and N, pose no problem. Let us use N, for illus-
tration: its MDP semantics, which all SMC methods except
for equivalent and dependent work on, is shown in
Fig. 4. The nondeterministic states are the initial state
Sinit = (h1, h1, v1,0) (composed of the initial states of
the three component VMDP plus the current value of i),
the two symmetric states (h2, i1, vy, 0)/(h1, ha, v1, 0), and
finally (h2, h2, v, 0). For brevity, we write h;; for state
(hi, hj, vy, 0). The model contains no cycles and all paths
have length at most 5, so the cycle condition A3’ is no prob-
lem fore.g.l = 5.

Let us focus on the initial state for this example. The non-
deterministic choice here is between the initial r-labelled
edges of the two hosts. Let {trf = Simt — {h2 +—
0.5, h31 +— 0.5} } be the candidate ample set selected first by
resolvePOR,i.e.itcontains the initial t-labelled transition
of the first host. tr{ is obviously invisible as only the transi-
tions labelled tick lead to changes in state labelling. Thus
checkAmpleSetcalls checkPaths (Sinit, trf, { Sinit 1,
0) to verify condition A2'. Tt is trivially satisfied for all paths
starting with tr] itself because that is the single transition
in the ample set. For the paths starting with tr] = sinj¢ N

@ Springer

{hio — 0.5, hi3 — 0.5}, i.e. the case that the second host
performs its initial t first, checkPaths returns frue for suc-
cessor state /113: it has only one outgoing transition, namely
the initial t of the first host, which is thus equivalent to the
ample set transition trf. In successor state /1,, however, we
have another nondeterministic choice. The t-labelled alter-
native is again equivalent to tr], but the transition labelled
sndy is neither equivalent to nor dependent on the ample set
(it modifies global variable i, but that has no influence on tr{).
We thus need another recursive call to checkPaths. In the
following state (hy, h3, vy, 1), we can return true as the only
outgoing transition is finally the firsthost’s T thatisin [tr]]=,.

The choices in the other nondeterministic states can sim-
ilarly be resolved successfully. In state &y, the choice is
between two sending transitions which consequently both
modify global variable i, but their assignments just incre-
ment { and are thus commutative.

To summarise our observations: for large enough k and [,
this POR-based approach will allow us to use SMC for net-
works of VMDP where the nondeterminism introduced by
the parallel composition is spurious. Nevertheless, if condi-
tions J1 and J2 are used to check for independence instead of
11 and 12, nondeterministic choices internal to the component
VMDP, if present, must already be removed while obtaining

Sound statistical model checking

445

the MDP semantics, i.e. by synchronization via actions or
shared variables. While avoiding internal nondeterminism
is manageable during the modelling phase, parallel compo-
sition and the nondeterminism it creates naturally occur in
models of distributed or component-based systems. We thus
expect this approach to be readily applicable in practice: the
modeller needs to take care to specify deterministic compo-
nents while the nondeterminism from interleaving can usu-
ally be handled by the POR check—as long as it is spurious,
of course. Usually, a non-spurious interleaving represents a
race condition in the model and thus, if the model is useful,
in the underlying system. Race conditions are undesirable
artefacts of concurrency in most cases, so aborting simula-
tion and alerting the user to the potential presence of a race
condition as done in this approach to SMC appears a useful
course of action and, in particular, more desirable than hiding
the potential error using an implicit resolver instead.

6 Using confluence reduction

An alternative to POR in exhaustive model checking is
confluence reduction. It, too, was originally defined for
LTS [7,17] and has been generalised to probabilistic sys-
tems [19,37,38]. The goal is the same: generating smaller, but
equivalent, state spaces. In the probabilistic generalisation,
confluence reduction preserves PCTL*\x, i.e. branching-
time properties. However, as we will see, the way confluence
is defined is very different from the ample set conditions of
POR.

Confluence reduction has recently been shown theoret-
ically to be more powerful than the variant of POR that
preserves branching-time properties [19]. We have already
pointed out that it is absolutely vital for the search for a valid
singleton subset to succeed when a nondeterministic choice
is encountered during simulation: one choice that cannot be
resolved means that the entire analysis fails and SMC cannot
safely be applied to the given model at all. Therefore, any
additional reduction power is highly welcome. Although we
used the more liberal variant of POR that preserves linear-
time properties in the previous approach and its relation to
confluence is unknown, this theoretical difference is still a
clear motivation to investigate whether confluence reduction
can be used for SMC in place of POR as described in the
previous section.

Furthermore, in practice, confluence reduction is easily
implemented on the MDP level, i.e. the concrete state space
alone, without any need to go back to the symbolic/syntactic
VMDP level for an independence check based on conditions
like J1 and J2. It thus allows even spurious nondeterminism
that is internal to components to be ignored during simula-
tion, lifting the restriction to spurious interleavings of the
POR implementation.

6.1 Confluence reduction for MDP

Confluence reduction is based on commutativity of invisible
transitions. It works by denoting a subset of the invisible
transitions of an MDP as confluent. Basically, this means
that they do not change the observable behaviour; everything
that is possible before a confluent transition is still possible
afterwards. Therefore, they can be given priority, omitting
all their neighbouring transitions.

Confluent sets of transitions Previous work defined condi-
tions for a set of transitions to be confluent. In the nonprob-
abilistic action-based setting, several variants were intro-
duced, ranging from ultra weak confluence to strong con-
fluence [6]. They are all given diagrammatically and define
in which way two outgoing transitions from the same state
have to be able to join again. Basically, for a transition s = ¢
to be confluent, every transition s < 4 has to be mimicked
by a transition ¢ % v such that # and v are bisimilar. This is
ensured by requiring a confluent transition from u to v.

To extend confluence to the probabilistic action-based set-
ting, a similar approach was taken [37]. For a transition
s 5 D(¢) to be confluent, every transition s < 1 has to be
mimicked by a transition # % v such that 4 and v are equiv-
alent; as usual in probabilistic model checking, this means
that they should assign the same probability to each equiv-
alence class of the state space in the bisimulation quotient.
Bisimulation is again ensured using confluent transitions.

In this paper, we are dealing with a state-based context:
only the atomic propositions that are assigned to each state are
of interest. Therefore, we base our definition of confluence
on the state-based probabilistic notions given in [19]. It is
still parameterised in the way that distributions have to be
connected by confluent transitions, denoted by i ~»7 v. We
instantiate this later, in Definition 19.

Definition 18 A subset 7 of the transitions of an MDP M is
probabilistically confluent if it only contains invisible non-
probabilistic transitions, and

Vs S D) eT:Vs 2 ueT(s):
w=DO)vItSveT@): u~T7v

Additionally, if s % u e 7, then so should 1 % v be.
A transition is probabilistically confluent if there exists a
probabilistically confluent set that contains it.

Compared to [19], this definition is more liberal in two
aspects. First, not necessarily b = c. In [19], this was needed
to preserve probabilistic visible bisimulation. Equivalent sys-
tems according to that notion preserve state-based as well as
action-based properties. However, in our setting the actions
are only for synchronisation of parallel components and have
no purpose anymore in the final model: we only need to con-
sider closed systems. Therefore, we can just as well rename

@ Springer

446

A. Hartmanns, M. Timmer

all actions to a single one. Then, if a transition is mimicked,
the action would be the same by construction. We thus sim-
ply chose to omit the required accordance of action names
altogether.

Second, we only require confluent transitions to be invis-
ible and nonprobabilistic themselves. In [19], all transitions
with the same label had to be so as well (for a fairer com-
parison with POR). Here, this is not an option, since during
simulation we only know part of the state space. However, it
is also not needed for correctness, as a local argument about
mimicking behaviour until some joining point can clearly
never be broken by transitions after this point.

In contrast to POR [3], confluence also allows mimicking
by differently labelled transitions, commutativity in triangles
instead of diamonds, and local instead of global indepen-
dence [19]. Additionally, its coinductive definition is well
suited for on-the-fly detection, as we show later in this sec-
tion. However, as confluence preserves branching-time prop-
erties, it cannot reduce probabilistic interleavings, a scenario
that can be handled by the original linear-time notions of
probabilistic POR defined in [4,12] and used in our POR-
based simulation approach.

Equivalence of probability distributions Confluent transi-
tions are used to detect equivalent states. Hence, two dis-
tributions are equivalent if they assign the same probabilities
to sets of states that are connected by confluent transitions.
Given a confluent set 7, we denote this by u ~»7 v. For
ease of detection, we only take into account confluent transi-
tions from the support of i to the support of v. In principle,
larger equivalence classes could be used when also consider-
ing transitions in the other direction and chains of confluent
transitions. However, for efficiency reasons we chose not to
be so liberal.

Definition 19 Let 7 be a set of nonprobabilistic transitions
of an MDP M and u, v € Dist (§) two probability distribu-
tions. Let R be the smallest equivalence relation containing
the set

R ={(s,t) | s € support(u) A t € support(v)
AdacA:s S5 Dr)eT).

Then, p and v are equivalent up to T -steps, denoted by
w o~ v, if (u,v) € R.

Example 4 As an example of Definition 19, consider Fig. Sa.
Let 7 be the set consisting of all a-labelled transitions.
Note that these transitions indeed are all nonprobabilistic. We
denote by u the probability distribution associated with the
b-transition from s¢, and by v the one associated with the c-
transition from s1. We find R’ = { (s2, s¢), (53, 55), (54, 55) },
and so

@ Springer

(b) Reduced system

Fig. 5 An MDP to demonstrate confluence reduction. a Original sys-
tem. b Reduced system

R = 1d U {(s2, s6), (56, 52), (53, 54), (54, 53),
(53, 55), (85, 53), (54, 55), (55, 54)},

where Id is the identity relation. Hence, R partitions the state
space into {s¢ }, { 51}, {52, 56 }, and { 53, 54, 55 }. We find

e n(fso) =v({soh) =0=v({s1) =nl{s1},
o nu({52,56}) = v({52,56}) = 3 and
o w({s53.54.55)) =v({s3.54.55)) = 5.

Therefore, (u, v) € R and thus p ~>7 v.

Also note that 7 is a valid confluent set according to Def-
inition 18. First, all its transitions are indeed invisible and
nonprobabilistic. Second, for the a-transitions from s7, s3
and s4, nothing interesting has to be checked. After all, from
their source states there are no other outgoing transitions, and
every transition satisfies the condition u = D(t)v3t S v e
T(t): u ~>7 v for itself due to the clause u = D(¢). For
5o = D(s1), we do need to check if the condition holds for
S0 =Y . There is a mimicking transition s S v, and as we
saw above p ~»7 v as required.

Our definition of equivalence up to 7 -steps is slightly more
liberal than the one in [19]. There, the number of states in
the support of u was required to be at least as large as the
number of states in the support of v, since no nondeterminis-
tic choice between equally labelled transitions was allowed.

Sound statistical model checking

447

Since we do allow this, we take the more liberal approach
of just requiring the probability distributions to assign the
same probabilities to the same classes of states with respect
to confluent connectivity. The correctness arguments are not
influenced by this, as the reasoning that confluent transitions
connect bisimilar states does not break down if these support
sets are potentially more distinct.

Confluence reduction We now define confluence reduction
functions. Such a function always chooses to either fully
explore a state, or only explore one outgoing confluent tran-
sition.

Definition 20 A reduction function f is a confluence reduc-
tion function for an MDP M if there exists some confluent
set 7 of transitions of M for which, for every s € S such that
f(s) # T(s), it holds that

f(s)={{a, D))}
for some a € A and ¢t € S such thats & D(t) € 7. In such

a case, we also say that f is a confluence reduction function
under T .

Confluent transitions might be taken indefinitely, ignor-
ing the presence of other actions. This problem is well
known as the ignoring problem [13] and is dealt with by
the cycle condition of the ample set method of POR. We
can just as easily deal with it in the context of conflu-
ence reduction by requiring the reduction function to be
acyclic. Acyclicity can be checked during SMC in the same
way as was done for POR in the previous section: always
check whether in the last [steps at least one state was
fully expanded (i.e. the state already had only one outgoing
transition).

Example 5 In the system of Fig. 5a, we already saw that
the set of all a-transitions is a valid confluent set. Based
on this set, we can define the reduction function f given
by f(so) = {(a,D(s1))} and f(s) = T (s) for every other
state s. That way, the reduced system is given by Fig. 5b. Note
that the two models indeed share the same properties, such as
that the (minimum and maximum) probability of eventually
observing r is %

Confluence reduction preserves PCTLK*X and hence basi-
cally all interesting quantitative properties, including LTL\x,
which was preserved by POR as presented in the previous
section, and of course probabilistic reachability.

Theorem 4 Let M be an MDP, T a confluent set of its tran-
sitions and f an acyclic confluence reduction function under
T. Then, M and red(M, f) satisfy the same PCTE{‘X formu-
las.

Proof A full proof can be found in [36], where this is Theo-
rem 8.11.

6.2 On-the-fly confluence checking

Non-probabilistic confluence was first detected directly on
concrete state spaces to reduce them modulo branching
bisimulation [17]. Although the complexity was linear in the
size of the state space, the method was not very useful: it
required the complete unreduced state space to be available,
which could already be too large to generate. Therefore, two
directions of improvements were pursued.

The first idea was to detect confluence on higher-level
process-algebraic system descriptions [6,7]. Using this infor-
mation from the symbolic level, the reduced state space could
be generated directly without first constructing any part of the
original one. More recently, this technique was generalised
to the probabilistic setting [37]. The other direction was to
use the ideas from [17] to on-the-fly detect non-probabilistic
weak or strong confluence [30,32] during state space gener-
ation. These techniques are based on Boolean equation sys-
tems and have not yet been generalised to the probabilistic
setting.

We present a novel on-the-fly method, shown as Algo-
rithm 7, that works on concrete probabilistic state spaces and
does not require the unreduced state space, making it per-
fectly applicable during simulation for SMC of MDP mod-
els.

Algorithm Our algorithm is listed as Algorithm 7. Given a
transition s <% A, the function call

chkConfluence(s % A,...)

tells us whether or not this transition is confluent. We first
discuss this function, and then chkEquivalence on which
it relies (which determines whether or not two distributions
are equivalent up to confluent steps). These functions do not
yet fully take into account the fact that confluent transitions
have to be mimicked by confluent transitions. Therefore, we
have an additional function chkMimickingthat is called
after termination of chkConfluence to see if indeed no
violations of this condition occur.

chkConfluence first checks if the transition s % A was
already detected to be confluent before (line 10). If it was
not, we check whether the transition is nonprobabilistic, i.e.
A = D(¢) for some state ¢, and invisible (line 11). Then, it is
added to the global set 7 of confluent transitions (line 14). To
determine whether this is valid, the loop beginning in line 15
checks if indeed all outgoing transitions from s commute
with s % D(¢). If so, we return true (line 28) and keep the
transition in 7. Otherwise, all transitions that were added
to 7 during these checks are removed again and we return
false (lines 25 and 26). Note that it would not be sufficient
to only remove s % D(t) from 7T, since during the loop
some transitions might have been detected to be confluent
(and hence added to 7') based on the fact that s % D(r) was

@ Springer

A. Hartmanns, M. Timmer

448
1 function resolveConfluence (s)
2 foreach tr € T (s) in fixed global order do
3 7T =92,C.=9
4 if chkConfluence (tr, ref 7, ref C) then
5 ‘ if chkMimicking (7, C) then return ¢r
6 end
7 end
8 return L

9 function chkConfluence (s % A, ref 7, ref C)
10 if s % A € 7 then return true

11 if 2¢: A = D(¢') then return false

12 t:=t'st. A=D({)

13 if L(s) # L(¢) then return false

14 Told :=T,Coq:=C, T:=TU{s S D@}
15 foreach try, == LN n e T(s)do

16 if .« = D(t) then continue

17 foreach tr,, =t 5 v e T(t) do

18 i := chkEquivalence (u, v, ref 7, ref C)

19 if —i then continue

20 i:=trg, €T A—chkConfluence (try,...)

21 if i then continue

22 C:=CU({(trg;,trp)}

23 continue outer loop // found match
24 end

25 T = Toid, C := Cold // restore sets
26 return false

27 end

28 return frue

29 function chkEquivalence (u, v, ref 7, ref C)

3 | 0:={{p j | p € support(u) U support(v) }

31 U :={u = D(v)|u € support(t), v € support(v) }
32 foreach u % D) € U do

33 if chkConfluence (u N D(v), ...) then

3 0:={qeQlugqrvgq}

35 U { quQ: ueqvveq 4 }

36 end
37 end

38 return Vg € Q: u(g) =v(q) // check probabilities

39 function chkMimicking (7, C)
a0 | foreach (s & 1.1 S v) e Cdo

41 its > pueTAtS veT then

2 if - chkConfluence (r 5 v, ...) then
) | return false

44 else return chkMimicking (7, C)

45 end

46 end

47 return frue

Algorithm 7: Detecting confluence on-the-fly

in 7. As s % D(¢) turned out not to be confluent, we can
also not be sure anymore whether these other transitions are
indeed confluent.

The loop to check whether all outgoing transitions com-
mute with s follows directly from the definition of confluent
sets, which requires for every s LN that either © = D(t),
or that there exists a transition # > v such that y ~>7 v,
where ¢ < v has to be in 7 if s & p is. Indeed, if
u = D(t) we immediately continue to the next transition

@ Springer

(line 16; this includes the case that s LN uw=s35D@).
Otherwise, we range over all transitions ¢ S v to see if
there is one such that u ~»7 v. For this, we use the function
chkEquivalencein line 18, which is described below.
Also, if s LN w € T, we have to check thatalsor % v e 7.
We do this by checking it for confluence, which immediately
returns if it is already in 7, and otherwise tries to add it.

If indeed we find a mimicking transition, we continue
(line 23). If s LN u cannot be mimicked, confluence of
s % D(r) cannot be established. Hence, we reset 7 as dis-
cussed above and return false. If this did not happen for any
of the outgoing transitions of s, then s % D(¢) is indeed
confluent and we return true.
chkEquivalencechecks whether u ~~7 v. Since 7 is
constructed on-the-fly, during this check some of the transi-
tions from the support of 1 might not have been detected to
be confluent yet, even though they are. Therefore, instead of
checking for connecting transitions that are already in 7, we
try to add possible connecting transitions to 7 using a call
back to chkConfluence (line 33). The two functions are
thus mutually recursive.

In accordance with Definition 19, we first determine the
smallest equivalence relation that relates states from the sup-
port of u to states from the support of v in case there is a
confluent transition connecting them. We do so by construct-
ing a set of equivalence classes Q, i.e. a partitioning of the
state space according to this equivalence relation. We start
with the smallest possible equivalence relation in line 30, in
which each equivalence class is a singleton. Then, for each
confluent transition u <% D(v), with u € support(u) and
v € support(v), we merge the equivalence classes containing
u and v (line 34). Finally, we can easily compute the prob-
ability of reaching each equivalence class of Q by either
or v. If all of these probabilities coincide, indeed (1, v) € R
and we return frue; otherwise, we return false (line 38).
chkMimickingis called after chkConfluence desig-
nated a transition to be confluent, to verify that 7 satisfies
the requirement that confluent transitions are mimicked by
confluent transitions. After all, when a mimicking transition
for some transition s 2 n was found, it might have been
the case that s 2 1 was not yet in 7 while in the end it
is. Hence, chkConf luence keeps track of the mimicking
transitions in a global set C. If a transition s % D(¢) is shown
to be confluent, all pairs (s LN w,t 5 v) of other outgo-
ing transitions from s and the transitions that were found to
mimic them from ¢ are added to C. This happens in line 22
in chkConfluence. If s % D(¢) turns out not to be con-
fluent after all, the mimicking transitions that were found in
the process are removed again (line 25).

Based on the set of pairs C, chkMimickingranges over
all its elements (s LN w,t 5 v), checking if one violates
the requirement. If no such pair is found, we return frue.
Otherwise, the current set 7 is not valid yet. However, it

Sound statistical model checking

449

could be the case that # -5 v is not in 7, while it is confluent
(but since s N 4 was not in 7 at the moment the pair was
added to C, this was not checked earlier). Therefore, we still
try to denote t 5 v as confluent. If we fail, we return false
(line 43). Otherwise, in line 44, we check again for confluent
mimicking using the new sets 7 and C.

Correctness The following theorem states that the functions
chkConfluenceand chkMimickingtogether correctly
identify confluent transitions.

Theorem 5 Given a transition p L and using initially
empty sets T and C, if

chkConfluence(p N A, ref T, ref C)

returns true as well as chkMimicking (7, C) subse-
quently, this together implies that p Lois probabilistically
confluent.

Proof A full proof can be found in [36], where this is Theo-
rem 8.12.

Note that the converse of this theorem does not always
hold. To see why, consider the situation that the call to
chkMimickingfails because a transition s LY L wWas mim-
icked by a transition ¢ < v that is not confluent, and s LN uw
was added to 7 later on. Although we then abort, there might
have been another transition 7 <> p that could also have been
used to mimic s & w and that is confluent. We chose not
to consider this due to the additional overhead of the imple-
mentation. Additionally, this situation did not occur in any
of the case studies we considered so far.

We can now use Theorem 5 to show that the on-the-fly
confluence check implemented by chkConfluence and
chkMimickingcan be used for a trustworthy SMC analy-
sis of MDP:

Theorem 6 If an SMC analysis terminates and does not
return unknown

e using the function simulateof Algorithm 5 to explore
the set of paths I1

e fogether with the function resolveConfluenceof
Algorithm 7 in place of 2,

then the function f = feont U {s — T(s) | s ¢ I1}
satisfies Eq. (4), where feonn maps a state s € II to
T (s) if it is deterministic and to the result of the call to
resolveConfluenceotherwise.

Proof By construction and since resolveConfluenceis
deterministic, f is a reduction function that satisfies s €
I = |f(s)]=1As ¢& Il = f(s) = T(s). It remains to
show that minimum and maximum probabilistic reachability

probabilities for any state formula over the atomic proposi-
tions are the same for the original and the reduced MDP.
The way it is constructed, we can see f as the com-

bination of individual reduction functions f;, = {s;
oy U {s' > T(s) | s’ ¢ O}fori € {1,....n}
and {s1,...,s,} = {s € I1} where trl?"“ﬂ is the result

of the call to resolveConfluencefor s;. For each of
these f,, we know that it is acyclic (otherwise, s; would
be mapped to a self-loop and the cycle check of Algorithm
5 would have aborted simulation) and a confluence reduc-
tion function for M (by Theorem 5). However, fSJ. is not
necessarily a confluence reduction function for red(M, f5,),
i # j: resolveConfluence (s;) performed its checks
on M and not onred(M, f;;). However, each f;; gives prior-
ity to one transition between two branching bisimilar states
(see [19,36]). We denote branching bisimulation by ~ here;
itis arelation that preserves probabilistic reachability. There-
fore, if R~ is the coarsest concrete bisimulation relation
for M under ~ and M~ is an MDP such that (M, M) € R~,
then also (M~,red(M~, f;;)) € R~. By transitivity, this
means that (M, red(M~, fi;)) € R~, too. In consequence,
we have M ~ My since

My =red(...red(red(M, f5,), fs) .-+, fs,)-

O

Remark One may want to prove preservation of probabilistic
reachability directly for f based on Theorems 4 and 5. How-
ever, this does not work out: we would have to show that f is
itself an acyclic confluence reduction function under a conflu-
ent set of transitions 7. The acyclicity of the entire function f
is also guaranteed by the modified simulate function of
Algorithm 5. It would remain to show following Definition
20 that

I, ={tre f(s)|sell}

is a confluent set of transitions. While we know from The-
orem 5 that each transition s % D(t) e 7. is proba-
bilistically confluent, this only means that there exists a
confluent set that contains it, namely the set 7 computed
by chkConfluence and chkMimickingfor s. Unfor-
tunately, neither is 7., in general the union of these individ-
ual sets, nor is the union of two confluent sets necessarily a
confluent set again [36, Chapter 6].

6.3 Runtime and memory usage

Exactly as for the POR-based approach, the runtime and
memory usage of SMC with on-the-fly confluence check
depends directly on the amount of lookahead that is neces-
sary in the function chkConfluence. Although we have
not included it in Algorithm 7 as shown, it is in practice para-
meterised by a lookahead bound kpax, too, with the same

@ Springer

450

A. Hartmanns, M. Timmer

characteristics as in the POR-based approach. Any differ-
ences in runtime and memory usage we see between the two
approaches, which we look at in more detail in Sect. 7, should
thus come only from a more optimised or computationally
simpler implementation. There are no fundamental differ-
ences in performance characteristics to be expected.

6.4 Applicability and limitations

Confluence, too, is only a safe approximation when it comes
to the detection of spurious choices. Although the conflu-
ence check does not need to resort to information from the
syntactic/symbolic VMDP level like POR with conditions J1
and J2, and in particular is not limited to detecting spurious
interleavings only, we see a few limitations right in the def-
inition of confluence. The most significant one is that only
nonprobabilistic transitions can be confluent. Let us again
look at the shared medium communication setting of Exam-
ple 2 to get an impression of what this may mean in practice.

Example 6 We saw in Example 3 that the POR-based
approach works for the networks N7, and N, but cannot
work for any instance of Ny .. due to the nondeterministic
choice inside process Mync. This, however, is no problem
for confluence reduction, and SMC with the on-the-fly con-
fluence check can handle Ng,. without problems. On the
other hand, nonprobabilistic transitions cannot be confluent.
Therefore, simulation with the new approach will abort for
Ny as well as for Ny, What about N, ? We can consider
this a version of N, that has been specifically fixed to make
it amenable to the confluence check: the interleaving of the
probabilistic decision has been replaced by a synchronisa-
tion. All probabilistic reachability properties are unaffected
by this change, but both confluence- and POR-based simu-
lation work with this model. For comparison with Fig. 4, we
show the MDP semantics of N, in Fig. 6. The only non-
deterministic choice that remains in this case is which host
sends first in state (h2, hy, vy, 0). It is easy to see that both
available transitions are confluent and indeed are identified
as such by Algorithm 7. Table 3 summarises the applicability
of the two simulation approaches to all four variants of the

shared medium communication example.

In summary, the new confluence-based approach for the first
time allows simulation of models with spurious nondetermin-
istic choices that are internal to one component. However,
as confluence preserves branching time properties, it can-
not handle nondeterminism between probabilistic choices.
Although this can often be avoided, for example by trans-
forming the example models N,. and N7, into N3 and

sync var

N> respectively (a technique that we will also use for some
of the case studies in Sect. 7), for some models POR might
work while confluence does not. Hence, neither of the tech-

niques subsumes the other, and it is best to combine them: if

@ Springer

(h1,h1,v1,0)

<h2,h3,’l)1,0> <h3,h3,’ljl,0>

sndq

((hg, ha,v1, 0)) (<h2, ha,v1, 0>j

sndq

sndo snds

[(hg, hs,v1, 1)) [(hg, ha,v1, 1)) [(hg, hs,v1, 1))

tick sndo sndq

(<h3,h3,/,1>j [<h3,h3,v1,2>]

{ success }

tick

{ collide }

Fig. 6 MDP semantics of N3,

Table 3 Applicability of SMC with POR and confluence

Approach Algorithm Niy NG, Niyne Ngine
POR 6 v v - -
Confluence 7 - v - v

one cannot be used to resolve a nondeterministic choice, the
simulation algorithm can still try to apply the other. Imple-
menting this combination is trivial and yields a technique that
handles the union of what confluence and POR can deal with.

7 Evaluation

The modes tool [9], which is part of the MODEST TOOLSET
[21], provides SMC for models specified in the MODEST lan-
guage and other input formalisms. The MODEST TOOLSET
is available for download at http://www.modestchecker.net/
modes implements both approaches presented so far to per-
form SMC for MDP with spurious nondeterministic choices:
the POR-based and the confluence-based check. In this sec-
tion, we apply modes and its implementation of the two
approaches to three examples to evaluate their applicability
and performance impact on practical examples beyond the
tiny models of Example 2. The case studies were selected so
asto allow us to clearly identify the approaches’ strengths and
limitations. For each, we (1) give an overview of the model,
(2) discuss, if POR or confluence fails, why it does and which,
if any, modifications were needed to apply it, and (3) evaluate
memory use and runtime. The underlying MODEST models
are part of the MODEST TOOLSET download package.

http://www.modestchecker.net/

Sound statistical model checking

451

The performance results are summarised in Table 4. For
the runtime assessment, we compare to simulation with
uniformly-distributed probabilistic resolution of nondeter-
minism. Although such a hidden assumption cannot lead to
trustworthy results in general (but is implemented in many
tools), it is a good baseline to judge the overhead of POR and
confluence checking. We generated 10,000 runs per model
instance to compute probabilities psp for case-specific prop-
erties. Using the APMC method as described in Sect. 2.5.2,
this guarantees the following probabilistic error bound:

P(lp — psmecl > 0.015) < 0.022,

where p is the actual probability of the property under con-
sideration.

‘We measure memory usage in terms of the maximum num-
ber of extra states kept in memory at any time during POR
or confluence checking, denoted by s. The average number
of states per check is listed as s,yg. We also report the max-
imum number of “lookahead” steps necessary in the POR
and confluence checks as k, as well as the average length ¢
of a simulation trace and the average number ¢ of nontriv-
ial checks, i.e. of nondeterministic choices encountered, per
trace.

To get a sense for the size of the models considered, we
also attempt model checking using mcpta, which uses PRISM
for the core analysis. Due to modelling restrictions of PRISM,
we use mesta, an explicit-state model checker that is also part
of the MODEST TOOLSET and that uses the same core state-
space exploration engine that modes also relies on, for our
first example. Its performance characteristics and memory
limitations are similar to PRISM with default settings where
we could compare. We report the probability p for the model-
specific properties as computed by mcpta/mcsta where pos-
sible, and otherwise list “~ pgm¢” in that column of Table 4
instead. In all cases, p and psyme match within the expected
confidence. Note that we do not intend to perform a rigorous
comparison of SMC and traditional model checking here and
instead refer the interested reader to dedicated comparison
studies such as [40]. Unless otherwise noted, all measure-
ments used a 1.7 GHz Intel Core i5-3317U system with 4 GB
of RAM running 64-bit Windows 8.1.

7.1 Binary exponential backoff

We first look at a model of the IEEE 802.3 Binary Exponen-
tial Backoff (BEB) protocol for a set of hosts on a network,
adapted from the PRISM model used in [15]. It gives rise to
a network of VMDP. The model under study is determined
by K, the maximum backoff counter value, i.e. the maximum
number of slots to wait in the exponential backoff procedure,
by N, the number of times each host tries to seize the channel,
and by H, the number of hosts. The number of component
VMDP is H + 1: the hosts plus a global timer process. The

probability we compute is that of some host eventually get-
ting access to the shared medium. Our simulation scenario
ends when a host seizes the channel. The network of VMDP
of this model is similar to NJ,. of Example 2: there is an
interleaved probabilistic choice, and a variable keeps track
of how many hosts currently try to send. In contrast to the
simple model of N7, the hosts react to a collision by start-
ing an exponential backoff procedure, trying to send again
N times before giving up.

First of all, we observe in Table 4 in the rows labelled
“BEB (tau)” that model checking with mcsta aborts due to
lack of memory for the two larger model instances (16, 15, 5)
and (16, 15, 6). We also attempted to perform model check-
ing using PRISM in default configuration on a 64-bit Linux
system with 120 GB of RAM, but this failed due to memory
usage for the two large instances, too.

Simulation, on the other hand, works for all instances. In
all cases the nondeterminism is identified as spurious by the
POR-based method for small values of kpax and /. The run-
time values for uniform resolution show that these models
are extremely simple to simulate, while the on-the-fly par-
tial order approach induces a significant time overhead. We
see a clear dependence between the number of components
and the value of k, with k = H. In line with our expecta-
tions concerning the performance impact from Sect. 5, the
increase in memory usage (not shown in the table because
it is not possible to obtain precise and useful measurements
for a garbage-collected implementation like modes) is more
moderate. Although 83 536 states have to be kept in memory
during at least one of the POR checks for the largest instance
(16, 15, 6), this is just a tiny fraction of the whole state space
considering that the small instance (8, 7, 4) already has more
than 20 million states. It is also obvious from the relation
between s and suy that a POR check with such a large
amount of on-the-fly state-space exploration is a relatively
rare occurrence.

Because this model contains nondeterministic choices
between probabilistic transitions, any attempt to perform
SMC with the confluence check immediately aborts. How-
ever, just like we transformed N, into N3 without affect-
ing reachability probabilities, we can transform the MODEST
code of the BEB model to make the probabilistic choices
synchronise on action tick. The performance numbers for
this modified model are in the rows labelled “BEB (sync)” in
Table 4. Where model checking with mcsta is possible, we
see that the number of states of this synchronised model is
roughly of the same order of magnitude as that of the original.

Simulation now works fine using either of the two
approaches. The runtime overhead necessary to get trust-
worthy results by enabling either confluence or POR is now
much lower. In particular, the amount of states that need to
be explored during the POR and confluence checks is very
low compared to the original model. It thus appears that the

@ Springer

2
£
i
=
g /1 08 LST'Y98 ynoawiy, - - - - - - 0 L
m /1 9T SOL'tPT OvI 00l 879 LLI Ol 6 - - - - - - 0 9
< /1 L 608°cC 0TI 08 06T L9 8 LT - - - - - - 0 S
/1 T I8e 00l 09 L€l ST 9 4 - - - - - - 0 14 N stoyderSoyd£io
/1 I 609 08 0r S9 6 ¥ I - - - - - - 0 € Suruiq
I 80C 8I8¥6l 091 6+ 0ST OSI ¥ 8 - - - - - - I (T
I 43 €656 091 6% 0ST 0SI + 8 - - - - - - I (T2
I 6 9sT’oE €91 0S €91 9 ¥ 14 - - - - - - I (o (mus g)
I 11 €8TST €91 0°¢ €91 9¥ ¥ 14 - - - - - - I (10 dJ/VINSD
680~ mowsN I'ze TSI 97T LTl L €L 9TE €SI LIl 9 L 65 I (L*S*9)
89°0~ mouwd|W 60 I['SI 9T LTl L €L 80¢ TSI SII 9 L 65 I (L'¥°S)
4340) 6Tl €0OTITST §9T 8¢l I'vc Lol L L v9T %€l LTI P9 L 8¢ I (L€
$6°0 ~ MOUR 897 91l 8%l €9 9 L9t 911 6L 43 9 ST I (9°6°9)
6L°0~ MOWR €97 LII LYl €9 9 W 6ST 91l 6L 43 9 Y4 I (9% °c)
124%0) 01 L68°6S9°'T 8CC 601 ¥SI €9 9 7w 6TC 601 T8 (43 9 ST I (9°¢p)
¥L6°0 €E1 09T'LETST 61T S8 86 113 S L 8IT S8 ¢ 91 S 01 0 (6*c9)
6L8°0 1 126'€06'T €1C S8 86 |53 S L TIT 8 ¢ 91 S 01 0 (Svq)
0L9°0 I €F0°S8T €61 1'8 o1 1¢ S L S6I T8 S¢S 91 S 01 0 (S*¢*p)
001 ~ mowow 8¢z I'IT I'ST €9 9 €C 6ST TI'Il 08 (43 9 9T I {9°¢cr91)
00T ~ mowo ¢'Ic T8 000 I¢ S 8 ¥It T8 S¢ 91 S 1 I {s'sr9m)
6660 65 S08'SOI'0T L9T 9S 89 Sl ¥ € 691 95 6¢ 3 ¥ 12 0 {(r°L°8) (HN‘Y)
L16°0 0 6I€C 811 €€ 9% L € I 81l ¢€¢ 8T ¥ € I 0 {(€ep) (ouks) gad
00T ~ oW - - - - - - €IS €TC S68 9¢5'¢8 9 YLE'T I {9191
00T ~ oW - - - - - - ¥Iv +¥91 00¢ 00vTI S 8¢¢ I (S'STom)
666°0 vIT 888°981°0C - - - - - - €Te 011 LTI 9¢L ¥ 65 0 {(rL°8) (HN‘Y)
L16°0 0 099°% - - - - - - ¥ SS9 66 8¢ € L 0 ¢y (ne)) g9
d (s)owr], $91B1S 7 2 Saeg s ¥ (s)ouwry, 7 2 3aeg sy (s)owry, (S)owiy,
Sunyooyod [9poIN QdUANPUOD) MOd Uy swered [SPOIN
cOmCm&EOo Pue peayIaA0 WUNI :IUINPJUOI pue JYOd YIm DINS ¥ 3IqelL
7

pringer

Qs

Sound statistical model checking

453

probabilistic interleavings actually caused most of the work
for the POR check. This is very similar to N7, into N, : just
compare their concrete state spaces as shown in Figs. 4 and 6.

In addition to the four instances that we studied with
the unsynchronised model, we now also look at (4, 3, H),
(5,4, H) and (6,5, H) for H € {5,6,7}. This allows us
to more systematically investigate how scaling the different
model parameters affects runtime. We first of all see that
state-space explosion occurs no matter whether we scale the
counters K and N or the number of hosts H, and model
checking fails for the larger instances. While simulation does
work for all instances, there is a clear pattern in the run-
time and memory overhead of using the POR or confluence
check: it grows significantly with H, but is almost invari-
ant under increases to K and N. H determines the number
of parallel components in the model and thus the potential
amount of interleaving. Both the POR- and the confluence-
based approach thus work for models of arbitrary state-space
size, but they are sensitive to the size of the interleavings.

Although the confluence-based approach is somewhat
faster than POR for H < 6 and somewhat slower for H = 7,
the differences are not very large and could probably be
reduced by further optimising both implementations. Most
importantly, the memory overhead compared to uniform res-
olution of nondeterminism is in all cases negligible, and one
of the central advantages of SMC over traditional model
checking is thus retained.

7.2 IEEE 802.3 CSMA/CD

As a second example, we take the MODEST model of the
Ethernet (IEEE 802.3) CSMA/CD approach that was intro-
duced in [20]. It consists of two identical stations attempting
to send data at the same time, with collision detection and a
randomised backoff procedure that tries to avoid collisions
for subsequent retransmissions. We consider the probabil-
ity that both stations eventually manage to send their data
without collision. The model is a network of probabilistic
timed automata (VPTA), but delays are fixed and determin-
istic, making it equivalent to a network of VMDP (with real
variables for clocks, updated on edges that explicitly repre-
sent the delays; modes does this transformation automati-
cally and on-the-fly). The model has two parameters: a time
reduction factor RF (i.e. delays of ¢ time units with RF = 1
correspond to delays of % time units with RF = 2), and the
maximum value used in the exponential backoff part of the
protocol, BC pax-

We chose to look into this model because it is similar to the
BEB case study: both model a shared medium access protocol
that uses an exponential backoff procedure. Yet there are
two main differences—apart from one being an untimed, the
other a timed model—that justify a separate investigation: the
CSMA/CD model focuses on just two hosts, and it explicitly

models the shared medium with a dedicated process that uses
synchronisation to detect collisions. In this way, it is very
similar to N, of Example 2.

Unfortunately, but not unexpectedly, modes immediately
reports nondeterminism that cannot be discarded as spurious
when using the confluence-based check. Inspection of the
reported lines in the model quickly shows a nondeterminis-
tic choice between two probabilistic transitions as the cul-
prit again. Fortunately, this problem can easily be eliminated
in the same way as for the BEB model and the NT exam-
ples: with an additional synchronisation. This appears to be
a recurring issue, yet the relevant model code could quite
clearly be identified as a modelling artefact without seman-
tic impact in both examples where it appeared so far. SMC
on the modified model then leads to pgme = 1.0, which is the
correct result.

The POR-based approach also fails for the unmodified
model: initially, both stations send at the same time, the order
(of the interleaving in zero time) being determined nondeter-
ministically. In the process representing the shared medium,
this must be an internal nondeterministic choice. This is
exactly the same problem that prevented POR from work-
ing for the Ngy,. examples. In contrast to the problem for
confluence, this cannot be fixed so easily.

In terms of runtime, the confluence checks incur a moder-
ate overhead for this example, lower than for the BEB mod-
els. However, we also see that the paths being explored in the
confluence checks (value k) are shorter. Performance appears
to quite directly depend on k, which stays low in this case.
Again, we observed no significant increase in memory usage
compared to uniform resolution. Compared to model check-
ing with PRiSM, SMC even with the confluence checking
overhead appears highly competitive here, and it in partic-
ular does not depend on the timing scale (performance is
independent of model parameter RF).

7.3 Dining cryptographers

As a last and very different example, we consider the clas-
sical dining cryptographers problem [11]: N cryptographers
use a protocol that has them toss coins and communicate the
outcome with some of their neighbours at a restaurant table
to find out whether their master or one of them just paid
the bill, without revealing the payer’s identity in the latter
case. We model this problem as the parallel composition of
N instances of a Cryptographer process that communi-
cate via synchronisation on shared actions, and consider as
properties the probabilities of (a) protocol termination and
(b) correctness of the result.

The model is a network of VMDP whose semantics is a
nondeterministic MDP. In particular, the order of the syn-
chronisations between the cryptographer processes is not
specified and could conceivably be relevant. It turns out

@ Springer

454

A. Hartmanns, M. Timmer

that all nondeterminism can be discarded as spurious by the
confluence-based approach though, allowing the application
of SMC to this model.

The POR-based approach does not work: although the
nondeterministic ordering of synchronisations between non-
neighbouring cryptographers is due to interleaving, the
choice of which neighbour to communicate with first for
a given cryptographer process is a nondeterministic choice
within that process. At its core, this is yet again the same
problem as with the Ny, networks of Example 2.

Concerning performance, we see that runtime increases
significantly with the number of cryptographers N. In fact,
for N = 7, we aborted simulation after 30 minutes and con-
sider this a timeout. An increase is expected, since the num-
ber of steps until independent paths from nondeterministic
choices join again (k) depends directly on N. It is so drastic
due to the sheer amount of branching that is present in this
model. At the same time, the model is extremely symmet-
ric and can thus be handled easily with a symbolic model
checker like PRISM.

7.4 Summary

All in all, these three case studies show that SMC using an
on-the-fly POR or confluence check is effective and efficient.
The memory overhead is negligible, and one of the central
advantages of SMC over exhaustive model checking is thus
retained. In terms of runtime, we see two models where the
confluence and, when applicable, the POR-based approach
induce a moderate overhead, and one model where runtime
explodes. This reinforces our previously stated expectation
that performance will be extremely dependent on the struc-
ture of the model under study. When comparing confluence
and POR, we see that confluence struggles with probabilistic
interleavings, yet we were able to overcome this limitation
by modifying the models in both cases. On the other hand,
SMC is only possible for two of the three examples with the
confluence check due to POR’s restriction to spurious inter-
leavings from parallel composition. The different reduction
power of confluence is thus relevant and useful, but neither
of the techniques subsumes the other. In practice, it would
probably be best to combine them: if one cannot be used to
resolve a nondeterministic choice, the SMC algorithm can
still try to apply the other. Implementing this combination is
trivial and yields a technique that handles the union of what
confluence and POR can deal with.

8 Caching the reduction function

A key problem that leads to long runtimes of simulation with
on-the-fly POR or confluence checks for some models is that
the same information may have to be computed over and
over again: once a nondeterministic choice has been proven

@ Springer

to be spurious, simulation continues to the next state and this
spuriousness result is forgotten. We can potentially avoid
this problem by caching the results of the calls to the func-
tions resolvePORor resolveConfluence, i.e. addi-
tionally storing a mapping from states to (ample or confluent)
transitions.

In the worst case, all states are visited on the set of paths I7
and they are all (spuriously) nondeterministic. Then, mem-
ory usage would be as in exhaustive model checking: the
entire state space would be stored. Still, we have seen in the
previous section that the fraction of states that are nondeter-
ministic is usually low: ¢/t in Table 4, which is per simulation
run and not for the entire model, is below 1 for all models,
and significantly so (at least less than 1/2) for all but the din-
ing cryptographers case. For the latter, however, exhaustive
model checking is feasible, so memory usage is unproblem-
atic in any case.

Even if we look at this tradeoff from a high-level point
of view, SMC with on-the-fly POR or confluence check can
be seen as performing simulation with a certain amount of
embedded on-the-fly exhaustive model checking. It is thus
a “hybrid” procedure already. Building in more aspects oth-
erwise typical for exhaustive model checking—i.e. storing
more states—thus makes it somewhat “less SMC” and more
exhaustive, but is no fundamental change of character.

Evaluation We have implemented a caching wrapper around
the POR and confluence checks in modes and applied it to
the case studies presented in the previous section. The results
are shown in Table 5, where the state numbers reported for
the cached variants are the numbers of states for which a
POR or confluence result has been stored at the end of the
SMC analysis. They consequently provide an indication of
the additional memory usage due to the caching. The setting
is otherwise the same as in the previous section (10,000 runs,
same machine, etc.).

We see that caching leads to speedups in all cases, most
of them significant, and that the number of states cached is
always small in comparison to the full state spaces®. How-
ever, it does not seem to drastically improve performance for
the larger instances of the non-synchronising BEB model.
This is likely because, due to the size of the state spaces and
the nature of the probabilistic branching, any particular state
is rarely visited multiple times in 10,000 runs. In line with
this effect is the observation (by looking at modes’ progress
indicator) that, on all models and instances, the first simu-
lation runs take relatively long, but from some point on the
remaining ones need almost no time anymore. This point is
where most of the relevant choices have been proven spuri-

® For the CSMA/CD models, the state space sizes reported are for the
digital clocks semantics of the PTA created by mcpta and thus not
directly comparable to the state spaces modes works on.

Sound statistical model checking

455

Table 5 SMC with cached

reduction function POR cached Confl. cached State space
Model Params Time (s) States Time (s) States States
BEB (tau) 4,3,3) 0 248 - - 4,660
(K, N, H) (8,7, 4) 9 5304 - - 20,186,888
(16, 15, 5) 247 21,000 - - Memout
(16, 15, 6) 1,096 52,594 - - Memout
BEB (sync) 4,3,3) 0 118 0 119 2,319
(K,N, H) (8,7, 4) 0 2,474 0 2,435 10,105,805
(16, 15,5) 1 9,541 1 9,553 Memout
(16, 15, 6) 2 24,045 2 24,123 Memout
CSMA/CD (2, 1) - - 1 49 (15,283)
(RF, BCrax) (1, 1) - - 1 49 (30,256)
(2,2) - - 1 262 (98,533)
(1,2) - - 1 262 (194,818)
Dining 3 - - 0 128 609
cryptographers N 4 _ _ 0 480 3,841
5 - - 1 1,536 23,809
6 - - 13 4,480 144,705
7 - - Timeout 864,257

ous. The number of runs after which it is reached depends on
the model and parameters, but the sudden change in simula-
tion speed is clearly visible in all cases (except for the largest
unsynchronised BEB instance).

Still, even caching does not allow us to perform SMC for
the dining cryptographers case with N = 7 within acceptable
time. Here, even the first dozen runs take extremely long and
do not yet provide enough cached results for any observable
speedup.

In summary, caching the results of the POR or confluence
checks appears to be a very good way to make the approaches
scale to a higher number of simulation runs and thus to more
precise and accurate verification results, yet models where
SMC was previously unfeasible due to excessive runtime—
probably caused by huge underlying state spaces and extreme
branching—remain unfeasible.

As an example of scaling accuracy and precision with
declining runtime impact by caching, we also performed
SMC with 10 times as many simulation runs (i.e. 100,000
instead of 10,000) for two of the unsynchronised BEB model
instances. For (16, 15, 5), this takes 1,272s, i.e. just around
5 times as long; for (8, 7, 4) the time is 27s, i.e. an increase
by a factor of 3 only. Again using the statistical evaluation
based on the Chernoff-Hoeffding bound, this for example
means that the probability of the SMC result deviating more
than 0.005 from the actual probability is now at most 0.014,
whereas we previously had 0.015 deviation with probabil-
ity 0.022—yet we only invested 3 to 5 times the simulation
runtime.

9 Conclusion

We have shown that sound SMC for MDP cannot be achieved
by naive methods. We have presented two approaches to
on-the-fly during simulation detect whether nondeterminis-
tic choices are spurious. If that is the case, an SMC analysis
provides trustworthy results. In this way, SMC can be applied
to arestricted but useful subclass of MDP in an efficient way.

We have shown that the two techniques, based on partial
order and confluence reduction, are correct, using for the first
time the same notion of correctness and similar arguments.
While evaluating their performance, we saw that although
competitive, it sometimes suffers from unnecessary recom-
putations. We thus implemented a caching mechanism that
successfully trades a small amount of extra memory usage
for significant performance gains.

Acknowledgments This work was supported by the Transregional
Collaborative Research Centre SFB/TR 14 AVACS, by the NWO-DFG
bilateral project ROCKS, by the 7th EU Framework Programme under
grant agreements 295261 (MEALS) and 318490 (SENSATION), by
NWO under grant 612.063.817 (SYRUP), and by the CAS/SAFEA
International Partnership Program for Creative Research Teams.

References

1. Agresti, A., Coull, B.A.: Approximate is better than “exact” for
interval estimation of binomial proportions. Am. Stat. 52(2), 119-
126 (1998)

2. Andel, T.R., Yasinsac, A.: On the credibility of MANET simula-
tions. IEEE Comput. 39(7), 48-54 (2006)

@ Springer

456

A. Hartmanns, M. Timmer

10.

11.

12.

13.

14.

15.

16.

20.

21.

22.

Baier, C., D’ Argenio, P.R., GroBer, M.: Partial order reduction for
probabilistic branching time. Electron. Notes Theor. Comput. Sci.
153(2), 97-116 (2006)

Baier, C., Grofer, M., Ciesinski, F.: Partial order reduction for prob-
abilistic systems. In: QEST, pp. 230-239. IEEE Computer Society,
New York (2004)

Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press,
Cambridge (2008)

Blom, S.: Partial t-confluence for efficient state space generation.
Technical Report SEN-R0123, CWI (2001)

Blom, S., van de Pol, J.: State space reduction by proving conflu-
ence. In: Brinksma, E., Larsen, K.G. (eds.) CAV. Lecture Notes in
Computer Science, vol. 2404, pp. 596-609. Springer, Berlin (2002)
Bogdoll, J., Fioriti, L.M.F., Hartmanns, A., Hermanns, H.: Partial
order methods for statistical model checking and simulation. In:
Bruni, R., Dingel, J. (eds.) FMOODS/FORTE. Lecture Notes in
Computer Science, vol. 6722, pp. 59-74. Springer, Berlin (2011)
Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and statis-
tical model checking for modestly nondeterministic models. In:
Schmitt, J.B. (ed.) MMB/DFT. Lecture Notes in Computer Sci-
ence, vol. 7201, pp. 249-252. Springer, Berlin (2012)

Brazdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretinsky,
J., Kwiatkowska, M.Z., Parker, D., Ujma, M.: Verification of
Markov decision processes using learning algorithms. CoRR,
abs/1402.2967 (2014)

Chaum, D.: The dining cryptographers problem: unconditional
sender and recipient untraceability. J. Cryptol. 1(1), 65-75 (1988)
D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent
probabilistic programs. In: QEST, pp. 240-249. IEEE Computer
Society, New York (2004)

Evangelista, S., Pajault, C.: Solving the ignoring problem for partial
order reduction. STTT 12(2), 155-170 (2010)

Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D.: Automated
verification techniques for probabilistic systems. In: Bernardo, M.,
Issarny, V. (eds.) SFM. Lecture Notes in Computer Science, vol.
6659, pp. 53—113. Springer, Berlin (2011)

Giro, S., D’Argenio, P.R., Fioriti, L.M.F.: Partial order reduction
for probabilistic systems: a revision for distributed schedulers. In:
Bravetti, M., Zavattaro, G. (eds.) CONCUR. Lecture Notes in Com-
puter Science, vol. 5710, pp. 338-353. Springer, Berlin (2009)
Godefroid, P.: Partial-order methods for the verification of concur-
rent systems—an approach to the state-explosion problem. Lecture
Notes in Computer Science, vol. 1032. Springer, Berlin (1996)
Groote, J.F., van de Pol, J.: State space reduction using partial tau-
confluence. In: Nielsen, M., Rovan, B. (eds.) MFCS. Lecture Notes
in Computer Science, vol. 1893, pp. 383-393. Springer, Berlin
(2000)

. Hansen, H., Kwiatkowska, M.Z., Qu, H.: Partial order reduction for

model checking Markov decision processes under unconditional
fairness. In: QEST, pp. 203-212. IEEE Computer Society, New
York (2011)

Hansen, H., Timmer, M.: A comparison of confluence and ample
sets in probabilistic and non-probabilistic branching time. Theor.
Comput. Sci. 538C, 103-123 (2014)

Hartmanns, A., Hermanns, H.: A modest approach to checking
probabilistic timed automata. In: QEST, pp. 187-196. IEEE Com-
puter Society, New York (2009)

Hartmanns, A., Hermanns, H.: The modest toolset: an inte-
grated environment for quantitative modelling and verification. In:
Abrahdm, E., Havelund, K. (eds.) TACAS. Lecture Notes in Com-
puter Science, vol. 8413, pp. 593-598. Springer, Berlin (2014)
Hartmanns, A., Timmer, M.: On-the-fly confluence detection for
statistical model checking. In: Brat, G., Rungta, N., Venet, A. (eds.)
NASA Formal Methods. Lecture Notes in Computer Science, vol.
7871, pp. 337-351. Springer, Berlin (2013)

@ Springer

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Henriques, D., Martins, J., Zuliani, P., Platzer, A., Clarke, E.M.:
Statistical model checking for Markov decision processes. In:
QEST, pp. 84-93. IEEE Computer Society, New York (2012)
Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approxi-
mate probabilistic model checking. In: Steffen, B., Levi, G. (eds.)
VMCAL Lecture Notes in Computer Science, vol. 2937, pp. 73-84.
Springer, Berlin (2004)

Hoeffding, W.: Probability inequalities for sums of bounded ran-
dom variables. J. Am. Stat. Assoc. 58(301), 13-30 (1963)
Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verifi-
cation of probabilistic real-time systems. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV. LNCS, vol. 6806, pp. 585-591. Springer,
Berlin (2011)

Lassaigne, R., Peyronnet, S.: Approximate planning and verifica-
tion for large Markov decision processes. In: Ossowski, S., Lecca,
P. (eds.) SAC, pp. 1314-1319. ACM, New York (2012)

Legay, A., Delahaye, B., Bensalem, S.: Statistical model check-
ing: an overview. In: Barringer, H., Falcone, Y., Finkbeiner, B.,
Havelund, K., Lee, L., Pace, G.J., Rosu, G., Sokolsky, O., Tillmann,
N. (eds.) RV. Lecture Notes in Computer Science, vol. 6418, pp.
122-135. Springer, Berlin (2010)

Legay, A., Sedwards, S.: Lightweight Monte Carlo algorithm for
Markov decision processes. CoRR, abs/1310.3609 (2013)
Mateescu, R., Wijs, A.: Sequential and distributed on-the-fly com-
putation of weak tau-confluence. Sci. Comput. Program. 77(10-
11), 1075-1094 (2012)

Nimal, V.: Statistical approaches for probabilistic model checking.
Master’s thesis, Oxford University (2010)

Pace, G.J., Lang, F., Mateescu, R.: Calculating-confluence compo-
sitionally. In: HuntJr., W.A., Somenzi, F. (eds.) CAV. Lecture Notes
in Computer Science, vol. 2725, pp. 446-459. Springer, Berlin
(2003)

Peled, D.: Combining partial order reductions with on-the-fly
model-checking. In: Dill, D.L. (ed.) CAV. Lecture Notes in Com-
puter Science, vol. 818, pp. 377-390. Springer, Berlin (1994)
Peled, D.: Combining partial order reductions with on-the-fly
model-checking. Formal Methods Syst. Des. 8(1), 39-64 (1996)
Ross, S.M.: Simulation, 4th edn. Elsevier Academic Press, Ams-
terdam (2006)

Timmer, M.: Efficient Modelling, Generation and Analysis of
Markov Automata. PhD thesis, University of Twente, The Nether-
lands (2013)

Timmer, M., Stoelinga, M., van de Pol, J.: Confluence reduction
for probabilistic systems. In: Abdulla, P.A., Rustan, K., Leino, M.
(eds.) TACAS. Lecture Notes in Computer Science, vol. 6605, pp.
311-325. Springer, Berlin (2011)

Timmer, M., van de Pol, J., Stoelinga, M.: Confluence reduction for
Markov automata. In: Braberman, V.A., Fribourg, L. (eds.) FOR-
MATS. Lecture Notes in Computer Science, vol. 8053, pp. 243—
257. Springer, Berlin (2013)

Valmari, A.: A stubborn attack on state explosion. In: Clarke, E.M.,
Kurshan, R.P. (eds.) CAV. Lecture Notes in Computer Science, vol.
531, pp. 156-165. Springer, Berlin (1990)

Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.:
Numerical vs. statistical probabilistic model checking. STTT 8(3),
216-228 (2006)

Younes, H.L.S., Simmons, R.G.: Probabilistic verification of dis-
crete event systems using acceptance sampling. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV. Lecture Notes in Computer Science, vol.
2404, pp. 223-235. Springer, Berlin (2002)

	Sound statistical model checking for MDP using partial order and confluence reduction
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Mathematical notation and definitions
	2.2 Markov decision processes
	2.3 MDP with variables
	2.4 Probabilistic reachability
	2.5 Computing reachability probabilities
	2.5.1 Exhaustive model checking
	2.5.2 Statistical model checking

	3 SMC versus nondeterminism in MDP
	3.1 Resolving nondeterminism

	4 Spuriously nondeterministic MDP
	4.1 Reduced deterministic MDP
	4.2 Preservation of probabilistic reachability
	4.3 Partial exploration during simulation

	5 Using partial order reduction
	5.1 Partial order reduction for MDP
	5.2 On-the-fly partial order checking
	5.3 Runtime and memory usage
	5.4 Applicability and limitations

	6 Using confluence reduction
	6.1 Confluence reduction for MDP
	6.2 On-the-fly confluence checking
	6.3 Runtime and memory usage
	6.4 Applicability and limitations

	7 Evaluation
	7.1 Binary exponential backoff
	7.2 IEEE 802.3 CSMA/CD
	7.3 Dining cryptographers
	7.4 Summary

	8 Caching the reduction function
	9 Conclusion
	Acknowledgments
	References

