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Abstract Behavioral verificationof technical systems invol
ving both discrete and continuous components is a common
and demanding task. The behavior of such systems can often
be characterized using stochastic hybrid automata, leading
to verification problems which can be formalized and solved
using stochastic logic calculi such as stochastic satisfiability
modulo theory (SSMT). While algorithms for discharging
proof obligations in SSMT form exist, their applicability is
limited due to the computational complexity, which often
increases exponentially with the number of quantified vari-
ables. Recently, statistical model checking has been success-
fully applied to stochastic hybrid systems, thereby increas-
ing the size of the system for which verification problems is
tractable. However, being based on randomized simulation,
these methods usually cannot handle non-determinism. In
previous work, we have deviated from the usual approach
of simulating the model and rather proposed a statistical
method for SSMT solving which, being based on statisti-
cal AI planning algorithms, can also treat non-determinism
over a finite domain. Here, we extend this previous work to
the case of continuous domains. In particular, using ideas
from noisy optimization, we adaptively build up a decision
tree recording the findings and guiding further exploration,
thereby favoring the currently most promising sub-domain.
The non-determinism is resolved by translating the satisfac-

C. Ellen (B) · S. Gerwinn
Transportation, OFFIS - Institute for Information Technology,
Escherweg 2, 26121 Oldenburg, Germany
e-mail: christian.ellen@offis.de

S. Gerwinn
e-mail: sebastian.gerwinn@offis.de

M. Fränzle
HybridSystems,Carl vonOssietzkyUniversiätOldenburg -Department
of Computer Science, Escherweg 2, 26121 Oldenburg, Germany
e-mail: fraenzle@informatik.uni-oldenburg.de

tion problem into an optimization problem, thereby comput-
ing both optimistic and pessimistic bounds on the probability
of satisfaction. At each stage of the evaluation process, we
show how to obtain confidence statements about the proba-
bility of satisfaction for the overall SSMT formula, includ-
ing reliable estimates on the optimal resolution of any non-
deterministic choice involved.

Keywords Statistical model checking · Stochastic hybrid
systems · Non-determinism · SSMT

1 Introduction

Today’s technical systems are complex and interact with
each other as well as with their physical environment. Math-
ematically, the behavior of such ensembles can frequently
be characterized using stochastic hybrid systems, where dis-
crete controllers act within a continuous, potentially stochas-
tic environment. Even in the absence of obvious stochastic
influences, complex environments are often more accurately
modeled using probabilistic abstractions, due to unknown
or unobservable underlying causes of the observable behav-
ior. Due to the heterogeneity of dynamic effects and the tight
interaction of variables of different types, the analysis of such
stochastic hybrid systems is notoriously difficult, calling for
automated verification methods. In the recent past, formal
verification of digital systems has been successfully imple-
mented in commercial tools with wide-spread applications
in industry and academia. Among the most successful ver-
ification methods for finite-state systems is bounded model
checking (BMC) [1]. Although BMC was originally formu-
lated for discrete transition systems, it can also be applied
to hybrid, yet non-probabilistic systems. The BMC formulae
arising from such systems comprise complex boolean com-
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binations of arithmetic constraints over discrete as well as
real-valued variables. Current satisfiability-modulo-theory
(SMT) solvers over arithmetic theories are addressing these
systems [2]. Proposed models of hybrid systems which are
augmented with probabilities vary with respect to the degree
of continuous dynamics, the support for random phenomena,
and the degree to which they support non-determinism and
compositionality [3]. Stochastic hybrid systems in their full
generality, covering this variety of phenomena, have a broad
range of potential applications. Especially the combination
of stochastic and non-deterministic phenomena is of great
interest. For example, during the early system design phase
most parts of the system have not been fully defined, yet
checking requirements can decrease the development cost
substantially. An analysis in these early stages can iden-
tify potential problems and inconsistencies. The computa-
tion of a pessimistic estimate for the yet unexplored design
space of a system can be accounted for by introducing non-
deterministic components. In addition, the already defined
requirements could also potentially include stochastic ele-
ments (e.g., mean times between failures).

In [4], a formalism called stochastic satisfiability modulo
theory (SSMT) was introduced as a unification of stochas-
tic propositional satisfiability [5] and satisfiability modulo
theory. With the SSMT formalization and the correspond-
ing constraint solvers [4], it is possible to model networks of
hybrid automata [6] which include both discrete probabilistic
branching and non-deterministic decisions on transitions.

The computational complexity to discharge the proof
obligations by exact and exhaustive stochastic constraint
solving, however, often is prohibitive. In [7], we therefore
extended the model checking procedure for solving SSMT
problems to a more scalable version based on statistical
model checking (SMC) and the upper bound confidence algo-

rithm for trees [8]. In contrast to model checking, the SMC
method generates results which can be guaranteed with a
certain level of confidence only, i.e. have a residual, though
well-defined probability of deviating erratically.

Overcoming its limitation to finite branching both in
probabilistic and non-deterministic choices, this method is
extended within this paper to also support hybrid systems
with continuously-valuedprobabilistic andnon-deterministic
influences, enabling SSMT to address problems from the
domain of Stochastic Hybrid Systems [9] and stochastic opti-
mal control. The core idea is to adaptively discretize the
continuous domains of all quantified variables by applying
a strategy derived from hierarchical optimistic optimization
(HOO) [10] and to apply our previous statistical SSMT pro-
cedure to the discretization.

The paper is structured as follows: Sect. 2 provides a short
survey of related work on SSMT and on statistical methods
for model-checking randomized hybrid systems. In Sect. 3,
we review the HOO algorithm, which forms the basis of the
novel algorithm proposed in this article. Then we present our
approach as an extension of the HOO algorithm to nested
continuous quantification in Sect. 4. Section 5 contains an
evaluation of the proposed algorithm and Sect. 6 concludes
the paper.

2 Related work and background

2.1 Stochastic hybrid automata and SSMT

We are interested in satisfiability problems concerning prob-
abilistic hybrid systems, which we illustrate with a sim-
ple example in Fig. 1. This example uses discrete non-
deterministic choices of transitions (e.g., transition t1 and

Fig. 1 Example of a probabilistic hybrid system with discrete prob-
abilistic and non-deterministic decisions. This simple cooling system
can either be in the state cooling or not cooling. Within the
cooling state, the temperature Θ is decreased constantly whereas in
the not cooling state, the temperature rises. Bold numbers at the

edges reflect transition probabilities for the given probabilistic transi-
tions, which can be activated once the guards (inequalities) hold. For
this system, we might be interested in the probability of overheating
(e.g., Θ > 115◦) within a given time frame
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t2 are both enabled for temperatures Θ ∈ [80◦, 90◦]) and
discrete probabilistic branches (e.g., taking transition t1 will
lead with a probability of 94 % to the not cooling state
or stays in the cooling state with probability 6 %). This
limitation to discrete numbers of choices will be addressed
within the scope of this article to support a continuum of
choices.

For this particular system, we might be interested in guar-
anteeing that the probability of overheating is lower than
a given threshold. To this end, we use satisfiability mod-
ulo theory (SMT) to formalize the transition relation as an
arithmetic satisfiability problem, obtaining a symbolic repre-
sentation of all possible transitions in the form of a pre/post
relation between values x of state variables before and x ′
of state variables after a transition. We denote the SMT for-
mula which indicates the satisfiability for the given transition
by φ(x1, . . . , xn). The main task for the SMT solver is then
to determine the existence of a satisfying variable assign-
ment for a given SMT formula φ(x1, . . . , xn). In the cooling
example, this corresponds to an assignment of a temperature
trajectory, given an initial state and a starting temperature.

More generally, SMT consists of a decision problem
for first-order logical formulas over a given background
theory (e.g., the arithmetic theories over real numbers,
includingmultiplication as well as transcendental functions).
To address the discrete non-deterministic and probabilistic
choices we use Stochastic SMT (SSMT) as an extension of
SMT [11]. An SSMT formula Φ extends an SMT formula φ

by adding a prefix of quantified variables Q1Xi , . . . , QnXn .
Every quantifier Qi of the prefix binds one variable Xi

of φ and is either randomized (

R

Xi ), existential (∃Xi ), or
universal (∀Xi ). Every quantified variable Xi in the orig-
inal definition has a finite domain Xi . In the randomized
case, every value x j ∈ Xi is associated with a probability
P(Xi = x j ), modeling the likelihood that the corresponding
transition is chosen. The other quantifier types model dif-
ferent ways to resolve non-determinism: ∃ by maximizing
the probability of satisfying the remaining formula over all
domain values and analogously ∀ by minimizing the prob-
ability. The conditional probability distribution P(·|·) of a
randomized variable Xi can be conditioned on choices of
values for variables X0, . . . , Xi−1 which appear left of Xi

in the prefix. This allows to model dependencies between
random variables as well as, for example, parametric dis-
tributions where the parameters depend on other quantified
variables of the prefix. In addition, the presented Definition
1 is already extended towards supporting infinite domains.
In this case, p(·|·) denotes the probability density function
for randomized quantifiers.

Definition 1 The semantics of an SSMT formulaΦ is recur-
sively defined over its probability of satisfaction P(Φ) using
Q for the remainder for the quantifier prefix (cf. [6]):

1. P(ε : φ) = 0 if φ is unsatisfiable.
2. P(ε : φ) = 1 if φ is satisfiable.
3. P(∃Xi Q : φ) = maxx∈Xi P (Q : φ[Xi = x]) .

4. P(∀Xi Q : φ) = minx∈Xi P (Q : φ[Xi = x]) .

5. P(

R

Xi Q : φ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
x∈Xi

P(Xi = x |X\i )·
P (Q : φ[Xi = x]) if |Xi | < ∞

∫

Xi
p(Xi = x |X\i )·

P (Q : φ[Xi = x]) dx else.

(1)

Here, we used the shorthand notation X\i within the case
of a randomized quantifier to represent the set of all vari-
ables within the quantifier prefix which appear before the i th
one.

Using Definition 1, the cooling system S can be encoded
as a SSMT formula which can be used in a bounded model
checking procedure for a given maximum depth k. A com-
plete definition of the construction as well as an evalua-
tion of a network of hybrid automata can be found in [6].
In a nutshell, the initial state of the automaton is trans-
lated into a predicate I N I TS(0) which ensures that in
the beginning the initial state of the automaton is active
(here: I N I TS(0):=cooling) and all occurring variables
are restricted to their corresponding initial values or ranges.
The transitions of the hybrid automaton are translated into
predicates T RANSS( j − 1, j) which encode a transition
relation from step j − 1 to the depth j for each 1 < j < k.

The non-deterministic selection of any of the enabled tran-
sitions is modeled by introducing a new existential quantified
variable tr for each stepwhich resolves the non-deterministic
selection by maximizing the probability of reaching the tar-
get state (e.g., for Fig. 1: tr ∈ {t1, . . . , t4}). For the transi-
tions a randomized variable named pc is introduced which
models the probabilistic choices of target states. The prob-
abilities of pc are conditioned to the transition selected by
tr . This encoding scheme also respects the hybrid nature
of the automaton by not introducing a time discretization,
only the maximum number of transition steps (jumps) is
limited to k by unrolling, not the time spent within a loca-
tion (flow). Nevertheless, the time has to be bounded by
the domain of its variable in the formula. Finally, a predi-
cate T ARGET ( j − 1) is added for each step which indi-
cates whether the desired target state of the system has been
reached:

BMCS,target(k):=I N I TS(0)

∧
k∧

j=1

(
(¬T ARGETS( j−1) 	⇒T RANSS( j−1, j))
∧(T ARGETS( j−1) 	⇒ (x j−1 ≡ x j ))

)

∧ T ARGET (k) (2)

All quantified variables are replicated for each step and
are added in the prefix of BMCS,target(k).
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From Definition 1, we also see that the resulting satis-
fiability problem can be written as a nested optimization–
expectation problem. For example, if we set k = 1 and
encode the cooling example, the resulting SSMT formula
consists of a single existential quantifier followed by a ran-
domized one and the satisfiability problem can be written as
follows:

P(∃tr R

pc|tr : φ) = max
t∈tr Epc|t [P(φ)]

= max
t∈tr

(
∑

c∈pc

P(φ(t, c))P(c|t)
)

with: φ = BMCS,target(1) (3)

This would correspond to first selecting a transition from
the cooling state and then choosing one of the transition
targets at random, according to the probabilities. The exis-
tential quantifier corresponds to a pessimistic choice of tran-
sitions in terms of consequences with respect to overheating.

Equation (3) suggests we should approximate the expec-
tation via a sampling-based scheme, if the set of pc is too
large. If we use the average of samples generated according
to P(c|t), we observe only a noisy estimate Êc|t of the true
underlying function Ec|t . Using confidence intervals for this
estimation, we obtain an uncertainty estimate for the expec-
tation, i.e., randomized quantifier which has then to be prop-
agated through other quantifiers to obtain an overall uncer-
tainty estimate on Φ. Computationally, we are interested in
an efficient way of calculating Eq. (3), that is to efficiently
search for promising t choices to evaluate.

A common representation of an SSMT formula uses a
decision tree for the variables in the quantifier prefix, where
the nodes are the variables (in order of their occurrence in the
prefix) and the decisions are the domain values. The leafs of
the tree are replications of φ, where every quantified variable
is substituted according to the path in the decision tree. There-
fore, every leaf represents an SMT problem of its own. As
solving these SMT problems at the leaves of the decision tree
is a time-consuming problem, most existing work focuses on
minimizing the number of evaluations of the leaves by car-
rying information from one leaf evaluation to another using
conflict learning.

By extending SSMT with quantifiers with continuous
domains, SSMT can be used to model purely continuous
stochastic systems as well as extended probabilistic hybrid
automatawhich can use amixture of discrete quantifiers (e.g.,
for the selection of transitions) and continuous quantifiers
(e.g., for the dynamics while staying within a state). In par-
ticular such continuous (random) quantifiers arise, if sensor
measurements are accounted for in the verification of a con-
troller interacting with the physical environment via noisy
sensors (see [12]).

2.2 Model checking of stochastic hybrid automata:
related work

In the following, we briefly review statistical model checking
and the existing work on SSMT solving.

Statistical model checking. Inspired by classical hypothesis
testing based on a set of data samples, statisticalmodel check-
ing uses generated traces of the system under investigation to
estimate the probabilitywithwhich agivenproperty holds.To
this end, the system has to provide a trace generator [13,14].
As such a trace generator can only generate finite trajecto-
ries, only bounded time properties can be checked with such
an approach. However, if more structure of the underlying
model is known (e.g., a continuous time Markov chain [15])
these structures may be exploited to reason about unbounded
properties as well. Also, additional information, for example,
in terms of associated costs, can be incorporated [16]. Instead
of hypothesis testing, one can also impose a prior distribu-
tion on the probability of satisfaction and update a Bayesian
belief sequentially as new samples are drawn from the gener-
ative model [17]. Most approaches are only applicable, if no
decisions are needed to be resolved other than random non-
deterministic ones, however, see [18] for a recent extension
to Markov Decision Processes.

SSMT solving. Based on the iSAT [19] algorithm for SMT
problems, an algorithm called SiSAT [6] has been developed
to solve SSMT problems efficiently. It implements a fully
symbolic solving procedure based on the traversal of the
prefix tree, using extended conflict driven clause learning
(CDCL) procedures and pruning rules. The computed prob-
ability of satisfaction comes with absolute certainty, that is
SiSAT terminates, if the probability is guaranteed to be larger
than a given threshold or it has been computed exactly. The
pruning rules allow SiSAT to ignore parts of the quantifier
tree if the outcomeof the decisions could be inferred or has no
impact on the result (e.g., if the target threshold has already
been exceeded or cannot be reached anymore). Otherwise,
the algorithm has to perform an exhaustive search over the
state space. Due to this exhaustive search, the number of
leaves in the tree—and hence the number of SMT problems
to solve—depends exponentially on the number of quantified
variables in the prefix. Although SiSAT has to examine expo-
nentially many leaves in the worst case, the memory usage
is still limited, as the tree is searched in a depth-first manner.

3 Review of hierarchical optimistic optimization (HOO)
algorithm

Statistical solving of a nested SSMT formula [see Eq. (1)] is
a case of maximizing an expected value based only on noisy
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function evaluations, like those provided by Monte Carlo
sampling. This noisy optimization problem has recently been
studied in [10], resulting in an algorithm called hierarchi-
cal optimistic optimization (HOO). In the following, we first
review this algorithm, as it forms the basis of our approach to
solve problems involving nested, alternating quantifiers. We
then demonstrate how this algorithm can be adapted to solve
a slightly modified, more general parametric case, which in
turn can be used to solve the nested, alternating quantifica-
tion.Mathematically, the special case considered by theHOO
algorithm can be written as follows:

max
x∈X

μ(x) = max
x∈X

∫

Y
f (x, y)p(y|x)dy (4)

It is thereby assumed that the conditional probability den-
sity function p and the function f are unknown1, but that one
can draw samples y for a given x and therefore of the random
variable z which results from using this sample and plug it
into the function f . In that way, one could approximate the
mean function μ at any point x via the empirical average,
obtaining a noisy estimate. Furthermore, there are a few reg-
ularity assumptions on the function μ, which are necessary
to solve the optimization problem. For the sake of simplicity,
we restate the main assumptions in a more restrictive way
compared to [10]:

1. Sample boundedness: it is assumed, that each sample and
hence the mean-payoff function is bounded, i.e., P(z ∈
[0, 1]) = 1 and therefore μ(x) ∈ [0, 1].

2. Domain boundedness: it is assumed that the domain X is
bounded, i.e.,X ⊆ [a, b]n with |a|, |b|, n < ∞.

3. Lipschitz continuity: The function μ is assumed to be
locally (around its maximum) Lipschitz continuous with
known constant ν.

These assumptions can be weakened considerably by
assuming only weakly Lipschitz continuous functions in a
topological space, where the Lipschitz continuity holds with
respect to a similarity measure. However, for the sake of sim-
plicity, we formulated the above, more restrictive assump-
tions in Rn .

The HOO algorithm successively acquires knowledge
about the noisy function to be optimized. More precisely,
the function is more accurately explored around its apparent
maximum and is investigated with less precision anywhere
else. To this end, the optimization domain is decomposed into
a binary tree, which is explored using an upper confidence

1 In fact, the distribution is not required to allow a representation with
a density function. However, as we will assume the existence of such a
function later, we assume it here for the sake of simplicity.

bound (UCB) strategy [8,20]. Within the HOO algorithm,
the domain X is represented by a covering tree Xh,i :

X0,1 = X ,

Xh,i = Xh+1,2i−1 ∪ Xh+1,2i , 0 ≤ h, 1 ≤ i ≤ 2h

Within this covering tree, each node h, i maintains the fol-
lowing quantities on an “as needed” basis:

Bh,i Main quantity of interest as it represents the upper con-
fidence bound for the maximal mean-payoff function
value within the sub-domain Xh,i covered by a node i
at depth h. If the node has not been visited yet, its B
value is initialized by∞. The B values constitute upper
confidence bounds with confidence level δ, i.e., satisfy

P

(

max
x∈Xh,i

μ(x) < Bh,i

)

≥ 1 − δ

Th,i Number of times the node has been visited by the
algorithm.

Uh,i Another, yet more conservative, upper confidence
bound for the maximal expected value within the cov-
ered region.

μ̂h,i Empirical average of the payoff within the region Xh,i .

We only review the most important steps of the algorithm
and refer to [10] for details. Given a cover tree within the
nth iteration with its associated B values, a node is selected
using an upper-confidence-bound strategy. This amounts to
selectingnodes from the root to the leaves by always choosing
the child with the higher B value until an hitherto unvisited
node has been reached. For this node, both children within
the covering tree are initialized and for each of them, an
x is chosen arbitrarily from the corresponding sub-domain.
A single sample is drawn for this x and the corresponding
reward z in turn is used to update all U and B values on the
prefix path leading to the selected sub-domain. The updates
are as follows:

Th,i ← Th,i + 1 (5a)

μ̂h,i ← (1 − 1/Th,i )μ̂h,i + z/Th,i (5b)

Uh,i ← μ̂h,i + √
2 log(n)/Th,i + νρh (5c)

Bh,i ← min{Uh,i ,max{Bh+1,2i−1, Bh+1,2i }} (5d)

In Eq. (5c), the value νρh represents the width of the
maximal range of the mean function’s value within the sub-
domain at depth h, as ρh is the diameter of the sub-domain at
that depth and ν represents the Lipschitz constant. The term√
2 log(n)/Th,i in Eq. (5c) represents the additional slack one

has to add to render the resulting U value an upper bound
for the mean function with a confidence of at least 1 − n−4,
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where n is the overall number of iterations. This follows by
applying Azuma’s inequality for Martingales (see [10]).

Using this selection strategy together with the above-
mentioned updates, the HOO algorithm iteratively explores
the domain. It is important to note that each node and hence
each sub-domain maintains an upper bound (together with
an associated confidence term, depending on the number of
times the sub-domain has been explored) on the maximum
value of the mean function within its respective sub-domain.
Observe that the U values are only based on the samples
which are drawn at locations falling in the corresponding
sub-domain, whereas the B values hierarchically combine
the upper bounds from lower levels to obtain valid confidence
bounds on higher (larger sub-domains) levels and therefore
can only be tighter than the corresponding U values.

3.1 Example

To illustrate the HOO algorithm we use the following simple
example:

max
x∈[−5,5]Ey|x [1C (x, y)]

= max
x∈[−5,5]

∫

1C (x, y)Ny(μ = x, σ 2 = 20 + x2)dy,

where C = {x, y : x2 + y2 ≤ 10} (6)

The problem setup formally specified in Eq. (6) is illus-
trated in Fig. 2. The upper part plots themean function,which
is to be optimized and can be calculated analytically in this
special case. The two-dimensional integrand of Eq. (6) is
shown in the lower panel, only showing values larger than 0,
i.e., x2 + y2 ≤ 10.

Fig. 2 Graphical illustration of the simple optimization problem in
Eq. (6). The lower part shows the conditional Gaussian density, where
only the valid region C is shown whereas the upper part plots the mean
function to be optimized

The algorithm is applied using ρ = 0.5 and ν = 10
as parameters and starts with a tree consisting of a single
node X0,1 covering the full domain of x . The bound of its
child nodes X1,1 and X1,2 (and all new nodes afterwards) is
assumed to be initialized with B1,1 = B1,2 = ∞ (see Fig. 3,
entry n = 0). The iteration starts with the selection of a path
which follows the highest B values (UCB). Since both of the
children have the same highest bound, a Bernoulli trial with
p = 0.5 is used as a tie-breaker rule and π = (X0,1,X1,1)

is the selected sampling path. The new node X1,1 covers the
interval [−5, 0]. In a second step, a sample y value is drawn
for X1,1 by setting x = −2.5. In case of the example in Fig.
3 the sample y = 0.45 results in the reward being z = 1.
The nodes in π are updated using Eq. 5a and 5b. Then theU
value for each node of the tree—not only the nodes ofπ—are
updated using 5c. The last step is the update of the B values.
Therefore, the full tree has to be iterated from the leafs to the
root s.t. 5c is using the current B values of the child nodes.
Figure 3 illustrates the evolution of the cover tree within the
first 4 iterations of these steps.

4 Proposed method for solving nested SSMT problems

4.1 HOO algorithm using interval arithmetics

Instead of applying theHOOalgorithm to the noisy optimiza-
tion problemofEq. (4),we can also use interval arithmetics in
the following way to obtain a valid upper bound on the max-
imization problem. If we assume that we know the symbolic
form of the integrand which is suitable for handling it with
interval arithmetics, we can calculate the interval containing
all potential values the integrand can assume. By multiply-
ing this interval with the volume of the domain, we obtain an
interval which gives a safe over-approximation of the value
of the integral and hence also contains the optimum. More
precisely, denoting by

[l, u] = I f p ⊃ { f (x, y)p(y|x)|x ∈ X , y ∈ Y}
an interval containing all values of the integrand, which can
be determined by interval arithmetics from the symbolic form
of f and p, we directly obtain the following interval bound
on the maximum:

max
x∈X

μ(x) ∈ [|Y| · l, |Y| · u]
︸ ︷︷ ︸

I f p ·|Y |
(7)

However, this bound is not very tight, asmaximal andmin-
imal values are not very tight enclosures of the integrand.
The HOO algorithm, as presented in the previous section,
uses the Lipschitz constant of the mean function to obtain
a valid bound on the values across a range of possible x
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Fig. 3 Illustration of the cover
tree generated by the HOO
algorithm after n = 4 steps.
Numbers marked in bold letters
are on the sample path for that n

X−5 5

n B U
0 ∞ ∞
1 11 11
2 11.33 6.18
3 11.68 7.05
4 11.62 6.67

X0,1

n B U
0 ∞ ∞
1 6 6
2 11.33 6.18
3 11.68 7.05
4 11.62 6.67

X

X1,1
n B U
0 ∞ ∞
1 ∞ ∞
2 6.18 6.18
3 6.48 6.48
4 6.67 6.67

X

X1,2

n B U
1 ∞ ∞
2 ∞ ∞
3 ∞ ∞
4 4.17 4.17

X

X2,1

n B U
1 ∞ ∞
2 ∞ ∞
3 4.99 4.99
4 5.17 5.17

X

X2,2

values by estimating the integral at a single point x statis-
tically and bounding the variation using the Lipschitz con-
stant. As the Lipschitz constant of the mean function in gen-
eral is not known and also might be difficult to compute,
even if the symbolic form of the integrand is known, we use
the following combination to obtain a valid statistical bound
on the maximal mean function across a given sub-region.
First, we rewrite the integral in (4) by introducing a proposal
distribution q following a well-known importance sampling
approach:

max
x∈X

∫

f (x, y)p(y|x)dy = max
x∈X

∫

f (x, y)
p(y|x)
q(y)

q(y)dy

(8)

Here q is an arbitrary choice of a proposal distribution,
which we use to sample y independent of x ∈ X as the spe-
cific x value would be necessary to sample from the original
distributions characterized by p(y|x). Instead of using inter-
val arithmetics to obtain one interval for all values of x and
y, we are now using it to calculate intervals for individual yi
samples generated from the proposal q:

̂μ (X ):= 1

N

N∑

i=1

Ii (9)

Ii ⊇
{

f (x, yi )p(yi |x)
q(yi )

∣
∣
∣
∣ x ∈ X

}

, yi ∼ q (10)

We thereby obtain an interval estimate containing with a
certain probability all values reached by the mean function.
To quantify the quality of this estimate, we can—analogously

to the HOO algorithm—use the Hoeffding–Azuma inequal-
ity for Martingales:

max
x∈X

∫
f (x, y)p(y|x)

q(y)
q(y)dy (11)

≤
∫ (

max
x∈X

f (x, y)p(y|x)
q(y)

)

q(y)dy=:μ∗ (12)

⇒ P

⎛

⎝μ∗ ≤ ̂μ(X )
+ + |I f pq |

√

2 log
(
δ−1

)

N

⎞

⎠ ≥ 1 − δ,

(13)

I f pq ⊃
{
f (x, y)p(y|x)

q(y)
|x ∈ X , y ∈ Y

}

(14)

where we used I+ to denote the upper boundary of an inter-
val I = [I−, I+]. Note that, instead of assuming a [0, 1]
support for the individual samples, we have to account for
the larger variation. To this end, we have to know the support
of the importance factor. I f pq is an over-approximation of
the potential values the integrand can assume, which again
can be obtained using interval arithmetics. As an analogous
statement holds for the minimum over all x values, we have:

P

⎛

⎝̂μ(X )+|I f pq |
√

2 log
(
δ−1

)

N
[−1, 1] ⊃ μ(X )

⎞

⎠ ≥ 1−δ

(15)

That is, instead of using the update in Eq. (5c), thereby
accounting for the correction (νρh) obtained from the Lip-
schitz constant, we directly bound the variation across the
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(sub-)range of x values using interval arithmetics. As a con-
sequence of using intervals, we are not only able to keep
track of the upper bound but also of the lower bound. Taken
together, we compute the following updates in our interval-
based HOO algorithm:

Th,i ← Th,i + 1 (16a)

yk ∼ q (16b)

Ik,(h,i) = [I−
k,(h,i), I+

k,(h,i)]

⊇
{

f (x, yk)p(yk |x)
q(yk)

∣
∣
∣
∣ x∈Ph,i

}

using interval arithmetics

(16c)

μ̂+
h,i ← (1 − 1/Th,i )μ̂

+
h,i + I+

k,(h,i)/Th,i (16d)

μ̂−
h,i ← (1 − 1/Th,i )μ̂

−
h,i + I−

k,(h,i)/Th,i (16e)

Uh,i ←
[
μ̂−
h,i − |I f pq |

√
2 log(n)/Th,i , μ̂+

h,i

+|I f pq |
√
2 log(n)/Th,i

]
(16f)

Bh,i ← min{Uh,i ,max{Bh+1,2i−1, Bh+1,2i }} (16g)

As the only modification compared to the HOO algorithm
lies in the use of interval arithmetics to bound the varia-
tion within a given sub-region instead of applying a correc-
tion due to the Lipschitz constant, we obtain an algorithm
which similarly estimates the maximum of an expectation.
As interval arithmetics are guaranteed to give a valid over-
approximation of the interval containing all function values,
we have a guaranteed confidence bound on the maximal
function value using the B values at the root of the cover
tree without assuming any value for the Lipschitz constant.
However, we have to assume that we know the symbolic
form of the involved functions which is a much more restric-
tive assumption than just knowing the Lipschitz constant.
Nevertheless, the evaluation can be more efficient compared
to the Lipschitz-based HOO algorithm when the assumed
Lipschitz constant is much larger than the actual Lipschitz
constant. To illustrate the effect on the efficiency of the
accuracy with which the Lipschitz constant and hence the
maximal expected value is bounded, we use the Gaussian
example (see Sect. 5.2). We run the HOO algorithm using
the interval-based evaluation and artificially add a Lipschitz-
based term to the evaluation of the samples to Eq. (16f). We
added L · diam(Ph,i ), where L represents the over-estimate
of the Lipschitz constant resulting in an over-estimate of the
local U -estimate. The resulting effects on the accuracy on
the estimate for the original HOO algorithm are shown in
Fig. 4 for a range of different L values and a fixed number
of iterations.

As can be seen, over-estimating the Lipschitz constant
only slightly leads to quite dramatic effects on the accuracy
for a fixed number of evaluations. Nevertheless, even if the
Lipschitz constant is over-estimated, the algorithm can still

be shown to perform well compared to other algorithms (see
[10]). Therefore, using interval arithmetics instead of a Lip-
schitz constant can lead to an improved efficiency without
loosing any guarantees. Note, however, that also using inter-
val arithmetic can lead to an over-estimation of the possible
variation of themean functionwithin a sub-domain, as it only
gives an over-approximation of the true image of the mean
function [c.f. Eq. (10)]. Furthermore, using importance sam-
pling can decrease the performance of the algorithm as the
variation of f p

q has to be evaluated instead of just f , reflect-
ing the fact that the choice of a proposal distribution can
have significant impact on the accuracy of the estimator. As
we assume the domains to be bounded, we choose for the rest
of study as proposal distribution the uniform distribution

q(y):= 1

|Y| . (17)

This has the additional advantage that the number of occur-
rences of the variable y is reduced in the term defining the
integrand, facilitating the calculation of Ik, (h, i) and I f pq .
The effect of over-approximation due to the use of interval
arithmetic is reduced in turn.

The interval version of the HOO algorithm presented can
also be applied if there is an additional variable entering
the integrand in Eq. (8) which has an unspecified domain.
To determine the value of such a parametric optimization
problem, we again handle it as a problem of interval arith-
metic. That is,we calculate themaximal andminimal value in
the same fashion as we calculated the maximal and minimal
value of the mean function as a function of the optimization
argument:

Fig. 4 Effect of the over-estimation of the Lipschitz constant on the
estimated confidence interval after a fixed number (5,000) of iterations
of the algorithm. The results are averaged across 10 repetitions. For
evolution as a function of evaluations, see Fig. 10
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∫

min
z∈Z

min
x∈X

f (x, y, z)
p(y|x, z)
q(y)

q(y)dy

≤ min
z∈Z

min
x∈X

∫

f (x, y, z)
p(y|x, z)
q(y)

q(y)dy

≤ max
z∈Z

max
x∈X

∫

f (x, y, z)
p(y|x, z)
q(y)

q(y)dy

≤
∫

f (x, y, z)max
z∈Z

max
x∈X

p(y|x, z)
q(y)

q(y)dy (18)

If we apply interval arithmetic in Eq. (10) not only to the
sub-domain ofX but also to the domainZ , we consequently
obtain lower and upper confidence bounds on the probability
of satisfaction, which hold uniformly across the domain Z .

4.2 Extension to nested problems

The case of a parametric noisy optimization problem con-
sidered in the previous section corresponds to a special para-
metric SSMT problem and can be generalized to arbitrar-
ily nested quantified variables as explained in the following.
Intuitively, instead of having a single cover tree representing
the domain of the optimization variable (universally or exis-
tentially quantified), we represent the domain of each vari-
able including the randomized ones with a cover tree, which
is conditioned on the prefix of sub-regions of previous vari-
ables within the quantification prefix2. This prefix to a cover
tree then acts as a parametrization in analogy to the (poten-
tially multi-dimensional) z variable in the previous section.
If a variable is ranging over a continuous domain, we use the
same scheme as before, i.e., refinement of the cover tree is
done during the iteration of the algorithm. If the variable has
valuations in a discrete domain, we represent its domain as
a tree with as many branches as there are valuations for this
variable without any need for further refinement.

In Figs. 5 and 6, we illustrate the representation for the
different domains and how they are iteratively refined. The
path to be selected for further exploration within this forest
is chosen based on an assessment of how promising this path
seems to be. The details of the selection strategy are described
next. Once a path is selected, one variable along the path is
selected to split its domain (so far depending only on the
width of the smallest sub-domain along the path). For a brief
overview of the overall algorithm, see Algorithm 1.

4.2.1 Representation and assumptions

To describe the details of the algorithm, we start with the
overall representation of the current state of an evaluation.
The representation closely follows the procedure from the
interval-based HOO algorithm from the previous section.

2 Those variables which are mentioned within the quantifier prefix
before the current variable.

Algorithm 1 Nested HOO for SSMT overview
function SSMT-HOO(Formula, threshold, confidence, N)

tree ← BuildDecisionTree(Formula)
confidence ← 1-(1-confidence)/N � Correction for
sequential test
n ← 0
while getConfidenceBounds(tree, confidence) ≥ threshold

and n ≤ N do
path ← selectSplitPath(tree)
sample ← sample(path)
tree ← update(tree, sample)
n ← n + 1

end while
return getConfidenceBounds(tree, confidence) � Bounds
on the probability of satisfaction

end function

That is, it also represents the domains of the different quan-
tifiers by a cover tree. As the quantifiers are nested, so are
the cover trees, rendering the overall representation into a
forest of cover trees. The leaves of a cover tree of an inter-
mediate quantifier have a single child, which is the root of
the next cover tree. Such an intermediate cover tree, however,
is conditioned on the sub-domain of the entire prefix in the
cover tree (see Fig. 5 for an example of an initial cover tree
and Fig. 6 for an updated version). Analogous to the HOO
case, quantifiers having associated continuous variables are
initialized with just a single node (representing the whole
domain), which is refined iteratively during the evaluation.
Cover trees for quantifiers over discrete domains, however,
are initialized having as many branches as there are possible
valuations for the associated variable. Each node memorizes
quantities reflecting the number of visits, empirical averages,
and confidencebounds [seeEq. (5)].Asweare using intervals
for the representations (see previous section), these quanti-
ties are memorized for both upper and lower bounds. In addi-
tion to the confidence-related quantities, the support for the
integrand (including the importance weights) is memorized
within each node. This is necessary as due to using the impor-
tance sampling scheme, the support of the integrand is not
always limited to [0, 1], but can assume larger intervals [see
Eq. (15)].

More precisely, to each quantifier Q j within an SSMT
formula Q1, . . . , Qn[φ(x1, . . . , xn)] we associate a cover
tree P j

h,i covering its domain. Using this cover forest, the
operation associated with the quantifier Q j (such as max-
imization for existential, minimization for universal, and
expectation for randomized quantifier) is cast into a para-
metric one. That is, given a prefix for an intermediate
cover tree, the result of an evaluation of the sub-formula
Q j Q j+1 . . . Qnφ(x1, . . . , xn) has to consider all values for
the variables within the prefix, i.e., an evaluation result has to
hold uniformly across the prefix domain. We denote the pre-
fix of variables for variable j with x↘ j :=(x1, . . . , x j−1). In
addition, we need to associate the domain prefix with a point
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Fig. 5 Initial cover tree
representation. In this example
the SSMT formula is set to
∀x1∃x2 R

x3 : φ(x1, x2, x3). The
highlighted path within this tree
marks the path which is selected
by the selection operation (see
Sect. 4.2.2). Within this path a
node (in this case the root node)
is selected for splitting the
domain
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Fig. 6 Cover tree representation after a iteration. Here the updated version of this representation is shown
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within the forest of cover trees. We denote this prefix with
P↘ j :=× j

k=1 Pk
h∗(k), j∗(k), where the index (h∗(k), i∗(k))

denotes the largest index within the cover tree of variable
k on the selected path to j . For the sake of simplicity,
we omitted the dependence of this prefix domain on the
specific cover tree of variable j to which it is leading, as
we are always concerned with complete paths within the
tree. For example, in Fig. 5, considering the selected path
P1
0,1,P2

0,1,P2
1,2, P3

0,1, the prefix P↘3 would consist of just

P1
0,1 ×P2

1,2, that is (h∗(0), i∗(1)) = (0, 1); (h∗(1), i∗(2)) =
(1, 2).

Given this notation, to solve the parametric form of
the SSMT problem holding uniformly across the pre-
fix domain, we have to solve the following set of prob-
lems:

min
x↘ j∈P↘ j

Q j [φ j+1(x j , x↘ j )] and

max
x↘ j∈P↘ j

Q j [φ j+1(x j , x↘ j )]
(19)

Here, φ j+1 represents the postfix or remainder of the
formula, i.e., a function that only captures the dependence
of the current variable and the prefix and abstracts over
the postfix variables x j+1, . . . , xn . In the simplest case,
this corresponds to the calculation of upper and lower
bounds for a given leaf node within the decision tree of
the previous section. In that situation, Q j would corre-
spond to a randomized quantifier and φ j+1 is the known
function φ of Eq. (1). To estimate these upper and lower
bounds, we use the combination of importance sampling
and interval propagation as detailed in the previous sec-
tion. To be able to apply this procedure in the nested set-
ting, we assume that we can draw a sample interval func-
tion
(
φi
j+1 : P j

h,i × P↘ j → (
R+)2) ∼ πφ j+1

from a distributionπφ j+1 whose support functionφs
j+1 is also

known. Thus, the samples (indicated by the index i) of πφ j+1

can be evaluated at any (x j , x↘ j ):

φi
j+1(x j , x↘ j ) = [φi

j+1
(x j , x↘ j ), φ

i
j+1(x j , x↘ j )]

φs
j+1(x j , x↘ j ) s.t. :

P
(
φi
j+1(x j , x↘ j ) ⊂ φs

j+1(x j , x↘ j )
)
=1 ∀i

For the distribution πφ j+1 to be constructed below, we will
show that it has the desirable property of giving conser-
vative confidence intervals for the probability of satisfac-
tion outlined in Eq. (19). These quantities will be memo-
rized as functions, hence the conservative confidence inter-
vals can be calculated for arbitrary values of confidence lev-
els.

With this representation, the general procedure of the
modified algorithm consists of the path selection and domain
splitting, drawing samples and finally updating the quantities
at the nodes within the decision tree using the information
obtained from these samples (see Algorithm 1).

4.2.2 Path selection and domain splitting

Given a forest of decision trees, the selection of a path along
the forest is nearly unchanged compared to the HOO algo-
rithm. That is, in analogy to the HOO algorithm and the one
presented in [7], a child is selected according to its upper and

lower confidence bounds (denoted by B j
h,i , B

j
h,i ) for exis-

tential and universal quantifiers, respectively. If there is no
unique maximal (for existential quantifiers) or minimal (for
universal quantifiers) branch, among the optimal branches
one is selected at random (uniformly). In the case of a ran-
domized quantifier, we choose a child at random, uniformly
distributed across all children, thereby guaranteeing a uni-
form proposal distribution q for the importance sampling
estimate in Eq. (10), see below. After this path selection
process for each variable, we have selected a path within
its cover tree each of which has a smallest sub-domain.

Within the HOO algorithm, there is only one cover tree
representing the domain of the variable to optimize over,
hence the selected path leading to a leaf of this cover tree
has the smallest domain at the leaves. This sub-domain is
split into two sub-domains thereby refining the region which
should be explored next. As the selected path in the nested
setting contains multiple domains, we select one variable,
i.e.,one cover tree within the tree of trees, for which we
refine the smallest domain analogously to the HOO algo-
rithm. Among all variables within the SSMT formula, we
decide for the variable which has the largest domain at its
leaf node along the selected path through the decision tree.
Note that for cover trees corresponding to a quantifier over a
finite domain, the leafs (smallest sub-domains) contain only a
single point. These quantifiers are never selected for splitting
the domain.

In addition to splitting the sub-domain, we have to deal
with the part of the decision tree below the node which is
selected for refinement (for example, in Fig. 5 the sub-tree
with the existential quantifier over x2 as root node). To this
end,we create a copy of this sub-tree such that each of the leaf
nodes after a refinement is linked to one copy (see Fig. 6 for
the resulting tree after a refinement of the root node, which
in this example is also a leaf node of the first cover tree
for variable x1). As samples must not be copied—it would
violate the independence assumption of the drawn samples,
i.e.,we would use a single sample multiple times—we only
copy the support calculation for the sub-formulas associated
with the nodes within the sub-tree and delete the individual
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samples. Note that although the prefix of the copy of the sub-
tree changes, the support for values of the corresponding
sub-formula is still valid, i.e., gives an over-approximation
of the actual support, as it was valid for the larger domain and
by splitting the prefix domain values can only shrink. Instead
of only splitting the largest sub-domain, we could also divide
every sub-domain within the selected path. However, for all
results shown in Sect. 5, we only split the largest sub-domain.
The final selected path after the splitting then results from
concatenating the selected prefix, selecting one of the newly
created sub-domains at random (uniformly distributed), and
adding the selected path before splitting within the postfix.

4.2.3 Draw a sample

Within the selected path of nodes from the root of the deci-
sion tree to the leaves, we have sampled sub-domains for
the randomized quantifier. To obtain a point sample which
is uniformly distributed across the complete domain of the
randomized quantifier, we additionally sample a point from
the selected leaf of a randomized quantifier. For reference,
let the kth sample point at the randomized quantifier Q j be
denoted with x̃ kj . This point sample is in turn used to gener-
ate the random functions by valuating variable x j within the
function φ and density functions using this sample, but leav-
ing the dependence of the other variables symbolically. As
samples are drawn uniformly across the domain instead of
using the original probability distribution, we have to correct
for this by multiplying the random function by the impor-
tance weight given by the density of the uniform distribution

1
|P j

h,i |
[see also Eq. (17)].

4.2.4 Updates

Starting at the bottom of the decision tree, we iteratively use
the point samples drawn at the previous stage to construct an
interval function sample for each quantifier along the selected
path, which in turn can be used for upper quantifiers within
the path and thereby constructing the distribution of interval
samples. In the simplest case of a leaf node at the very bottom
of the decision tree, the sample of the sub-tree would con-
sist of the interval function φ from Eq. (1). In that case, the
individual samples and the support function would be identi-
cal. Assuming thatwe have drawn such an interval sample for
the postfix quantifier φi

j+1, we can construct upper and lower
empirical averagesμ, respectively, which in turn can be used
to set upper and lower U values, similar to the HOO algo-
rithm described in the previous section. That is, depending
on the current quantifier Q j , we have the following definition
of lower and upper bounds for the empirical averages:

[μ j−
h,i , μ

j+
h,i ] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
T j
h,i

∑T j
h,i

k=1 φk
j+1(P

j
h,i ,P↘ j ) if Q j ∈ {∀x j ∃x j }

1
T j
h,i

∑T j
h,i

k=1
φk
j+1(x̃

k
j ,P↘ j )p(x̃ kj |P↘ j )

1

|P j
h,i |

, x̃ kj ∼ UP j
h,i

if Q j = R

x j

φk
j+1(P j

h,i ,P↘ j ) ⊃
⎡

⎣ min
x j ,x↘ j∈P j

h,i×P↘ j

φk
j+1(x j , x↘ j )

−,

max
x j ,x↘ j∈P j

h,i×P↘ j

φk
j+1(x j , x↘ j )

+
⎤

⎦

φk
j (x j−1, x↘( j−1)
︸ ︷︷ ︸

x↘ j

):=

⎧
⎪⎪⎨

⎪⎪⎩

φk
j+1

(
P j
0,1, x↘ j

)
if Q j ∈ {∀x j ∃x j }

φk
j+1

(
x̃ kj , x↘ j

)
p(x̃ kj |P↘ j )|P j

0,1|
if Q j = R

x j

φs
j (x↘ j ) ⊃

⎡

⎣ min
x jP j

h,i

φs
j+1(x j , x↘ j )

−, max
x j∈P j

h,i

φs
j+1(x j , x↘ j )

+
⎤

⎦

(20a)

Here, as we assumed to have access to the symbolic form
of the functions involved (in particular the conditional den-
sity function p(x j |x↘ j )), an upper and lower bound on the
maximum and minimum, respectively, in the last equation
can be calculated using interval arithmetic. The equation for
the randomized quantifier also recursively defines the distri-
bution from which we can draw sample interval functions
for sub-trees/quantifiers above the current node using impor-
tance sampling. Specifically, one first draws a point x̃ kj from
the (sub-)domain of the current quantifier according to a pro-
posal distribution, which we assumed here to be the uniform
distribution. Using this point sample, we can weight the sam-
ple of the postfix tree φk

j+1 using the importance weight

p(x̃ kj |·) · |P j
h,i | to obtain a sample function, which can be

evaluated at any prefix domain. That is, the kth term in the
sum of the above equation can be used as a sample for the j th
quantifier. For the quantifiers other than the randomized one,
we evaluate the sample from the postfix on the whole sub-
domain P j

h,i using interval propagation to obtain an interval
sample with the desired properties outlined in the previous
section. Given these empirical averages, we can construct
upper and lower bounds U analogously to the HOO algo-
rithm, which require to hold with a confidence of at least
1 − 2δ:

[U j
h,i (δ),U

j
h,i (δ)] = [μ j

h,i
, μ

j
h,i ]

±

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|φs
j+1(P j

h,i ,P↘ j )|
√

− log(δ)

2T j
h,i

: Q j ∈ {∃,∀}
|φs

j+1(P j
h,i ,P↘ j )||p(P j

h,i |P↘ j )||P j
h,i |

√

−log(δ)

2T j
h,i

: Q j = R

(21)
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Here | · | denotes the width of the support and width of the
domain, respectively. Calculating the support of the impor-
tanceweights in the case of a randomized quantifier can again
be achieved using interval arithmetics, aswe have assumed to
have symbolic access to the involved functions. These bounds
give a uniform (over the whole prefix domain) bound on the
expected values and therefore provide bounds on the maxi-
mum and minimum with the necessary level of confidence.
Specifically, the following holds:

Lemma 1 Let U j
h,i (δ) be defined as in Eq. (21), then the

following holds:

P

(

U
j
h,i > max

P↘ j

E[φ j+1(x1, . . . , xn)]
)

≥ 1 − δ

Note if we chose δ = n−4, we obtained the choice of the
HOO algorithm in Eq. (5c). However, if the choice of the
confidence level depends on the overall number of evalua-
tions n, the U values would have to be updated within the
whole tree, as δ enters directly the defining Eq. (21). There-
fore, we directly set δ to a fixed value from the start. As a
consequence, we only need to update the values along the
selected path. As the HOO algorithm subsequently samples
individual points within the domain of the optimization vari-
able, the resulting rewards are dependent and hence one has
to show that the resulting sequence forms actually a Mar-
tingale. In contrast, we are sampling independently and uni-
formly from the domain of each randomized quantified vari-
able [see Eq. (20a)]. Sampling uniformly from the domain
can also be seen as a proposal distribution, rendering the esti-
mation of the expected value into a (parametric) importance
sampling-based estimate. In addition, the domain of each
parameter in this expectation is considered on each individ-
ual sample. Thus, instead of applying Hoeffding’s inequality
[21], we could also use a potentially tighter bound, such as
the empirical Bernstein inequality [22], thereby obtaining a
uniform confidence bound on the true range of the underlying
expected value as a function of the parameters involved.

To construct tighter bounds, i.e., B values, also in a sim-
ilar fashion to the previous section, we have to combine the
confidence bounds provided by the above equations for the
different operations associated with the different quantifiers,
thereby propagating confidence intervals from the bottom to
the root of the decision tree (forest) [7]. To this end, we state
the following Lemmas.

Lemma 2 Assume P
(
μi ≤ μ̂i − εi

) ≤ δ, i = 1, 2 and let
li :=μ̂i − εi . Then the following holds:

P (max{μ1, μ2} ≤ max{l1, l2}) ≤ δ

Analogously, we have for the upper bound

Lemma 3 Assume P
(
μi ≥ μ̂i + εi

) ≤ δ, i = 1, 2 and let
ui :=μ̂i + εi . Then the following holds:

P (max{μ1, μ2} ≥ max{u1, u2}) ≤ δ

Therefore,we can use themaximumof the twoU values of
the two branches to construct a tighter B value bound on the
maximum over the domain, represented by the two branches.
Analogously, it can be shown that the same statements hold
if the maximum is replaced by a minimum, thereby provid-
ing combination rules for a minimum operation, i.e., uni-
versal quantifier. Note that the actual form of the upper and
lower bound estimates does notmatter here. In fact any bound
which holds up to the given confidences can be applied. That
is, combining two U values or combining a U value with an
already combined other bound result both in a valid bound on
the maximum or minimum, respectively. Taken together, we
update the B values, once we updated the U values, exactly
as in the HOO case:

B j
h,i = min{U j

h,i ,max{B j
h+1,2i , B

j
h+1,2i+1}} if Q j = ∃

B j
h,i = max{U j

h,i ,min{B j
h+1,2i , B

j
h+1,2i+1}} if Q j = ∀

(22)

For a randomized quantifier, we need to sum two confi-
dence intervals, which we split in the sum of the upper bound
and the lower bound, respectively. Note that in the standard
HOO setting, the domain of the random variable is not split,
hence there is no combination of bounds for this kind of
operation. Unfortunately, the sum of two confidence inter-
vals does not necessarily hold with the same confidence as
the individual ones. Therefore, we distribute the confidence
level to each of the individual ones to obtain the same overall
confidence when multiplied. As the samples in each branch
are assumed to be drawn independently, we have the follow-
ing lemma for the sum of two confidence intervals.

Lemma 4 Assume P
(
μi ≥ μ̂i + εi

) ≤ δi , i = 1, 2 with
δ1 · δ2 = δ and let ui :=μ̂i + εi . Then the following holds:

P (μ1 + μ2 ≥ u1 + u2) ≤ δ

4.2.5 Stopping criterion

For a fixed level of confidence δ, we can iteratively select,
split, sample, and update the decision tree to obtain confi-
dence intervals, in particular at the root of the decision tree,
which states intervals containing the true value up to the
given confidence. These intervals only hold for a particular
choice of iterations chosen in advance. However, oftentimes
the decisionmaker would like to decide sequentially, as more
information becomes available. To obtain a valid sequential
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Algorithm 2 Calculating the confidence bounds for a
node
function getConfidenceBounds(node, confidence)

localConfidence ← HoeffdingBound(node, confidence) �
See equation (21)
if node =̂ R

then
n1 ← node.childLeft.n; n2 ← node.childRight. � Number
of evaluations
1 − δ ← confidence

(1 − δ1) ← (1 − δ)
n1

n1+n2 ; (1 − δ2) ← (1 − δ)
n2

n1+n2

interval1 ← getConfidenceBounds(node.childLeft,
(1 − δ1))
interval2 ← getConfidenceBounds(node.childRight,
(1 − δ2))
propInterval ← interval1 + interval2

else if node =̂ ∃ then
interval1 ← getConfidenceBounds(node.childLeft, (1−δ))
interval2 ← getConfidenceBounds(node.childRight,
(1 − δ))
propInterval ← max(interval1, interval2)

else if node =̂ ∀ then
interval1 ← getConfidenceBounds(node.childLeft, (1−δ))
interval2 ← getConfidenceBounds(node.childRight,
(1 − δ))
propInterval ← min(interval1, interval2)

end if
return localConfidence ∩ propInterval

end function

hypothesis test, based on the proposed algorithm to calculate
the confidence intervals for the root node, we chose the con-
fidence levels to be δ = �

N with � being the desired sequen-
tial confidence level and N denoting the maximal number of
evaluations one is willing to perform in the worst case. This
decision rule is known from the so-called racing algorithms
(see [23]). Using this increased confidence level accounts
for the fact that in a sequential setting the decision maker
can make a wrong decision at any stage before the maximal
number of evaluations with a probability bounded by some
confidence level. As the number of these sequential decisions
increases, the probability of making such a wrong decision
also increases which is bounded by the sum of the probabil-
ities of wrong decisions across the number of possible test,
i.e., maximal number of evaluations.

Taken together,wehave the followingAlgorithm2 to com-
bine the different estimates within the decision tree to a con-
fidence interval which holds with a given level of confidence.
Here, we have chosen a specific separation of confidences,
depending on the number of evaluation of the two branches
n1, n2. This particular choice offers a trade-off between the
cases n1 = n2 and n1 = 0, n2 > 0 (n2 = 0, n1 > 0), for
which optimal choices can be calculated.

4.3 Confidence intervals for nested algorithm

The main result of the algorithm lies in the confidence inter-
vals at the root node, which can be computed at any given

time during the execution of the algorithm. As mentioned,
care has to be taken when this confidence interval is used as
a sequential hypothesis test. Using the Lemmas from the pre-
vious section, we can state the main result in the following
theorem.

Theorem 1 Let Φ:=Q1 . . . Qk : φ(x1, . . . , xk) be a given
SSMT formula. Further, let Bn(δ) = [Bn(δ), Bn(δ)] be the
estimated interval of the root node of the decision tree corre-
sponding toΦ after n evaluations obtained from Algorithm 2
and let 0 ≤ δ ≤ 1 be a given number. Then, Bn contains
the true probability of satisfaction (quantitative value of the
SSMT formula) with probability (over the sample space) of
at least 1 − δ:

P (Φ ∈ Bn(δ)) ≥ 1 − δ

Proof The local confidence intervals are calculated using
Eq. (21). If there are children descending from the current
node, this local confidence interval is returned by the algo-
rithm.As the corresponding samples are obtained using inde-
pendent samples of the uniformproposal distribution, and the
support of the samples are safely over-approximated using
interval arithmetics, Hoeffindg’s inequality can be applied,
so that the local confidence intervals are indeed confidence
intervals subject to the given confidence level δ. Again,
due to the over-approximating interval of the support [see
Eq. (20a)], Hoeffing’s inequality holds uniformly over all
specific values within the domains of the prefix to the cur-
rent node. Using Lemmas 2–4, we know that the propagated
intervals (propInterval within Algorithm 2) are also valid
confidence intervals to the same level δ. Therefore, returning
the conjunction of these two intervals gives a valid confidence
interval. ��

5 Evaluation

5.1 Path planning use case

To illustrate the potential of the approach on a use case,
we consider the following stochastic hybrid verification task
for a simplified decision making unit within the domain of
autonomous driving. In particular, we consider the following
scenario. In a constrained driving situation on an expressway,
an ego-vehicle (green car in Fig. 7) is forced to decide for
one of two potential options:

1. Staying on the right lane
2. Changing lanes

Both options have an associated risk of a collision, as
the vehicle in front of the ego-vehicle is considered to have
very low speed (∼0) whereas the car behind (blue vehicle)
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ego

blue

red

Fig. 7 Illustration of the path planning use case. The greenEgo-vehicle
has to decide to either stay on the lane or switching lanes depending on
its measurements of the distance to the other vehicles which might be
subject to measurement noise

has very high speed. Therefore, depending on the two dis-
tances to the vehicles, both options could lead to a collision.
If the ego-vehicle decides for a lane-change maneuver, the
blue vehicle behind is assumed to decelerate in order to mit-
igate a potential collision. The situation is further compli-
cated by the fact that the driver of the blue car is assumed to
have a stochastic reaction time after which an also stochas-
tic deceleration value is applied. Furthermore, we assume a
non-deterministic inaccuracy within the sensors of the ego-
vehicle such that the relative positions of the two vehicles
are not exactly perceived by the ego-vehicle. Within this sce-
nario, we are then interested in the existence of a best choice
between the two potential decisions. Here, a choice is consid-
ered to be better based on an additional cost function which
checks for collisions within a given setting. If a setting (pair
of distances, fix reaction time, fix deceleration, fixed decision
choice and fixed deviations of positions due to sensor inac-
curacies) leads to a collision, then the cost function assigns
higher costs to settings which have a larger difference in
velocities during collision. That is a collision between cars
running at 50km

h and 100km
h , respectively, is more costly than

a collision between cars at 50km
h and 51km

h . The existence of
a best choice can be formalized using the following SSMT
formula:

∀db∈Db∀d f∈D f

R

�t∼β(αt ,βt )

R

ab∼β(αa ,βa)∃i∈{0,1}∀εp∈�p∀εv∈�v :
ci (db, d f ,�t , ab, εp, εv) < c{i}c (db, d f ,�t , ab, εp, εv)

(23)

Within this formula, we assumed a beta distribution for
both the distribution of reaction times of the blue vehicle’s
driver and the distribution of deceleration values she chooses
after the reaction time. For the sake of simplicity, the beta
distributions are characterized by fixed shape and scale para-
meters α and β. Note that the approach would also allow for
these parameters to depend on the two distances d f and db.
The particular choice of distributions is shown in Fig. 8.

εp and εv are the deviations in positional and velocity sen-
sor measurements due to internal inaccuracies. To compute

(a) Reaction time, α = 2, β = 4

(b) Deceleration, α = 3, β = 3

Fig. 8 Reaction time and random deceleration distribution.

the costs incurred with either of the two decision options, we
use a simple quadratic dynamic model, assuming piecewise
constant acceleration:

st = s0 + tv0 + 1

2
t2a0 (24)

Here, st represents the different positions of each of the
vehicles, and v0 and a0 are their velocities and accelerations,
respectively, at the time a decision is drawn (t = 0). If the
ego-vehicle is opting for the lane change, the acceleration for
the blue vehicle is set to ab after its reaction time �t . If for
a given setting characterized by the parameter combination
(db, d f ,�t , ab, εp, εv), a collision is detected between vehi-
cles having velocities v1 and v2, and the incurred collision
costs are defined to be:

c(db, d f ,�t , ab, εp, εv) = |v1 − v2|max(v1, v2) (25)
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This choice was made to account for the fact that impacts
at higher velocities are more severe than at lower speeds.
However, note that any other choice of cost function would
also be suitable. Intuitively the formula in Eq. (23) expresses
the minimal probability across distances that there exists an
option which is guaranteed to be the safer choice under all
possible sensor measurements, i.e. environments which are
consistent with the sensor data.

To evaluate this formula, we used the interval-based algo-
rithm presented in the previous sections. Note that the last
three quantifiers are non-random and can therefore be han-
dled using a standard SAT modulo theory solver addressing
the relevant fragment of arithmetic. In fact, analogously to
[7], we evaluated this part of the formula completely, again
using interval arithmetics. To this end, we have to deter-
mine the interval of potential collision speeds, which in turn
amounts to calculating first and last possible points in time
at which a collision could happen opting for either option
(lane change or staying on the lane). If the two costs for
the different options do not overlap, we know that there is
a guaranteed safer option for the particular choice of dis-
tances, reaction time, and deceleration. If the cost intervals
overlap, and the intervals specifying distances and reaction
time are below a critical value, we accept both options as
sufficiently safe. In Fig. 9, we plotted the evolution of the
confidence interval at the root, i.e., the confidence interval
for the overall probability of satisfaction for three differ-
ence confidence levels. Note that although we know that the
overall probability of satisfaction has to be between zero
and one, the estimated confidence interval is for relatively
few samples larger than this interval. We could have incor-

porated this additional knowledge; however, for illustration
purposes, we decided not to cut this interval. This is partly
because of the additional slack one has to add due to Hoeffd-
ing’s inequality as can be seen by the larger confidence inter-
val for higher confidence levels. Furthermore, the interval
arithmetics only give an over-approximation of the true val-
ues, hence the additional slack at the beginning, when the
branching has not progressed and therefore the individual
sub-regions are quite large. As can be seen from the right
panel in Fig. 9, when determining the minimal probability,
only one variable db seems to have a significant effect, as
the frequency of evaluating sub-regions of d f does not vary
across its domain, indicating a flat mean function over the
considered range.

5.2 Comparison with deterministic abstraction approach

Most other approaches to solve hybrid-stateMarkov decision
processes are based on abstraction approaches to evaluate
continuous problems as the ones studied in the previous sec-
tions (see [12,24,25]). To compare the presented algorithm
with such an approach,we use the simple example introduced
in Sect. 3.1. The corresponding SSMT formula encoding this
example is:

∃x in[−5,5]

R

y|x∼N (x,20+x2)(x
2 + y2 ≤ 10) (26)

To obtain a valid abstraction which can be used in other
model checkers, we equidistantly discretize both the domain
of the existentially as well as of the randomized quantified
variable. For each cell within the grid, we can calculate an

(a) Confidence Interval Evolution (b) Histogram over selected sub-regions. Only db seems to have a
significant effect, as the frequency of evaluating sub-regions of df
does not vary across its domain, indicating a flat mean function over
the considered range.

Fig. 9 Left panel Evaluation of the autonomous car decision problem.
The figure displays the confidence interval for the probability of satis-
faction as a function of number of iterations. Right panelDistribution of

distances explored for the autonomous car decision problem during the
evaluation. The figure displays the frequency after the 3,000 iterations.
Brighter regions indicate more frequent selection
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(a) Comparison of the interval-width

(b) Histogram of the selected location for the
 statistical algorithm

Fig. 10 Comparison of the presented algorithm and an abstraction
approach using a fixed discretization abstraction approach. Shown is
the width of the obtained (confidence) interval for the probability of
satisfaction as a function of evaluations or cumulative number of grid
cells of the abstraction, respectively. Results for the statistical evalu-
ation are averaged across 60 iterations. In the lower panel, we show
a histogram representing the frequency of selecting a sub-region for
further exploration

upper and lower bound on the probability falling into a given
cell in the same way as we did in Eq. (7). A determinis-
tic Model Checker then evaluates the complete discretiza-
tion tree and thereby obtains guaranteed upper and lower
bounds. The accuracy of this bound, however, depends on
the quality of the abstraction, that is, the resolution of the
discretization in this example. To compare the efficiency of
the two approaches in a sequential setting, we compare the
width of the obtained bound on the probability of satisfaction
as a function of the number of evaluations and the number
of cumulative number of grid cells in Fig. 10a. We chose
the cumulative number of grid cells to represent the effort
of a fixed discretization in a sequential setting, in which a
decision maker has the option to refine the discretization
to get a more accurate bound on the probability of satis-
faction at the cost of re-evaluating the whole domain at a
finer resolution. In addition, we plotted in the lower panel
the frequency with which a sub-region is selected for fur-

(a) Frequency of evaluations for different domain combinations es-
timated across 70000 iterations, where brighter regions indicate a
more frequent selection.

(b) Convergence of the estimated interval for different confidences.

Fig. 11 Evolution of the confidence intervals and histogram of the
explored state–action combinations

ther exploration at different stages of the evaluation process.
As can be seen, although the confidence for the individual
nodes during the execution of the algorithm is very close to
1 (as the maximal number of evaluations was set to 104), the
obtained confidence intervals are consistently tighter than
the corresponding guaranteed intervals resulting from an
equidistant discretization with a corresponding abstraction
approach.

5.3 Stochastic optimal control

To illustrate the behavior in amore complex setting, we adopt
a simple stochastic optimal control example, for which the
optimal solution can still be calculated analytically:

Xt+1 = AXt + BUt + �ε, ε ∼ N (0,1) (27a)

C(Xt , Ut ) = X�
t RxXt + U�

t RuUt (27b)

Here, X represents a state vector, which evolves over time
according to the linear stochastic dynamics (Eq. (27a)) under
the influence of a control inputU. The task of optimal control
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now consists of minimizing the expected costs C over con-
trol actions. Specifically, in a closed loop, bounded horizon
setting (here, we consider only 2 consecutive time steps), the
task can be formalized as a nested optimization–expectation
problem of the following form:

min
U0

EX1|U0,X0

[

min
U1

{

EX2|U1,X1

[
∑

t

C(Xt , Ut )

]}]

(28)

This corresponds to the following SSMT formula:

∀U0

R

X1|X0,U0∀U1

R

X2|X1,U1 : C(X1, U0) + C(X2, U1)︸ ︷︷ ︸
φ(X1,U0,X2,U1)

(29)

To simplify things even further, we choose all involvedmatri-
ces to be set to the identity matrix. The optimal control action
in this case can be calculated to be a function of the current
state Xt and is given by U∗

t = −Xt . With this action applied,
we arrive at the optimal costs given by sum of the variances
over the horizon to be considered:

C∗ = E[X2
1] + E[X2

1] + E[X2
2] = 3 (30)

To apply the algorithm presented in the previous sections,
we have to constrain the different variables to a bounded
domain.Bydoing so, the optimal control cannot be calculated
analytically anymore. However, if the domain is sufficiently
large and in particular encloses the origin, we can obtain a
lower bound to the optimal control cost, which should be
close to the optimal costs.

As can be seen from Fig. 11a, the algorithm tends to eval-
uate combinations which are close to the optimal control
strategy (U2 = −X1) more often. In the lower panel 11b,
we have shown the evaluation of the estimated expected
costs, i.e., the evaluation of the SSMT formula in Eq. (29),
as a function of iterations. Although the estimated interval
decreases around the true value (black horizontal line), the
convergence is rather slow reflecting the complexity of the
evaluation problem.

6 Conclusion

We presented an algorithm based on statistical model
checking which can handle combinations of demonic non-
determinism and stochastic behavior in quite general set-
tings, including, but not limited to, the classical example of
Markov decision processes. Within such a Markovian set-
ting other approaches such as solving the Hamilton–Jacobi–
Bellman equation are particularly designed for handling con-
tinuous stochastic optimal control problems. However, these
approaches typically assume a simple form of the cost func-
tions and do not scale well, as the discretization of the par-

tial differential equation has to be chosen beforehand. We
presented an approach that is applicable to more general
problems, not necessarily being Markovian. One of its fea-
tures is an adaptive discretization of the state space, where
more promising regions are explored more frequently and
thereby split into sub-regions. The approach is based on a
knownalgorithm fromnoisyoptimization, namelyHOO.Our
approach however differs from HOO in some aspects. First,
instead of applying a potentially pessimistic bound based on
the Lipschitz constant of the reward function, we are using
interval propagation method to obtain uniform confidence
bounds on the expected values for the nodes within the cover
tree. In addition, again using interval propagation methods,
we can not only estimate confidence bounds but also com-
pute the support of the individual samples used for the empir-
ical averages with certainty. As a consequence, the width of
the confidence bounds not only shrinks with additional sam-
ples but also by refining the domains and hence narrowing
the support of the samples. Nevertheless, as the confidence
statements of the presented approach are mainly based on
Hoeffding’s inequality, it also suffers from a prohibitively
large number of samples needed to show that probabilities of
satisfaction are below very small thresholds like ∼10−9—
unless the analytical determined support already gives the
desired bound. A typical approach for these rare events is to
use particularly tuned sampling techniques, such as impor-
tance sampling or importance splitting. As importance sam-
pling is already covered within our approach, future research
directionswill explore the possibility to tune the proposal dis-
tribution, such that more accurate estimates for rare events
can be obtained.
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Appendix: Proof of lemmas

Proof of Lemma 1

Proof We only consider the upper bound, the argument for
the lower bound is analogous. We first consider the case of
an existential or universal quantifier. Within the construc-
tion of the empirical means, we used interval arithmetic to
obtain the maximum and minimum over the whole domain
P j
h,i ,P↘ j for each individual sample [see Eq. (20a)]. That

is the empirical mean can be written as:
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μ
j
h,i = 1

Th,i

∑
max

P j
h,i ,P↘ j

φ(x j , x↘ j )

Therefore, setting ε := |φs
j+1(P j

h,i ,P− j )|
√

− log(δ)

2T j
h,i

and by

applying Jensen’s inequality (as the maximum is a convex
operation), we have:

P

⎛

⎝μ
j
h,i + ε > max

P j
h,i ,P↘ j

E[φ j+1(x1, . . . , xn)]
⎞

⎠

≥ P

⎛

⎝μ
j
h,i + ε > E

⎡

⎣ max
P j
h,i ,P↘ j

φ j+1(x1, . . . , xn)

⎤

⎦

⎞

⎠

≥ 1 − δ

where the last inequality is a result of applying Hoeffd-
ing’s inequality to the modified random variable Z :=
maxP j

h,i ,P↘ j
φ(x1, . . . , xn). ��

Proof of Lemma 2

Proof The above inequality can be shown for each of the
following cases
Case arg max{μi } = arg max{li }
Holds trivially by assumption.
Case arg max{μi } �= arg max{li }
Let i∗ = arg max{μi }, k∗ = arg max{li }. As μk∗ ≤ μi∗ ,
the set of estimators lk∗ for which μi∗ ≤ lk∗ is included in
μk∗ ≤ lk∗ . Therefore, we have

P (max{μ1, μ2} ≤ max{l1, l2}) = P (μi∗ ≤ lk∗)

≤ P (μk∗ ≤ lk∗) ≤ δ

��

Proof of Lemma 3

Proof As above, we consider the following proof-by-cases:
Case arg max{μi } = arg max{ui }
Holds trivially by assumption.
Case arg max{μi } �= arg max{ui }
Let i∗ = arg max{μi }, k∗ = arg max{ui }. Therefore, we
have

1 − P (max{μ1, μ2} ≤ max{u1, u2})
= 1 − P (μi∗ ≤ uk∗)

≥ 1 − P (μk∗ ≤ uk∗) ≥ 1 − δ

⇒ P (max{μ1, μ2} ≥ max{u1, u2}) ≤ δ

��
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van Vliet, J., Wang, Z.: Statistical model checking for networks
of priced timed automata. In: Fahrenberg, U., Tripakis, S. (eds.)
Formal Modeling and Analysis of Timed Systems. Lecture Notes
in Computer Science, vol. 6919. Springer, Berlin, Heidelberg, pp.
80–96, (2011)

17. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model
checking with application to stateflow/simulink verification. In:
Johansson, K.H., Wang Y. (eds.) Proceedings of the 13th ACM
International Conference on Hybrid Systems: Computation and
Control, ACM, Stockholm, Sweden, pp. 243–252 (2010)

18. Henriques, D., Martins, J.G., Zuliani, P., Platzer, A., Clarke, E.M.:
Statistical model checking for markov decision processes. In: Pro-

123



504 C. Ellen et al.

ceedings of Quantitative Evaluation of Systems (QEST), 2012
Ninth International Conference on IEEE, pp. 84–93, (2012)

19. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Effi-
cient solving of large non-linear arithmetic constraint systems with
complex boolean structure. J. Satisf. BooleanModel. Comput. 1(3–
4), 209–236 (2007)

20. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the
multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)

21. Hoeffding, W.: Probability inequalities for sums of bounded ran-
dom variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

22. Audibert, J.-Y., Bubeck, S., Munos R.: Bandit view on noisy opti-
mization. In: Prfoceedings of Optimization for Machine Learning,
MIT Press, pp 1–23 (2011)

23. Maron, O., Moore, A.W.: Hoeffding races: accelerating model
selection search for classification and function approximation.
In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in
Neural Information Processing Systems 6. Morgan-Kaufmann,
Burlington, MA, pp. 59–66 (1994)

24. Abate, A., D’Innocenzo, A., Di Benedetto, M.D.: Approximate
abstractions of stochastic hybrid systems. Autom. Control IEEE
Trans. 56(11), 2688–2694 (2011)

25. Hahn, E.M..: Model checking stochastic hybrid systems. disserta-
tion, Universität des Saarlandes (2013)

123


	Statistical model checking for stochastic hybrid systems  involving nondeterminism over continuous domains
	Abstract 
	1 Introduction
	2 Related work and background
	2.1 Stochastic hybrid automata and SSMT
	2.2 Model checking of stochastic hybrid automata: related work

	3 Review of hierarchical optimistic optimization (HOO) algorithm
	3.1 Example

	4 Proposed method for solving nested SSMT problems
	4.1 HOO algorithm using interval arithmetics
	4.2 Extension to nested problems
	4.2.1 Representation and assumptions
	4.2.2 Path selection and domain splitting
	4.2.3 Draw a sample
	4.2.4 Updates
	4.2.5 Stopping criterion

	4.3 Confidence intervals for nested algorithm

	5 Evaluation
	5.1 Path planning use case
	5.2 Comparison with deterministic abstraction approach
	5.3 Stochastic optimal control

	6 Conclusion
	Acknowledgments
	Appendix: Proof of lemmas
	Proof of Lemma 1
	Proof of Lemma 2
	 Proof of Lemma 3

	References




