
Int J Softw Tools Technol Transfer (2014) 16:609–625
DOI 10.1007/s10009-014-0328-z

RBT

A multiple case study on risk-based testing in industry

Michael Felderer · Rudolf Ramler

Published online: 24 June 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract In many development projects, testing has to be
conducted under severe pressure due to limited resources and
a challenging time schedule. Risk-based testing, which uti-
lizes identified risks of the system for testing purposes, has
a high potential to improve testing as it helps to optimize
the allocation of resources and provides decision support for
management. But for many organizations, the integration of
a risk-based approach into established testing activities is a
challenging task, and there are several options to do so. In this
article, we analyze how risk is defined, assessed, and applied
to support and improve testing activities in projects, products,
and processes. We investigate these questions empirically by
a multiple case study of currently applied risk-based testing
activities in industry. The case study is based on three cases
from different backgrounds, i.e., a test project in context of
the extension of a large Web-based information system, prod-
uct testing of a measurement and diagnostic equipment for
the electrical power industry, as well as a test process of a sys-
tem integrator of telecommunication solutions. By analyzing
and comparing these different industrial cases, we draw con-
clusions on the state of risk-based testing and discuss possible
improvements.

Keywords Risk-based testing · Case study research ·
Multiple case study · Test process improvement · Test
management · Risk management · Software testing ·
Software quality

M. Felderer (B)
University of Innsbruck, Innsbruck, Austria
e-mail: Michael.Felderer@uibk.ac.at

R. Ramler
Software Competence Center Hagenberg, Hagenberg, Austria

1 Introduction

Risk-based testing is a pragmatic and well-known approach
for aligning testing activities with business value and risks.
It is based on the intuitive idea to focus testing activities on
those areas that trigger the most critical situations for a soft-
ware system [1]. Its appropriate application may then have
several advantages. Risk-based testing is a means for mit-
igating risks, helps to improve the allocation of resources
(budget, time, and persons), identifies critical areas earlier,
and provides decision support to the management. For its
practical application, guidelines and best practice informa-
tion is required. So far, research has collected only a small
body of empirical evidence on risk-based testing approaches.

The research objective of this article is, therefore to, empir-
ically explore and describe how risk is defined, assessed and
applied to support and improve testing activities for industrial
projects, products, and processes. The case study method-
ology is well suited for this kind of research objective, as
the objects of study are contemporary phenomena, i.e., risk-
based testing activities, which can only be studied in their
context and not in isolation [2]. The article presents a mul-
tiple case study [3] on currently applied risk-based testing
approaches in industry. It is based on three industry cases
from different backgrounds to investigate risk-based testing
implementations in practice. Case A is a test project in the
context of the extension of a large Web-based information
system. Case B investigates product testing of a measurement
and diagnostic equipment for the electrical power industry.
Finally, Case C considers the test process of a system integra-
tor of telecommunication solutions for transportation orga-
nizations and mobile network operators.

Although several risk-based testing approaches have been
proposed in the literature [4–8], and the recently published
international standard series ISO/IEC/IEEE 29119 [9] on

123



610 M. Felderer, R. Ramler

software testing even requires the consideration of risks as
an integral part of the test planning process, there are no
empirical studies available that analyze the state of risk-based
testing in practice on the basis of multiple cases. Therefore,
this article contributes a multiple case study which explores
different industrial risk-based testing implementations by a
cross-case analysis to draw conclusions on the state of risk-
based testing in practice.

The remainder of this article is structured as follows. Sec-
tion 2 provides background and related work on risk-based
testing. Section 3 presents the research design including the
research questions, the case selection as well as the data col-
lection, analysis and validity procedures. Section 4 describes
and analyzes the studied cases. Section 5 discusses the ana-
lyzed cases, and Sect. 6 presents threats to validity. Finally,
Sect. 7 provides a summary and draws conclusions.

2 Background and related work

In this section, we discuss background and related work on
risk-based testing. Risk-based testing is a type of software
testing that explicitly considers risks of the software product
as the guiding factor to solve decision problems in all phases
of the test process, i.e., test planning, design, execution and
evaluation. It is based on a risk model (Sect. 2.1), defines
a test process (Sect. 2.2) and has to be introduced into an
existing development and test process (Sect. 2.3). In addition,
we present related empirical studies on risk-based testing
(Sect. 2.4).

2.1 Risk model

A risk is the chance of injury, damage or loss and is typically
determined by the probability of its occurrence and its impact.
The standard risk model [10,11] applied in most risk-based
testing methodologies is based on the two factors probability
(P), determining the likelihood that a failure assigned to a
risk occurs, and impact (I ), determining the cost or severity
of a failure if it occurs in operation. Quantitatively, the risk
exposure or risk value R of an arbitrary risk item a, i.e.,
an artifact to which risks are assigned, is determined based
on the probability value P and the impact value I in the
following way:

R(a) = P(a) ◦ I (a)

A risk item a is an arbitrary artifact, e.g., a requirement,
a component, a security risk or a failure, with an assigned
risk exposure value R and, in the context of risk-based test-
ing, assigned tests. The risk exposure R is a value measured
at least on an ordinal scale that determines the risk, i.e., an
uncertain event or condition that, if it occurs, has a negative
effect on the system. The binary operator ◦ that connects P

and I is typically the multiplication of two numbers or the
cross product of two numbers or arbitrary ordered elements
(but not restricted to these operations). This standard risk
model can be generalized by reducing it to a specific value or
refined by considering several (weighted) criteria for P and
I . Following for instance the Factor-Criteria-Metrics model
[12], these criteria are determined by metrics. Each met-
ric has an assigned scale and calculation procedure which
can be performed manually or automatically. In addition, the
risk model has a computation model to aggregate metrics to
criteria values and further to factor values. Finally, the risk
model contains risk levels to which risk exposure values are
assigned. A risk level [10] indicates the criticality of risk
items and serves the purpose to compare risk items.

Risk models for testing purposes are discussed in sev-
eral publications. Bach [4] presents a pragmatic approach
to risk-based testing grounded on a heuristic software risk
analysis. Bach distinguishes inside-out risk analysis start-
ing with details about a situation and identifying associated
risk, and outside-in risk analysis starting with a set of poten-
tial risks and matching them to the details of the situation.
Redmill [6,13] provides a thorough discussion of risk-based
testing [13] as well as a proposal for practical application
suggesting a single factor risk assessment, either on proba-
bility or on impact, or a two-factor risk assessment, in which
probability and impact are combined [6]. Felderer et al. [8]
propose a risk assessment model defined on the basis of
an industrial project. In this model, the risk coefficient is
assigned to features and determined by impact, probability,
and time factors. Each factor is determined by criteria which
are defined by metrics. Metrics are determined manually,
semi-automated, or automated. Finally, the practical risk-
based testing approach (PRISMA) [7] distinguishes business
and technical risks determined by weighted criteria to calcu-
late the overall risk of the risk items.

2.2 Risk-based test process

Risk-based testing involves the identification of product
risks, i.e., risks related to specific product properties and qual-
ities, and the use of risk levels to guide the test process [10].
It can only deliver its full potential if a test process is in place
and if it is considered appropriately [5]. Risk-based testing is
a testing-based approach to risk management. A risk-based
test process, therefore, combines a test and risk management
process.

A test process contains the core activities test planning
and control, test analysis and design, test implementation and
execution and test evaluation and reporting [10]. Test plan-
ning is the activity of establishing or updating a test plan.
A test plan is a document describing the scope, approach,
resources, and schedule of intended testing activities. In test
control, the actual progress is compared against the plan that

123



A multiple case study on risk-based testing in industry 611

often results in concrete measures. During the test analy-
sis and design phase, the general testing objectives defined
in the test plan are transformed into tangible test condi-
tions and test cases. Test implementation contains remain-
ing tasks like preparing test harnesses and test data, or writ-
ing automated test scripts, which are necessary to enable the
execution of the implementation-level test cases. The tests
are then executed and all relevant details of the execution
are recorded in a test log. During the test evaluation and
reporting phase, the exit criteria are evaluated and the logged
test results are summarized in a test report. Development
projects typically contain several test cycles, and therefore,
all or some phases of the test process are performed itera-
tively.

A risk management process contains the core activities
risk identification, risk analysis, risk treatment, and risk mon-
itoring [14]. In the risk identification phase, the risk items
are identified. In the risk analysis phase, the probability and
impact of risk items and, hence, the risk exposure is esti-
mated. On the basis of risk exposure values, risk items may
be prioritized and assigned to risk levels. This results in a
risk classification. In the risk treatment phase, the actions
for obtaining a satisfactory situation are determined and
implemented. In the risk monitoring phase, the risks are
tracked over time and their status is reported. In addition,
the effect of the implemented actions is determined. The
activities risk identification and risk analysis are often col-
lectively referred to as risk assessment, while the activities
risk treatment and risk monitoring are referred to as risk
control.

Every available risk-based test process integrates testing
and risk management activities. In the following, we explain
this integration by discussing three published risk-based test-
ing processes, i.e., [5,8], and [7].

Amland [5] defines a risk-based testing approach that is
based on the generic risk management process of Karolak
[15] comprising the following steps and the corresponding
risk management activities: planning (risk identification and
risk strategy), identification of risk indicators (part of risk
assessment), identification of the cost of a failure (part of risk
assessment), identification of critical elements (part of risk
assessment), test execution (risk mitigation), and estimation
of completion (risk reporting and risk prediction). Amland
was one of the first in introducing a systematic risk-based
testing approach.

Felderer et al. [8] take the standard test process of the Inter-
national Software Testing Qualifications Board (ISTQB) [10]
as a starting point and integrate risk identification and risk
analysis into it. In addition, the activities of the standard test
process are extended by risk-specific elements: (1) in the test
planning and control phase, the test plan is extended by a
risk-based test strategy, (2) in the test analysis and design
phase, a concrete test schedule is defined based on the test

plan and a concrete risk classification, (3) in the test imple-
mentation and execution phase, the execution of the test cases
is determined by their priority (determined by the assigned
risk exposure value) and the resource limitations, and finally
(4) in the test evaluation and reporting phase, the alignment
of risks and test results enables residual risk estimations and
supports decisions.

The practical risk-based testing approach (PRISMA) [7]
defines a process consisting of concrete activities, i.e., initi-
ating, planning, kickoff meeting, extended risk identifica-
tion, individual preparation, processing individual scores,
consensus meeting, and define differentiated risk-based test-
ing approach. The activities are defined in a very concrete
way with detailed instructions. Thus, the PRISMA approach
is highly specific and not very adaptable. In addition to
generic risk-based testing approaches, several model-driven
approaches to risk-based testing have been introduced [1,16–
18]. As model-driven testing is not applied in the indus-
trial cases discussed in this article, we do not consider these
approaches further.

2.3 Introduction of risk-based testing

As a precondition to introduce risk-based testing, a basic
test process consisting of the phases test planning and con-
trol, test analysis and design, test implementation and exe-
cution as well as test evaluation and reporting as described
before is required. In practice, the introduction of testing and
risk management activities is typically performed stepwise
resulting in several incremental stages of integration with
growing maturity. In [19], the stages (1) initial risk-based
testing, (2) risk-based test results evaluation, (3) risk-based
test planning, and (4) optimization of risk-based testing are
proposed. Initial risk-based testing comprises the identifica-
tion of risk items, the definition of a risk analysis procedure,
and the design and execution of test cases based on risks in
an informal way, i.e., not based on a risk-based test plan, to
control the design and execution of test cases. The assigned
risk values can, for instance, be used to distribute resources
for test design or to prioritize test cases for test execution.
In the risk-based test results evaluation stage, test evaluation
and the underlying reporting take advantage of the linkage
between test and risk information, which provides additional
release decision support. Risk-based test results evaluation
is valuable to control the test and release quality. Risk-based
test planning formally takes risks into account in the test
plan, e.g., for selecting appropriate test design techniques
or exit criteria. Thus risk-based test planning formalizes the
risk-based testing activities of the lower stages. Finally, opti-
mization of risk-based testing continuously evaluates and
improves the risk-based test process.

123



612 M. Felderer, R. Ramler

2.4 Related work

Although several risk-based testing approaches have been
proposed [4–8], only a few empirical studies on risk-based
testing are available.

Yoon and Choi [20] propose a test case prioritization strat-
egy for risk-based testing and evaluate its effectiveness on
the basis of data from a traffic conflict avoidance system.
Using this data, the authors apply their test case prioritization
approach, which employs risk exposure values as assessed
by experts, and compare the results with those of apply-
ing Chen’s approach [16], which generates risk exposures
of individual test cases. Differing from our approach, Yoon
and Choi only evaluate test case prioritization based on their
risk analysis approach but do not consider the overall risk-
based test process in different industrial cases as we do.

Souza et al. [21] indicate in a small case study that risk-
based testing focuses on the parts of a software that are more
likely to fail. The risk-based testing approach is based on
their risk-based test process RBTProcess [22], which consists
of the phases risk identification, risk analysis, test planning,
test design, test execution as well as test evaluation and risk
control. Differing from our multiple case study, their case
study is not performed in an industrial context and does not
investigate the overall risk-based test process but only the
efficiency and effectiveness of defect detection with risk-
based testing.

Finally, Felderer and Ramler [19] present an approach for
the stepwise introduction of risk-based testing into an estab-
lished test process and discuss benefits as well as prerequi-
sites of this integration in the context of an industrial project.
Differing from this article, the authors consider only one spe-
cific aspect, i.e., the introduction of risk-based testing, in one
industrial case, but not across multiple cases and research
questions on how risks are defined, assessed, and applied to
support testing activities.

3 Research design

In this section, we present the research questions (Sect. 3.1)
addressed in this article, the case selection (Sect. 3.2) as
well as the data collection, analysis, and validity procedures
(Sects. 3.3 to 3.5) to answer them. The research design fol-
lows the guidelines for conducting and reporting case study
research proposed by Runeson and Höst [2].

3.1 Research questions

For practitioners from industry it is a fundamental neces-
sity to align testing activities with business value and risk.
So for them seeking applicable guidelines and best practice
information on risk-based testing, it often comes to a sur-

prise that researchers have collected only a small body of
empirical evidence on risk-based approaches so far. To sup-
port the need for further empirical evidence of practition-
ers and researchers, the following four research questions
are investigated to explore the state of risk-based testing in
industry. These questions have been derived from the overall
research objective to explore and describe how risk is defined,
assessed, and applied to support and improve testing activi-
ties in industrial projects.

– (RQ1) What is the notion of risk in software testing?
This research question addresses the commonalities and
differences of the risk definitions used in practice.

– (RQ2) How do risks support the activities of the software
test process? This research question addresses the various
ways in which risk information is used for supporting
software testing.

– (RQ3) How are risks organized from a technical perspec-
tive? This research question investigates the implemen-
tation aspects involved in risk-based testing, addressing
the modeling, and the tool support related to risk.

– (RQ4) What are the benefits of a risk-based testing
approach? This research question summarizes the pos-
itive effects that are actually realized or expected to be
observed in future when considering risk for testing pur-
poses.

These research questions served as guidelines for inter-
views and document analysis when studying the three cases
presented in this article.

3.2 Case selection

Three cases have been selected for investigation. They
were selected from the wider set of industrial collaboration
projects of the authors. The motivation for selecting these
particular cases comes from their different scope and back-
grounds: The focus of Case A is primarily on a project for a
single software system, Case B is rooted in software product
development with a rich history, and Case C has been deal-
ing with a software process improvement initiative to create
several product variants (see Fig. 1).

The characteristics of the different cases regarding their
scope, engineering domain, previoushistory, and organiza-
tional culture in terms of software development approaches
and practices are summarized in Table 1. A detailed descrip-
tion and analysis of each case is presented in Sect. 4.

3.3 Data collection procedure

The case study is based on data from the three selected cases
described in Sect. 4.

123



A multiple case study on risk-based testing in industry 613

Project

Product

Product
variants

Fig. 1 Scope of the different cases

For answering the research questions, the study relied
on multiple sources of evidence. First, project, product, and
process documents such as project plans, product documen-
tation, process descriptions, test plans, requirements specifi-
cations, design specifications, test specifications, protocols,
and risk assessment documentations were analyzed. Second,
the data available in project management tools, and reposito-
ries was analyzed. Finally, semi-structured interviews were
conducted, based on a list of open interview questions derived
from the research questions. Interviewed project personnel
were test managers, project managers, and process managers.
The collected data is further explained in Sect. 4.

3.4 Analysis procedure

The main analysis across the three cases was conducted with
qualitative methods. Results were derived by analyzing doc-
uments, tools and interview protocols keeping a clear chain
of evidence [3], i.e., a reader should be able to follow the
derivation of results and conclusions from the collected data.
The analysis was started in parallel with the collection of
data from documents and tools. On the basis of first insights,
additional data was extracted from documents and tools, and
interviews were conducted to confirm, refine, or refute find-
ings. Qualitative analysis was combined with a limited quan-

titative analysis of the number of failures observed in Case A.
The analysis was performed by two researchers. The prelim-
inary results from each individual researcher were merged
into a common analysis result in a second step. The analysis
results are presented in Sect. 5.

3.5 Validity procedure

Based on the guidelines of Runeson and Höst [2], validity
threats were analyzed according to construct validity, relia-
bility, internal validity, and external validity. Selected coun-
termeasures against threats to validity were then taken. For
example, data extracted from documents and tools was tri-
angulated by interviews and the findings were discussed by
two researchers. It was also seen as important that sufficient
time was spent in the organizations to understand the cases.
The threats to validity and countermeasures are discussed in
Sect. 6.

4 Description of the studied cases

In this section, the three studied cases selected for this study
are described and analyzed. Due to confidentiality reasons,
links to the involved companies were omitted and their names
were replaced by alphabetical numbering.

4.1 Case A

Case A describes a software development project completed
by a company providing IT services. In the studied project,
a Web-based application has been developed, which is an
integral part of a large information system. The project was
one out of a series of related development projects conducted
over the last years to establish and extend the overall informa-
tion system. The goal of the project investigated in our study

Table 1 Characteristics of the three cases

Case A Case B Case C

Scope Project Case relates to a single
development project out of a
series of related projects

Product Case relates to product
development over several
consecutive versions

Product variants Case relates to
the software process for
developing and testing several
product variants

Domain IT services Electrical engineering Telecommunication

History Less than one year for the analyzed
project; Several years of project
development

Product development history of
more than 15 years

Established process for
development and integration;
Risk-based testing recently
introduced

Culture Structured, iterative development
process; Specified requirements
and acceptance criteria

Established overall engineering
process; Agile organization of
development projects

Development and testing follows
V-model; Traceability of
requirements, features and
components

123



614 M. Felderer, R. Ramler

Web Application

Client Server

Page 1 

Page n 

Page 2 
Page x 

Library.js

Comp 1

Comp n

Comp 2
Comp 1.2

Library.java

Comp 1.1

Fig. 2 Application structure and technologies

was the integration of third-party information services and to
provide a Web-based user interface to access these services.
The project followed an established process and applied a
set of best practices that had shown their usefulness in the
previous projects.

In total, ten people were involved in the project in differ-
ent roles, such as developer, tester, architect, or project man-
ager. The overall duration of the project was nine months.
This timespan was structured in two iterations, each further
divided in a development and a stabilization phase. In both
iterations, a defined set of features was implemented in a
series of short, time-boxed sprints. The feature-freeze mile-
stone marked the completion of the implementation and, in
consequence, the transition from the development phase to
the stabilization phase.

In the development phase, the specified requirements
assigned to the iteration were implemented. The require-
ments were organized according to the use cases of the appli-
cation, which were also reflected in the page structure of
the Web-based user interface. The requirements specifica-
tion also detailed the graphical layout of the Web pages. The
implementation involved a variety of different technologies
and programming languages spanning from Java and Java
Server Pages on the server-side to JavaScript running in the
browser on the client-side (Fig. 2).

Testing activities in the development phase concentrated
on unit and integration tests, which were the responsibility
of each individual developer. In parallel to the development
activities, system tests were derived from the requirements
and specified in a test management tool. In the development
phase, system testing was performed only informally, to pro-
vide early feedback. Thorough system and regression testing
based on the specified test cases was the central activity in the
stabilization phase, together with the fixing of the detected
issues. At the end of the stabilization phase, the application
containing the new features was released and handed over to
a separate service and maintenance organization.

The everyday work in Case A was characterized by the
joint endeavor to successfully complete the project in time

and on budget. The project management maintained a plan
describing how to meet this goal and a list of risks, which
threatened reaching the goal. Even though testing was consid-
ered a time-consuming and costly activity, it was also appre-
ciated as one of the most important measure for risk mitiga-
tion by making sure that the developed application fulfilled
the specified functional and quality requirements.

4.2 Case B

The company providing Case B produces measurement
and diagnostic equipment for the electrical power industry.
Besides various measurement devices and tools, the product
spectrum includes a large software suite with a comprehen-
sive set of features for electrical hardware diagnostics, e.g.,
for checking protective relays.

The software suite controls the different measurement
devices, executes measurement and diagnostic programs,
manages and tracks results, and creates various kinds of sta-
tistics and reports. The software runs on standard PC hard-
ware and is compatible with all recent versions of Microsoft
Windows. Furthermore, with customers in over 140 coun-
tries, the software is fully internationalized and supports 14
languages.

With a development history of over 15 years, the software
system has evolved to a total size of more than 2.5 million
lines of code. A range of different technologies and pro-
gramming languages (C/C++, C#, Visual Basic, FORTRAN
as well as popular scripting languages) have been used to
implement the system. The software system’s architecture
distinguishes a set of 25 dedicated modules that realize the
measurement and diagnostic functionality. They share sev-
eral components for handling data persistence, report gener-
ation, etc., as well as a hardware abstraction layer including
the device drivers to communicate with the different tools
and measurement devices.

The complexity of the software system has increased from
version to version. The major complexity drivers were (1)
additional modules introducing further inter-module depen-
dencies, (2) extensive support for internationalization includ-
ing different languages and character sets, (3) backward com-
patibility with previous versions for importing measurement
data in versions containing new or extended functionality,
(4) transparent support for different revisions of hardware
devices, and (5) compatibility with a wide range of operating
systems, service packs and updates from Microsoft Windows
95 to Windows 8 on 32-bit and 64-bit systems.

Software development follows an iterative, incremental
process. The product manager outlines and specifies new
functionality such as a new software module, support for
a new hardware device, etc., based on customer requests
and technological advancements. The Scrum development
approach is used to drive the development of new function-

123



A multiple case study on risk-based testing in industry 615

ality as increments to the existing software system. On a reg-
ular basis, several increments are combined, integrated, and
released as major versions of the software product. Mainte-
nance and support are ongoing activities that are conducted in
parallel to development and result in service releases, which
are also provided for supported previous versions.

Testers are involved from the very beginning, when new
functionality is specified. Thus, they can start to design test
cases in parallel to development. Whenever an increment is
completed, the new functionality is tested on the basis of the
corresponding test cases, augmented with some additional
exploratory testing. The combination of all increments is
tested together with the existing functionality in a full-system
regression test before a new version is released. The basis for
this test is the whole set of existing test cases. They are main-
tained with the help of the test management tool SilkCentral
[23]. Critical functionality is again cross-checked by addi-
tional exploratory testing.

The changes made for service releases concern only a frac-
tion of the overall system. For service releases, a change-
based regression approach is considered sufficient in most
cases. Thus, the changes are tested in combination with the
affected modules. Instead of a full-system regression test
before releasing, only a set of standard tests is used to cover
the most important use cases.

The majority of the tests for the software system are exe-
cuted manually. The highly dynamic behavior of the diagnos-
tic modules including the user interfaces with limited testa-
bility call for a primarily manual testing approach. Auto-
mated testing is mainly used for the hardware abstraction
layer. These tests can be easily automated but cover only a
small part of the overall system. Running and maintaining
the available automated test suites is, nonetheless, a major
cost factor. Full-test automation is therefore not an option,
even when the technical issues of UI test automation could
be resolved.

The required time for full-system regression testing as
well as the involved effort and costs restrict the frequent
release of new versions. For service releases, the introduc-
tion of change-based regression testing in combination with
exploratory testing and a set of standard tests has consid-
erably reduced the overall effort. Therefore a change-based
approach is also considered for major releases in future.

4.3 Case C

The Case C company is a system integrator of telecommuni-
cation solutions in the fields public transportation, railways
as well as mobile network operators. The portfolio of the
company comprises software-based solutions for IP-based
telecommunication infrastructure that supports all services
and traffic types. Among others, solutions for billing, net-
work traffic analysis, call management, or asset manage-

ment are provided. For specific customers or markets, these
solutions are implemented as product variants. The compo-
nents implementing these functionalities are integrated and
adapted to a broad range of different system contexts and
complex environments where different architectures, tech-
nologies, and programming languages (C/C++, Java, and the
proprietary programming language Protel) are used.

The company follows a structured development and test
process on the basis of a clearly defined generic system and
test model shown in Fig. 4. In this model, -so called features
are the central concept to plan and control implementation
and testing. A feature has a concise and complete descrip-
tion of its functionality, along with non-functional aspects
like performance or security. Features are on the one hand
assigned to requirements and on the other hand to compo-
nents. A requirement describes a certain functional or non-
functional property of the system and is implemented by a set
of features. A component is an installable artifact that pro-
vides the functionality of several features. Components are
defined hierarchically in a tree. The root component repre-
sents the system and the leaves are units. As features are the
tested artifacts, test cases are assigned to them. Differing from
components, testable objects are executable units composed
of one or more component and a test environment. Testable
objects are assigned to the system or a component and have
an attached test plan. A test plan contains test cases grouped
either by features or components. Each test case contains
a description, test steps, and expected results. Development
and testing follow the V-model. First, a customer solution
manager collects the requirements in a user requirements
specification. Then, the features are defined and the system
architecture is derived by a technical solution manager. The
features are assigned to requirements in the technical require-
ments specification. The system design is then further refined
to concrete components with assigned units, which are imple-
mented and tested by a developer. As soon as feature defi-
nitions are available, test planning is started. First, testable
objects and a test plan, which is based on formerly deter-
mined requirements acceptance criteria, are defined. It con-
tains test cases grouped either by features or components and
has a test-end criterion. In the test design phase, executable
test cases are defined by testers according to the test plan.
Test cases are also adopted from existing components or fea-
tures. New or changed test cases are reviewed and corrected
if necessary. After the respective testable object (including
its test environment) is available, the test cases are executed.
Each test run contains a test result for each of its executed
test cases. Depending on the test results, a problem ticket is
created. As soon as the test-end criterion is reached, a test
report is provided.

Testing and development are managed with the project
management tool in-Step [24]. Most test cases are exe-
cuted manually. Test automation support is available only

123



616 M. Felderer, R. Ramler

for specific network protocols and analysis reports. A paral-
lel change management process organizes the activities con-
cerning the handling of requests for change (RfC). It consists
of the three linearly connected activities (1) collecting and
inspecting RfC, (2) approving or declining RfC and (3) per-
forming change and periodic RfC monitoring. Change man-
agement comprises also testing activities, i.e., executing test
cases for the affected feature or component.

5 Results and discussion

In this section, we answer the research questions based on the
studied cases. For each question, first, generalized findings
are presented and, second, the related evidence is described
and discussed in context of each case.

Following conventions are applied in this section: Text
translated from recorded interviews or paraphrasing state-
ments of case participants is shown in italics; comments
and interpretations added by the authors are shown in square
brackets.

5.1 What is the notion of risk in software testing? (RQ1)

To answer the first research question, we investigated how
“risk” is understood in the different cases. The findings are:

– F-01 The concept of risk depends on context and scope,
but there is an agreement that product risks are relevant
for testing, as testing is understood as measure (i.e., a
protective action) to reduce the exposure of the product
to risks of this type.

– F-02 There is a general agreement that the risk as under-
stood in the different cases follows the common definition
of risk as R = P ◦ I , where P is its probability and I its
impact. However, the definition and relation of P and I
may remain informal and implicit. Both factors are usu-
ally based on (subjective) estimates made in a project or
product development context.

– F-03 The degree of formality of risk as a concept depends
on the application scope. It increases when the scope
widens from project to product and, furthermore, to
process.

In all cases, risk management is an established activity
at the project or organizational level. At this level, project
as well as product risks are addressed. In software testing,
the focus is on risk related to specific product properties and
qualities. In all cases, we found that testing activities are
understood as means to mitigate the identified product risks.

Case A Testing is used to detect quality problems before
they “escape” to the field. In this way, testing reduces the
involved risk. Testing is not the only measure to reduce risks.

It is highly resource-intensive. So, also other quality assur-
ance measures are applied whenever possible, for example,
reviews are used for specifications and documentation. How-
ever, when it comes to executable software, testing is usually
the only practicable measure available.

Even though the observed practices in testing are to some
degree based on risk, Case A and Case B do not rely on a
formal definition of risk. The interviewed participants agree
with the definition of risk from ISTQB’s standard glossary of
terms used in software testing, which defines risk as “a fac-
tor that could result in future negative consequences; usually
expressed as impact and likelihood” [10]. However, this high-
level definition is typically operationalized in specific con-
texts, usually by enumerating concrete examples for actual
product risks.

Examples for risks are correctness of the main usage sce-
narios, correct display of content (e.g., images), robustness
in case of connection problems, and integration of poten-
tially unreliable third-party services. The main source for
relevant risks is the risk management conducted at project
level. Risk management maintains a list of evaluated risks.
The test manager is involved in identifying and evaluating
these risks. Evaluation includes estimating probability and
impact.

In Case B, test management does not rely on a formal
risk management procedure. The understanding of risk is
mainly derived from a thorough understanding of the critical
characteristics of the product, and a profound expertise in
the application domain. This understanding has been estab-
lished over the many years of product development and test-
ing.

Quality is related to the trust of the user in the software and
its results. The highest risks are problems that threaten the
reliability and accuracy of measurement results, their correct
visualization, or their correct interpretation. Such problems
are even more critical than crashes, even when they may lead
to the loss of unsaved measurement data.

This particular understanding of risk in Case B is deter-
mined by what users and customers value most. It mainly
relates to the impact, the part of the risk expressing the conse-
quences if a problem occurs. Over time, it became “common
knowledge” within the product team, as user and customer
views have been found to remain stable for years.

Changes are considered the main source of problems. In
contrast to the stable impact, the risk probability increases
with every change made in a release. Various types of changes
are considered relevant for testing.

Changes of existing functionality may lead to incorrect
behavior of this functionality, adding new functionality to
the software product may lead to unwanted side effects on
existing unchanged functionality, and changes in the envi-
ronment such as the underlying operating system may have
a negative impact on the product’s stability.

123



A multiple case study on risk-based testing in industry 617

In Case C, at process level, a generic risk definition is used.
Risk is defined on the basis of the Factor-Criteria-Metrics
model of McCall [12]. The definition considers the factors
probability P and impact I as well as the additional factor
time T . Probability reflects the technical view, impact the
business view, and time the system evolution. The factor val-
ues are determined by weighted criteria.

The probability factor is composed of the weighted
technical criteria code complexity, data complexity, func-
tional complexity, visibility, and third-party software. The
impact factor is composed of the user and business-oriented
weighted criteria usage, availability, importance, and perfor-
mance. The time factor is composed of the criteria bug track-
ing, change history, new technologies, and project progress.
Each factor is determined by a specific metric. Metrics can
be determined manually or automatically.

The definition of risk in Case C is more formal than the
definition in the Cases A and B. Probability, impact and time
are explicitly defined on the basis of several criteria. For
each criterion, metrics are defined to determine the value in
an objective way. The metrics can be calculated manually by
a suitable stakeholder or even automatically. For instance,
the importance is measured manually on a five-point Likert
scale and the code complexity is measured automatically by
the McCabe complexity [25].

Due to the traceability between requirements, compo-
nents, and units via features, the probability criteria are mea-
sured for units, the impact factors for requirements, and the
weights are assigned to components (from which only a few
exist). Time criteria are directly assigned to features, for
which the risk exposure values are calculated (see Fig. 4).

The risk exposure value of a feature can be calculated via
the formula, R = (P ·T )× I , where P denotes the aggregated
probability factor, I the aggregated impact factor, and T the
aggregated time factor which reduces the value of P over
time. Based on the probability factor (possibly reduced by the
time factor) and the impact value, the risk level low, medium.
or high is assigned to a feature. This risk information is used
to support test planning, design, and execution.

The resulting risk model is described in detail as part of
the answer of the next research questions.

5.2 How do risks support the activities of the software test
process? (RQ2)

To answer this research question, we investigated how the
risks are used in software testing in the different cases. The
findings are:

– F-04 Risk is taken into consideration in virtually all test-
ing activities, even when testing is not explicitly follow-
ing a risk-based approach. The analyzed cases include
examples where risk is used to design new test cases, to

classify test cases according to a general “priority”, to
select test cases for regression testing, to prioritize test
cases for test execution, and to define the test-end crite-
rion.

– F-05 Although traceability between test cases and risk
items would enable justified release quality statements
as well as the estimation of residual risks on principle,
risk information from testing has not been found to play
an explicit role in making release decisions.

– F-06 Risk information is used in testing in two ways: (1)
As a suggestion to extend the scope of testing towards
“risky” areas where critical problems can be found, and
(2) as a guideline to optimally adjust the focus of testing
to “risky” areas where most critical problems are located.

– F-07 Risk-based testing is not understood as an approach
to reduce the amount of testing, the overall test effort,
or the established test budgets. On the contrary, addi-
tional test cases are usually designed as a consequence
of addressing all risks, and additional test cases may be
included in a regression test suite to adequately cover all
risks.

The Case A organization defines a standard process for
software development projects including activities such as
risk management and test management. The analyzed project
follows this process. While the process describes the activi-
ties in an abstract way, the project team develops a concrete,
innovative solution for a specific problem and a specific con-
text. This project differs from previous ones in many ways
and, thus, has to cope with new, unique risks. Risk manage-
ment and the related testing activities are therefore driven
by the goal to successfully implement the specific solution
fulfilling all (functional and quality) requirements.

Test cases are mainly derived from specified requirements.
The tree structure used to organize the test cases in the test
management tool resembles the structure of the requirements
specification. The requirements are specified as use cases
(organized according to the functional structure of the Web
application). The test cases derived from these use cases are
located in the corresponding sections in the test management
system.

The list of risks maintained by project management is
used as an additional source inspiring the design of further
test cases. High-level risks are represented as separate sec-
tions in the test structure. Test cases mitigating these risks
are placed in the corresponding sections. For example, the
section “Connection Tests” contains test cases dedicated to
the risk of possible connection problems. Occasionally, risks
affect one or more specific requirements. Thus, additional
test cases addressing these risks may also enhance the test
sets related to these requirements.

Specified test cases are classified according to their pri-
ority. The prioritization schema reflects a risk-based testing

123



618 M. Felderer, R. Ramler

approach. However, the concrete priorities of the test cases
are defined by a simple procedure that does not take specific
risks into account.

The priority is defined by the custom attribute “Priority”
in the test management tool. Four levels of priority are dis-
tinguished; they range from “high” to “low”. The priorities
depend on the corresponding requirements. The rule is that
test cases for the main scenarios of a use case are given high
priorities, test cases for alternative scenarios are assigned
medium priorities and, finally, test cases related to excep-
tional or very specific scenarios are of low priority.

In Case B, the main effort in software testing is caused
by extensive regression test phases, which last up to three
months. A huge set of regression test cases has been estab-
lished that captures the context-specific essence of risk, dis-
tilled from a long history of testing the software product.
Risk plays a major role in selecting test cases for regression
testing for a specific release. As described in answering RQ1,
the two risk factors impact and probability are clearly distin-
guished in Case B. Impact expresses the knowledge about
the user and customer view, and probability represents the
risk due to changes. The two factors affect the testing activ-
ities in different ways. The factor impact is used to deter-
mine the static “initial” priority of a regression test case.
The factor probability incorporates the volatile aspects of
an individual change relevant for selecting regression test
cases.

A total of several thousand test cases have evolved over
the years of ongoing development and testing. These test
cases are stored in the test management system, where they
are organized with respect to the different modules [i.e., the
functional entities] of the software product. Test case design
is based on the specified requirements and the testers’ expert
knowledge. At design time, test cases are assigned a prior-
ity corresponding to the tested functionality, ranging from
“must” to “nice-to-have”. Since the user and customer view
on what is important remains the same over the releases, the
test case priorities are rarely readjusted.

When compiling an execution list (i.e., regression test
suite) for a new release, all test cases with the priority “must”
are included. Including these “must” test cases is mandatory.
The test cases with priority “must” cover only the critical
parts of a module. Depending on a specific change, several
other parts may also be affected and need to be tested. The
testers add further test cases to the execution list based on the
description of the change, a discussion with the developers
responsible for the change, and their experience from testing
software system for many years.

The risk probability represents the likelihood of an unin-
tended side effect caused by the change. Additional test cases
(with lower initial/static priority) are assigned to the regres-
sion test suite depending on this risk probability. The proba-
bility is estimated by the tester often implicitly and on the fly,

when compiling the regression test suite. “Coverage of the
change” is among the most important criteria for estimating
the probability. Custom tool support has been introduced for
collecting and combining test coverage and change data to
aid testers in selecting a minimal set of regression tests.

The described procedures relate to the activities in the
established regression test process. This process has evolved
over many releases and is suitable to cover the “commonly
known risks” in Case B. However, a specific release may also
include specific risks that need to be addressed in context
of this particular release. The use of additional exploratory
testing allows testers to “learn” about these specific risks and
to address them individually. As a consequence for future
releases, the tester may decide to add new test cases derived
from exploratory testing to set of regression tests specified
in the test management system.

In Case C, risks are explicitly considered in the test plan-
ning, test design, and test execution phase. In the test planning
phase, first testable objects, which are executable units com-
posed of one or more components and a test environment,
are defined. Then a test plan is created on the basis of for-
mally defined requirements acceptance criteria, features with
attached risk exposure values and components.

The test plan may have a test-end criterion which considers
the risk levels of features, e.g., all features with high risk
have to be tested, features with medium risk are optional
candidates to be tested to reach the required test coverage,
and features with low risk are only tested if all others have
been tested and resources are available.

The definition of the test-end criterion in Case C is not
optimizing, i.e., it does not minimize the test effort utilizing
risk information, but only adjusts the focus of testing accord-
ing to the risk level.

In the test design phase, executable test cases are defined
by testers according to the test plan and get assigned the risk
exposure value of the feature they are designed for. Already
existing test cases, which are applicable are selected from
similar previous components or features. New or changed
test cases are reviewed and corrected if necessary. After the
respective testable object (including its test environment) is
available for the test, the test cases are executed ordered by
their risk level and risk exposure values (inherited from the
assigned features). Each test run contains a test result for
each of its executed test cases. Depending on the test results,
a problem ticket is created. As soon as the, test-end criterion
is reached, a test report is created. But the test report itself
does not explicitly take risk information into account.

The process manager of Case C originally intended to take
risk information explicitly into account in test reports. This
would support reliable release quality statements as well as
the estimation of residual risks based on the risk reduction
with every test cycle (until a risk level is reached where it is
acceptable to release the software application). But it turned

123



A multiple case study on risk-based testing in industry 619

out that the customer solution manager who decides on the
release of an application does not require risk information for
his decision but only takes the importance of features for the
customer as well as the severity of open defects of important
feature implementations into account.

5.3 How are risks organized from a technical perspective?
(RQ3)

This research question relates to the technical aspects under-
lying the elicitation, management, and usage of risk informa-
tion. To answer this question, we investigated (1) how risk is
modeled and (2) how this model is implemented in the tool
infrastructure. The findings are:

– F-08 Only high-level risks at the level of project man-
agement are modeled as individual entities. In testing,
risks are calculated from risk information associated to
testable entities for identifying critical areas of the soft-
ware system. The testing effort is concentrated on these
areas.

– F-09 Testing relies on the organizations’ standard tool
infrastructure. This infrastructure usually includes con-
ventional test management tools for managing specified
test cases and test execution results. Tools for risk man-
agement, commonly used at the level of project manage-
ment, are not applied in software testing.

– F-10 Risk-based testing is implemented with the help
of the available tools or as extension to the existing
tool infrastructure. Extensions are developed individu-
ally, when the applied standard tools do not provide the
necessary support for risk-based testing.

– F-11 Tool support specific for risk-based testing is mainly
considered as an aid to automate the laborious tasks of
collecting and analyzing measurement data. This data
is used to derive risk information or as a basis for risk
estimation.

In Case A, a diverse list of risks is maintained in Excel by
the project manager. Risks are mostly coarse grained. They
include a unique ID, a brief description, and a criticality score
based on the factors probability and impact. The estimates
are subjective ratings by experts using a generic five-level
scale. The criticality score is determined by multiplying the
two estimates. If a relation of risks and requirements, non-
functional aspects or parts of the software system exists, it is
indicated in the risk description. Traceability remains infor-
mal and is not managed at the level of test cases. Test cases
derived from risks are usually organized in separate sections
(“packages”) of the hierarchically test structure in the test
management tool. In that way, test cases can be traced back
to the risks from which they originate. It remains a subjec-
tive decision whether the criticality scores of the risks are

Fig. 3 Tool support for selecting regression test cases

taken into consideration when defining the priorities of the
test cases. Using risks in testing is a one-way information
flow. Risks are not specifically considered in evaluating and
reporting test results.

In Case B, a lot of tacit knowledge is involved in risk-
based testing. It manifests itself mainly in two points of the
test process. First, in the priorities assigned to test cases in
the test management system SilkCentral and, second, in the
change-based approach used to select regression tests.

For the second point, additional tool support has been
developed as an extension to the test management system
(Fig. 3). The tool collects coverage information from test
execution to compute a coverage footprint for every test
case. Coverage information is recorded in terms of cov-
ered files and classes, covered methods as well as covered
lines. In addition, dependencies between files and methods
are analyzed. The coverage footprint is extended by including
dependent files and methods. Change information is retrieved
from Microsoft Team Foundation Server, which records the
changed lines of all affected files for every enhancement or
bug fix. Tests that cover changed code or dependent code are
selected for regression testing. The dynamically computed
regression test sets are suggestions offered to the testers. The
testers are free to incorporate, reduce, or extend the sug-
gested sets when compiling the actual regression test suite
for a release.

Thus, in Case B, risks are not specified as individual enti-
ties. Risk information is encoded in the form of attributes of
test cases or it is provided as additional information linking
test cases to areas of the software system.

In Case C, risk-based testing is applied to test features.
Therefore, risks are also assigned to features which are the
risk items in Case C. Explicit high-level risks are not defined.
Each feature describes one specific capability of a system or
component. Thus, risk-based testing is applied on the system
and component level. Figure 4 shows the core artifacts, their

123



620 M. Felderer, R. Ramler

Fig. 4 System, test, and
assessment model of Case C

relationship and the risk assessment model of the test process
applied in Case C.

The distributed computation of risk exposure values on
the basis of factors assigned to features, units, and require-
ments is illustrated in Fig. 4. As already discussed for RQ1
in Sect. 5.1, the computation is based on the Factor-Criteria-
Metrics model. Probability criteria (Pi ) are assigned to units,
impact criteria (Ii ) to requirements, time criteria (Ti ) to fea-
tures and weights (wi ) to components. Each criterion is mea-
sured by an automatically or manually determined metrics.
Automatically determined metrics can be measured by spe-
cific tools like static analysis tools for source code qual-

ity management. For manual determination of metrics the
distributed model has the advantage that various stakehold-
ers with specific knowledge can be integrated into the risk
analysis process. The probability criteria are determined by
software architects, the impact criteria by customer solution
providers, i.e., a product and requirements engineer, and the
time criteria as well as the weights by test managers.

The risk-based test process of Case C with all its artifacts
and process steps is supported in the project management
tool in-Step [24]. In Case C, in-Step is the established tool to
implement the development and test process. For risk-based
testing it has been extended to support risk analysis. Figure 5

Fig. 5 Integration of risk assessment in project management tool

123



A multiple case study on risk-based testing in industry 621

shows a screenshot of the specifically developed risk analysis
view of in-Step where the measures for criteria are entered
and processed to calculate risk exposure values. In addition,
for the automatic measurement of source code metrics the
source code quality management tool Sonar [26] is applied.

5.4 What are the benefits of a risk-based testing approach?
(RQ4)

To answer this research question, we investigated the
achieved or expected positive effects of following risk-based
approaches in software testing. The findings are:

– F-12 A central benefit of using risk information in test-
ing is to increase the range of testing with additional
risk-based test cases and, thus, to increase the chance of
detecting additional defects. As a result, risk-based test-
ing helps to make testing more effective. It is expected
that fewer defects will slip through to the field.

– F-13 In addition to detecting more defects, risk informa-
tion is used to target the most critical defects from the
very beginning. By setting priorities based on risk infor-
mation, once again, risk-based testing helps to make test-
ing more effective. It increases the chance to find critical
defects in the early iterations of testing and, in conse-
quence, it also reduces the overall costs and time required
for stabilization.

– F-14 Test managers and testers consider the incorpora-
tion of risk as beneficial for informed decision-making.
The insights derived from the risk information are used
to triangulate and refine initial decisions. The analyzed
cases include examples where risk information supports
decisions on resource allocation, defining regression test
suites, identifying candidates for test automation, as well
as decisions on when to end testing.

In Case A, testing is primarily oriented towards the speci-
fied requirements. The requirements are the reference when
defining the goal of the project and when ultimately decid-
ing whether or not this goal has been met. Testing measures
the progress in terms of implemented requirements and pro-
vides feedback about remaining gaps as well as incomplete or
defective implementations. By deriving additional test cases
from risks, the scope of testing is increased towards potential
defects that threaten reaching the project’s goal.

Testing the requirements is not enough. Critical defects
may be missed. Thus, additional tests are designed (with the
aim to increase the scope of testing) to find all relevant defects
(including those not obvious from analyzing the require-
ments specification). Typical examples are defects specific
for the design and implementation of the solution and defects
related to the applied technologies. Furthermore, the require-
ments are specified in a positive form, describing only what

should happen. Testing also has to make sure that undesired,
negative situations, that should not happen, will not happen.

Risk-based testing addresses these “negative situations”.
The test cases derived from risks go beyond techniques for
testing exceptions and failure scenarios of use cases and
specified requirements. Risks are related to complemen-
tary sources of failures, and the observed risk-based test-
ing approach is related to techniques like error guessing and
using defect taxonomies [27].

Furthermore, a risk-based approach includes giving pri-
ority to important requirements and high-risk system parts.
Therefore, testing will be better prepared to handle the
inevitable time and budget constraints. Prioritization in risk-
based testing is also assumed to provide early detection of
critical defects. The expected benefit is a reduced overall
duration of the stabilization phase.

For Case B, the advantage of risk-based testing is the opti-
mal usage of the available resources for regression testing.
The consideration of impact (user and customer perception)
and probability (recently changed parts) in selecting regres-
sion tests allows concentrating testing activities on those
parts of the software system that have a high likelihood of
being defective without jeopardizing quality due to missing
critical defects in other parts. A full regression test can, there-
fore, be avoided when releasing bug fix and maintenance ver-
sions. As a benefit, bug fixes can be provided promptly and
small updates can be released more frequently than the major
versions, which usually include regression testing for several
months.

Quality involves a timely response to bug reports and fea-
ture requests. The ability to quickly fix a defect is essential
for problems found by customers in the field. Time to mar-
ket is generally a critical factor in product development. The
risk-based approach is also considered for testing major ver-
sions. When focusing on changes first, the bugs are found
earlier and the often long and time-consuming fix and re-test
cycles can be reduced. (For every fix of a defect, the previ-
ously executed tests have to be run again.) So on the long
run, the product can be released earlier.

The availability risk information is also considered a ben-
efit. The implementation of the risk-based testing approach
provided access to a wealth of change impact and cover-
age data for the testers. Previously, the impact of changes
was often a subjective estimate based on expert opinion and
tacit knowledge. With the tool support for change-based test-
ing, also testers less familiar with implementation details of
a particular part of the software system are able to make
sound decisions when selecting regression tests. Further-
more, testers use this information also for decision on where
to invest in test automation.

In Case C, risk exposure values and risk levels are so far
only used to prioritize and select test cases for execution and
as test-end criterion in a basic risk-based test plan. But risk

123



622 M. Felderer, R. Ramler

information is not used to control test design itself, e.g., by
varying the test depth dependent on the risk level. In the
test design phase, executable test cases are defined by testers
according to the test plan and get assigned the risk exposure
value of the feature they are designed for. Already existing
test cases which are applicable are selected from similar pre-
vious components or features. After the respective testable
object is available for the test, the test cases are executed
ordered by their risk level and risk exposure values.

The achieved benefits of this risk-based testing approach
in Case C are mainly decision support on resource allocation.
The time resources for testing are limited as solutions have
to be provided at fixed dates. Therefore, test cases have to be
prioritized for execution based on their risk level to mitigate
highest risks in the limited test window. A test-end criterion
which considers the risk levels of features terminates testing.
A typical test-end criterion defines that all features with high
risk have to be tested, features with medium risk are optional
candidates to be tested to reach the required test coverage,
and features with low risk are only tested if all others have
been tested and resources are available.

As additional benefit, the automation supported determi-
nation of failure probability of features makes testing more
effective and helps to find more defects in important features
(which are prioritized for testing) before deployment. Each
test run contains a test result for each of its executed test cases
and is traceable to a feature. Depending on the test results, a
problem ticket is created. As soon as the test-end criterion is
reached, a test report is created.

6 Threats to validity

In this section, we present the threats to validity of our results
and the applied countermeasures. Referring to Runeson and
Höst [2], we discuss threats to the construct validity, relia-
bility, internal validity, and external validity of our multiple
case study along with countermeasures taken to reduce the
threats.

6.1 Construct validity

Construct validity reflects to what extent the phenomenon
under study really represents what the researchers have in
mind and what is investigated according to the research ques-
tions. Of specific interest to construct validity is the defini-
tions of terms and concepts in the case context vs. the research
context. We defined all relevant terms and concepts of risk-
based testing in Sect. 2. The research questions are formu-
lated based on these terms. The notation of each case and,
therefore, also interview questions are based on the terms and
concepts of the case. These terms and concepts are linked to
the general terms and concepts of risk-based testing.

6.2 Reliability

Reliability focuses on whether the data are collected and the
analysis is conducted in a way that it can be repeated by other
researchers with the same results. This is a threat in any study
using qualitative and quantitative data. The observations are
of course filtered through the perception and knowledge pro-
file of the researchers. Counteractions to these threats are
that two researchers are involved in the study, the data col-
lection and analysis procedures are well documented, and the
data extracted from documents and tools is triangulated with
interviews and some quantitative data.

6.3 Internal validity

Internal validity is of concern when causal relations are exam-
ined. When the researcher is investigating whether one factor
affects an investigated factor, there is a risk that the investi-
gated factor is also affected by a third factor. In our case, only
few quantitative data is available, the quantitative analysis is
not interpreted in isolation, and it is not even feasible to infer
statistical analysis, due to the incompleteness of the data.
The analyses about casual relationships are instead based
on qualitative analysis. Feeding back the analysis results to
interviewees is another action taken to reduce internal valid-
ity threats.

6.4 External validity

External validity is concerned with to what extent it is pos-
sible to generalize the findings, and to what extent the find-
ings are of interest to other people outside the investigated
cases. As the cases have been carefully selected, the presented
results are based on a broad basis (considering a project, a
product, and a process), which makes the results relevant
for other contexts as well. Each case of course has its own
specifics, and in that sense there is no general case. However,
some key characteristics of the cases may be general and, for
other cases with similar contexts, the results may be used as a
reference. To allow external comparison, we have presented
the context of each case as clearly as possible, given the con-
fidentiality constraints we have. On the risk side, there are
so many variation factors in every context, that we may have
focused on other than the key ones. Only replicated studies
may help assessing the external validity of our study.

7 Summary and conclusion

In this article, we presented a multiple case study on cur-
rently applied risk-based testing approaches in industry. It
is based on three industry cases from different backgrounds.
The first case investigates testing in context of a develop-

123



A multiple case study on risk-based testing in industry 623

Table 2 Summary of findings structured according to research questions RQ1 to RQ4 as well as Cases A, B, and C (“+” = confirming observation,
“−” = controverting observation, empty = no observation)

Research question Finding A B C

RQ1: What is the notion of risk
in software testing?

F-01 Testing is a measure to reduce risk exposure, the focus is on product
risks, the risk concept is dependent on context and scope

+ + +

F-02 Common definition of risk R = P I applies, definition and
relation of P and I may remain informal and implicit, usually
based on (subjective) estimates

+ + +

F-03 Degree of formality of risk depends on the application scope,
formality increases with wider scope and abstraction level

+ + +

RQ2: How do risks support the activities
of the software test process?

F-04 Risk is considered in all testing activities, even when not
following an explicit risk-based testing approach

+ + +

F-05 Risk information from testing is not explicitly considered in making
release decisions

+ + −

F-06 Risk information is used to extend testing towards “risky” areas, risk
information is used as a guideline to focus testing on “risky” areas

+ + +

F-07 Risk-based testing is not used to reduce the amount of testing, the
overall test effort, or the established test budgets

+ +

RQ3: How are risks organized from
a technical perspective?

F-08 Risks at the level of project management are individual entities, risks
in testing are calculated from risk information associated to testable
entities

+ +

F-09 Risk-based testing relies on standard test tool infrastructure, risk
management tools are not applied in software testing

+ + +

F-10 Implementation of risk-based testing uses an extensions to standard
test tools

+ +

F-11 Tool support for risk-based testing is an aid for collecting and
analyzing measurement data from which to derive risk information

+ +

RQ4: What are the benefits of a risk-based
testing approach?

F-12 Make testing more effective: detecting additional defects in testing,
fewer defects slip through to the field

+ + +

F-13 Make testing more effective: prioritization for detecting most critical
defects first, reduces overall stabilization costs and time

+ + +

F-14 Risk information used for informed decision-making and new insights
to triangulate and refine decisions

+ +

ment project extending a large information system, the sec-
ond one analyzes testing of a software product for measure-
ment and diagnostic in the electrical power industry, and the
third one considers the test process of a system integrator of
telecommunication solutions. The main analysis across the
three cases was conducted with qualitative methods. Results
were gained by analyzing documents, tools, and interview
protocols keeping a clear chain of evidence. Based on the
research objective to explore how risk is defined, assessed,
and applied in industry to support and improve testing activ-
ities, four research questions were defined and findings were
derived by cross-case analysis. A summary of the findings is
shown in Table 2.

The findings shown in Table 2 have been derived from the
synthesis of the observations we made, when investigating
the three different cases. Findings with confirming observa-
tions are marked by a “+” in the column of the corresponding
case; contradicting observations are marked by a “−” sign.
An empty cell indicates that no observations related to the
described finding were made. Each finding has been con-
firmed by observations from at least two different cases. The
findings are grouped according to the four research questions
we studied in this article.

The first research question investigated the notion of risk in
software testing. We found that the concept of risk depends on
context and scope, but that there is an agreement that product
risks are relevant for testing, which is commonly understood
as measure to reduce the risk exposure of the product. It
turned out that all cases follow the common definition of risk
relating its probability and impact. However, the definition
may remain implicit and the degree of formality depends
on the application scope, i.e., it increases from project to
product, and, furthermore, to process.

The second research question investigated how risks sup-
port the activities of the software test process. We found that
risk is taken into consideration in virtually all testing activi-
ties, e.g., to define test-end criteria in the test planning phase,
to design test cases, and to select and prioritize test cases for
test execution. But risk information used in testing has not
been found to play an explicit role in making release deci-
sions. Our investigation also turned out that risk-based test-
ing is not understood as an approach to reduce the amount of
testing, but on the contrary, additional test cases are usually
designed as a consequence of addressing all risks. Risk-based
testing is motivated by the adequate mitigation of risks, more
than by the reduction of testing efforts and resources.

123



624 M. Felderer, R. Ramler

The third research question investigated how risks orga-
nized from a technical perspective. We found that in test-
ing, risks are calculated from risk information associated
to testable entities for identifying critical areas of the soft-
ware systems, where the testing effort is concentrated on.
Risk-based testing relies on the established standard tool
infrastructure for testing. These tools usually include conven-
tional test management tools and custom extension, but not
specific risk management tools. Risk-based testing is imple-
mented with the help of the available tools or as extension to
the existing tool infrastructure.

The fourth research question investigated the benefits of
risk-based testing. As central benefits of risk-based test-
ing, we identified using risk information to increase the
range of testing for detecting additional defects, and to tar-
get the most critical defects from the very beginning. In
addition, test managers and testers consider the incorpora-
tion of risk as beneficial for informed decision-making on
resource allocation, defining regression test suites, identify-
ing candidates for test automation, as well as when to end
testing.

Based on the findings derived by cross analysis of the three
cases in context of the research questions, suggestions can be
provided how to enhance usage of risks for testing purposes
in each of the three cases. In Case A, the next step to enhance
risk-based testing could be an established risk assessment
procedure providing objective and reliable results based on
automatically collected measurement data and expert esti-
mates. Case B could benefit from an explicit risk-based test
plan guiding decisions which regression tests to select and
where to invest in test automation. Finally, risk-based test-
ing in Case C could be improved using risk information to
control test design.

In future, we plan to extend our suggestions on how to
enhance risk-based testing in each of the three cases to gen-
eral guidelines for the stepwise introduction of risk-based
testing into existing test processes. These guidelines may be
based on a stage model for introducing risk-based testing. Our
findings on how risks support the testing activities provide
important insights for developing such a model. The mitiga-
tion of risks is a strong driver for introducing risk-based test-
ing. Risk information may first be considered in the test plan-
ning, design, and execution phases, and afterwards in the test
evaluation and reporting phases. Optionally, release quality
statements and residual risk estimations may be considered.
We plan conducting additional case studies to investigate
the introduction of risk-based testing and to further increase
empirical evidence of risk-based practices in industry.

Acknowledgments This work has been supported by the COMET
Competence Center program of the Austrian Research Promotion
Agency (FFG), the project QE LaB Living Models for Open Systems
(http://www.qe-lab.at) funded by the Austrian Federal Ministry of Eco-
nomics (Bundesministerium für Wirtschaft und Arbeit), the project

MOBSTECO funded by the Austrian Science Fund (FWF) as well
as the competence network Softnet Austria (http://www.soft-net.at)
funded by the Austrian Federal Ministry of Economics (Bundesminis-
terium für Wirtschaft und Arbeit), the province of Styria, the Steirische
Wirtschaftsförderungsgesellschaft mbH (SFG), and the city of Viennas
Center for Innovation and Technology (ZIT).

References

1. Wendland, M.F., Kranz, M., Schieferdecker, I.: A systematic
approach to risk-based testing using risk-annotated requirements
models. In: ICSEA 2012. The Seventh International Conference on
Software Engineering Advances, pp. 636–642 (2012)

2. Runeson, P., Höst, M.: Guidelines for conducting and reporting
case study research in software engineering. Empir. Softw. Eng.
14(2), 131–164 (2009)

3. Yin, R.K.: Case study research: design and methods, vol. 5. Sage
(2009)

4. Bach, J.: Heuristic risk-based testing. Softw. Test. Qual. Eng. Mag.
11, 99 (1999)

5. Amland, S.: Risk-based testing: risk analysis fundamentals and
metrics for software testing including a financial application case
study. J. Syst. Softw. 53(3), 287–295 (2000)

6. Redmill, F.: Theory and practice of risk-based testing. Softw. Test.
Verif. Reliab. 15(1), 3–20 (2005)

7. van Veenendaal, E.: Practical risk-based testing: the PRISMA
approach. UTN, Cambridge (2012)

8. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating man-
ual and automatic risk assessment for risk-based testing. Software
Quality. Process Automation in Software Development, pp. 159–
180 (2012)

9. ISO: ISO/IEC/IEEE 29119 Software Testing (2013). Available at
http://www.softwaretestingstandard.org/. Accessed May 6 2014

10. van Veenendaal, E. (ed.): Standard glossary of terms used in soft-
ware testing, version 2.2. Technical report, International Software
Testing Qualifications Board, Glossary Working Party (2012)

11. ISO: ISO/IEC/IEEE 24765:2010 System and software
engineering—Vocabulary (2010)

12. Cavano, J., McCall, J.: A framework for the measurement of soft-
ware quality. ACM SIGMETRICS Perform. Eval. Rev. 7(3–4),
133–139 (1978)

13. Redmill, F.: Exploring risk-based testing and its implications.
Softw. Test. Verif. Reliab. 14(1), 3–15 (2004)

14. Standards Australia/New Zealand: Risk Management AS/NZS
4360, 2004 (2004)

15. Karolak, D., Karolak, N.: Software Engineering Risk Manage-
ment: A Just-in-Time Approach. IEEE Computer Society Press,
Los Alamitos (1995)

16. Chen, Y., Probert, R.L., Sims, D.P.: Specification-based regres-
sion test selection with risk analysis. In: Proceedings of the 2002
Conference of the Centre for Advanced Studies on Collaborative
Research. IBM Press (2002)

17. Stallbaum, H., Metzger, A.: Employing requirements metrics for
automating early risk assessment. In: Proceedings of MeReP07,
Palma de Mallorca, Spain, pp. 1–12 (2007)

18. Stallbaum, H., Metzger, A., Pohl, K.: An automated technique for
risk-based test case generation and prioritization. In: Proceedings
of the 3rd International Workshop on Automation of Software Test,
pp. 67–70. ACM Press, New York (2008)

19. Felderer, M., Ramler, R.: Experiences and challenges of introduc-
ing risk-based testing in an industrial project. In: Software Quality.
Increasing Value in Software and Systems Development, pp. 10–
29. Springer, Berlin (2013)

123

http://www.qe-lab.at
http://www.soft-net.at
http://www.softwaretestingstandard.org/


A multiple case study on risk-based testing in industry 625

20. Yoon, H., Choi, B.: A test case prioritization based on degree of
risk exposure and its empirical study. Int. J. Softw. Eng. Knowl.
Eng. 21(02), 191–209 (2011)

21. Souza, E., Gusmão, C., Venâncio, J.: Risk-based testing: a case
study. In: IEEE 2010 Seventh International Conference on Informa-
tion Technology: New Generations (ITNG), pp. 1032–1037 (2010)

22. Souza, E., Gusmao, C., Alves, K., Venancio, J., Melo, R.: Measure-
ment and control for risk-based test cases and activities. In: 10th
Latin American Test Workshop, pp. 1–6. IEEE Press, New York
(2009)

23. Borland: SilkCentral (2013). Available at http://www.borland.
com/products/silkcentral/. Accessed November 30 2013

24. Microtool: in-Step (2013). Available at http://www.microtool.de/
inStep. Accessed November 30 2013

25. McCabe, T.: A complexity measure. IEEE Trans. Softw. Eng. 308–
320 (1976)

26. SonarSource: Sonar (2013). Available at http://www.sonarsource.
org/. Accessed November 30 2013

27. Felderer, M., Beer, A.: Using defect taxonomies to improve the
maturity of the system test process: results from an industrial case
study. In: Software Quality. Increasing Value in Software and Sys-
tems Development, LNBIP 133, pp. 125–146. Springer, Berlin
(2013)

123

http://www.borland.com/products/silkcentral/
http://www.borland.com/products/silkcentral/
http://www.microtool.de/inStep
http://www.microtool.de/inStep
http://www.sonarsource.org/
http://www.sonarsource.org/

	A multiple case study on risk-based testing in industry
	Abstract 
	1 Introduction
	2 Background and related work
	2.1 Risk model
	2.2 Risk-based test process
	2.3 Introduction of risk-based testing
	2.4 Related work

	3 Research design
	3.1 Research questions
	3.2 Case selection
	3.3 Data collection procedure
	3.4 Analysis procedure
	3.5 Validity procedure

	4 Description of the studied cases
	4.1 Case A
	4.2 Case B
	4.3 Case C

	5 Results and discussion
	5.1 What is the notion of risk in software testing? (RQ1)
	5.2 How do risks support the activities of the software test process? (RQ2)
	5.3 How are risks organized from a technical perspective? (RQ3)
	5.4 What are the benefits of a risk-based testing approach? (RQ4)

	6 Threats to validity
	6.1 Construct validity
	6.2 Reliability
	6.3 Internal validity
	6.4 External validity

	7 Summary and conclusion
	Acknowledgments
	References


