
Int J Softw Tools Technol Transfer (2015) 17:709–727
DOI 10.1007/s10009-014-0314-5

VERIFYTHIS 2012

Let’s verify this with Why3

François Bobot · Jean-Christophe Filliâtre ·
Claude Marché · Andrei Paskevich

Published online: 19 April 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We present solutions to the three challenges of
the VerifyThis competition held at the 18th FM symposium
in August 2012. These solutions use the Why3 environment
for deductive program verification.

Keywords Formal specification · Deductive verification ·
Automated theorem proving · Case study

1 Introduction

The Why3 environment for deductive program verification
is built around a kernel that implements a formal specifi-
cation language, based on typed first-order logic. Logical
goals can be proved using a large set of automated and
interactive external theorem provers, such as Alt-Ergo [4],
CVC3 [2], CVC4 [1], Z3 [8], E [17], SPASS [19], Vam-
pire [16], Coq [3], or PVS [15]. When a goal is sent to
a prover that does not support some features of the lan-
guage, Why3 applies a series of encoding transformations,

Work partly supported by the Bware project of the French national
research organization (ANR-12-INSE-0010, http://bware.lri.fr/).

F. Bobot
CEA, LIST, Software Reliability Laboratory, PC 174,
91191 Gif-sur-Yvette, France

J.-C. Filliâtre · C. Marché (B) · A. Paskevich
Laboratoire de Recherche en Informatique (CNRS UMR 8623),
Orsay, France
e-mail: Claude.Marche@inria.fr

C. Marché · J.-C. Filliâtre · A. Paskevich
Inria Saclay Île-de-France, Palaiseau, France

J.-C. Filliâtre · C. Marché · A. Paskevich
Université Paris-Sud, Orsay, France

for example, to eliminate pattern matching or polymorphic
types [7].

On top of this kernel, Why3 features a programming lan-
guage WhyML, where functions can be formally specified
using contracts. A VC generator produces proof obligations
that need to be discharged to prove that a program respects
its specification [9].

In this paper, we illustrate the use of Why3 by provid-
ing solutions to the three challenges that were given at the
VerifyThis competition, held at the 18th FM symposium in
August 2012. The description of the challenges can be found
at http://fm2012.verifythis.org/challenges/. Reference Java
implementations were given for the first two problems, and
an algorithm in pseudocode was given for the third one.

We entered the competition with two teams, each with
two members, both using Why3. By the end of the com-
petition, our teams had partial solutions for the proposed
challenges. After the competition, we merged our teams. For
each challenge, we took the better approach of two as a basis
upon which we built a complete solution. We estimate that
we spent approximately 30 person-hour in that process. Our
solutions use Why3 version 0.82 [6].

2 Why3 in a nutshell

In this section, we briefly describe Why3: the pure logic lan-
guage of specifications, the programming languageWhyML,
and some peculiarities of program verification in Why3.

2.1 Specification language

Why3 is based on first-order logic with ML-style poly-
morphic types and several extensions: recursive definitions,
algebraic data types, and inductive predicates. The specifi-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-014-0314-5&domain=pdf
http://bware.lri.fr/
http://fm2012.verifythis.org/challenges/

710 F. Bobot et al.

cation language of Why3 does not depend on any features
of its programming language, and can serve as a rich com-
mon format of theorem proving problems, readily suitable
(via Why3) for multiple external provers.

Types. Built-in types in Why3 include integers (int), real
numbers (real), and tuples. A user-defined type can be non-
interpreted or be a synonym for a type expression:

type map α β

type i_map γ = map int γ

Otherwise, it is an algebraic data type or a record. For
instance, polymorphic lists and binary trees are defined in
the standard library of Why3 as follows:

type list α = Nil | Cons α (list α)

type tree α = Empty | Node (tree α) α (tree α)

Record types are a special case of algebraic types with
a single unnamed constructor and named fields. Here is a
definition of a banker’s queue:

type queue α = { front: list α; rear: list α }

All types must be inhabited and Why3 checks that every
algebraic type declaration admits at least one value. For
example, the above definition of the list type would be
rejected without constructor Nil.

Function and predicate symbols. Every function or predi-
cate symbol in Why3 has a polymorphic type signature. For
example, an abstract function that applies a mapping to an
element of the domain can be declared as follows:

function get (map α β) α : β

Both functions and predicates can be given definitions,
possibly mutually recursive. As examples, we can specify
that an int-to-int mapping is strictly increasing:

predicate increasing (m: map int int) =

forall i j: int. i < j → get m i < get m j

or calculate the height of a tree:

function height (t: tree α): int = match t with

| Node l _ r → 1 + max (height l) (height r)

| Leaf → 0

end

Why3 automatically verifies that recursive definitions
are terminating. To do so, it looks for an appropriate lex-
icographic order of arguments that guarantees a structural
descent. Currently, we only support recursion over algebraic
types. Other kinds of recursive functions have to be axiom-
atized or defined as programs, where termination is proved
using variants (see Sect. 2.2).

Another extension to the first-order language adopted in
Why3 is inductive predicates. Such a predicate is the least
relation satisfying a set of clauses. For instance, the subse-
quence relation over lists is inductively defined as follows:

inductive sub (list α) (list α) =

| null : sub (Nil: list α) (Nil: list α)

| cons : forall x: α, s1 s2: list α.

sub s1 s2 → sub (Cons x s1) (Cons x s2)

| dive : forall x: α, s1 s2: list α.

sub s1 s2 → sub s1 (Cons x s2)

Standard positivity restrictions apply to ensure the exis-
tence of the least fixed point.

Terms and formulas. First-order language is extended, both
in terms and formulas, with pattern matching, let-expressions,
and conditional expressions. We stay faithful to the usual
distinction between terms and formulas that is made in first-
order logic. Thus we make a difference between a predi-
cate symbol and a function symbol which returns a bool-
typed value, bool being defined with type bool = True | False.
However, to facilitate writing, conditional expressions are
allowed in terms, as in the following definition of absolute
value:

function abs (x: int) : int =

if x ≥ 0 then x else -x

Such a construct is directly accepted by provers not mak-
ing a distinction between terms and formulas. To translate
if-then-else constructs to traditional first-order language,
Why3 lifts them to the level of formulas and rewrites them
as conjunctions of two implications.

Theories. Pure logical definitions, axioms, and lemmas are
organized in collections, called theories. The standard library
of Why3 contains numerous theories describing integer and
real arithmetic, lists, binary trees, mappings, abstract alge-
braic notions, etc. To provide a fine-grained control of the
premise set, we favor small theories which build on each
other and introduce one or two concepts, such as Euclidean
division, list membership, or injective maps. Instruction use

imports a theory into the current context:

use import list.List

2.2 Programming language

WhyML can be seen as a dialect of ML with extensive
support for specification annotations. Program functions are
provided with pre- and postconditions for normal and excep-
tional termination, and loop statements are annotated with
invariants. To ensure termination, recursive functions and
while-loops can be given variants, i.e., terms that decrease
at each recursive call or iteration with respect to some
well-founded ordering. Statically checked assertions can be
inserted at arbitrary points in a program.

Verification conditions are generated using a standard
weakest-precondition procedure. To produce first-order proof
obligations, WhyML is restricted to the first order, too:

123

Let’s verify this 711

Nested function definitions are allowed but higher order
functions are not. Furthermore, to keep proof obligations
more tractable for provers and more readable (hence debug-
gable) for users, the type system of WhyML requires all
aliases to be known statically, at the time of verification con-
dition generation. This allows us to apply the Hoare-style
rule for assignment, without resorting to a heap memory
model. One consequence of this discipline is that recursive
data types cannot have mutable components. As we demon-
strate below, these restrictions do not preclude us from writ-
ing and verifying complex algorithms and data structures.

Types. WhyML extends the pure types of the specification
language in several ways. First and foremost, the mutable
state of a computation is exclusively embodied in mutable
fields of record data types:

type ref α = { mutable contents: α }

A program type can be provided with an invariant, i.e., a
logical property imposed on any value of the type:

type array α

model { length: int; mutable elts: map int α }

invariant { 0 ≤ self.length }

Type invariants in WhyML are verified at the function
call boundaries. Since WhyML type system tracks aliases
and side effects statically, it is easy to detect whenever
a type invariant must be re-established. Keyword model in
place of the equal sign means that, insideWhyML programs,
type array is not a record, but an abstract data type. Thus,
an attempt to access the elts field in a program would be
rejected. However, inside specifications, array is a record and
its fields may be accessed.

Finally, a record field (or, more generally, an argument
of a constructor in an algebraic type) can be declared ghost.
Ghost data and ghost computations serve strictly for verifi-
cation purposes. In particular, a typical use case for ghost
fields is to equip a data structure with a pure logical “view”.
For example, some intricate implementation of sparse matri-
ces may carry a ghost field1:

type sparse_matrix α =

{ ghost view : map (int,int) α; ... }

Formal arguments of program functions, as well as
locally defined variables, can also be declared ghost.

To guarantee that ghost data and computations do not
interfere with the program and cannot affect its final result,
WhyML type system imposes a number of restrictions on
their use. Ghost data cannot be used in a non-ghost com-
putation. Ghost computations cannot modify a non-ghost

1 Notice that the non-ghost fields of sparse_matrix can still be
used in regular, non-ghost code, which would not be the case were
sparse_matrix declared as a model type.

mutable value or raise exceptions that escape into non-ghost
code. However, ghost computations can read non-ghost val-
ues and ghost data can be used in program specifications.

Function prototypes. Unlike other ML variants, WhyML
does not separate interface and implementation. One can
freely mix in the same WhyML module fully implemented
program functions with abstract function prototypes carry-
ing only a type and a specification. For “model” types like
array, whose structure is inaccessible from programs, func-
tion prototypes is the only way to provide a usable interface.
Here is how lookup and update are specified for arrays:

val ([]) (a: array α) (i: int) : α

requires { 0 ≤ i < a.length }

reads { a }

ensures { result = get a.elts i }

val ([]←) (a: array α) (i: int) (v: α) : unit

requires { 0 ≤ i < a.length }

writes { a }

ensures { a.elts = set (old a.elts) i v }

The names ([]) and ([]←) define mixfix operators a[i]

and a[i] ← v. Clauses reads and writes specify the side
effects in function prototypes; for example, a[i] ← v modi-
fies the mutable field of a, namely a.elts. The term (old a.elts)

in the postcondition of the second prototype refers to the pre-
call value of the field a.elts, before it is modified by ([]←).

Programs. The syntax of WhyML programs should give no
surprise to anyone familiar with ML. As examples, let us
show several functions to handle mutable references:

function (!) (x: ref α) : α = x.contents

let (!) (r:ref α) : α

ensures { result = !r }

= r.contents

let (:=) (r:ref α) (v:α) : unit

ensures { !r = v }

= r.contents ← v

let incr (r: ref int) : unit

ensures { !r = old !r + 1 }

= r := !r + 1

Contrary to function prototypes, we do not indicate reads

and writes effects, since Why3 can extract this information
from the code. Notice that the same prefix symbol (!) is used
as the name for both a pure access function and a program
function. Since program symbols cannot appear in specifica-
tions, !r in pre- and postconditions can only refer to the pure
function. In the program code, !r will refer to the WhyML
function.

The last definition shows that pure types, functions,
and predicates are accepted in WhyML programs. For
instance, the type of integers and basic arithmetic operations
are shared between specifications and programs. The only
exception is made for logic functions and predicates spec-
ified directly on program types: such symbols can only be

123

712 F. Bobot et al.

used in specifications. One reason for this restriction is that
these functions and predicates have uncontrolled access to
ghost components of program types. Had we not reused the
(!) operator, WhyML would reject the last definition report-
ing that pure function (!) cannot appear in a program.

Modules. Akin to pure logical theories, WhyML declara-
tions and definitions are grouped into modules. A module
may import logical theories or contain pure declarations.
The standard library modules introduce mutable references,
arrays, hash tables, stacks, and queues.

2.3 Verifying programs with Why3

Simple Why3 formalizations can be verified directly from
the command line: The why3 tool can run a designated
automated prover on each proof obligation generated from
a WhyML file and report eventual proof failures. For
more complex developments, Why3 provides an interac-
tive graphical environment whose main window is shown in
Fig. 1. The big tree on the left shows the current state of the
session. The root of the tree is the WhyML file in works, the
first-level nodes are theories and modules, and the second-
level nodes are primary proof obligations: logical lemmas
and verification conditions for top-level WhyML functions.

Proof obligations, also called proof tasks, can be sent
to automated provers or handled using interactive proof
assistants (see the stack of buttons to the left of the session
view). Why3 also puts at user’s disposal a number of so-
called transformationswhich can be used to simplify a proof
obligation under consideration or to split it into a number of
sub-tasks.2 These sub-tasks appear at the lower levels of the
session tree.

In the session shown in the figure, the file being checked
is verifythis_fm2012_LRS.mlw. The first module in this file
contains a WhyML function named lcp (whose source code
is shown in the bottom-right frame), and the verification
condition for this function is decomposed into seven sub-
tasks: two preconditions ensuring safety of array access in
the loop condition, loop invariant initialization and preser-
vation, and three postconditions covering each branch of the
negated loop condition. The cursor is positioned on the first
postcondition, where the first two parts of the loop condi-
tion are true and the third one is false. The proof obliga-
tion itself is shown in the top-right frame. Four automated
provers were able to discharge this proof task successfully.

2 Another purpose of transformations is to eliminate and encode vari-
ous high-level features of Why3 language, such as pattern matching or
type polymorphism, to make proof obligations acceptable for a range
of external provers. These transformations are invoked by a driver for
a particular prover and do not need to be applied explicitly by the user.

Due to differences in prover technology (which are
especially deep between SMT solvers and resolution-based
provers), there is no single best prover for the purposes of
program verification. Quite often, a proof obligation is only
discharged by one or two provers out of half a dozen we
use regularly. Being able to target diverse back-end provers
is an important feature of Why3 which allows us to prove
automatically more goals than we would be able to using
just one dedicated prover.

Proof sessions are saved between runs of Why3, which
facilitates development and debugging of verified programs.
Special algorithms were devised for reconstruction of ses-
sion trees after modification of the program code or spec-
ification [5]. Along with the session, Why3 stores proof
scripts for interactive proof assistants (at this moment, Coq
and PVS are supported) that handle proof obligations falling
beyond the reach of automated provers. One characteristic
case where one has to resort to interactive proof is proof
tasks requiring reasoning by induction.

Another important functionality of Why3 is code extrac-
tion: a verified WhyML program can be translated to a com-
pilable correct-by-construction OCaml program (a mecha-
nism similar to that of Coq). Recently, work has started on a
native WhyML evaluator which would allow for quick test-
ing of programs and assertions, speeding up the develop-
ment process.

3 Challenge 1: longest repeated substring

This challenge aims at computing the longest repeated sub-
string in a given string. The two occurrences of that sub-
string are allowed to overlap. For example, the longest
repeated substring in ABCDBBCDA and ABCDBCDB are, respec-
tively, BCD and BCDB, with an overlap in the second case.

A naive algorithm that checks all possible occurrences
of each substring would be of cubic complexity. This chal-
lenge proposes a more efficient algorithm, that amounts to
computing the array of suffixes of the given string. It is an
array of integers that lists the positions of the suffixes of the
input string, in increasing lexicographic order. For example
the sorted array of suffixes of ABCDBCDB is [0; 1; 4; 7; 2; 5;
3; 6], corresponding to suffixes ABCDBCDB, BCDBCDB, BCDB,
B, CDBCDB, CDB, DBCDB, DB in that order. The longest repeated
substring is then the longest common prefix of two consecu-
tive strings in this array.

A preliminary step of this challenge is thus to compute
the longest common prefix of two given substrings of the
input; this part was expected to be solved during the compe-
tition.

We provide a complete solution to the challenge. The
Why3 code follows the Java reference implementation as
closely as possible. A noticeable difference is that the func-

123

Let’s verify this 713

Fig. 1 Why3 graphical user interface (color figure online)

tion for sorting does not apply to a SuffixArray object:
because the Java reference calls the sort method inside a
constructor3 which is not possible in Why3. Our solution
is made of four Why3 modules:

– LCP: computation of longest common prefix of sub-
strings.

– SuffixSort: helper functions for sorting suffixes, roughly
corresponding to the private part of the SuffixArray class
of the Java code.

– SuffixArray: the suffixArray data type, roughly corre-
sponding to the public part of the SuffixArray class of the
Java code.

– LRS: computation of longest repeated substring, corre-
sponding to the LRS class of the Java code.

In the following, we detail each module in turn, present-
ing first its specifications, and then the implementation and
proofs. The full solution, including the complete Why3
input and the proof results, is available on the Toccata
gallery of verified programs at http://toccata.lri.fr/gallery/
verifythis_fm2012_LRS.en.html.

3 Calling a method on an object before it is fully constructed is indeed
not recommended [18].

Fig. 2 Challenge 1: specification of longest common prefixes

3.1 Longest common prefix

Our first module LCP implements the first part of the chal-
lenge: a function that computes the longest common prefix
at two given indexes.

Specification. The specifications are given in Fig. 2. We
import arrays from the Why3 standard library. The predi-
cate (is_common_prefix a x y l) is true when the prefixes of
length l at respective positions x and y in array a are identical,
i.e., when a[x..x+l-1] and a[y..y+l-1] are equal. The predi-
cate (is_longest_common_prefix a x y l) is true when l is the

123

http://toccata.lri.fr/gallery/verifythis_fm2012_LRS.en.html
http://toccata.lri.fr/gallery/verifythis_fm2012_LRS.en.html

714 F. Bobot et al.

Fig. 3 Challenge 1: implementation of the lcp function

maximal length of common prefixes at positions x and y in
array a. The postcondition of the lcp function is the natural
way of specifying that this function computes the longest
common prefix.

Implementation and proofs. The Why3 code for the func-
tion that computes the longest common prefix is given in
Fig. 3. It is a direct translation of the Java reference imple-
mentation. Since we need a mutable variable l for this code,
we use a reference (incr is a function of the standard library
that increments an integer reference, see Sect. 2.2). The loop
invariant is natural, since the algorithm amounts to incre-
menting l until the characters at x+l and y+l differ.

To prove this function, we first state and prove two lem-
mas (Fig. 3). These lemmas are not strictly necessary for
the proof, though they help some automated provers, but we
need them later anyway. The first lemma states that if char-
acters at positions x+l and y+l are different, then there is no
common prefix of length l+1. The second lemma states that,
for the longest common prefix to be of length l, it suffices
to have a common prefix of length l but not l+1. The two
lemmas and the verification conditions for the lcp function
are proved automatically, using SMT solvers. (Detailed sta-
tistics on proofs are summarized in Sect. 3.5.)

3.2 Sorting suffixes

Our next module deals with lexicographic order on suffixes
and sorting.

Specification. In the specifications of this module (Fig. 4)
we define the lexicographic order as a predicate lt: the suf-
fix at position x is smaller than the suffix at position y if
there is some length l such that prefixes of length l are the
same, and the next character in x, if any, is smaller than the

Fig. 4 Challenge 1: specification of lexicographic comparison and
sorting

next character in y. The comparison function is then speci-
fied with postconditions that tell, depending on the sign of
the result, whether suffixes at positions x and y are equal,
smaller or greater, respectively.

To specify the sorting algorithm, we need several ingre-
dients (Fig. 4). First we define the “less or equal” predicate
le, which is the ordering relation used for sorting. As usual
with sorting algorithms, the postcondition is twofold: first,
it says that the resulting array is sorted; second, that it con-
tains a permutation of its initial contents. This sorting func-
tion is peculiar since it does not take only one array as usual,
but takes two arrays, a and data as arguments, and sorts data

using an order relation that depends on a. Because of this
peculiarity, we cannot reuse the sorted predicate from the
Why3 standard library to specify the sort function: the def-
inition of this predicate is parametrized by only one array
(see Appendix for details). We thus had to write our own
version (Fig. 4) by making a copy of the relevant part of the
Why3 standard library and adding an extra argument a.

On the other hand, we can reuse the permut predicate from
the standard library (see Fig. 24 in the Appendix for details).
Finally, additional requirements are that the input arrays
have the same length l, and that the values in array data range
in 0 . . . l−1, for which we can reuse the corresponding range

predicate from the standard library, where (range m n) means

123

Let’s verify this 715

Fig. 5 Challenge 1: implementation of comparison and sorting

that m maps the domain [0, . . . , n − 1] into [0, . . . , n − 1]
(See Fig. 25 in the Appendix).

Implementation and proofs. The implementation is given in
Fig. 5. The code of the compare function is close to the Java
reference implementation. Notice the use of the absurd key-
word to say that the last case is unreachable. All VCs for
these functions are proved automatically.

To prove the sorting algorithm, we first have to show that
le is transitive (lemma le_trans). To prove this lemma auto-
matically, we pose an auxiliary lemma lcp_same_index to han-
dle the equality case. The loop invariants needed are no dif-
ferent from the ones needed for a generic insertion sort algo-
rithm (see for instance http://toccata.lri.fr/gallery/sorting.en.
html). We just add the fact that values in array data remain
within 0 . . . l−1. The two assertions in the code are intended
to help automated provers.

Fig. 6 Challenge 1: specification of SuffixArray

Fig. 7 Challenge 1: implementation of SuffixArray

3.3 The suffixArray data structure

This module corresponds to the public part of the SuffixAr-
ray class in the Java reference implementation.

Specification. We first declare a type suffixArray (Fig. 6)
corresponding to the SuffixArray class in the Java code. We
equip this type with an invariant that specifies that the two
arrays have the same length l, that the suffix array is a per-
mutation of 0, . . . , l − 1, and that it is sorted in increasing
order. The three functions correspond to the methods of the
same name in the Java code, and their postconditions are
natural.

Implementation and proofs. The implementation (Fig. 7) of
select and lcp is simple and easy to prove. The create func-

123

http://toccata.lri.fr/gallery/sorting.en.html
http://toccata.lri.fr/gallery/sorting.en.html

716 F. Bobot et al.

Fig. 8 Challenge 1: specification of longest repeated substring

tion acts as a constructor, and the difficulty is to establish
the invariant. For this, we pose a lemma permut_permutation:
when one is permuting elements of an array that represents a
permutation, the result is still a permutation. Such a lemma
cannot be proved automatically, because it requires induc-
tion (the permut predicate is defined inductively). We per-
form this proof in Coq, which requires a few lines of tactics.
The notion of permutation of an interval 0 . . . l − 1 and this
lemma are good candidates for addition in the Why3 stan-
dard library.

3.4 Longest repeated substring

Specification. This module contains only the main function
for computing the longest repeated substring, specified in
Fig. 8. As in the Java code, there are two global variables
solStart and solLength that hold the results of the computa-
tion. To specify this function, we add an extra global ghost
variable solStart2 that holds the index of the second occur-
rence of the repeated substring. The postconditions thus say
that the two indexes solStart and solStart2 are distinct, that
solLength is the length of their longest common prefix, and
that for any other pair of two indexes, the longest common
prefix is not longer than solLength.

The implementation of lrs follows the Java code, and is
given in Fig. 9. The first three loop invariants are naturally
derived from the first three postconditions. The most diffi-
cult part is to establish the last postcondition, for which we
add a fourth loop invariant and two assertions after the loop.

The fourth loop invariant states that we already have
computed the longest repeated substring for all suffixes in
sa.suffixes[0],. . . ,sa.suffixes[i-1]. To show that it is preser-
ved by a loop iteration, where only suffixes sa.suffixes[i-1]

and sa.suffixes[i] are considered, it is necessary to show that
for any j between 0 and i − 1, the longest common pre-
fix of sa.suffixes[j] and sa.suffixes[i] is smaller that those
of sa.suffixes[i-1] and sa.suffixes[i]. This property is true
only because suffixes are sorted lexicographically. To com-

Fig. 9 Challenge 1: implementation of longest repeated substring

Fig. 10 Challenge 1: Lemmas for longest repeated substring

plete the proof with automated provers, we pose the lemma
le_le_longest_common_prefix given on Fig. 10. To prove it, we
also pose the auxiliary lemma le_le_common_prefix. Both lem-
mas are proved automatically.

The last part of the proof is to show the fourth postcon-
dition, knowing that the fourth loop invariant is true at loop
exit. To achieve this, we need to add two assertions. The first
assertion is just to make the final loop invariant symmetric in

123

Let’s verify this 717

j and k, and needs the lemma lcp_sym of Fig. 10. The second
assertion states that the array of suffixes is surjective, that is
we are sure that all indexes have been considered when the
loop is finished. Since second assertion could not be proved
automatically, we needed to perform the proof in Coq. The
main reason is that it uses existential quantification, which
is typically hard to handle automatically. Another difficulty
is that this surjectivity property follows from the classical
but non-trivial mathematical result that an injective function
that maps a finite set (namely, 0, . . . , l − 1) to itself is also
surjective. Fortunately, such a result is already proved in the
Why3 standard library, so that we can reuse it in our Coq
proof, which, in the end, is just a dozen lines long.

Finally, proving the postcondition from the second asser-
tion must be done in Coq, it seems that the automated
provers are not able to exploit the existential quantifications
successfully (3 lines of tactics only).

3.5 Proof statistics

The detailed proof results are available at URL http://
toccata.lri.fr/gallery/verifythis_fm2012_LRS.en.html. The
table below summarizes these results. The time limit given
to automated provers is 10 s.

Module Number of VCs Automatically proved

LCP 10 10 (100 %)

Suffixsort 62 62 (100 %)

Suffixarray 22 21 (95 %)

LRS 30 28 (93 %)

Total 124 121 (97 %)

The table below shows the results per prover, among the
121 VCs proved automatically. 3 VCs are proved only

Prover Number of VCs proved

Alt-Ergo 0.95.2 116

CVC3 2.4.1 106

CVC4 1.3 105

Eprover 1.6 77

Vampire 0.6 75

Z3 3.2 85

Z3 4.3.1 82

by Alt-Ergo. The three interactive proofs done using Coq
amount to a total of 49 lines of script added manually, most
of them being for proving the lemma permut_permutation.

3.6 Lessons learned

The first part of the challenge, namely our LCP module, was
easy and was indeed solved almost in the same way within
the 45 min slot. On the other hand, achieving the other
parts required significantly more work, that we estimate to a
dozen of hours. It should be noticed that although the final
specifications are, to our opinion, relatively short and nat-
ural, it was not easy to obtain them at first: a significant
amount of time is needed to find adequate specifications that
make the proofs almost fully automated.

Our proofs were not done fully automatically, as we had
to invoke Coq and write manually a few lines of proof script.
In the case of the permut_permutation lemma, this was nec-
essary because an inductive reasoning was needed, on the
definition of the permutation predicate. For the other VCs,
this was needed to manually give witnesses of some existen-
tial quantifications, which could not be found by automated
provers at our disposal. Notice that when we go to Coq to
discharge a goal, we typically use a few lines of Coq tactics,
e.g. to perform an induction. For the resulting subgoals, we
can still use automated provers via the why3 Coq tactic, which
amounts to send back a Coq goal to Why3 and call a given
automated prover. It is an interesting question whether an
interactive proof assistant is mandatory for such purposes,
we will come back to this in the concluding section.

Another point is that we were able to reuse a signifi-
cant amount of theories from the standard library. This is
good news since good library support is certainly an impor-
tant point for the efficient use of a verification environment.
However we also realized that some parts were not suffi-
ciently generic, namely the sorted predicate for which the
ordering relation cannot depend on another extra argument.
A simple solution would be to add an extra parameter in
the le predicate in the library. Another direction would be to
allow some form of partial application in the logic of Why3,
that would be a first step towards higher order logic.

4 Challenge 2: sums of prefixes

This challenge proposes to compute the sums of the prefixes
of an array. More precisely, given an array a, it amounts to
computing each partial sum

∑
0≤k<i a[k] and storing it back

into a[i]. The array is thus modified in place. The proposed
algorithm requires the length of a to be a power of 2, and
does not use any extra storage.

The Why3 specification of the algorithm is given in
Fig. 11. We import the function sum from the theory
array.ArraySum of theWhy3 standard library, where (sum a i j)

denotes the sum
∑

i≤k<j a[k].
The challenge is to verify a sequential version of a par-

allelizable algorithm. The idea is to identify the array with

123

http://toccata.lri.fr/gallery/verifythis_fm2012_LRS.en.html
http://toccata.lri.fr/gallery/verifythis_fm2012_LRS.en.html

718 F. Bobot et al.

Fig. 11 Challenge 2: specification of sums of prefixes

Fig. 12 Challenge 2: modeling the binary tree

a binary tree. The algorithm traverses this tree by gathering
information firstly from the leaves to the root (the upsweep
phase) and secondly from the root to the leaves (the down-
sweep phase). First, we specify the state of array a during
the upsweep and downsweep phases. Then we explain each
phase separately.

The full solution is available on the Toccata gallery of
verified programs at http://toccata.lri.fr/gallery/verifythis_
PrefixSumRec.en.html.

4.1 Modeling the binary tree

The main difficulty in this challenge is to capture the opera-
tions performed by the upsweep phase. The array is identi-
fied with a complete binary tree and this operation updates
nodes with sums of subtrees in an intricate way. The sim-
plest idea4 is to use an inductive predicate sumtree (see
Fig. 12) that mimics the recursive structure of the algorithm.
It takes as arguments two indices left and right to identify
a subtree, and two arrays a0 and a. Array a0 stands for the
initial contents of the array, and array a for its current state
with partial sums.

A subtree is represented by a pair of indices (left, right),
with space = right - left being a power of two. The elements
of this subtree span from (left-space+1) to right, included.
We introduce two functions go_left and go_right to descend
into the left and right subtrees:

4 That came to our mind during the competition.

Fig. 13 Challenge 2: schematic view of the algorithm. The left col-
umn shows the upsweep phase, the right column the downsweep phase.
The indices (li ,ri) correspond to the subtrees and to the parameters
(left,right) of the recursive calls. The initial array is at the bottom
left, the array after the upsweep phase is at the top left, the array before
the downsweep phase is at the top right, the resulting array is at the bot-
tom right. A plain arrow stands for a sum and an assignment performed
in the first and second phase. A dashed arrow stands for an assignment
a[left] ← tmp performed in the second phase

function go_left (left right:int) : int =

let space = right - left in left - div space 2

function go_right (left right:int) : int =

let space = right - left in right - div space 2

The left subtree is (go_left left right, left) and the right
subtree is (go_right left right, right). A schematic represen-
tation of the algorithm and of the tree view of the array is in
Fig. 13.

The main idea in predicate sumtree is to describe the value
in a[left] but not the value in a[right]. The main reason is
that the root of a left subtree is not modified anymore once
the left subtree has been processed. Since sumtree is induc-
tively defined, it describes the values at indices from left to
right-1, since they are all roots of left subtrees. For instance,
(sumtree 3 7 a0 a) defines the values stored at indices from
0 to 6. On the contrary, the value a[right] is not specified in
sumtree. Indeed, functions upsweep and downsweep have different
specifications for a[right].

4.2 The “upsweep” phase

The implementation and the complete specification of
upsweep are presented in Fig. 14. This function on (left, right)
sets a[right] to the sum of the elements of the subtree. So
when the left subtree has been processed, a[left] contains
the sum of the elements of the left subtree. It is indeed the
property which is described in sumtree. Moreover the array
a is modified by the recursive calls, so we need to spec-
ify the extent of these modifications. This is the purpose of
the last two formulas in the postcondition. The conditions
of preservation of sumtree are described in the two-frame
lemmas given in Fig. 15. These two lemmas are proved by
induction over sumtree, using the Coq proof assistant.

123

http://toccata.lri.fr/gallery/verifythis_PrefixSumRec.en.html
http://toccata.lri.fr/gallery/verifythis_PrefixSumRec.en.html

Let’s verify this 719

Fig. 14 Challenge 2: upsweep phase

Fig. 15 Challenge 2: frame properties for sumtree

4.3 The “downsweep” phase

The implementation of the downsweep function is presented
in Fig. 16. We need the ghost argument a0 that contains the
initial array. Indeed (old a) cannot be used because it repre-
sents the intermediate state between the upsweep and down-
sweep phase. The traversal is the same as in the first phase so
the inductive predicate sumtree is used directly for the proof.
During the second phase the value a[right] is used again in
a special way. Before the call to (downsweep left right a0 a),
it contains the prefix sum of the value of the initial array a0

before the subtree (left, right):

a[right] = (sum a0 0 (left-(right-left) + 1)).

Finally, the function (downsweep left right a0 a) ensures
that all the values of the subtree (left, right) are the pre-
fix sums of the array a0. As for the function upsweep, we
need to specify the extent of the modification of downsweep

but we do not have to write and prove the frame lemmas for

Fig. 16 Challenge 2: downsweep phase

partial_sum because they can be derived without induction
from the frame lemmas of sum defined in the Why3 standard
library. The frame lemma sumtree_frame is also used for the
frame of the first recursive call.

4.4 The main procedure

The main procedure compute_sums, in Fig. 17, calls the two
phases sequentially and initializes a[right] to the prefix sum
of the index 0, which is (sum a0 0 0) = 0. The harness test

Fig. 17 Challenge 2: main procedure

123

720 F. Bobot et al.

proposed in the challenge is also proved (we do not give the
code in this paper).

4.5 Proof statistics

The detailed proof results are available at http://toccata.lri.fr/
gallery/verifythis_PrefixSumRec.en.html. The table below
summarizes these results. The time limit given to automated
provers is 10 s.

Function Number of VCs Automatically proved

Lemmas 4 2 (50 %)

Upsweep 24 24 (100 %)

Downsweep 29 29 (100 %)

Compute_sums 12 12 (100 %)

Test_harness 20 20 (100 %)

Total 89 87 (98 %)

The table below shows the results per prover, among the
87 VCs proved automatically.

Prover Number of VCs proved

Alt-Ergo 0.95.2 100

CVC3 2.4.1 85

CVC4 1.2 96

Z3 3.2 64

Z3 4.3.1 70

The two lemmas sumtree_frame and sumtree_frame2 are
proved using Coq by 4 lines of tactics: one induction on
the inductive predicate phase1 and then the subgoals are dis-
charged using the why3 tactic, as in challenge 1. All remain-
ing proof obligations are discharged by at least two auto-
mated provers.

4.6 Lessons learned

As for challenge 1, we had to use the interactive proof assis-
tant Coq to discharge some VCs. See the general conclusion
for a discussion on such a use of Coq.

The hardest part of this challenge is the specification of
the state between the two phases. During the competition,
when we came up with the idea of using an inductive predi-
cate, we got the indexes wrong several times.When the auto-
mated provers failed to prove a proof obligation, we added
assertions that should have helped to find particular facts that
could not be proved. We also tried to prove them in Coq to
find the hole in the proof. After the competition, when the
indexes in the specification were corrected, we removed the
useless assertions and Coq proofs. This raises the general

Fig. 18 Challenge 3: preliminaries

question on how we can debug the specifications. For such a
purpose, we are currently implementing a step-by-step eval-
uator ofWhyML functions. The user will thus be able to eas-
ily compare the behavior of the program to its specification.

5 Challenge 3: deletion in a binary search tree

The third challenge is to verify a procedure that removes the
node with the minimal key from a binary search tree. The
pseudocode given at the competition descends along the left-
most branch of the tree using a while loop. When it reaches
a node with no left child, it makes its right child the new left
child of its parent. The tree is mutated in place. Our solu-
tion respects the reference implementation. The full solu-
tion is available on the Toccata gallery of verified programs
at http://toccata.lri.fr/gallery/verifythis_fm2012_treedel.en.
html.

5.1 Preliminaries

Why3 has no native support for mutable trees. Hence we
build a minimal memory model, given in Fig. 18. It intro-
duces some uninterpreted type loc to denote memory loca-
tions, with a particular value null. Then the heap is modeled
as a global reference mem holding a purely applicative map
from memory locations to nodes. A node is a record with
two fields left and right of type loc and a third field data of
type int.

To account for possible null-dereference, we do not
access these three fields directly, but we use instead func-
tions get_left, get_right, and get_data with suitable precondi-
tions:

val get_left (p: loc) : loc

requires { p �= null }

ensures { result = !mem[p].left }

(and similarly for get_right and get_data). In this model, we
assume that any pointer that is not null can be safely deref-
erenced, which is the case in languages that do not permit
explicit deallocation, e.g. Java.

5.2 Specification

We import polymorphic immutable lists and trees from the
Why3 standard library (see Sect. 2.1 for definitions). We
also import a function inorder (tree α) : list α that lists the

123

http://toccata.lri.fr/gallery/verifythis_PrefixSumRec.en.html
http://toccata.lri.fr/gallery/verifythis_PrefixSumRec.en.html
http://toccata.lri.fr/gallery/verifythis_fm2012_treedel.en.html
http://toccata.lri.fr/gallery/verifythis_fm2012_treedel.en.html

Let’s verify this 721

Fig. 19 Challenge 3: specification

elements of a tree according to inorder traversal and a pred-
icate distinct (list α) that expresses that all elements of a
given list are distinct. Types list and tree will only appear
in specifications.

Our specification for problem 3 is given in Fig. 19.
The central component is the inductively defined predicate
istree. Such an inductive definition should be read as a set
of inference rules:

istree m null Empty

p �= null istree m m[p].left l istree m m[p].right r
istree m p (Node l p r)

Given a memory state m, a loc p, and a tree of memory
locations t (of type (tree loc)), the predicate (istree m p t)
means that memory m contains a well-formed tree rooted at
p, whose shape is exactly t . The inductive nature of predi-
cate istree ensures that such a tree is both finite and acyclic.
But nothing prevents the heap-allocated tree to be a DAG;
we will take care of that later.

The tree deletion operation tree_delete_min takes a non-
null loc t as argument. It is required to be the root of a
tree, that is (istree !mem t it), where it is a tree of loca-
tions passed as an additional ghost parameter. To account
for the absence of sharing in t, we also require that all loca-
tions in it are distinct, which is conveniently written as
distinct (inorder it). Let (t’,m) be the pair returned by the
function. The postcondition makes use of a second ghost
parameter ot to describe the shape of t’. It simply says
that (inorder it) = (Cons p (inorder ot)), for some location p,
with m being the data field at p. We avoid the use of an exis-
tential quantifier over p by performing pattern-matching over
(inorder it) instead.

It is worth pointing out that our postcondition simply says
that we deleted the first element from (inorder it), that is the
leftmost innermost element in the tree rooted at t. There is

no need for the notion of binary search tree to show up. It
would be an orthogonal (and easy) lemma to show that the
minimal element in a binary search tree is located at the left-
most innermost node, and that after removal the remaining
tree is still a binary search tree.

5.3 Proof

The code itself is straightforward. First, it handles the par-
ticular case where there is no left subtree. Otherwise, it
descends along the leftmost branch of the tree, using three
variables pp, p, and tt to hold three consecutive nodes on this
branch. This can be depicted as follows:

We are done with the descent when tt becomes null. Then
we simply remove node p by turning the right subtree of p

into the left subtree of pp.
Proving the code, however, is not straightforward. The

whole code annotated with assertions and equipped with
ghost statements is given in Fig. 20. The loop performs some
local computation, focusing on the subtree rooted at pp, but
the postcondition we wish to establish is related to the whole
tree rooted at t. Thus we have to account for the “tree with
a hole” depicted in gray in the picture above. Fortunately,
there is a convenient way to define such a notion: Huet’s
zipper [11]. The idea is to define a subtree placeholder as
the path from the root of the subtree to the root of the whole
tree. In the general case, this path should indicate whether
we took the left or right subtree during the descent. In our
case, however, we are always moving to the left subtree, so
the zipper degenerates into a mere list, that is

type zipper α = Top | Left (zipper α) α (tree α)

The zipper (Left z x t) denotes a hole in place of the
left subtree of a node with value x , with right subtree t ,
and with some upper context z. The zipper Top denotes a
hole at the root of the tree. For instance, the “tree with
hole” (Node (Node � x2 t2) x1 t1) is denoted by the zipper
(Left (Left Top x1 t1) x2 t2).

From a zipper z and a subtree t, we can recover the whole
tree with the following recursive function that rebuilds the
nodes along the path:

function zip (t: tree α) (z: zipper α): tree α =

match z with

| Top → t

| Left z’ x r → zip (Node t x r) z’

end

123

722 F. Bobot et al.

Fig. 20 Challenge 3: implementation

The idea behind our proof is to maintain the zipper for
the subtree rooted at pp in a ghost variable zipper, as well as
its left and right subtrees in two additional ghost variables
subtree and ppr. This can be depicted as follows:

These three ghost variables are updated along the descent.
Thus we have the following loop invariant:

(zip (Node !subtree !pp !ppr) !zipper) = it

Since the memory is not mutated within the loop, show-
ing the preservation of this loop invariant is straightforward.

The difficult part of the proof lies in the final statement,
once we have exited the loop and mutated the memory. The
new tree is built from the zipper using

zip (right !subtree) (Left !zipper !pp !ppr)

We have to show that the inorder traversal of that tree
is the tail of the inorder traversal of the initial tree. But
this only holds thanks to the lack of sharing in the tree,
which is provided by the precondition distinct (inorder it).
Otherwise, more than one element could have disappeared
from the list. We move that key property into the following
lemma:

lemma main_lemma:

forall m: memory, t pp p: loc,

ppr pr: tree loc, z: zipper loc.

let it = zip (Node (Node Empty p pr) pp ppr) z in

istree m t it → distinct (inorder it) →
let m’ = m[pp←{m[pp] with left = m[p].right}] in

istree m’ t (zip (Node pr pp ppr) z)

It is proved interactively using the Coq proof assistant.
The proof introduces 8 sub-lemmas and requires 114 lines
of Coq tactics, including the use of the why3 tactic to call
external SMT solvers, as already mentioned for the two first
challenges. The main reason for this proof to be that long is
the lack of separation logic inWhy3 (no notion of footprints,
few lemmas about distinct, etc.).

It is worth pointing out that the use of zippers is only
an artifact of our proof. Zippers do not appear at all in our
specification.

5.4 Proof statistics

Detailed proof results are given in Fig. 21 on page 15. (This
does not include five auxiliary functions, for which proof
details are available at URL http://toccata.lri.fr/gallery/verify
this_fm2012_treedel.en.html). The table below summarizes
these results. The time limit given to automated provers is 5
s (apart from one goal, for which it is 60 s).

Function # VCs Automatically proved

Auxiliary functions 5 5 (100 %)

Lemmas 3 2 (67 %)

search_tree_delete_min 30 29 (97 %)

Total 38 36 (95 %)

Two VCs are discharged using Coq (128 lines of tactics).
The table below shows the results per prover, among the

36 VCs that are proved automatically.

123

http://toccata.lri.fr/gallery/verifythis_fm2012_treedel.en.html
http://toccata.lri.fr/gallery/verifythis_fm2012_treedel.en.html

Let’s verify this 723

Prover Number of VCs proved

Alt-Ergo 0.95.2 35

CVC3 2.4.1 34

CVC4 1.3 38

Z3 3.2 34

Z3 4.2 34

Since 36 VCs are discharged automatically, it is clear
from this table that the cooperative use of several ATPs is
a true asset.

5.5 Lessons learned

It is slightly unsatisfactory that we cannot handle this chal-
lenge in a direct way: Since WhyML does not allow arbi-
trary mutable data structures, we have to use an explicit
encoding of a memory heap. Although we are able to han-
dle this challenge successfully, it is clear that Why3 is
not the language of choice to specify and prove pointer-
heavy programs. It would be more natural to use veri-
fication tools dedicated to Java or C code, in particular
since there exist such tools that are built upon Why3, using

Fig. 21 Proof results on
challenge 3. An answer on
green (light) background
indicates that the prover
succeeded to discharge the VC,
in the given number of seconds.
An answer on red (dark)
background indicates that the
prover reached the time limit
given between parentheses
(color figure online)

123

724 F. Bobot et al.

WhyML as an intermediate language: Krakatoa [13] for
Java and Frama-C [10] and its Jessie plug-in [14] for C.
Yet we think that doing the verification with Why3 has
real benefits: it is easier to write and debug the specifica-
tion and proof when VCs are not clobbered with a com-
plex encoding of the memory heap. Once the specifica-
tion with Why3 is completed and verified, one can adapt
it to a Java or C implementation. In particular, we think
that our idea of using a zipper in the proof can be readily
reused.

6 Conclusions

We found the Why3 environment adequate for the given
challenges. The specification language provides advanced
tools that proved to be useful: algebraic data types, induc-
tive predicates, and a rich standard library.

To perform the proofs, we needed several back-end
provers; in particular, the more complex lemmas had to
be proved interactively, using Coq. Even when considering
only the VCs that were proved automatically, there is no
prover among Alt-Ergo, CVC3, CVC4, and Z3 that was able
to discharge all of them. Though the ability to use several
provers is a clear advantage, it also makes the maintenance
of proof sessions a difficult task. Why3 provides a mecha-
nism for storing proof sessions that records which transfor-
mations and provers were used to prove each VC, so that a
complete verification project can be replayed if needed [5].
Moreover, it is possible to dump such a session, e.g., Fig. 21
is automatically generated from the proof session of chal-
lenge 3. Similar tables for problems 1 and 2 are available
online, in Why3’s gallery.

On the use of Coq. For each of the three challenges, we had
to use Coq to discharge a few VCs that were not proved
by automated provers. Writing a proof script for such VCs
may seem to be a complex task that requires a fair knowl-
edge of Coq. However, the why3 tactic helped us to keep such
tasks reasonable: a proof starts with some powerful tactic
that generates a few subgoals, and after a very little num-
ber of tactics, the why3 tactic is able to complete the proof. A
typical example is a proof that requires induction. Another
typical case is when explicit witnesses have to be provided
for existential quantifiers, as in challenge 1. Although this
process is reasonably quick and painless, it is necessary to
know a little bit of Coq to use it. It is thus desirable to pro-
pose alternatives. Two recent features added to Why3 may
help: first, a transformation that is able to perform induction
on algebraic data types; second, a mechanism of “lemma
functions”, similar to that of VeriFast and Dafny, that allows

the user to write a recursive program to simulate an induc-
tion scheme of his choice. Lemma functions can also be used
to generate witnesses for existentially quantified assertions.
Still, the ability to perform an induction over an inductive
predicate, as we did in challenges 1 and 2, remains to be
studied. Last but not least, we are now planning to extend
Why3 with a dedicated lightweight interactive prover that
would simplify proofs even further.

On the possible use of Frama-C/Jessie or Krakatoa. Why3 is
indeed an intermediate verification language which is used
by the front-ends Frama-C/Jessie (for C) and Krakatoa (for
Java). Thus one might ask why we chose Why3 for the
competition: after all, Java implementations were given for
the first two challenges, and a language with pointers was
mandatory for the third challenge. The first reason is that
we decided, prior to the competition, that we were going
to use Why3, because it is the tool we are developing. An
important improvement that we developed in Why3 relies in
the expressiveness of the specification language, that allows
us to structure logical models into theories [7], and thus to
design a well-structured, reusable standard library. This fea-
ture showed itself important during the competition. In the
Jessie and Krakatoa front ends, there is no such a large stan-
dard library of specifications yet. Thus, another lesson we
learned is that we should now improve the specification lan-
guages of the front ends. A non-trivial issue is how to reuse
the same generic standard library for both Why3 and the
front ends. Another point is that the modeling of the heap
memory used by the front-ends results in VCs that are some-
times obscure. Finally, we believe that, when one wants to
verify a given program, the first step is the design of ade-
quate specifications and adequate proof elements such as
loop invariants, auxiliary lemmas, assertions in the code, etc.
This work is easier to carry out on a simple language such as
WhyML. On a language such as C or Java, one immediately
faces the extra burden of showing the absence of runtime
errors such as integer overflow and invalid pointer derefer-
encing.

Acknowledgments We gratefully thank the editors and the anony-
mous referees for providing us very valuable comments and sugges-
tions to improve the quality of this paper.

Appendix: Relevant theories from the Why3 standard
library

In this Appendix, we provide details on relevant parts of the
Why3 standard library, notably those used in the first chal-
lenge. The full contents of that library is available online at
http://why3.lri.fr/stdlib-0.81/.

123

http://why3.lri.fr/stdlib-0.81/

Let’s verify this 725

A.1 Library map

InWhy3, arrays are modeled as references to purely applica-
tive maps. Such maps are specified in the theory Map pre-
sented in Fig. 22. These maps are parametric in both the type
of their indexes and of their values, so the Why3 type for
such maps is a polymorphic type (map α β). The main func-
tions operating on maps are set and get, that, respectively,
modify a map at a given index (purely applicatively, that is
by returning a new map) and read a map at a given index.
Both functions are axiomatized by Select_eq and Select_neq.
This is the classical theory of arrays in the context of sat-
isfiability modulo theories. The additional operation const

returns a constant map.
Theory MapSorted (Fig. 23) specifies what it means for

a map to be sorted in increasing order. This notion is
restricted to maps indexed by integers. The theory is writ-
ten with a type parameter elt and a predicate parameter le,
so that it can be reused, by cloning it, for an arbitrary order
relation.

Theory MapPermut (Fig. 24) specifies what it means for
two maps to be permutations of each other, that is, to con-
tain the same elements with the same number of occur-
rences. This is restricted to maps indexed by integers.
Predicate (permut_sub m1m2 l u) holds when map segments
m1[l . . . u − 1] and m2[l . . . u − 1] are permutations of each

Fig. 22 Theory of polymorphic, purely applicative maps

Fig. 23 Theory of sorted maps

Fig. 24 Theory of map permutations (excerpt)

123

726 F. Bobot et al.

Fig. 25 Theory of injective and surjective maps

other. This is defined as the smallest equivalence relation
containing transpositions of elements.

Theory MapInjection (Fig. 25) defines several notions for
maps on the domain 0 . . . n − 1 for some integer n: being
injective, being a surjection into 0 . . . n − 1, and ranging
into 0 . . . n − 1. Lemma injective_surjective is the classical
mathematical result, more or less equivalent to the pigeon-
hole principle, saying that any injection that ranges into
0 . . . n − 1 is also surjective. This result is used to prove
the first challenge. This is not the first time we had to
use such a result to prove a program: we already used it
to prove the challenge Sparse Arrays from the VACID-0
benchmarks [12].

A.2 Module Array

Figure 26 contains an excerpt of the Why3 module that
defines arrays. This module is discussed in Sect. 2.2. The
full contents of that library is available online at http://why3.
lri.fr/stdlib-0.81/array.mlw.html.

Fig. 26 Module Array (excerpt)

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović,
D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Proceedings of
the 23rd international conference on Computer aided verification,
CAV’11, pp. 171–177. Heidelberg, Berlin (2011)

2. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.)
19th International Conference on Computer Aided Verification,
vol 4590 of Lecture Notes in Computer Science, pp. 298–302.
Springer, Berlin (2007)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program
Development. Springer-Verlag, Berlin (2004)

4. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer,
S., Mebsout, A.: The Alt-Ergo automated theorem prover. (2008)
http://alt-ergo.lri.fr/

5. Bobot, F., Filliâtre, J.-C., Marché, C., Melquiond, G., Paske-
vich, A.: Preserving user proofs across specification changes.
In: Cohen, E., Rybalchenko, A. (eds.) Verified software: theo-
ries, tools, experiments (5th International Conference VSTTE),
vol 8164 of Lecture Notes in Computer Science, pp. 191–201.
Springer, Atherton (2013)

123

http://why3.lri.fr/stdlib-0.81/array.mlw.html
http://why3.lri.fr/stdlib-0.81/array.mlw.html
http://alt-ergo.lri.fr/

Let’s verify this 727

6. Bobot, F., Filliâtre, J.-C., Marché, C., Melquiond, G., Paskevich,
A.: The Why3 platform, version 0.82. LRI, CNRS & Univ. Paris-
Sud & INRIA Saclay, version 0.82 edition. (2013) http://why3.lri.
fr/download/manual-0.82.pdf

7. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shep-
herd your herd of provers. In: Boogie (ed.) First International
Workshop on Intermediate Verification Languages, pp. 53–64.
Wrocław, Poland (2011)

8. de Moura, L., Bjørner, N.: Z3, an efficient SMT solver. In:
TACAS, vol 4963 of Lecture Notes in Computer Science, pp. 337–
340. Springer, Berlin (2008)

9. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet
provers. In: Felleisen, M., Gardner, P. (eds.) Proceedings of the
22nd European Symposium on Programming, vol 7792 of Lecture
Notes in Computer Science, pp. 125–128. Springer, Berlin (2013)

10. The Frama-C platform for static analysis of C programs. (2008)
http://www.frama-c.cea.fr/

11. Huet, G.: The Zipper. J. Fun. Progr. 7(5), 549–554 (1997)
12. Leino, K.R.M., Moskal, M.: VACID-0: Verification of ample cor-

rectness of invariants of data-structures. In: Proceedings of Tools
and Experiments Workshop at VSTTE (2010)

13. Marché, C.: The Krakatoa tool for deductive verification of Java
programs. Winter school on object-oriented verification, Viinistu,
Estonia. (2009) http://krakatoa.lri.fr/ws/

14. Moy, Y., Marché, C.: The Jessie plugin for deduction verification
in Frama-C – tutorial and reference manual. INRIA & LRI. (2011)
http://krakatoa.lri.fr/

15. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verifica-
tion system. In: Kapur, D. (ed). 11th International Conference on
Automated Deduction, vol 607 of Lecture Notes in Computer Sci-
ence, pp. 748–752. Springer, Saratoga Springs (1992)

16. Riazanov, A., Voronkov, A.: Vampire. In: Ganzinger, H. (ed.) 16th
International Conference on Automated Deduction, vol 1632 of
Lecture Notes in Artificial Intelligence, pp. 292–296. Springer,
Trento (1999)

17. Schulz, S.: System description: E 0.81. In: Basin, D.A., Rusinow-
itch, M. (eds) Second International Joint Conference on Auto-
mated Reasoning, vol 3097 of Lecture Notes in Computer Science,
pp. 223–228. Springer, Berlin (2004)

18. Summers, A.J., Mueller, P.: Freedom before commitment: a light-
weight type system for object initialisation. In: Proceedings of
the 2011 ACM international conference on Object oriented pro-
gramming systems languages and applications, OOPSLA ’11, pp.
1013–1032. ACM, New York (2011)

19. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M.,
Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) 22nd
International Conference on Automated Deduction, vol 5663 of
Lecture Notes in Computer Science, pp 140–145. Springer, Berlin
(2009)

123

http://why3.lri.fr/download/manual-0.82.pdf
http://why3.lri.fr/download/manual-0.82.pdf
http://www.frama-c.cea.fr/
http://krakatoa.lri.fr/ws/
http://krakatoa.lri.fr/

	Let's verify this with Why3
	Abstract
	1 Introduction
	2 Why3 in a nutshell
	2.1 Specification language
	2.2 Programming language
	2.3 Verifying programs with Why3

	3 Challenge 1: longest repeated substring
	3.1 Longest common prefix
	3.2 Sorting suffixes
	3.3 The suffixArray data structure
	3.4 Longest repeated substring
	3.5 Proof statistics
	3.6 Lessons learned

	4 Challenge 2: sums of prefixes
	4.1 Modeling the binary tree
	4.2 The ``upsweep'' phase
	4.3 The ``downsweep'' phase
	4.4 The main procedure
	4.5 Proof statistics
	4.6 Lessons learned

	5 Challenge 3: deletion in a binary search tree
	5.1 Preliminaries
	5.2 Specification
	5.3 Proof
	5.4 Proof statistics
	5.5 Lessons learned

	6 Conclusions
	Acknowledgments
	Appendix: Relevant theories from the Why3 standard library
	A.1 Library map
	A.2 Module Array

	References

