Int J Softw Tools Technol Transfer (2015) 17:171-185
DOI 10.1007/s10009-014-0313-6

AD-RV

Statistical model checking QoS properties of systems with SBIP

Ayoub Nouri - Saddek Bensalem - Marius Bozga -
Benoit Delahaye - Cyrille Jegourel - Axel Legay

Published online: 30 March 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Behavior—interaction—priority (BIP) is a comp-
onent-based framework supporting rigorous design of embed-
ded systems. BIP supports incremental design of large
systems from atomic components that communicate via con-
nectors and whose interactions can be described with a pow-
erful algebra. This paper presents SBIP, an extension of BIP
for stochastic systems. SBIP offers the possibility to add sto-
chastic information to atomic component’s behaviors, and
hence to the entire system. Atomic component’s semantics
in SBIP is described by Markov Chains. We show that the
semantics of the entire system is described by a Markov
chain, showing that the non-determinism arising from sys-
tem interactions is automatically eliminated by BIP. This
allows us to verify systems described in SBIP with Statistical
Model Checking. This paper introduces SBIP and illustrates
its usability on several industrial case studies.

A preliminary version of this paper was published in [5], and the
present submission is a special issue extension from [5]. The main
differences between [5] and the present paper are: the extension of the
background section, a complete description of the stochastic semantic
of SBIP (including operational rules), a tutorial on how to use SBIP,
and new experimental results. Research supported by the European
Community’s Seventh Framework Program [FP7] under grant
agreements no. 288175 (CERTAINTY), no. 288917 (DALI), no.
287716 (DANSE), no. 257414 (ASCENS), the ARTEMIS AIPP grant
agreement no. 332987 (ARROWHEAD), and Regional CREATIVE
project ESTASE.

A. Nouri - S. Bensalem - M. Bozga
UJF-Grenoble 1/CNRS VERIMAG UMR 5104,
Grenoble 38041, France

B. Delahaye
LINA/Université de Nantes, Nantes, France

C. Jegourel - A. Legay ()
INRIA/IRISA, Rennes, France
e-mail: axel.legay @inria.fr

Keywords Component-based design - Stochastic systems -
Statistical model checking - Experiments

1 Introduction

Expressive modeling formalism with sound semantical basis
and efficient analysis techniques are essential for success-
ful model-based development of embedded systems. While
expressivity is needed for mastering heterogeneity and com-
plexity, sound and rigorous models are mandatory to estab-
lish and reason meaningfully about system correctness and
performance at design time.

The behavior—interaction—priority (BIP) [4] formalism is
an example of a highly expressive, component-based frame-
work with rigorous semantical basis. BIP allows the con-
struction of complex, hierarchically structured models from
atomic components characterized by their behavior and their
interfaces. Such components are transition systems enriched
with variables. Transitions are used to move from a source to
a destination location. Each time a transition is taken, com-
ponent variables may be assigned new values, possibly com-
puted by C functions. Atomic components are composed of
layered application of interactions and priorities. Interactions
express synchronization constraints between actions of the
composed components while priorities are used both to select
amongst possible interactions and to steer system evolution,
e.g., to express scheduling policies.

Behavior—interaction—priority is supported by an extensi-
ble toolset [10] which includes tools for checking correct-
ness, for model transformations and for code generation.
Correctness can be either formally proven using invariants
and abstractions, or tested using simulation. For the latter
case, simulation is driven by a specific middleware, the BIP
engine, which allows to generate and explore execution traces

@ Springer

172

A. Nouri et al.

corresponding to BIP models. Model transformations allow
to realize static optimizations as well as special transforma-
tions towards distributed implementation of models. Finally,
code generation targets both simulation and implementation
models for different platforms and operating system support
(e.g., distributed, multi-threaded, real-time, etc.). The tool
has been applied to a wide range of academic case studies as
well as to industrial applications [9].

Behavior—interaction—priority is currently equipped with
a series of runtime verification [15] and simulation engines.
While those facilities allow us to reason on a given execu-
tion, they cannot be used to assess the overall correctness
of the entire system. This paper presents SBIP, a stochastic
extension of the BIP formalism and toolset. Adding stochas-
tic aspects permits to model uncertainty in the design, e.g.,
by including faults or execution platform assumptions. More-
over, it allows to enhance the simulation engine of BIP with
statistical inference algorithms to reason on properties in a
quantitative manner. Stochastic BIP relies on two key fea-
tures.The first is a stochastic extension of the syntax and the
semantics of the BIP formalism. This extension allows us to
specify stochastic aspects of individual components and to
produce execution traces of the designed system in a random
manner.

The second feature is a statistical model checking (SMC)
[7,26,27,35,38,45,47,48] engine (SBIP) that, given a ran-
domly sampled finite set of executions/simulations of the
system, can decide with some confidence whether the system
satisfies a given property. The decision is taken through either
a Monte Carlo (that estimates the probability) [19], or an
hypothesis testing algorithm [38,45] (that compares the prob-
ability to a threshold). To guarantee termination of each simu-
lation, these properties must be evaluated on bounded execu-
tions. Nevertheless, SMC has been recently extended to cover
unbounded properties. Extensions such as those introduced in
[27,35,39,46] rely on an interleaving of estimation of prob-
abilistic operator or a non-stochastic exploration of the state
space—two techniques known to be costly. In our work, we
consider systems with finite life, hence bounded properties
expressed in bounded linear temporal logic (BLTL) are suf-
ficient. Observe that the techniques in [27,35,39,46] can be
easily implemented in SBIP.

As it relies on sampling executions of a unique distribu-
tion, SMC can only be applied to pure stochastic systems,
i.e., systems without non-determinism. The problem is that
most of component-based design approaches exhibit non-
determinism due to interleaving semantics, usually adopted
for parallel execution of components and their interactions.
SBIP allows to specify systems with both non-deterministic
and stochastic aspects. However, the semantics of such sys-
tems will be purely stochastic, as explained hereafter. Syn-
tactically, we add stochastic behavior to atomic components
in BIP by randomizing individual transitions. Indeed, it suf-

@ Springer

fices to randomize the assignments of variables, which can be
practically done in the C functions used on transition. Hence,
from the user point of view, dealing with SBIP is as easy as
dealing with BIP.

We illustrate the SBIP on several case studies that can-
not be handled with existing model checkers for stochas-
tic systems [25,30]. The presentation restricts to the analy-
sis of a clock synchronization protocol [1] and an MPEG
decoder [36]. Other examples can be found in [2].

1.1 Structure of the paper

Section 2 presents a background on stochastic systems, Prob-
abilistic Bounded LTL, and SMC. Section 3 presents some
background on BIP. The stochastic extension for BIP and
its associated semantics are introduced in Sect. 4. Section 5
describes the statistical model checking procedure as well as
its implementation in SBIP. In Sect. 6, we describe practical
utilization of the SBIP tool. Finally, Sects. 7 and 8 present
experiments and conclusion, respectively.

2 Stochastic systems

In this section, we first introduce the underlying model used
to represent stochastic systems, that is, Markov Chains. Sec-
ond, we discuss the logical formalism used to specify prop-
erties of such systems, then we introduce statistical model
checking.

2.1 Markov chains

Let B be a set of atomic propositions and ¥ = 2B,

Definition 1 A labeled Markov chain (LMC) S is a tuple
(S, Act, 1, m, LM) where,

— S is a finite set of states,

— Act is a finite set of actions,

— ¢ : 8§ — [0, 1] the initial states distribution such that
Z‘VESL(S) =1,

-1 : S x Act x S — [0, 1] the probability transi-
tion function such that for each s € S and a € Act,
D yesn(s,a,s’)=1,and

- LM : § — X astate labeling function.

A LMC is deterministic (DLMC) iff:

— dsp € S such that ¢(sg) = 1, and
— Vs € Sand a € Act, there exist at most one s’ € S such
that 7 (s, a, s’) > 0.

Remark 1 We write 7 (s;, a, s;) = m;;, the transition from s;

am:
to s; as s; - sjfors;,s; € S,mj €[0,1]and a € Act.

Statistical model checking QoS properties of systems with SBIP

173

2.2 Probabilistic bounded linear time logic

We use probabilistic bounded linear temporal logic (PBLTL)
as a formalism for describing stochastic temporal properties.
We first recap BLTL and then define its probabilistic exten-
sion. The BLTL formulas that can be defined from a set of
atomic propositions B are the following.

- T,F, p,—p,forall p € B;

— @1V P2, ¢1 A @2, Where ¢1 and ¢ are BLTL formulas;

- Od1, p1UU' ¢y, where ¢ and ¢, are BLTL formulas, and
t is a positive integer.

Asusual, O'¢p = TU'¢p and ' ¢p = —(TU' (—¢)). A PBLTL
formula is a BLTL formula preceded by a probabilistic oper-
ator P.

The semantics of a BLTL formula is defined with respect
to an execution 7 = sgs7 . .. in the usual way [14]. Roughly
speaking, an execution w = sos; ... satisfies (¢, which
we denote w = (¢, if the sub-trace starting in state s
(s152 ...) satisfies ¢1. The execution 7 satisfies ¢1U’ ¢y iff
there exists a state s; with i <r that satisfies ¢, and all the
states in the prefix from sq to s;_; satisfy ¢;.

Definition 2 The probability fora Markov Chain S to satisfy
a BLTL formula ¢ is given by u{w | # = ¢} > 6, where
7 are executions of S and p is its underlying probability
measure. Such probability is always well defined.

2.3 Statistical model checking

Consider a Markov Chain S and a BLTL property ¢. Statis-
tical model checking refers to a series of simulation-based
techniques that can be used to answer two questions: (1)
Qualitative: is the probability for S to satisfy ¢ greater or
equal to a certain threshold 6 ? and (2) Quantitative: What is
the probability for S to satisfy ¢ ? Let B; be a discrete random
variable with a Bernoulli distribution of parameter p. Such a
variable can only take 2 values 0 and 1 with Pr[B; = 1] = p
and Pr[B; = 0] = 1 — p. In our context, each variable B; is
associated with one simulation of the system. The outcome
for B;, denoted b;, is 1 if the ith simulation satisfies ¢ and 0
otherwise.

Qualitative answer using statistical model checking The
main approaches [38,45] proposed to answer the qualitative
question are based on hypothesis testing. Let p = Pr(¢), to
determine whether p > 6, we can test H : p > 0 against
K : p < 6. Atest-based solution does not guarantee a correct
result but it is possible to bound the probability of making
an error. The strength («, §) of a test is determined by two
parameters, @ and f, such that the probability of accepting
K (respectively, H) when H (respectively, K) holds, called

a type-I error (respectively, a type-II error) is less or equal
to « (respectively, B). A test has ideal performance if the
probability of the type-I error (respectively, type-II error)
is exactly « (respectively, 8). However, these requirements
make it impossible to ensure a low probability for both types
of errors simultaneously (see [41,45] for details). A solution
is to use an indifference region [py, po] (with 6 in [p1, pol)
and to test Hy : p > po against Hy : p < p;. We now very
briefly sketch an hypothesis testing algorithm that is called
the sequential probability ratio test (SPRT) [41].

In SPRT, one has to choose two values A and B (A > B)
that ensure that the strength (o, 8) of the test is respected.
Let m be the number of observations that have been made so
far. The test is based on the following quotient:

dm —_
m_ﬁPNBbe lp=p) _ P — pyn e
pom oy Pr(Bi=bilp=po) pir(1— poyr=in’
)

whered,, = Z;-":l b;. The idea behind the test is to accept Hy
if % > A, and H, if % < B. The SPRT algorithm com-
putes % for successive values of m until either Hy or H;
is satisfied; the algorithm terminates with probability 1 [41].
This has the advantage of minimizing the number of sim-
ulations. In his thesis[45], Younes proposed a logarithmic-
based algorithm SPRT that given pg, p1, o and f implements
the sequential ratio testing procedure. When one has to test
0 > lor6 > 0, it is better to use single sampling plan
(SSP) (see [32,38,45] for details) that is another hypothe-
sis testing algorithm whose number of simulations is pre-
computed in advance. In general, this number is higher than
the one needed by SPRT, but it is known to be optimal for
the above-mentioned values. More details about hypothesis
testing algorithms and a comparison between SSP and SPRT
can be found in [32].

Quantitative answer using statistical model checking In
[21,31], Peyronnet et al. propose an estimation procedure
to compute the probability p for S to satisfy ¢. Given a
precision §, Peyronnet’s procedure, which we call PESTI-
MATION, computes a value for p’ such that | p’ — p| <8 with
confidence 1 — «. The procedure is based on the Chernoff-
Hoeffding bound [22]. Let B; ... B,, be m discrete random
variables with a Bernoulli distribution of parameter p asso-
ciated with m simulations of the system. Recall that the out-
come for each of the B;, denoted b;, is 1 if the simulation
satisfies ¢ and O otherwise. Let p’ = (3°/*, b;)/m, then
Chernoff-Hoeffding bound [22] gives Pr(|p’ — p| > §) <

m62
—mdZ . 4 2
2e¢~ 4 . As a consequence, if we take m > 7 log(a), then

Pr(|p’ — p| < 8) > 1 — a. Observe that if the value p’
returned by PESTIMATION is such that p’ > 6 — §, then
S | Prsp with confidence 1 — «.

@ Springer

174

A. Nouri et al.

2.3.1 Playing with statistical model checking algorithms

The efficiency of the above algorithms is characterized by the
number of simulations needed to obtain an answer. This num-
ber may change from executions to executions and can only
be estimated (see [45] for an explanation). However, some
generalities are known. For the qualitative case, it is known
that, except for some situations, SPRT is always faster than
SSP. PESTIMATION can also be used to solve the qualita-
tive problem, but it is always slower than SSP [45]. If 6 is
unknown, then a good strategy is to estimate it using PESTI-
MATION with a low confidence and then validate the result
with SPRT and a strong confidence.

3 BIP

The BIP framework, introduced in [4], supports a method-
ology for building systems from atomic components. It uses
connectors, to specify possible interactions between compo-
nents, and priorities, to select amongst possible interactions.

Atomic components are finite-state automata that are
extended with variables and ports. Variables are used to store
local data. Ports are action names, and may be associated with
variables. They are used for interaction with other compo-
nents. States denote control locations at which the compo-
nents await for interaction. A transition is a step, labeled by
a port, from a control location to another. It has associated
a guard and an action that are, respectively, a Boolean con-
dition and a computation defined on local variables. In BIP,
data and their related computation are written in C. Formally:

Definition 3 (Atomic Component in BIP) An atomic com-
ponent is a transition system extended with data B =
(L, P, T, X {g}eer, { fr}rer), where:

— (L, P, T)isatransitionsystem,with L = {l1, 5, ...,k }a
setof control locations, P asetof ports,and 7T € Lx P X L
a set of transitions,

- X = {x1,...,x,} is a set of variables over domains
{x1, X2, ..., Xp} and for each 7 € T, respectively, g;(X) is
a guard, a predicate on X, and X' = f;(X) is a determin-
istic update relation, a predicate defining X’ (next) from
X (current) state variables.

For a given valuation of variables, a transition can be exe-
cuted if the guard evaluates to true and some interaction
involving the port is enabled. The execution is an atomic
sequence of two micro-steps: (1) execution of the interaction
involving the port, which is a synchronization between sev-
eral components, with possible exchange of data, followed
by (2) execution of internal computation associated with the
transition. Formally:

@ Springer

Definition 4 (Semantics of atomic component) The seman-
ticsof B = (L, P, T, X,{gc}rer, {fr}rer) is a transition
system (Q, P, Tp) such that

— O = L x X where X denotes the set of valuations vy of
variables in X.

— Tp is the set including transitions of the form ((/, vy),
p. (', vy)) such that g;(vy) A vy = fr(vx) for some
t=(, p,l') € T. Asusual, if ((/, vx), p, (', vy)) € To,

we write (I, vy) BN (', vy).

Composite components are defined by assembling sub-
components (atomic or composite) using connectors. Con-
nectors relate ports from different sub-components. They
represent sets of interactions that are non-empty sets of ports
that have to be jointly executed. For every such interaction,
the connector provides the guard and the data transfer, that
are, respectively, an enabling condition and an exchange of
data across the ports involved in the interaction. Formally:

For a model built from a set of component By, B, ..., B,
where B; = (L;, Pi, T;, Xi, {gc}rer;, { fr}eer;) We assume
that their respective sets of ports and variables are pairwise
disjoint, i.e., for any two i # j in {1...n}, we require that
PN P; =@ and X; N X; = . Thus, we define the set
P = [Ji_, P; of all ports in the model as well as the set
X = Ui, X; of all variables.

Definition 5 (Interaction) An interaction a is a triple (P,
Gy, F,) where P, C P isasetof ports, G, is a guard, and F,
is a data transfer function. We restrict P, so that it contains
at most one port of each component; therefore, we denote
P, = {pilies with p; € P, and I C {1...n}. G, and F,
are defined as the variables available on the interacting ports
U pEea X p-

Given a set of interactions y, the composition of the compo-
nents following y is the component B = y(By, ..., B,) =
(L,y, T, X, {gr}reT, { fr}reT), Where (L, y, T)is the tran-
sition system such that L = L} x --- x L,and 7 C L X
y x L contains transitions of the form t = (({1, ..., 1), a,
(7, ...,1))) obtained by synchronization of sets of transi-
tions {r; = (;, pi, 1)) € T;}ies such that {p;}ic; = a €y
and l;. = [; if j ¢ I. The resulting set of variables is
X = U, X;, and for a transition 7 resulting from the
synchronization of a set of transitions {t; };<;, the associated
guard (resp. update relation) is the conjunction of the individ-
ual guards (resp. update relations) involved in the transition.

Finally, priorities provide a means to coordinate the exe-
cution of interactions within a BIP system. They are used
to specify scheduling or similar arbitration policies between
simultaneously enabled interactions. More concretely, prior-
ities are rules, each consisting of an ordered pair of interac-
tions associated with a condition. When the condition holds

Statistical model checking QoS properties of systems with SBIP

175

Fig. 1 BIP example: tick

sender—buffer—receiver system l

tick
()

[c>10] out
T c=0
x=f(...)

Q’ tick

c=c+1

1 X1

Sender

and both interactions of the corresponding pair are enabled,
only the one with the highest priority can be executed. Non-
determinism appears when several interactions are enabled.
In the following, when we introduce probabilistic variables,
we will thus have to make sure that non-determinism is
resolved to produce a purely stochastic semantics.

Example 1 Figure 1 shows a graphical representation of an
example model in BIP. It consists of atomic components
Sender, Buffer and Receiver. The behavior of the Sender
is described as a transition system with control locations
1 and /. It communicates through ports tick and out. Port
out exports the variable x. Components Sender, Buffer and
Receiver are composed of two binary connectors iol, io2
and a ternary connector fick. tick represents a rendezvous
synchronization between the fick ports of the respective com-
ponents. iol represents an interaction with data transfer from
the port out of Sender to the port in of Buffer. As a result of
the data transfer associated with io/, the value of variable x
of Sender is assigned to the variables y of the Buffer.

Behavior—interaction—priority can model various types
of synchronization. Using less expressive frameworks, e.g.,
based on a single composition operator, often leads to
intractable models. For instance, BIP directly encompasses
multiparty interaction between components. Modeling mul-
tiparty interaction in frameworks supporting only point-to-
point interaction, e.g., function call or binary synchroniza-
tion, requires the use of protocols. This can lead to overly
complex models with complicated coordination structure.
Similarly, priorities in BIP allow to express scheduling poli-
cies or general arbitration mechanisms between interactions
in a declarative way. The use of scheduler components and
explicit coordination between components may also obscure
the overall design. The use of multiparty interactions and pri-
orities confers a highly expressive power. This has been not
only formally proven, e.g., in [12] but also practically illus-
trated on the modeling of several complex case studies [1-3].

Finally, it is worth noticing that the clear separation
between architecture (interactions and priorities) and behav-
ior (automata) in BIP allows compositional and incremen-

| | | | VAl
7=V
oute——@ in oul.—}d in

tick

y=x

iol @’ tick i02

. [CSQO] o
m out in
-
c=0

@’ tick

Buffer Receiver

tal analysis. This is advantageously exploited by tools like
D-Finder [6] which separately analyzes behavior of atomic
components and extracts interaction invariants characteriz-
ing architectural constraints.

4 SBIP: a stochastic extension for BIP

The stochastic extension of BIP allows (1) to specify sto-
chastic aspects of individual components and (2) to provide
a purely stochastic semantics for the parallel composition of
components through interactions and priorities.

Stochastic variables Syntactically, we add stochastic behav-
ior to atomic components in BIP by allowing the defini-
tion of probabilistic variables. Probabilistic variables x© are
attached to given distributions u,» implemented as C func-
tions. These variables can then be updated on transition using
the attached distribution. The semantics on transitions is thus
fully stochastic. We first define atomic components and inter-
action between them in SBIP, and then define the correspond-
ing stochastic semantics.

Definition 6 (Afomic Component in SBIP) An atomic com-
ponent in SBIP is a transition system extended with data B =

(L,P, T, X,{gc}rer, {fe}rer),Where L, P, T, {g;};cr are
defined as in Definition 3, and

- X=XpUXp,with Xp = {x1, ..., x,} the set of deter-
ministic variablesand X p = {x[", ..., x[} the set of prob-
abilistic variables.

— For each 7 € T, the update function X’ = f;(X) is a pair
(X} = fP(X), R;) where X}, = fP(X) is an update
relation for deterministic variables and R; € Xp is the
set of probabilistic variables that will be updated using
their attached distributions. Remark that the current value
of the probabilistic variables can be used in the update of
deterministic variables.

In the following, given a valuation vy of all the variables in
X, we will denote by vy the projection of vy on a subset

@ Springer

176

A. Nouri et al.

of variables Y € X. When clear from the context, we will
denote by vy the valuation of variable y € X in vy.

Some transitions in the associated semantics are thus prob-
abilistic. As an example, consider an atomic component B
with a transition t that goes from a location / to a loca-
tion [’ using port p and updates a probabilistic variable x”
with the distribution s, » over the domain x¥. In the asso-
ciated semantics, assuming the initial value of xP is VP,
there will be several transitions from state (/, v, ») to states
(', v p) forall v/, € xP. According to the definition of
probabilistic variables, the probability of taking transition
(I, vyr) = (I',v.,) will then be 2,» (v). This example
is illustrated in Fig. 2. When several probabilistic variables
are updated, the resulting distribution on transitions will be
the product of the distributions associated with each variable.
These distributions are fixed from the declaration of the vari-
ables, and are considered to be independent. The syntactic
definitions of interactions and composition are adapted from
BIP in the same manner. For the sake of simplicity, we restrict
data transfer functions on interactions to be deterministic.

Remark 2 'We write a transition in SBIP as /; —p—}g—> lj, where

li,ljeL,p € P,g € {glerand f € {fi}rer.

Stochastic semantics for atomic components Adapting the
semantics of an atomic component in BIP as presented in
Definition 4 to atomic components with probabilistic vari-
ables leads to transition systems that combine both stochas-
tic and non-deterministic aspects. Indeed, even if atomic
transitions are either purely deterministic or purely stochas-
tic, several transitions can be enabled in a given system
state. In this case, the choice between these potential tran-
sitions is non-deterministic. To produce a purely stochastic
semantics for components defined in SBIP, we resolve any

(a) Component B in SBIP

(L, v,r)

(b) Semantics of B according to SBIP

Fig. 2 Example of an abstract component B and its semantics in SBIP

@ Springer

non-deterministic choice left after applying the priorities by
applying uniform distributions. Remark that other distribu-
tions could be used to resolve this non-determinism and that
using uniform distributions is the default choice we made. In
the future, we will allow users to specify a different way of
resolving non-determinism.

Consider a component B = (L,P,T,X, {gc}ceT,
{ fr}rer) in SBIP. Given a state (/, vy) in L x X, we denote
by Enabled(l, vx) the set of transitions in T that are enabled
in state (I, vy), i.e., transitions T = (I, p,I') € T such
that g;(vy) is satisfied. Since priorities only intervene at
the level of interactions, the semantics of a single compo-
nent does not take them into account. Remark that the set
Enabled(/, vy) may have a cardinal >1. This is the only
source of non-determinism in the component. In the seman-
tics of B, instead of non-deterministically choosing between
transitions in Enabled(/, vyx), we will choose probabilisti-
cally using a uniform distribution. Formally:

Definition 7 (Semantics of a single component in SBIP)
The semantics of B = (L, P, T, X, {g:}ceT, {fr}rer) In
SBIP is a probabilistic transition system (Q, P, Tp) such that
QO = L x X and Ty is the set of probabilistic transitions
of the form ((/, vx), p, (I', v)) for some = = (I, p,1') €
Enabled(/, vy) such that US(D = fTD(vX), and for all y €
XP\Rt, U; = Vy.

In a state (I, vx), the probability of taking a transition

(1, vx) L (I, v)y) is the following:

1 /
SR, S IT @)
|Enabled(l, vx)| {reEnabled(,vx) \veR:

S.t. = p.1)}

The probability of taking transition (/, vy) NN (', v)
is computed as follows. For each transition T = (I, p,1’) €
Enabled(/, vy) such that U&D = frD(vX) and for each
y € Xp\R:, v, = vy, the probability of reaching state
(', vy) is Hyelé, My (v;). Since there may be several such
transitions, we take the sum of their probabilities and nor-
malize by multiplying with m.

Stochastic semantics for composing components When con-
sidering a system with n components in SBIP B; =
(Li, Pi,T;, Xi, {gc}rer;, { fe}rer;) and a set of interac-
tions y, the construction of the product component B =
y(B1, ..., B,) is defined as in BIP. The resulting seman-
tics is given by Definition 7 above, where Enabled(/, vyx)
now represents the set of interactions enabled in global state
(I, vyx) that are maximal with respect to priorities. By con-
struction, it follows that the semantics of any (composite)
component in SBIP is purely stochastic.

Example 2 Consider SBIP components By and B; given in
Fig. 3a, b. By has a single probabilistic variable xf) , to which

Statistical model checking QoS properties of systems with SBIP

177

(a) Component By in SBIP. (b) Component By in SBIP.
((H«, l%): (’Uh U2, ’03))

a
1
2

((l; li)v (1’1~, Ué, Uf}))

((lllv lﬁ)v (Q"; U2, ’U;))

(¢) Semantics of ~«(Bi, B2) according to
SBIP, with v = {a = {p1,p2},b =
{p1,p3}}.

Fig. 3 Illustration of the purely stochastic semantics of composition
in SBIP

are attached distribution 11 and a single transition from loca-
tion / } to location l; using port pj, where x; is updated. In
location /!, the variable le is assumed to have value vj.
B> has two probabilistic variables xf and xf , to which are
attached distributions @, and 3, respectively. By admits two
transitions: a transition from location ll2 to location l% using
port pa, where x; is updated, and a transition from location / 12
to location l% using port p3, where x3 is updated. In location
l%, the variables x2P and x3P are assumed to have values v,
and v3, respectively. Let y = {a = {p1, p2}, b = {p1, p3}}
be a set of interactions such that interactions a and b have the
same priority. The semantics of the composition y (Bj, B>)
is given in Fig. 3c. In state ({3, lf), (v1, v2, v3)) of the com-
position, the non-determinism is resolved between interac-
tions a and b, choosing one of them with probability 1/2.
After choosing the interaction, the corresponding transition
is taken, updating the corresponding probabilistic variables
with the associated distributions. Remark that this gives rise
to a single purely stochastic transition. As an example, the
probability of going to state ((l;, l%), (v}, v, v3)) with inter-
action @ is 1/2 - 1 (v}) - n2(v5), while the probability of
going to state ((lé, l%), (v}, v2, v3)) with interaction b is
1/2 - py () - pua(vfy).

An execution 7 of a BIP model is a sequence of states that
can be generated from an initial state by following a sequence
of (probabilistic) transitions. From the above, one easily sees
that the semantics of any SBIP (composite) system has the
structure of a discrete Markov chain. Consequently, one can
define a probability measure p on its set of executions in the
usual way [34].

4.1 DTMC modeling in SBIP

In the previous section, we saw that the semantics of an SBIP
model is purely stochastic and is equivalent to a Discrete
Markov Chain. In this section, we provide an operational
semantics that deals with Markov chains to SBIP model trans-
formation.

Definition 8 Let € be the empty action. GivenaDTMC M =
(S, Act, , 7, LM), we define the transformation from M to
astochastic BIPmodel B = (L, P, T, X, {gc}rer, { fr}rer)
as follows:

— L ={l; foreachs; € S} U {llf for each s; € S| 3 unique
a € Act s.t. (s, a,s;) =1},

P = Act U {¢},

~TCILMxPxLM,

X = {x} foreachs; € S | p(x =s;) = m;;}, and

aj,mij>0
§j ———> 5

Cifm < 1 2
el L @)

€,true -
li’ li L

l;
xl=pi0
aj,mij>0
il 5 i =1 3)
aj.true ’ b
iy

Intuitively, the transformation states that for a given

a,mi;
Markov Chain M, each transition s; s ;j that has a

probability 7r;; < 11is associated, in the corresponding SBIP

. .. . N3
model, with two transitions. The first is /; e llf that

=0
is a probabilistic step based on the related distribution which
is directly obtained from the DTMC (the one that charac-

terizes the next state weights from the state s;), while the
., ajlxl==sj] .
second is [l; which stands for a next loca-

tion choice as shown in Fig. 4 and rule (2) of Definition 8.
Another case is also presented in this definition where the

transition probability 7;; = 1, the Markov Chain transition
aj,true
is then associated with a unique SBIP transition /; —— ;

as specified by rule (3) of the same definition. Note that, in the
first case, the first transition corresponds to a sampling oper-
ation over possible next locations ()cl.lD := i ()) (since there
are more than one possible transition with different probabil-
ities in the DTMC) and that the second transition uses BIP
guards to select the next location with respect to the chosen
value.

Example 3 Figure 5 shows the DTMC Model of a simple
sending protocol. Initially, the protocol try to send leads to
the state s1. From that state, the process could 7ry again
with probability 1/6, fail with probability 1/6, or success

@ Springer

178

A. Nouri et al.

aj, Tij aj, true
| |
\J \J

(a) DTMC Transition. (b) Equivalent SBIP transition
in case m;; = 1.

e, true|zl == p();

(c) Equivalent SBIP transition in case m;; < 1.

Fig. 4 TIllustration of the transformation from DTMC to SBIP model

init

success

Fig. 5 A DLMC for a sending protocol example

with probability 2/3. In case of fail, the protocol is restarted
through the init action. The probabilities 1 on the transitions
try, init and success are omitted.

The corresponding SBIP model is shown in Fig. 6. It con-
sists of one SBIP component where the probabilistic variable
xf) that models the next state distribution from s is described
in Table 1.

Remark that the #ry transition from state sg in the DLMC
in Fig. 5 is preserved as it is in the SBIP component in Fig.
6 as well as init and success transitions from state s3. In
fact, since their probabilities are equal to 1, the rule (3) of
Definition 8 is applied. For the transitions fail, success, and
try from state s; in the DLMC, they are transformed using
the rule (2) since their probabilities are smaller than 1 which
gives an additional sampling step from /; to /| in the SBIP
component that uses the X, distribution.

@ Springer

l

fail success

success

Fig. 6 Corresponding SBIP model for the sending protocol example

Table 1 Probability distribution in state s

Next state (xf domain) Probability (i (le =)

S1 1/6
52 1/6
53 2/3

5 SMC for SBIP

Any statistical model checking of Markov Chains and BLTL
properties requires to implement two routines: (1) a runtime
verification procedure to decide whether a finite execution
satisfies a BLTL formula, and (2) one or many SMC algo-
rithms as described earlier. In this section, we first present
the SMC capabilities and the architecture of SBIP. Then, we
describe the implemented runtime verification procedure.

5.1 Tool architecture

The SBIP tool [33] implements the statistical algorithms
described in Sect. 2, namely, SSP, SPRT, and PESTIMATION
for stochastic BIP systems. Figure 7 shows the tool architec-
ture and execution flow. SBIP takes as inputs a stochastic
system written in the BIP language, a PBLTL property, and a
series of confidence parameters needed by the statistical test.
First, the tool generates an executable model and builds a
monitor for the property under verification. Afterward, it iter-
atively triggers the stochastic BIP engine to generate random
execution traces (sampling) which are checked with respect
to the input property using the monitor. This procedure is

Statistical model checking QoS properties of systems with SBIP

179

Property @

System S
i [-PBLTL- |

|

Iliiiiiill
| (e,

‘ PBLTL Compilation ‘

!
O

triggers collects

OK /KO
Verdict

Fig. 7 SBIP tool architecture and work flow

BIP Compilation

.

repeated until a decision can be taken by the SMC core. As
our approach relies on SMC and consider bounded LTL for-
mulas, we are guaranteed that the procedure will eventually
terminate.

5.2 Monitoring and runtime verification

Monitoring For applying statistical model checking on sto-
chastic systems, it is mandatory to be able to evaluate
the BLTL property under consideration on system execu-
tion traces. Indeed, this monitoring operation shall generate
binary observations x; = {0, 1} (single trace verdict) which
are requested by the statistical algorithms to provide a global
verdict that concerns the whole system (all traces verdict). In
theory, monitoring consists of checking if some word (label-
ing the current execution trace) belongs to the language gen-
erated by some automaton encoding the property. Actually,
there exists an important research literature about the efficient
transformation from LTL to Buchi [17,43] or alternating [40]
automata. Some of these works cover bounded LTL [16,18].
Nonetheless, despite these important theoretical results, it
seems that no efficient method to transform BLTL to finite
automata is yet established or implemented.

To avoid this technical difficulty, in the current SBIP
implementation, we restricted syntactically BLTL to a frag-
ment where the temporal operators cannot be nested. This
simplification restricts the definition to a finite number of
automata patterns that cover all property classes. Moreover,
this fragment has been expressive enough to cover all prop-
erties of interest in practical applications. Furthermore, it is
always possible to enrich this set with additional patterns, as
needed.

Runtime verification (RV)[15,20,37] refers to a series of
techniques whose main objective is to instrument the spec-
ification of a system (code, etc.) to observe and potentially
refute complex properties at execution. The main issue of the
runtime verification approach is, however, that it does not per-

mit to assess the overall correctness of the entire system but
only to identify potential errors.

To support runtime verification, the BIP framework allows
for addition of observer components that enable to observe
specific events of the system and/or to (partially) encode the
evaluation of requirements (if they are otherwise difficult to
express using BLTL). It is important to mention that such
observers can be added to a BIP system in a totally non-
intrusive way, that is, they run in parallel to the system com-
ponents and only interact loosely with them, through specific
connectors. A detailed presentation of the approach for con-
struction and insertion of observers in BIP systems can be
found in [44].

6 How to use SBIP

In this section, we show how to practically use the SBIP
tool [33] to model a stochastic system and to verify it using
statistical model checking technique.

6.1 Modeling in SBIP language

The first step to use SBIP is to formally model the system
to verify using the stochastic BIP formalism. Syntactically,
using stochastic BIP is same as using BIP language [11]
since the extension concerns essentially the semantics level
and also because BIP is able to use external C++ code that
is a strong way to extend it. Nevertheless, SBIP provides
an additional library that should be used jointly with BIP
and which provides probabilistic and tracing functionality to
build an SBIP compatible model.

In the following, we give an example of an SBIP compo-
nent that uses the afore-mentioned functionality. We illustrate
the sending protocol component in Fig. 5.

/* Declares an atomic BIP component */
atomic type sending_protocol

/* Declares a probabilistic variable */
data int Xsl

/* Declares a probabilistic distribution */
data distribution_t dist_1

/* Declares an integer variable */

data int success

/* Declares and exports ports:
init, try, fail, success */

export port Port init

export port Port try

export port Port fail

export port Port success

/* Declares an internal BIP port */
port Port epsilon

/* Declares BIP locations */
place 10, 11, 11", 12, 13

@ Springer

180

A. Nouri et al.

/* Initialization */

initial to 10 do {
/* Init dist_1 from empirical dist. */
dist_1 = init_distribution(‘'‘dist_1.txt’"’);
/* update success flag and trace it */
success = 0;

trace_i('‘sending_protocol.success’’, success);

/* Transition from 10 to 11 */

on try from 10 to 11

on epsilon from 11 to 11’ do {
/* Updates Xsl wrt. dist_1 */
Xsl = select(dist_1);

/* Transition from 11’ to 11 */
on try from 11’ to 11 provided (Xsl == sl)
/* Transition from 11’ to 13 */

on success from 11’ to 13 provided (Xsl == s3) do {
/* update success flag and trace it*/
success = 1;
trace_1i (' ‘sending_protocol.success’’, success);

}

/* Transition from 11’ to 12 */

on fail from 11’ to 12 provided (Xsl == s2) do {
/* update success flag and trace it*/
success_flag = 0;
trace_1i (' ‘sending_protocol.success’’, success);

}

/* self loop on 13 */

on success from 13 to 13

/* Transition from 12 to 10 */

on init from 12 to 10 do {
/* update success flag and trace it*/
success_flag = 0;
trace_1i(’’'sending_protocol.success’’, success);

}

end

The code above describes the SBIP sending protocol
model that uses some of the provided functionality in SBIP.
For instance, the distribution_t predefined type is used to
define a probabilistic distribution which is initialized, in this
case, using init_distribution() function. This one optionally
takes as input a text file that contains an empirical dis-
tribution. The declared distribution could be then used to
update probabilistic variables (declared as classical BIP vari-
ables) using the select() function that returns a value with
respect to its weight in the input distribution parameter.
Similar functions could be also used to sample from stan-
dard probabilistic distributions, such as Uniform, Normal,
Exponential, etc. For instance, Uniform sampling could be
done by just specifying the bounds of the interval to con-
sider and without any initialization. For example, the call
select(125,500) returns uniformly selected values in the
interval [125, 500].

Remark 3 The choice of using text files to describe empiri-
cal distributions is made for practical reasons. Such files are
usually automatically generated through system simulation.

Another functionality shown in this code is variables trac-
ing which is mandatory to do trace monitoring. SBIP pro-

@ Springer

vides several tracing procedures with respect to variables
type: trace_i() for Integer, trace_b() for Boolean, trace_d()
for Double, and trace_f () for Float. Those functions take as
parameters a string that specifies the component name and
the variable name, in addition to the variable value. In the
above code sample, the variable of interest, that is, subject to
verification, is success (note that this step of code annotation
with tracing functions should be done when a property to
check is fixed, that is, to identify the variables to trace). This
variable is of type Integer, hence the function call

trace_i('‘sending_protocol.success’’, success)

is used.

6.2 Properties specification in SBIP

Whenever, the stochastic BIP model is built, the next step is
to specify the property to be checked. As mentioned before,
in the case of SBIP, this should be done in PBLTL syntax
which is defined with respect to the following grammar:

Q=P =2 0[¥]| P =NV]

Vo= Uit | (G{i} | Fli}) ¢ [N ¢
pu=true|false |w | o (A| V)@
w:=vl|lv]e(>]| < | == =]|#)e
ee=v|Kl|le(+| =] x|/ %)e]| F(u,...,v)

In this grammar, 6 is a probability threshold, U, G, F, N
are, respectively, Until, Always, Eventually, and Next tempo-
ral operators, i is an integer bound on the mentioned oper-
ators, v is a state variable, K is an integer constant, and F
denotes predefined functions.

Note that it is possible through this syntax to either ask for
a probability estimation using P =? operator or to check if
the property probability respects some bound 6 using P > 6
operator. For example, given the SBIP model of the sending
protocol above, a requirement to check could be that the
probability to send always succeed is greater than a fixed
threshold & = 0.9, which is formulated in PBLTL as follows:

P > 0.9[G {1000} (sending_protocol.success)]

It is also possible to ask what is the probability that the send
action eventually fails which is specified in PBLTL as fol-
lows:

P =?[F{1000}(!sending_protocol.success)]
6.3 Statistical model checking with SBIP

Once the stochastic BIP model and the corresponding PBLTL
properties are ready, SBIP could be used as follows to proba-

Statistical model checking QoS properties of systems with SBIP

181

bilistically check if the specified property hold on the system
under consideration.

To use SBIP tool, the first step to do is to down-
load it from the Web page on http://www-verimag.imag.
fr/Statistical-Model-Checking.html. In addition, you should
download and correctly set up the BIP tool (SBIP works with
the old and the new BIP version) to be able to build stochastic
BIP models as shown above.

When downloaded and extracted, the obtained tool direc-
tory is structured as follows:

— lib\directory which hold tool libraries/dependencies,

— bin\directory that contains tool binaries,

— examples\directory that contains some stochastic BIP
examples,

— setup.sh file that should be used to install the tool, and
finally,

— README file that explains the tool usage.

To set up the tool environment, go under the tool root
directory and type the command below:

$ source setup.sh

Henceforth, it is possible to statistically model check sto-
chastic systems built as BIP models using the following com-
mand prototype:

$ sbip [-htest|-pestim] [Formula] [Delta] [Alphal
[Beta]
[-bipl|-bip2] [Executable]

where [-htest | -pestim] are options to specify hypothesis
testing or probability estimation as statistical test, [Formula]
is a PBLTL formula to check, [Delta], [Alpha] and [Beta]
defines the level of confidence of the statistical tests, [-bip1
| -bip2] are options to specify which BIP language version
will be used, and finally, [Executable] is the BIP binary of
the system to verify. For example, to verify the quantitative
property P >= 0.8[G{10000}(sending_protocol.success)]
with confidence 10~ on the sending sending protocol model,
it is possible to use the following command:

$ sbip -htest \

~

P >= 0.8[G{1000}(sending_protocol.success)] "\

0.05 0.00001 0.00001 -bip2 sending_protocol

The command line specifies that the hypothesis testing
technique is used as statistical test (with 0.8 as a thresh-
old), and that the probability to make errors (type I and II) is
bounded to 10~ with an indifference region of 5.1072.

7 Case studies

While still at prototype level, SBIP has been already applied
to several case studies coming from serious industrial appli-
cations.

7.1 Accuracy of clock synchronization protocol IEEE.1588
7.1.1 Model description

The case study concerns a clock synchronization protocol
running within a distributed heterogeneous communication
system (HCS) [1]. This protocol allows to synchronize the
clocks of various devices with that of a designated server. It
is important that this synchronization occurs properly, i.e.,
that the difference between the clock of the server and the
one of any device is bounded by a small constant.

To verify such property, we build the stochastic model
depicted in Fig. 8. This model is composed of two determin-
istic components namely Master, and Slave and two com-
munication channels. In the PTP model, the time of the mas-
ter process is represented by the clock variable 0,,. This is
considered the reference time and is used to synchronize
the time of the slave clock, represented by the clock vari-
able 6;. The synchronization works by messages exchange
between the server and a slave device. Each one of them
saves the time of message reception (f;);=1,4 With respect
to its local clock. Finally, the slave device computes the
offset between its time and the master time and updates
its clock accordingly. Communication channels have been
modeled using stochastic components. These components
model communication delays over the network using empir-
ical distributions obtained by simulating a detailed HCS
model.

The accuracy of the synchronization is defined by the
absolute value of the difference between the master and
slave clocks 16, — 05|, during the lifetime of the system

[z =Plz:=0 > Tsync
Isync 2 to =0,
t1:=0Om

Master Slave

syne, followUp, reply

! followUp(t1) ? followUp(t1)

request
ty:=0Om

Irequest
to =0,

Treply(ts)
0:= f(t1,ta,t3,41)
i 7 s i=0s—o0

Fig. 8 PTP stochastic model

request

Ireply(ts)

@ Springer

http://www-verimag.imag.fr/Statistical-Model-Checking.html
http://www-verimag.imag.fr/Statistical-Model-Checking.html

182

A. Nouri et al.

(0,0) ——
(0,3) --x---
(1,0) %
(1,10) —-a-
0.8 (2,0) ——=~
(2,3) ---0
(30) - o
(33) —a-

0.6

0.4

0.2

0 20 40 60 80 100 120
Bound

Fig. 9 Probability of satisfying bounded accuracy property as func-
tions of the bound A

we consider (in this case, 1,000 steps). Our aim is to ver-
ify the satisfaction of the bounded LTL formula P =
MG{1, 000}(abs(Master.0,, — Slave.f;) >= A)] for arbi-
trary fixed non-negative A.

7.1.2 Experiments and results

Two types of experiments are conducted. The first one is
concerned with the bounded accuracy property ¢. In the sec-
ond one, we study average failure per execution for a given
bound.

Property 1: Synchronization To estimate the best accuracy
bound, we have computed, for each device, the probability for
synchronization to occur properly for values of A between
10 and 120 ps. Figure 9 gives the results of the probability
of satisfying the bounded accuracy property ¢ as a function
of the bound A. The figure shows that the smallest bound
which ensures synchronization for any device is 105 s (for
device (3, 0)). However, devices (0, 3) and (3, 3) already
satisfy the property ¢ with probability 1 for A = 60 ps.
For these experiments, we have used SPRT and SSP jointly
with PESTIMATION for a higher degree of confidence. The
results, which are presented in Table 2 for Device (0, 0), show
that SPRT is faster than SSP and PESTIMATION.

Property 2: Average failure In the second experiment, we
try to quantify the average and worst number of failures in
synchronization that occur per simulation when working with
smaller bounds. Our goal is to study the possibility of using
such bounds. For a given simulation, the proportion of fail-
ures is obtained by dividing the number of failures by the

@ Springer

Table 2 Number of simulations/amount of time required for PESTI-
MATION, SSP and SPRT

Precision 107! 1072 1073

Confidence 1075 10710 105 10710 1073 10-10

PESTIM 4883 9488 488243 948760 48824291 94875993
17s 34s 29 m 56 m >3h >3h

SSP 1604 3579 161986 368633 16949867 32792577
10s 22s 13m 36m >3h >3h

SPRT 316 1176 12211 22870 148264 311368
2s Ts 53s Im38s 1lm 31 m

number of rounds of PTP. We will now estimate, for a sim-
ulation of 1, 000 steps (66 rounds of the PTP), the average
value for this proportion. To this purpose, we have measured
for each device this proportion on 1, 199 simulations with a
different synchronization bounds A between 10 and 120 ps.
Figure 10 gives the average proportion of failure as a function
of the bound.

7.2 Playout buffer underflow in MPEG?2 player

In multimedia literature [42], it has been shown that some
quality degradation is tolerable when playing MPEG2-coded
video. In fact, a loss under two consecutive frames within a
second can be accepted. In this study, we want to check an
MPEG?2 player implementation with respect to the afore-
mentioned QoS property, in addition to buffer size reduction
[36].

Proportion of failures

0.25 T T T T T
(0,0) ——
(0,3) ---x---
(10) -
4 (1,10) 8
02 % ®,0) —-=—
b ° (2,3) --o
! (3,0) - -o-
i . (3,3) —a—
! [}
015 % N .
0.1 —
0.05 ',.\.\ 4
2
\%“;\:\!
0 I | \%.:{i‘]?g-.“‘ﬁ —o o
0 20 40 60 80 100 120

Bound

Fig. 10 Average proportion of failures as functions of the bound A

Statistical model checking QoS properties of systems with SBIP

183

Generator (BitRate)

Processor (Frequency)

Player (Rate,Delay)

Input Buffer

e

ole

Playout Buffer

ole

Fig. 11 MPEG?2 player stochastic model

80 T T T T

| frames
70 1 B frames |
---P frames

50 | 1

40 t 1

Frequency

20 1

h

it

‘\“i “\
0 . ‘\l}mill‘h . 2 n_ﬂ,n_u_uﬂﬂlhm PP 0
0 50 100 150 200 250
Frame Size (Kbits)

Fig. 12 Frequency distribution of I, P, and B frames in an MPEG2
video

7.2.1 Model description

We illustrate the multimedia player set-up that has been mod-
eled using the stochastic BIP framework. The designed model
captures the stochastic system aspects that are the macro-
blocks arrival time to the input buffer and the their processing
time.

The stochastic system model is shown in Fig. 11. It
consists of three functional components namely Genera-
tor, Processor, and Player. In addition to these, the buffers
between the above functional components are modeled by
explicit buffer components, namely Input buffer and Playout
buffer. The transfer of the macro-blocks between the func-
tional blocks and the buffers is described using interactions.
All the functional components are timed, and the simulated
time is modeled by the tick connector, which provides global
synchronization between them.

The Generator is a stochastic component which models
macro-blocks production based on three probabilistic distrib-
ution in a frame-type fashion as shown in Fig. 12. It generates
an MPEG2-coded stream with respect to a fixed Group-of-
Pictures (GOP) pattern [28,29] and simulates the arrival time
of macro-blocks to the input buffer.

The Processor reads them sequentially, decodes them and
writes them to the Playout buffer. The Player starts to read
macro-blocks from the Playout buffer after a defined initial
delay namely Playout Delay. Once this delay ends, the con-
sumption is performed periodically with respect to a fixed
consumption rate. Each period, the Player sends a request

Playout Delay (in milliseconds)

450 390 330 300 290

1600 — ‘ : ‘ :
— 1500 | 1
w)
)
>
Q' 1400 | 1
M
=]
<1300 1
©
5
— 1200 1
E
8 1100 1
|
% 000 1

900 :

0 0.04 0.1 0.16 02

(1-P{U<660})

Fig. 13 Playout buffer fill level as function of playout delay and prob-
ability of property failure for mobile.m2v video

of N macro-blocks to the Playout buffer, where N = 1 the
first time. Then, it gets a response of M macro-blocks, where
0 < M < N. An underflow happens when M < N. In this
case, the next request N will be (N — M) + 1. That is, the
player will try to read all the missed macro-blocks.

7.2.2 Experiments and results

To check the described model with respect to the desired QoS
property, we used the SBIP tool. The PBLTL specification of
the QoS property to checkis P =?[G{1500000}(!Observer.
fail)], where fail denotes a failure state condition corre-
sponding to the underflow of two consecutive frames within
a second. The fail state is represented in an Observer BIP
component which captures the failure condition by monitor-
ing the Player frame consumption.

Figure 13 shows a bench of results for the mobile.m2v
open source video. In this figure, the x-axis represents the
probability of failure (a loss of two consecutive frames within
a second) and the y-axis illustrates the playout buffer fill
level. In addition, it shows, in the top, the playout delay evo-
lution. We can see first that for a high playout delay, the
playout buffer is highly filled and hence that the probability
of underflow is null. If we start reducing the playout delay,
the playout buffer fill level decreases, which induces some
probability of failure since the player starts to consume the
frames sooner. The goal of the analysis is to enable designer to

@ Springer

184

A. Nouri et al.

choose a trade-off amount of quality degradation that reduces
the buffer size and does not imply a big playout delay.

8 Conclusion and related work

Stochastic systems can also be analyzed with a pure prob-
abilistic model checking approach. While there is no clear
winner, SMC is often more efficient in terms of memory and
time consumption [23]. The above experiments are out of
scope of probabilistic model checking. Also, there are prop-
erties such as clock drift in Clock Synchronization Protocols
(see [1]) that could not have been analyzed with a pure formal
approach. The PRISM toolset [30] also incorporates a statisti-
cal model checking engine. However, it can only be applied
to those systems whose individual components are purely
stochastic. Moreover, probability distributions are described
in a very simple and restrictive language, while we can use
the full fledged C to describe complex distributions. Never-
theless, we have observed that PRISM can be faster than our
tool on various case studies such as those where the same
process is repeated a certain number of times. A comparison
between PRISM and SBIP is beyond the scope of this paper.
Solutions to considerably enhance the efficiency of SMC in
particular cases have recently been developed [24], but have
not yetbeen implemented in SBIP. In arecent work [13], ithas
been proposed to use partial order to solve non-determinism
when applying SMC (which rarely works). Another approach
[8] consists of automatically synthesize distributed schedul-
ing that accounts for concrete implementation information to
solve non-determinism. In SBIP, the order is directly given
in the design through priorities specified by the user.

We shall continue the development by implementing new
heuristics to speed up simulation and to reduce their number
as well as techniques to support unbounded properties. We
shall also implement an extension of the stochastic abstrac-
tion principle from [1] that allows to compute automatically
a small stochastic abstraction from a huge concrete system.

References

1. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B.,
Legay, A.: Statistical abstraction and model-checking of large het-
erogeneous systems. In: FORTE, vol 6117 of LNCS, pp. 32-46.
Springer, Berlin (2010)

2. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.,
Sifakis, E.: Verification of an afdx infrastructure using simulations
and probabilities. In: Proceedings of the First international con-
ference on Runtime verification, RV’10, pp. 330-344. Springer-
Verlag, Berlin, Heidelberg (2010)

3. Basu, A., Bensalem, S., Gallien, M., Ingrand, F., Lesire, C.,
Nguyen, T.-H.,Sifakis, J.: Incremental component-based construc-
tion and verification of a robotic system, In: ECAI (2008)

4. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-
time Systems in BIP. In: SEFMO06, pp. 3—12, Sep (2006)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Bensalem, S., Bozga, M., Delahaye, B., Jégourel, C., Legay, A.,

Nouri, A.: Statistical model checking qos properties of systems
with sbip. ISoLA 1, 327-341 (2012)

. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-finder: A

tool for compositional deadlock detection and verification. In: Pro-
ceedings of the 21st International Conference on Computer Aided
Verification, CAV ’09, pp. 614-619. Springer-Verlag, Berlin, Hei-
delberg (2009)

. Bensalem, S., Delahaye, B., Legay, A.: Statistical model checking:

Present and future. In: RV, vol. 6418 of LNCS. Springer, Berlin
(2010)

. Bensalem, S., Legay, A., Nouri, A., Peled, D.: Synthesizing distrib-

uted scheduling implementation for probabilistic component-based
systems. In: MEMOCODE, pp. 87-96 (2013)

. Bensalem, S., Silva, L., Griesmayer, A., Ingrand, F., Legay, A., Yan,

R.: A formal approach for incremental construction with an appli-
cation to autonomous robotic systems. In: SC’ 11, LNCS. Springer,
Berlin (2011)

Bip tools. http://www-verimag.imag.fr/BIP-Tools,93.html

Bip2 language. http://www-verimag.imag.fr/TOOLS/DCS/bip/
doc/latest/html/

Bliudze, S., Sifakis, J.: The algebra of connectors-structuring
interaction in bip. IEEE Trans. Comput. 57(10), 1315-1330
(2008)

Bogdoll, J., Fiorti, L.-M., Hartmanns, A., Hermanns, H.: Partial
order methods for statistical model checking and simulation. In:
FORTE, LNCS. Springer, Berlin (2011)

Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT
Press, Cambridge (1999)

Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.:
Runtime verification of component-based systems. In: SEFM, pp.
204-220 (2011)

Finkbeiner, B., Sipma, H.: Checking finite traces using alternating
automata. Form. Methods Syst. Des. 24(2), 101-127 (2004)
Gastin, P., Oddoux, D.: Fast LTL to Biichi automata translation.
In: Berry, G., Comon, H., Finkel, A. (eds.) Proceedings of the
13th International Conference on Computer Aided Verification
(CAV’01). Lecture Notes in Computer Science, vol. 2102, pp. 53—
65. Springer, Paris (2001)

Giannakopoulou, D., Havelund, K.: Automata-based verification of
temporal properties on running programs. In: Proceedings of the
16th IEEE International Conference on Automated Software Engi-
neering, ASE °01, pp. 412. IEEE Computer Society, Washington,
DC (2001)

Grosu, R., Smolka, S.A.: Monte carlo model checking. In: TACAS,
vol. 3440 of LNCS, pp. 271-286. Springer, Berlin (2005)
Havelund, K., Rosu, G.: Synthesizing monitors for safety proper-
ties. In: TACAS, LNCS, pp. 342-356. Springer, Berlin (2002)
Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approx-
imate probabilistic model checking. In: VMCAI, pp. 73-84
(2004)

Hoeffding, W.: Probability inequalities. J. Am. Stat. Assoc. 58,
13-30 (1963)

Jansen, D.N., Katoen, J.-P., Oldenkamp, M., Stoelinga, M.,
Zapreev, 1.S.: How fast and fat is your probabilistic model checker?
an experimental performance comparison. In: HVC, vol. 4899 of
LNCS. Springer, Berlin (2007)

Jégourel, C., Legay, A., Sedwards, S.: Cross entropy optimisation
of importance sampling parameters for statistical model checking.
In: CAV (2012)

Jégourel, C., Legay, A., Sedwards, S.: A platform for high perfor-
mance statistical model checking-plasma. In: TACAS, LNCS, pp.
498-503. Springer, Berlin (2012)

Katoen, J.-P., Zapreev, 1.S.: Simulation-based ctmc model check-
ing: an empirical evaluation. In: QEST, pp. 31-40. IEEE Computer
Society, Washington, DC (2009)

http://www-verimag.imag.fr/BIP-Tools,93.html
http://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/
http://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/

Statistical model checking QoS properties of systems with SBIP

185

217.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

Katoen, J.-P., Zapreev, L.S., Hahn, E.M., Hermanns, H., Jansen,
D.N.: The ins and outs of the probabilistic model checker mrmc.
In: QEST, pp. 167-176. IEEE Computer Society, Washington, DC
(2009)

Krunz, M., Sass, R., Hughes, H.: Statistical characteristics and
multiplexing of MPEG streams. In: INFOCOM, pp. 455-462
(1995)

Krunz, M., Tripathi, S.K.: On the characterization of VBR MPEG
streams. In: SIGMETRICS, pp. 192-202 (1997)

Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: A tool for
probabilistic model checking. In: QEST, pp. 322-323. IEEE (2004)
Laplante, S., Lassaigne, R., Magniez, F., Peyronnet, S., de
Rougemont, M.: Probabilistic abstraction for model checking: an
approach based on property testing. ACM TCS 8(4), 20 (2007)
Legay, A., Delahaye, B.: Statistical model checking: an overview.
CoRR, abs/1005.1327 (2010)

Nouri, A., Legay, A., Bensalem, S., Bozga, M.: Sbip: a statistical
model checking extension for the bip framework. In: First Work-
shop on Statistical Model Checking (2013)

Parzen, E.: Stochastic Processes. Holden Day, Australia (1962)
Rabih, D.E., Pekergin, N.: Statistical model checking using perfect
simulation. In: ATVA, vol. 5799 of LNCS, pp. 120-134. Springer,
Berlin (2009)

Raman, B., Nouri, A., Gangadharan, D., Bozga, M., Basu, A.,
Maheshwari, M., Legay, A., Bensalem, S., Chakraborty, S.: Sto-
chastic modeling and performance analysis of multimedia socs.
In: ICSAMOS, pp. 145-154 (2013)

Rosu, G., Bensalem, S.: Allen linear (interval) temporal logic:
translation to Itl and monitor synthesis. In: CAV, vol. 4144 of LNCS,
pp. 263-277. Springer, Berlin (2006)

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of
black-box probabilistic systems. In: CAV, LNCS 3114, pp. 202—
215. Springer, Berlin (2004)

Sen, K., Viswanathan, M., Agha, G.: On statistical model checking
of stochastic systems. In: CAV, pp. 266-280 (2005)

Vardi, M.Y.: Alternating automata and program verification. In:
In Computer Science Today. LNCS 1000, pp. 471-485. Springer-
Verlag, Berlin (1995)

Wald, A.: Sequential tests of statistical hypotheses. Ann. Math.
Stat. 16(2), 117-186 (1945)

Wijesekera, D., Srivastava, J.: Quality of service (QoS) metrics for
continuous media. Multimedia Tools Appl. 3(2), 127-166 (1996)

Wolper, P.: Lectures on formal methods and performance analysis.
Chapter Constructing automata from temporal logic formulas: a
tutorial, pp. 261-277. Springer-Verlag New York Inc, New York
(2002)

Ylies, F., Mohamad, J., Thanh-Hung, N., Marius, B., Saddek, B.:
Runtime verification of component-based systems in the bip frame-
work with formally-proved sound and complete instrumentation.
SOSYM, pp. 1-27 (2013)

Younes, H.L.S.: Verification and Planning for Stochastic Processes
with Asynchronous Events. Ph.D thesis, Carnegie Mellon (2005)

Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification
of probabilistic properties with unbounded until. In: SBMF, pp.
144-160 (2010)

Zuliani, P., Baier, C., Clarke, E.M.: Rare-event verification for sto-
chastic hybrid systems. In: HSCC, pp. 217-226. ACM (2012)

. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model

checking with application to simulink/stateflow verification. In:
HSCC, pp. 243-252. ACM (2010)

@ Springer

	Statistical model checking QoS properties of systems with SBIP
	Abstract
	1 Introduction
	1.1 Structure of the paper

	2 Stochastic systems
	2.1 Markov chains
	2.2 Probabilistic bounded linear time logic
	2.3 Statistical model checking
	2.3.1 Playing with statistical model checking algorithms

	3 BIP
	4 SBIP: a stochastic extension for BIP
	4.1 DTMC modeling in SBIP

	5 SMC for SBIP
	5.1 Tool architecture
	5.2 Monitoring and runtime verification

	6 How to use SBIP
	6.1 Modeling in SBIP language
	6.2 Properties specification in SBIP
	6.3 Statistical model checking with SBIP

	7 Case studies
	7.1 Accuracy of clock synchronization protocol IEEE.1588
	7.1.1 Model description
	7.1.2 Experiments and results

	7.2 Playout buffer underflow in MPEG2 player
	7.2.1 Model description
	7.2.2 Experiments and results

	8 Conclusion and related work
	References

