
Int J Softw Tools Technol Transfer (2014) 16:727–751
DOI 10.1007/s10009-013-0272-3

REGULAR PAPER

Survey on test data generation tools
An evaluation of white- and gray-box testing tools for C#, C++, Eiffel, and Java

Stefan J. Galler · Bernhard K. Aichernig

Published online: 11 April 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Automating the process of software testing is a
very popular research topic and of real interest to industry.
Test automation can take part on different levels, e.g., test
execution, test case generation, test data generation. This sur-
vey gives an overview of state-of-the art test data generation
tools, either academic or commercial. The survey focuses
on white- and gray-box techniques. The list of existing tools
was filtered with respect to their public availability, their
maturity, and activity. The remaining seven tools, i.e., Agi-
tarOne, CodePro AnalytiX, AutoTest, C++test, Jtest, RAN-
DOOP, and PEX, are briefly introduced and their evaluation
results are summarized. For the evaluation we defined 31
benchmark tests, which check the tools capabilities to gener-
ate test data that satisfies a given specification: 24 primitive
type benchmarks and 7 non-primitive type and more com-
plex with respect to the specification benchmarks. Most of
the commercial tools implement a test data strategy that uses
constant values found in the method under test or values that
are slightly modified by means of mathematical operations.
This strategy turns out to be very effective. In general, all
tools that combine multiple techniques perform very well.
For example PEX uses constraint solving techniques, but
in cases where the constraint solver reaches its limitations
it uses random based techniques to overcome those limita-
tions. Especially, the two commercial tools AgitarOne and
PEX that combine multiple approaches to test data genera-
tion are able to pass all 31 tests. This survey reflects the status
in 2011.

S. J. Galler (B) · B. K. Aichernig
Graz University of Technology, Inffeldgase 16b/II,
8010 Graz, Austria
e-mail: stefan.galler@ist.tugraz.at

B. K. Aichernig
e-mail: bernhard.aichernig@ist.tugraz.at

Keywords Test data generation · Tool evaluation · Java ·
C++ · C# · Eiffel

1 Introduction

Software is in every part of our life. It is software that wakes
us up in the morning, makes us coffee, tells us the early
morning news. It is software that drives us to our working
place, that controls the traffic lights, that moves the elevator.
It is software that flies planes and keeps nuclear reactors
under control. And these software components are getting
more and more complex, have to be maintained and updated.
Therefore, testing is crucial. In academia and industry many
people are working on new technologies that reduce both
bugs in software and costs to find them.

Automating the test process still consists of multiple
facets, ordered with respect to increasing complexity: (a) exe-
cuting tests, (b) generating empty test classes and methods,
(c) generating test cases, and (d) generating test data. Many
tools exist that automate test execution, for example the JUnit
framework. Most of the state-of-the-art integrated develop-
ment environments (IDEs), such as Microsoft Visual Studio,
and Eclipse, include tools that automatically generate empty
test classes and methods. Current research efforts focus on
automatically generating test cases and test data. The former
automates the process of finding out which method sequence
may reveal an error. The latter automates the generation of
primitive values and especially non-primitive objects that can
be used in test cases.

This survey attempts to give an overview of available
commercial and academic tools with respect to their test
data generation capabilities. Therefore, we compiled a list
of test generation tools, filtered them with respect to their
level of availability, maturity, and activity. The remaining

123



728 S. J. Galler, B. K. Aichernig

seven tools, i.e., AgitarOne, CodePro AnalytiX, AutoTest,
C++test, Jtest, RANDOOP, and PEX, are challenged with in
total 31 benchmark tests: 24 benchmark tests show the tools
capabilities to generate primitive values; 7 benchmark tests
show how well they perform on non-primitive types and com-
plex specifications. The information collected in this survey
reflects the status in 2011.

This survey continues as follows: Sect. 2 introduces the
criteria for tool selection and evaluation. Thereafter, Sect. 3
presents the result of evaluating the tools. Each tool is shortly
introduced and the evaluation result is discussed. The related
work is mentioned in Sect. 4. The survey concludes in Sect. 5.

2 Evaluation procedure

AgitarOne, CodePro AnalytiX, AutoTest, C++test, Jtest,
RANDOOP and PEX are the seven tools that satisfy all
criteria to be part of this survey. Section 2.1 (a) shows a
classification of all candidate tools, and (b) introduces the
selection criteria availability, maturity and activity. Further-
more, Sect. 2.2 (a) introduces the evaluation criteria, and (b)
describes the evaluation procedure.

2.1 Candidate tools

Figure 1 presents the map of all relevant tools on automatic
test generation. The tools are categorized with respect to two
dimensions:

1. source code required/present
2. specification usage

Fig. 1 Classification of evaluated tools

On the one hand we distinguish tools with respect to their
access to source code. On the other hand we distinguish
between tools that use no specification, use specification as
test oracle only, and tools that use specification as test oracle
as well as for steering the test input generation.

Figure 1 clusters the tools with respect to the well-known
terminology [1, p. 21] of black-box, white-box, and gray-box
testing. Black-box tests are derived from external descrip-
tion of the software, e.g., specifications. White-box tests
are derived from source code internals, e.g., branch condi-
tions. The term gray-box testing is used for test generation
approaches that use both, source code internals as well as
external descriptions of the software.

This survey focuses on state-of-the art test data generat-
ing tools. To ensure the quality of this survey we have to
further filter the candidate list. First, only white-box or gray-
box testing tools are considered for this survey. Second, the
remaining tools are rated with respect to availability, matu-
rity, and activity.

Availability Tools have to be publicly available. Either as
free download or as commercial tool.
Maturity Only tools that are already applied to industrial
size applications are considered. We therefore rate all
tools from 1 to 4:

1. commercial tool
2. applied to (at least one) industrial size case study
3. applied to (at least one) case study
4. no information about case studies available

Activity Tools have to be maintained. In other words, only
tools updated within the last 3 years (i.e., since 2009) are
considered.
Citation The amount of (scientific) publications that
include references to the tool. Figures are extracted from
Google scholar in December 2011. The delta value in
brackets shows the amount of additional citations since
October 2010.

Table 1 lists all white- and gray-box testing tools and sum-
marizes the rating with respect to the introduced classification
criteria. AgitarOne, CodePro AnalytiX, AutoTest, C++test,
Jtest, RANDOOP, and PEX satisfy the criteria and are there-
fore part of the evaluation for this survey presented in Sect. 3.
They are highlighted in the table.

2.2 Evaluation criteria

We aim for a uniform comparison and evaluation of the state-
of-the art test data generation tools. Therefore, in Sect. 3 each
tool is shortly introduced, its test data generation technique
is explained in detail, and finally the evaluation result is pre-
sented and discussed.

123



Survey on test data generation tools 729

Table 1 Candidate list

The highlighted tools are white-
or gray-box testing tools that
satisfy our criteria. These seven
tools have been evaluated
a First JPF test data generation
publication

The short introduction of the tool is summarized in a table
that includes information on input and output of the tool, sup-
ported programming and specification languages, licensing
issues and the user pace.

Additionally, we summarize in a table the particular test
data generation techniques incorporated by the tool. This
summary includes the following attributes:

Approach primitive types What approaches are used to
generate values for Boolean, byte, character and integer
types (e.g., random, constraint solver)?
Approach non-primitive types What approaches are used
to generate instances for all object types?
Specification usage In what sense does the approach use
given specification (e.g., as oracle only, to steer input data
generation)?
Specification dependencies Is the approach able to deal
with specifications where one parameter value depends
on another, e.g., param1 > param2.si ze()?
Quantifiers Can the approach deal with quantifiers in the
specification?
Object pooling Does the tool store already instantiated
objects for later reuse?
Manual objects Is it possible to add manually constructed
objects to the tool?
Special values Which hard-coded values does the tool
use (e.g., min and max value of a data type)?

The actual evaluation of the selected tools is based on
analysing automatically generated tests for the given bench-
marks. To find out the limitations of each tool we came up

with a very structured set of benchmark tests. The benchmark
tests are based on the different problem divisions [44] of the
annual SMT solver competition (SMT-COMP): (a) integer
difference logic, (b) real difference logic, (c) linear integer
arithmetic, (d) linear real arithmetic, (e) non-linear integer
arithmetic, and (f) (quantified) arrays.

In addition we added non-linear real arithmetic and simi-
lar expressions for Boolean, character and string types. Fur-
thermore, we added the following tests that explicitly test
specification dependencies with respect to parameters:

Dependencies between parameters One parameter
depends in any attribute from the value of another para-
meter.
Requested null objects Explicitly requesting a null para-
meter.
Object type parameters Explicitly requesting an object
in a given state.
Triangle example [32] The specification for a scalene
triangle.

Tables 2 and 3 show the specifications used for each of the
benchmark tests. The evaluation of the tools should find out,
which tool is able to generate data that satisfies the given
specification. Therefore, we implemented for each bench-
mark test a method that requires input values that satisfy
the corresponding specification. We stated the requirement
either as precondition or as assertion in the first line of the
benchmark method. Tools that are able to execute the return
statement of the benchmark method are able to call it with
input data that satisfies the benchmark tests specification. An

123



730 S. J. Galler, B. K. Aichernig

Table 2 Type support tests

Type Specification (arithmetic expression)

Constant Simple linear arithmetic Simple non-linear arithmetic Inequality

Boolean a = true a = b – a != f alse

Character a =′ b′ – – a >′ b′

Integer a = 3 a = 3 + 5 a = 3 ∗ 5 a > 5

Float a = 3.2 f a = 3.2 f + 5.1 f a = 3.2 f ∗ 5.1 f a > 5.1 f

Double a = 3.2d a = 3.2d + 5.1d a = 3.2d ∗ 5.1d a > 3.2d

String a = ′′abcd ′′ a != null && a.matches(′′[a − z][0 − 9]+′′) – a != null&& a != ′′′′ && a != ′′abcd ′′

Each of the given specifications is used as precondition for a method
The evaluation result tables for each approach show for what type of specification the approach was able to generate satisfying data
Table 3 Structural tests

Test Parameters Specification

Parameter dependencies a: int, b: String b != null && b.Length = a && a > 32

Null object a: Stack a = null

Object type a: Stack a != null && a.Count >= 2

Array type a: int[] a != null && a.Length > 2 && a[1] = 1

Forall quantifier a: List0 < String > a != null && a.Count = 2 && ∀s ∈ a : s =′′ abc′′

Exists quantifier a: List< String > a != null && a.Count = 2 && ∃s ∈ a : s =′′ abc′′

Scalene triangle example [32] a,b,c: double a + b > c && b + c > a && a + c > b && a != b && a != c && b != c

Each of the given specifications is used as precondition for a method
The evaluation result tables for each approach show for what type of specification the approach was able to generate satisfying data

example benchmark method implementation is presented for
each tool.

Note, throughout the paper we use logic notation for all
given specifications, i.e., the single assignment character rep-
resents equality. Furthermore, we had to require non-null
objects and non-empty string instances for object types and
string types, respectively, to avoid NullPointerAccess excep-
tions while evaluating the Design by Contract™ specification
or Java assertion statements.

3 Evaluation

AgitarOne, CodePro AnalytiX, AutoTest, C++test, Jtest,
RANDOOP and PEX meet all filter criteria and were there-
fore evaluated. The presentation order of the evaluation
results are determined by the time of publication of the orig-
inal paper or launch of the tool.

3.1 Jtest

3.1.1 General information

Jtest is a comprehensive testing product of Parasoft [38] for
Java first introduced in 1997. It supports development teams
in building new or improving quality of legacy Java applica-

tions likewise. Jtest facilitates static analysis, runtime analy-
sis, code review process automation and unit testing. Static
analysis includes coding standard checks, data flow analysis
and common well-known coding style rules. Runtime analy-
sis mainly provides different kind of coverage information,
detects race conditions and security attack vulnerabilities.
The code review process is supported through notification,
documentation and tracking functionalities. In this evalua-
tion we focus on the unit testing support of Jtest.

Jtest supports automatic generation of JUnit tests and auto-
matic generation of regression tests. It can be used with and
without Design by Contract™ specifications. In the former
case, the methods postconditions are used as oracle. Further-
more, only tests that satisfy the precondition are exported to
JUnit test files. In the latter case, Jtest uses thrown exceptions
and assertion errors as oracle. For regression tests, the ini-
tial test execution run determines the expected return values,
which are recorded and used in further execution runs. Jtest
incorporates a powerful test data generation engine, whose
features are discussed in detail in Sect. 3.1.2. Furthermore,
Jtest includes a tracing facility, which can be used to cap-
ture and replay interaction of Java applications with remote
clients and servers.

Table 4 summarizes Jtest’s general information. Jtest does
not depend on the presence of Design by Contract™ spec-
ification, but it improves test quality and reduce test effort

123



Survey on test data generation tools 731

Table 4 Jtest: general
information Institution Parasoft

Version (tool) 8.4

Source code language Java

Specification language Jcontract by Parasoft, very similar but less expressive than JML

Required input Source code

Optional input Design by Contract™ specification in Jcontract syntax

Output JUnit test classes

Introduced in 1997

Last updated in 2010

User pace Parasoft has more than 10.000 worldwide customers,
58 % of fortune 500 companies

License/price Commercial license, 14-days evaluation license

Documentation Comprehensive user manual (ca. 750 pages), well
structured with examples and step-by-step tutorials

Test classification All tests that satisfy the precondition are exported

Table 5 Jtest: test data generation details

Approach primitive Combinations of predefined values are candidates (integer: 0, −1, 1, 10, −10, ..., MAX int, MIN INT), but as can
be seen in the test results, more sophisticated technologies are present (not documented which)

Approach non-primitive Stubs are created for all external resources, such as databases, third-party libraries, file system and network I/O.
For EJBs Jtest even provides a dummy container

Approach uses specification Yes, details are not published, but manual inspection of all generated tests let us assume that there exists some
mechanism to use the specification for test data generation

Parameter dependency Yes

Object pooling Jtest integrates an object repository which is populated by Jtest itself

Manual objects Yes, the object repository may be populated with manually generated objects

Special values Jtest pre-populates the object pool with special values, such as maximum and minimum value of a data type

Quantifiers Not supported

if present. It is a commercial tool with a 14-days evaluation
license and comes with extensive documentation.

3.1.2 Data generation approach

Jtest mainly operates on an object repository. This repository
is pre-populated with test data for all primitive types: e.g.,
the minimum and maximum value, 0, −1, +1 are instances of
the value pool for the integer type. The pool can be manually
populated with values.

Jtest uses those values and tries possible combinations for
a given method under test. In addition, Jtest includes some
more sophisticated value generation strategies for primitive
as well as for non-primitive data types. It is not documented
which technologies are used for generating primitive values
that satisfy a given precondition, but our evaluation showed
that Jtest was able to generate values that were not initially
in the pool.

Furthermore, Jtest automatically generates stub objects.
A stub is an object that overrides the real objects implemen-

Fig. 2 Jtest: example evaluation criteria method. Jtest was only able
to generate valid tests after adding the f to all float constants

tation and returns only hard coded values [21]. Jtest stubs are
able to return different values each time a method is called.

In case the value combination satisfies the precondition
of the method under test, the test is executed, the result is
recorded and a JUnit test method is exported. The postcon-
dition is evaluated and violations are reported.

Table 5 summarizes Jtest’s different strategies for test data
generation.

123



732 S. J. Galler, B. K. Aichernig

3.1.3 Evaluation

Figure 2 shows an example implementation of a benchmark
method. For the evaluation we executed the Jtest command
”Generate Unit Tests” followed by ”Run Unit Tests (Report
All Severities)”. The result is a set of JUnit tests and a report
containing coverage information.

Table 6 summarizes the result of the evaluation on the set
of test data benchmark problems. Jtest managed to generate
valid input data for all benchmarks. Therefore, we conclude
that Jtest incorporates some more sophisticated technologies
than mentioned in the official documentation.

Table 7 shows the results of the structural benchmark tests.
Jtest is able to generate values even for specifications that
include variables where one variable is constrained by the
value of another variable. The approach does not work for
more complex dependencies as imposed by the scalene tri-
angle specification, or quantifiers.

3.2 C++test

3.2.1 General information

Parasoft’s C++test [37] is a commercial software quality
improvement tool for C/C++, introduced in 1999. It comes as
stand alone IDE or Eclipse plugin. C++test supports coding
standard checks, static analysis, runtime analysis, and auto-
mates code review and unit test generation. C++test incor-

Table 6 Jtest: results of data type benchmark tests

Type Constraint

Constant Linear Non-linear Inequality

Boolean � � – �
Character � – – �
Integer � � � �
Float � � � �
Double � � � �
String � � – �

Table 7 Jtest: results of structural tests

Test Result

Parameter dependencies �
Null object �
Object type �
Array type �
Forall quantifier ×
Exists quantifier ×
Scalene triangle example ×

porates best practice rules such as those proposed by Mey-
ers [30]. C++test can be seen as the little brother of Jtest. Both
have very similar feature lists, but due to advanced technolo-
gies provided by Java, e.g., Java reflection, Jtest implements
more sophisticated data generation techniques than C++test.

Table 8 summarizes general information of C++tests.
C++test does not support any kind of specification. It is best
used for generating regression tests, which detect changes in
the systems under test behavior over time.

3.2.2 Test data generation

C++test does not support any form of specification but sim-
ple assertion statements. Therefore, all generated combina-
tions of test input data are exported as unit tests. Other tools
that support Design by Contract™ specifications can already
classify tests called with values that are not supported by the
method due to the precondition specification.

Based on the evaluation we can identify two different test
data generation strategies: one for primitive and one for non-
primitive types. For primitive types C++test selects randomly
a value of

– a pre-defined pool of values, such as minimum and maxi-
mum value, −1, +1 and 0 for integer types, a string value
that has more than 256 characters,

– the path of the file containing the method under test,
– the method under tests signature,
– constant values given within the method under tests body.

A non-primitive value is always constructed by means of a
constructor call. In case a method requires multiple parame-
ters, random combinations are generated. Manual inspection
of the generated test shows that not all combinations are gen-
erated. It is not documented, which combinations are gener-
ated.

C++test does not explicitly use any form of an object
pool. But it is able to use manually written factory methods.
These methods allow to establish a repository of valid object
instances that are used in automatically generated tests. Fur-
thermore, C++test supports stubs: user-defined and automat-
ically generated stubs. It only generates stubs if no user-
defined version is available. If it is not able to generate a
complete stub definition, it will generate a template which
has to be customized manually later.

The summary of C++test data generation techniques is
given in Table 9.

3.2.3 Evaluation

Since C++test does not support any Design by Contract™
specification we implemented all benchmark problems by
means of assertion statements in the first line as can be seen

123



Survey on test data generation tools 733

Table 8 C++test: general
information Institution Parasoft

Version (tool) 7.3

Source code language C/C++

Specification language No specification

Required input Source and binary

Optional input

Output Unit tests

Year 2010

User pace Parasoft has more than 10,000 worldwide customers, 58 % of fortune
500 companies

License/price Commercial license with 14-day trial

Documentation Well documented (tutorial, user manual, step-by-step tutorial, examples)

Test classification All tests are exported

Table 9 C++test: test data generation details

Approach primitive C++test chooses a value from a pool of random values, pre-defined constants, constants extracted from source, and
other values, such as the methods signature and the source files path

Approach non-primitive A public constructor of the requested class is used for instantiation

Approach uses specification No

Parameter dependency C++test generates combinations of randomly chosen values. Not all combinations are exported

Object pooling Yes, by means of manually written factory methods

Manual objects Yes, the manually written factory methods for the pooling can instantiate any object instance

Special values Pre-defined set of values, i.e., string that contains more than 256 characters, min/max values for the given data type

Quantifiers Not applicable, since no specification is supported

in Fig. 3. Note that, we could not evaluate the string linear
benchmark test due to the missing native regular expression
support of C++.

For each of those benchmark methods we let C++test gen-
erate unit tests. Therefore, we followed Parasoft’s recom-
mendation for automatically generating and executing unit
tests [37]:

1. Generate test cases
2. Generate stubs
3. Build test executable
4. Executes test cases

C++test generated more than 200 tests. Most of them
fired the assertion statement and were therefore classified

Fig. 3 C++test: example evaluation criteria method

Table 10 C++test: results of data type benchmark tests

Type Constraint

Constant Linear Non-linear Inequality

Boolean � � – �
Character � – – �
Integer � � � �
Float � � � �
Double � � � �
String � – – �

as meaningless. But some parameter combinations success-
fully passed the assertions. Tables 10 and 11 summarize the
evaluation result.

For the character benchmark tests C++test used the integer
number of the character (i.e., the character b is represented
by the integer value 98 in the ASCII format) within the spec-
ified assertion and the off by one values (i.e., 97 and 99).
Furthermore, it created two tests that passed the maximum
and minimum character value, respectively, to the method
under test. These two simple techniques for data generation
enabled C++test to pass all character benchmarks.

123



734 S. J. Galler, B. K. Aichernig

Table 11 C++test: results of structural tests

Test Result

Parameter dependencies ×
Null object ×
Object type �
Array type ×
Forall quantifier ×
Exists quantifier ×
Scalene triangle ×

C++test generated nine tests for the integer constant
benchmark. Besides the special predefined values already
mentioned in the general description (0, −/+1, max/min
value) C++test uses the values within the assertion along with
the off by one values. Furthermore, C++test uses the result
of mathematical expressions present in the source code. For
example, C++test generated tests that pass eight (3+5 taken
from the linear integer specification) and 15 (3 ∗ 5 taken
from the non-linear integer specification) to the method under
test.

The predefined values for float and double type values
include in addition to the already mentioned values from the
integer domain, the minimum negative and positive value.
But the resulting test cases do not include any slightly modi-
fied values by means of mathematical operation, such as the
off by one values for integer and character types.

For non-primitive types C++test always chooses a con-
structor. Therefore, C++test is not able to generate test input
that is required to be NULL. Furthermore, C++test does not
try to modify the object any further, i.e., no other methods are
called after the constructor to change the object state. This
conclusion is based on our empirical evaluation of C++test.
The C++test User’s Guide [37] does not say anything about
the object creation strategy.

C++test failed also on the array and quantifier benchmark
tests. For the array it passed null, which did not satisfy the
specification. C++test has the technologies at hand to pass
the quantifier benchmark tests, but unfortunately it did not
use the required combination of parameter values.

3.3 AgitarOne

3.3.1 General information

In 2004 Agitar Technologies released AgitarOne, a commer-
cial tool based on academic research results. AgitarOne can
be used as standalone IDE, as Eclipse add-on, or from the
command-line. It includes automated JUnit test generation,
code rule enforcement technologies and a management dash-
board. Furthermore, it suggests assertions it revealed while
dynamically analyzing the software under test.

In our evaluation we focus on the automated JUnit test gen-
eration feature. Since AgitarOne does not base its analysis
on a specification language, it misses an oracle for all gener-
ated tests. Therefore, AgitarOnes is useful for automatically
generating a regression test suite that captures the current
behavior of the software under test.

During test generation AgitarOne collects observations
of the code’s behavior. Those observations are similar to
invariants detected by Daikon [17]. In fact, Daikon and Agi-
tarOne use very similar technologies, which were developed
independently at about the same time. The user can then
decide whether those observations should be promoted to
assertions. Thus, AgitarOne helps the software engineer to
write specification by means of Java assertions. Those asser-
tions are used in later iterations of the test generation process
(Table 12).

AgitarOne includes a mocking library and is able to run
automatically generated and hand-written JUnit tests side-
by-side. It is a good example of transforming academic
research into a user-friendly and scaling commercial product.

3.3.2 Data generation approach

Agitar Technologies coins the term agitation [5] for the
process of test data generation. It includes: (a) static and
dynamic analysis of the software under test, (b) automatic
input generation, (c) exercising the code based on the gen-
erated input, and (d) collecting observations by means of
mathematical relationships between variables.

Static and dynamic analysis focuses on collecting path
constraints. A constraint solving system then provides
required input data to generate tests that steer the exe-
cution along a specific path. In all those analysis steps,
AgitarOne focuses on performance and scalability. Thus,
AgitarOne prefers a fast “good guess” over a correctly cal-
culated value which requires more time. The following para-
graphs are based on ’From Daikon to Agitator’ [5] and man-
ually inspecting the generated JUnit tests for all benchmarks.

For all numerical types, i.e., integer, float, double, Agi-
tarOne uses all constants found in the source code, the nega-
tion of them and the constants +/− a delta value from the
original constant. For example, AgitarOne finds the integer
constant five in the source code, then it uses the constants
four, five and six as test input. For double values, it uses a
delta of 0.001.

AgitarOne provides a string solver that can handle con-
straints imposed by the string API. This solver enables
AgitarOne to generate string values that satisfy a regular
expression specified through the matches(...) method of the
java.lang.String class. Furthermore, AgitarOne uses NULL,
the empty string, any string constants from the source code
and random combinations of alphanumeric values (Table 13).

123



Survey on test data generation tools 735

Table 12 AgitarOne: general
information

Institution Agitar technologies

Version (tool) 5.1.0.000021

Source code language Java

Specification language None. AgitarOne can handle normal Java assertion statements, and
even suggests assertions based on dynamic source code analysis

Required input Source code

Optional input

Output A set of JUnit tests, including coverage information Furthermore,
AgitarOne provides a management dashboard to clearly structure
and summarize all related information

Introduced in 2004

Last update in 2010

User pace Hundreds of organizations worldwide, from Global 100 to Silicon
Valley startups

License/price Commercial tool with 30-day trial version

Documentation Scientific publication, installation guideline

Test classification Al tests are exported

Table 13 AgitarOne: test data generation details

Approach primitive In addition to constraint solver AgitarOne uses constants found in the source code, and values close to them by
means of mathematical addition and subtraction operations

Approach non-primitive Randomly generating objects by calling constructor and other methods of the requested type. Furthermore,
AgitarOne includes a mocking library

Approach uses specification AgitarOne has not specification language support, but is able to use Java assertions to steer the generation process

Parameter dependency Values with dependencies between each other can be generated as long as they are specified by means of Java
assertions

Object pooling Yes, AgitarOne uses factories for each type, which behave similar to object pool

Manual objects AgitarOne allows manual refinement of test input data, and provides factories for each data type, which can also
be manually adapted to return manually specified objects. Furthermore, AgitarOne provides a pattern—strategy
technology, which allows to specify which generation strategy should be used for different automatically
detected patterns in the source code

Special values AgitarOne uses pre-defined values, such as min/max value for each type

Quantifiers AgitarOne does not have a special specification language, but understands Java assertions very well, even those
in loops

Object types are generated by randomly calling a con-
structor and zero or more (state-changing) methods of the
requested type. Required arguments are generated recur-
sively. All generated objects are kept in a pool to be modified
and reused at a later stage in the test generation process.
Furthermore, AgitarOne includes a mocking library and
enhanced technologies to specify the expected behavior of
those mock objects. It records the interaction with the mock
object and generates a unit test that expects the same behav-
ior.

3.3.3 Evaluation

We implemented all benchmark tests by means of Java asser-
tions and checked if AgitarOne is able to generate tests

Fig. 4 AgitarOne: example evaluation criteria method

that cover the return statements after the assertion. If so
AgitarOne generated a value that satisfies the specification.
Figure 4 shows one of the implemented benchmark methods.

AgitarOne generated 112 JUnit tests. Tables 14 and 15
show that AgitarOne passed all benchmark tests. AgitarOnes
capability to generate tests for the forall and exists bench-
marks is very impressive. Due to the lack of a supported

123



736 S. J. Galler, B. K. Aichernig

Table 14 AgitarOne: results of data type benchmark tests

Type Constraint

Constant Linear Non-linear Inequality

Boolean � � – �
Character � – – �
Integer � � � �
Float � � � �
Double � � � �
String � � – �

Table 15 AgitarOne: results of structural tests

Test Result

Parameter dependencies �
Null object �
Object type �
Array type �
Forall quantifier �
Exists quantifier �
Scalene triangle �

specification language we had to manually write the quanti-
fiers by means of Java assertions (see Fig. 5). The automat-
ically generated JUnit test is presented in Fig. 6. AgitarOne
creates a new array and adds random values (Fig. 6, Lines 5–
6). Finally, it determines that it has to set at least one element
in the array to “abc” (Fig. 6, Line 7) to satisfy the assertion
statement in Line 10 of Fig. 5.

The forall benchmark test looks very similar to the exists
benchmark test, but it asserts in each iteration that the current
value has to be equal to “abc”. However, the generated JUnit
test features AgitarOnes Mockingbird mock library. Figure 7
shows the generated test. Wherever complex objects have to
be constructed, AgitarOne replaces the actual object with a

Fig. 5 AgitarOne: exists benchmark

Fig. 6 AgitarOne: generated test for the exists benchmark

mock object (Line 3). The Lines 5–12 define the behavior of
the mock object. For each expected method call the return
value is defined. Furthermore, the sequence of the method
calls is defined and asserted.

In this case, the ArrayList has a size of two, and will return
“abc” for both calls of get—once with argument 0, once with
argument 1. This generated test satisfies the assertion.

Note, some times AgitarOne used the mock library for
the exists test too. This let us conclude that some non-
deterministic approaches are used.

3.4 AutoTest

3.4.1 General information

AutoTest [12] started as research tool at ETH Zürich and
is by now part of the commercially available Eiffel Studio.
Eiffel Studio is the integrated development environment for
Eiffel. Eiffel is until now the only programming language
with built-in support for Design by Contract™ specifications.
AutoTest automatically generates tests for Eiffel programs.
It uses different random based approaches for generating test
input data. AutoTest exports only tests that reveal an error.
Furthermore, AutoTest implements two different minimiza-
tion algorithms to reduce the amount of exported tests.

Table 16 summarizes the general information about
AutoTest. It is limited to the Eiffel programming language

123



Survey on test data generation tools 737

Fig. 7 AgitarOne: generated test for forall benchmark

Table 16 Eiffel: general
information

The years mentioned in the table
refer to AutoTest, the test
generation tool of Eiffel Studio,
not Eiffel Studio itself

Institution ETH Zürich, Eiffel Incorporation

Version (tool) 6.6.8.3355 GPL

Source code language Eiffel

Specification language Eiffel

Required input Source code and Design by Contract™ specification. The specification
is required because AutoTest exports only tests that cause a
postcondition or invariant violation

Optional input Test generation can be customized through a configuration file

Output A set of Eiffel test classes (inheriting from EQA_TEST_SET)

Introduced in 2005

Last update in 2010

User pace Group of researcher at ETH and worldwide customers such as AXA
Rosenberg Investment Management, Boing, EMC2

License/price Both, commercial and open source license

Documentation Online documentation, scientific publications

Test classification Through the configuration file different minimization algorithms can
be activated to reduce the amount of exported tests

with its built-in support for Design by Contract™ specifi-
cations. Eiffel has very prominent clients as listed, but the
information which of those use AutoTest as well is not avail-
able.

3.4.2 Data generation approach

AutoTest implements a random based test data generation
approach. It uses the Design by Contract™ specification as
oracle only. In other words, AutoTest generates test input first
and then checks whether it satisfies the precondition of the
method under test or not.

AutoTest has two slightly different approaches for gener-
ating primitive and object type input data [29].

Primitive types For the Eiffel primitive types INTEGER,
BOOLEAN, CHARACTER, and REAL AutoTest maintains
a list of preset values for each type. Candidate values for the
INTEGER type are, e.g., minimum and maximum value as
well as 0, −1, +1, −2, +2, −10, +10. On request it randomly
chooses one of those values.
Object types AutoTest maintains a pool of already created
objects for each type. On request it randomly chooses one
of the existing object instances from the pool. A predefined
probability defines how often (in case of an empty pool
always) a new instance for the requested type is generated
and added to the pool. Furthermore, again with a preset fre-
quency AutoTest chooses randomly an instance from the pool
and calls modifier features (state changing methods) on it to
diversify the pool.

123



738 S. J. Galler, B. K. Aichernig

Table 17 AutoTest: test data
generation details Approach primitive Randomly choosing one value from a list of predefined values

Approach non-primitive Randomly generating instances through calls to the public interface of
the type (enhanced random approaches such as ARTOO are
supported as well)

Approach uses specification Specification is not used for test data generation, only as test oracle

Parameter dependency Not applicable, since specification is not used at test data generation time

Object pooling Yes, objects are stored for later reuse. Extensions exist that improve
the pool by means of remembering which precondition predicates
the object has already satisfied

Manual objects Yes, one can add manually generated values to the pool

Special values The pool is pre-filled with values, e.g., min/max value for each type

Quantifiers Eiffel does not provide quantifier keywords

Whenever a new instance has to be created AutoTest exe-
cutes the following steps (taken from [29]):

1. choose one of the creation procedures (constructors) of
the class

2. generate values for all arguments, recursively
3. call the creation procedure with those arguments

Table 17 summarizes all analyzed aspects of AutoTests
test data generation technologies.

Since there is a very close connection between Eiffel Soft-
ware Inc. and ETH Zürich, research initiatives eventually
become part of Eiffel Studio.

Two AutoTest features recently developed at ETH Zürich
are ‘Adaptive Random Testing for Object-Oriented Soft-
ware’ [13] and ‘Satisfying Test Preconditions through Guided
Object Selection’ [51].

The former enhances the random selection process of val-
ues from the pool. Instead of randomly selecting a value, it
selects the one value with the highest distance to all already
selected values in previous iterations. The distance of two
integer values is their mathematical difference. The dis-
tance function of objects takes recursively the distance of
all members and the distance in the inheritance hierarchy
into account. Details are explained by Ciupa et al. [13].

The latter enhances the object pool by replacing it with a
map from specification predicates to objects. For each object
it is recorded which predicates it satisfies. Therefore, the pool
can deliver objects that will likely satisfy the given precon-
dition in case similar preconditions are given for multiple
methods within the same system under test.

3.4.3 Evaluation

Figure 8 shows the implementation syntax of one of the
benchmark methods in Eiffel. require and ensure are the
Eiffel keywords for specifying a methods pre- and postcon-

Fig. 8 AutoTest: example evaluation criteria method

dition, respectively. Note, AutoTest only exports test cases
that violate the postcondition. Therefore, we implemented
all methods such that they cause a postcondition exception,
i.e., all methods return true and the postcondition requires
false. All test cases that satisfy the precondition will fail on
the postcondition and therefore get exported as unit tests.

AutoTest generated 117 tests. Tables 18 and 19 summarize
the results.

AutoTest was able to generate valid test input for all
inequality tests. Since each specification consists of only one
inequality expression, the likelihood to select a value differ-
ent than the one given in the specification is very high.

Furthermore, AutoTest was able to generate tests for the
constant and linear integer benchmark. In both cases it gen-
erated exactly the required value which let us assume that

Table 18 AutoTest: results of data type benchmark tests

Type Constraint

Constant Linear Non-linear Inequality

Boolean � � – �
Character × – – �
Integer � � × �
Float × × × �
Double × × × �
String × – – �

123



Survey on test data generation tools 739

Table 19 AutoTest: results of structural tests

Test Result

Parameter dependencies ×
Null object �
Object type ×
Array type ×
Forall quantifier ×
Exists quantifier ×
Scalene triangle ×

AutoTest may include some more sophisticated approaches
for integer values than random. For all other tests AutoTest
failed, which is reasonable because it is very unlikely to gen-
erate the value 16.32 randomly, which for example is required
to satisfy the non-linear float benchmark.

3.5 CodePro AnalytiX

3.5.1 General information

Google, Inc. bought CodePro AnalytiX from Instantiations,
Inc. earlier in 2010. Along with the change in ownership, the
previously commercial tool became publicly available under
Apache License 2.0.

CodePro AnalytiX is a tool that helps to improve the qual-
ity of Java programs. It seamlessly integrates into Rational
Developer, IBM WebSphere Studio or any Eclipse develop-
ment environment [25]. CodePro AnalytiX includes—as all
commercial tools—a rich set of metrics and a user-friendly
reporting of them. Furthermore, CodePro AnalytiX is able to
find similar code snippets in the system under test and can
check the source code against security and style conventions.
In the following we focus on CodePro AnalytiXs capabilities
of automated JUnit test generation.

CodePro AnalytiX provides a rich set of configuration
possibilities such as (a) which parts of the project should be
tested? (b) how many tests should be generated? (c) if tests
that cause an exception should be exported? (d) where the
generated tests should be saved? For each method under test
CodePro AnalytiX

– generates input values for all parameters,
– determines combinations,
– computes the result of executing the method under test,
– validates the result, and
– generates JUnit test files.

The process of test input data generation is described in
Sect. 3.5.2. Typically, not all combinations of generated test
input data can be tested, due to limited resources. Therefore,
CodePro AnalytiX includes some rules to reduce the amount

of combinations to a reasonable level. Afterwards, the result
of executing the method under test with the determined set
of combinations is calculated. CodePro AnalytiX records the
result value of a non-void method and all thrown exceptions
and determines how it can check these results in the JUnit
test. Finally, exporting the result to JUnit test files is straight-
forward.

CodePro AnalytiX claims to support simple Design by
Contract™ specifications for class invariants, and method
pre-/postconditions within JavaDoc comments. Unfortu-
nately, we could not see any difference in terms of gener-
ated tests when adding Design by Contract™ specification.
Manually writing a test that definitely violated the contract
of the tested did not result in any Design by Contract™ spe-
cific violation message. Thus, we conclude that Design by
Contract™ support is not working in our setting (Table 20).

3.5.2 Data generation approach

Only few details on the test data generation approach are
available. CodePro AnalytiX analyzes the method under test
to determine the usage of the parameters. Based on that analy-
sis CodePro AnalytiX tries to generate values that help to
explore the different behaviors of the method. For example,
if an integer parameter is used in a switch statement, then it
uses each of the values explicitly listed in non-empty case
labels as well as some values that are not in any of the case
labels [25].

In case CodePro AnalytiX does not find any values in
this first phase it uses pre-defined default values for all well-
known types. Well-known types are all primitive types and
non-primitive types such as java.lang.String.

For all other cases, CodePro AnalytiX searches in the
given order for zero-argument static accessor methods, con-
structors and multi-argument static accessors. It uses the
first entry found to instantiate an object of that type. Values
required as arguments are generated recursively.

CodePro AnalytiX features EasyMock [19]. EasyMock is
a well-known mock library, which provides easy instantia-
tion of mock objects and their configuration of the expected
behavior. CodePro AnalytiX can be configured to use Easy-
Mock objects for all interfaces by default. In addition, one
can manually specify which classes should be mocked as
well (Table 21).

3.5.3 Evaluation results

We started our evaluation with Design by Contract™ specifi-
cations as claimed in the documentation [25]. Unfortunately,
we did not manage to get them working. Therefore, we added
again assertion statements in the first line of each benchmark
method. Figure 9 shows the floatNonLinear benchmark test

123



740 S. J. Galler, B. K. Aichernig

Table 20 CodePro AnalytiX: general information

Institution Google Inc.

Version (tool) 7.0.0

Source code language Java

Specification language Java assertions at the beginning of a method are interpreted as precondition. Furthermore, CodePro
AnalytiX claims to support Design by Contract™ specification in Java comments with a syntax
similar to Jtest. Unfortunately, it did not work for us

Required input Source code

Optional input Java assertion statements or a tool specific Design by Contract™ specification

Output JUnit tests

Introduced in Before 2007

Last updated in 2010

User pace Unknown

License/price Apache License 2.0

Documentation It exists only a general overview in PDF and HTML format. In addition, a user forum is maintained

Test classification All tests are exported

Table 21 CodePro AnalytiX: test data generation details

Approach primitive CodePro AnalytiX analysis the usage of the parameter within the method under test and tries to
generate values accordingly. In case this approach fails, pre-defined values are used for all known
types (e.g., integer, string, ...)

Approach non-primitive For non-primitive types CodePro AnalytiX calls zero-argument static accessors, constructors and
multi-argument static accessors

Approach uses specification Design by Contract™ specification support did not work for the evaluation, but the approach
filtered values that did not satisfy Java assertions

Parameter dependency Worked. Furthermore, CodePro AnalytiX includes heuristics to prune the set of all possible
parameter value combinations

Object pooling No

Manual objects Yes, through Factories the user can provide specific instances that should be used as test input data

Special values Yes, CodePro AnalytiX uses pre-defined values

Quantifiers No specification support for those quantifiers, but they can be written as Java assertions

method, including the Design by Contract™ specification
that did not work, and the Java assertion statement in Line 7.

The generated test suite in total 78 tests was able to satisfy
most of the benchmark tests. Tables 22 and 23 summarize the
evaluation result.

CodePro AnalytiX satisfies all primitive constant, lin-
ear and non-linear benchmark tests due to the fact, that the
required input data is present as constants, or mathematical
operations on constants in the source code of the method
under test. For example, CodePro AnalytiX is able to gener-
ate the input value 16.32 for the floatNonLinear() benchmark
given in Fig. 9, since it finds the constant term 3.2 ∗ 5.1 and
the result satisfies the assertion statement.

The inequality benchmarks are not satisfied due to the
same reason. To satisfy those specifications, the result has
to be modified slightly by means of a mathematical addi-
tion operation. But CodePro AnalytiX only uses exactly the
constants present in the source.

For a similar reason CodePro AnalytiX does not perform
very well on the structural benchmarks, which mostly deal

Table 22 CodePro AnalytiX: results of data type benchmark tests

Type Constraint

Constant Linear Non-linear Inequality

Boolean � � – �
Character � – – �
Integer � � � �
Float � � � ×
Double � � � ×
String � � – ×

with object type parameters. After calling the constructor of
the object type CodePro AnalytiX does not call any further
methods on it. Therefore, it does not change the initial state
of the object, which in turn does then not satisfy the precon-
dition of the method under test. The same reason prevents
CodePro AnalytiX from generating tests for the forall and
exists benchmark.

123



Survey on test data generation tools 741

Table 23 CodePro AnalytiX: results of structural tests

Test Result

Parameter dependencies �
Null object �
Object type ×
Array type �
Forall quantifier ×
Exists quantifier ×
Scalene triangle ×

Fig. 9 CodePro AnalytiX: example evaluation criteria method

No constants are present in the scalene triangle benchmark
test. Therefore, CodePro AnalytiX uses the set of pre-defined
values only. They are not sufficient to find a combination to
pass the scalene triangle benchmark test.

3.6 RANDOOP

3.6.1 General information

Pacheco et al. introduced in 2007 RANDOOP [34,36] (cita-
tion count: 17/136). In 2008 he ported the Java version to
.NET and used it internally at Microsoft to test a very impor-
tant component of the .NET framework [35].

RANDOOP is a tool implementation of feedback-directed
random testing, which addresses random generation of unit
tests for object-oriented programs. A non-primitive type is
created by building a method sequence. Each generated
method sequence is immediately executed to ensure that only
non-redundant and legal objects are used. Two objects are
redundant if their construction sequences are equivalent. In
other words, if the generated code for two sequences mod-
ulo variable names is equal. An object is legal if it satis-
fies all contracts and filters. Contracts are methods that use
the current state of the system and return either violates or
satisfies. User can write contracts by implementing a class
that inherits from randoop.UnaryObjectChecker. In addi-
tion, RANDOOP provides a default set of contracts, such
as NullPointer occurrences and assertion violations. Further-
more, for objects RANDOOP checks if o.equals(o) holds and

methods such as equals(), hashCode(), and toString() do not
throw any exception.

3.6.2 Data generation approach

RANDOOP is a test generation tool for object-oriented pro-
grams. Therefore, it incorporates only weak data generation
techniques for primitive types.

Primitive types RANDOOP selects randomly an element
from the pool. In the implementation the pool contains a
small set of primitives:

– Boolean: true, false
– char: ‘a’, ‘4’
– byte, integer: −1, 0, 1, 3, 10, 100
– float: 0.0 f , 1.0 f , 10.0 f , 100.0 f
– double: 0.0d, 1.0d, 10.0d, 100.0d

Object types For object types RANDOOP uses either NULL,
or uses a sequence from the pool. New sequences are
generated by combining two sequences from the pool
with m calls to a randomly selected method. Candidate
methods are public methods of the corresponding class.
RANDOOP adds m calls to the existing sequence, since
especially container classes often require more than one ele-
ment in the container. Therefore, it makes sense to call for
example add(...) multiple times in a row. A newly gener-
ated sequence is executed to determine that it is not redun-
dant and constructs an object not violating any contracts
(Table 24).

3.6.3 Evaluation results

We evaluated the Eclipse plugin of RANDOOP for Java. The
.NET implementation is equivalent to the Java implementa-
tion. RANDOOP per default uses Java assertion statements
to filter sequences that generate illegal object states. There-
fore, we implemented our benchmark methods by means of
Java assertions, as can be seen in Fig. 10.

In addition to the class containing the benchmark meth-
ods, we told RANDOOP to use java.util.ArrayList,
java.util.LinkedList and java.util.Stack and set the null object
generation probability to 0.3. Otherwise, RANDOOP does
not know them but they are required by some of the bench-
mark tests. The results did not improve when we increased
the default timeout from 100 to 300 s, or even 1,000 s
(Table 25).

RANDOOP targets mainly the challenge of testing object-
oriented programs. It is therefore obvious that it does not very
well perform on any primitive type benchmarks. Table 26
summarizes the expected weak performance of RANDOOP
on the primitive benchmark tests. Comparing the inequal-
ity benchmark specifications with the primitive values in the

123



742 S. J. Galler, B. K. Aichernig

Table 24 RANDOOP: general
information

Institution MIT CSAIL

Version (tool)

Source code language Java, .NET

Specification language Contracts and filters

Required input Assembly

Optional input List of user-defined contracts and filters, and a configuration file that
specifies limits with respect to time, amount of tests generated, and
length of tests generated

Output Unit test suite of all passing and/or failing test cases

Introduced in 2007

Last updated in 2010

Number of researcher

User pace

License/price MIT license

Clients Microsoft

Documentation Scientific publications of the technique (i.e., feedback-directed random
testing), the Java and .NET tools including case study reports

Test classification Each test case is executed and is classified as error-revealing, passing
or illegal. Only error-revealing and passing tests can be exported
(user defines, which of them should). Furthermore, equivalent test
input data, with respect to the objects equals(...) method, is skipped

Fig. 10 Example evaluation criteria method

pool (see Sect. 3.6.2) shows that the pool contains at least
one element for each type that satisfies the specification, but
for the character type. For the character type the pool con-
tains only an ‘a’, and the benchmark expression requires a
character greater than ‘b’.

More interesting are the structural benchmark tests that
include more object types. Table 27 summarizes RAN-
DOOPs performance on this set of benchmark tests. Unfor-
tunately, RANDOOP did not perform that well either. We
expected that RANDOOP cannot satisfy the specifications
for the parameter dependencies and the scalene triangle
benchmarks. Those two tests require sophisticated primitive
value generation capabilities.

Manually inspecting why RANDOOP did not pass the two
quantifier benchmarks revealed that it was able to generate
java.util.List objects with enough elements, but never with
the expected values. This can be reduced to RANDOOPs
weak primitive value generation capabilities.

3.7 PEX

3.7.1 General information

Microsoft Research started a few years before the develop-
ment of PEX [45], a white-box test generation tool for .NET.
Meanwhile it is not only a research tool but part of the Visual
Studio 2010 Power Tools that help unit testing .NET appli-
cations. PEX started as a tool that creates a test suite, which
achieves high branch coverage based on dynamic symbolic
execution. Today, it perfectly incorporates other tools and
research results. PEX uses the Z3 [31] SMT solver for solv-
ing the path constraints collected during dynamic symbolic
execution. It uses REX [47] for generating string values spec-
ified by means of regular expressions; PEX supports Code
Contracts [3], which is a Design by Contract™ specifica-
tion language for .NET; and features Moles [16], which is a
light-weight mocking library from Microsoft Research. Fur-
thermore, PEX fully integrates with Microsoft Visual Studio.

Table 28 summarizes the general information about PEX.
It works on the intermediate language of .NET so it can be
used for testing programs in any .NET language. Note, cur-
rently only unit tests for C# can be exported.

The core of PEX is a test data generator. It supports not
only test data generation for Design by Contract™ spec-
ification but features specifications as parameterized unit
tests [46] as well. Parameterized unit tests are unit test meth-
ods that have parameters. In other words, a parameterized

123



Survey on test data generation tools 743

Table 25 RANDOOP: test data generation details

Approach primitive Selects a value from a fixed pool of values

Approach non-primitive Either use null, or an existing sequence from the pool

Approach uses specification It uses contracts and filters to check the constructed sequence before it gets executed on the
method under test or exported to a unit test

Parameter dependency Not applicable, since specification is given in terms of contracts. And RANDOOPs contracts are
methods, that take the current state of the system and return satisfied or violated

Object pooling Yes

Manual objects Yes

Special values Yes, the pool of primitive values is, e.g., populated with −1, 0, 1, ‘a’, true, and others

Quantifiers Not applicable, since no formal specification used (see parameter dependency)

Table 26 RANDOOP: results of data type benchmark tests

Type Constraint

Constant Linear Non-linear Inequality

Boolean � � – �
Character × – – ×
Integer � × × �
Float × × × �
Double × × × �
String × × – �

Table 27 RANDOOP: results of structural tests

Test Result

Parameter dependencies ×
Null object �
Object type �
Array type �
Forall quantifier ×
Exists quantifier ×
Scalene triangle ×

unit test specifies the behavior of the method under test for
all possible input values. One specific parameter combination
is equivalent to a traditional unit test.

3.7.2 Data generation approach

PEX starts with simple random input for a given method
under test. While executing the method PEX collects run-
time information, e.g., symbolic values for all variables and
path constraints. At each condition statement PEX collects
information about the branching criteria. PEX re-executes
the method with input values that satisfy all path conditions.
This process is called dynamic symbolic execution [9,20]. It
is also known as concrete symbolic (concolic) execution [43].

Therefore, it is able to explore all feasible paths of the
method under test. The values are calculated by passing the
path constraint to the Z3 SMT solver. Z3 is able to solve con-
straints on propositional logic, fixed-sized bit-vectors, tuples,
arrays and quantifiers. Arithmetic constraints over floating
point numbers are approximated by a translation to ratio-
nal numbers. Heuristic search techniques are used outside
of Z3 to find approximated solutions for floating point con-

Table 28 PEX: general information

Institution Microsoft research

Version (tool) 0.91 on Visual Studio 2010 Ultimate

Source code language Theoretically any .NET language, but test export is currently only available for C#

Specification language PEX supports specification in terms of parameterized unit tests or Code Contracts.

Required input Source code

Optional input A specification

Output Unit tests/parameterized unit tests in one of the supported unit test frame-
work formats (Visual Studio Unit Test, NUnit, Mb Unit, xUnit.net)

Introduced in 2008

Last updated in 2010

User pace At least 10 research cooperations with world-wide research institutions, open source community

License/price Academic and commercial license (Microsoft Visual Studio 2010 Power Tools Software Terms)

Documentation Well documented at different technical levels including step-by-step tutorials and scientific publications

Test classification Configurable what tests should be exported

123



744 S. J. Galler, B. K. Aichernig

Table 29 PEX: test data
generation details Approach primitive Z3 SMT solver [31] and REX [47] for string values

Approach non-primitive Z3 and REX: objects are encoded as maps of their members as in ESC/Java [18]

Approach uses
specification

PEX does not only use Code Contracts specification but also collects
all path constraints so that it is able to generate a test input data set
that achieves high branch coverage

Parameter dependency Yes, encoded in SMT constraint

Object pooling No

Manual objects No

Special values No

Quantifiers Support of forall and exists

straints [41]. Recently, PEX integrated REX, a technology
for generating string values that are formalized by means of
regular expressions [47].

Implementation details regarding the instrumentation
process for symbolic execution, and the symbolic repre-
sentation of values, pointers and objects can be found in
a lot of technical reports and publications of Microsoft
Research [41,45] (Table 29).

3.7.3 Evaluation results

To evaluate PEX we implemented one method for each eval-
uation criterion. Its method body consists of a single return
true statement. Figure 11 shows an example implementation.

We evaluated the data generation facility of PEX by let-
ting it explore all paths. The result is a set of test data com-
binations such that all feasible paths are executed. The Code
Contracts preconditions are recognized and PEX interprets
them as different branching statement. In other words, it tries
to generate test data such that each clause of the specification
is once fulfilled and once not. The result is a set of test input
data. Tests not satisfying the precondition are marked mean-
ingless. Tables 30 and 31 show that PEX is able to pass all
benchmark tests. This does not necessarily mean that PEX
is able to test everything on the spot, but it is definitely the
most advanced tool at the moment.

For all tests that included parameters of type float or dou-
ble PEX issues a ’testability issue in floating point equality’
warning. This warning tells the user that for floating point
operations PEX only uses heuristics. Still PEX was able to
generate correct input data for all those benchmarks.

Fig. 11 Example evaluation criteria method

Table 30 PEX: results of data type benchmark tests

Type Constraint

Constant Linear Non-linear Inequality

Boolean � � – �
Character � – – �
Integer � � � �
Float � � � �
Double � � � �
String � � – �

Table 31 PEX: results of structural tests

Test Result

Parameter dependencies �
Null object �
Object type �
Array type �
Forall quantifier �
Exists quantifier �
Scalene triangle �

4 Related work

Throughout the paper we focused on tools for object-oriented
languages. This holds for the related work as well. Further-
more, we do not include any UML-based tools. Therefore, we
do not consider tools such as QuviQ testing tools [2], CON-
FORMIQ [24], LEIRIOS [26], and the BZ testing tool [28].

This section is categorized in two parts:

– test data generation tools that were not considered to be
part of the evaluation for this survey due to not fulfilling
the required criteria listed in Sect. 2.1, and

– Black-Box testing tools.

123



Survey on test data generation tools 745

The tools mentioned in the upcoming sections are ordered
chronologically. We use the citation count to decide which
tools are mentioned and which not. Section 4.1 includes
only those tools that are cited at least 150 times. Section 4.2
requires at least 30 citations. The citation count was deter-
mined through Google Scholar on October 8th 2010.

4.1 Test data generation tools

Korat [7] (citation count: 384) is a test case generation tool
based on Design by Contract™ specification. It uses a meth-
ods postcondition as oracle, and uses the precondition to
generate complex test input data. Korat uses a repOK() and
a finatization() method for constructing all non-isomorphic
test input data up to a given bound. The finatization method
implements the search for new input. Korat observes access
to precondition predicates and class fields to prune the search
space. Furthermore, the bound is specified in the finatization
method. Korat provides a preliminary implementation and
the user is able to enhance it if necessary. The repOK method
implements the precondition check. It returns true if the gen-
erated input satisfies the specification, and false otherwise.

Visser et al. [49] introduced JPF in 2003 as a tool for
model checking Java programs. It is a very mature tool, which
was already applied to real world case studies. Among them
the real-time operating system DEOS from Honeywell [40]
and prototype Mars Rover [8]. Based on the JPF framework
Visser et al. introduced a test input data generation exten-
sion [50] (citation count: 198) years later. Similar to PEX,
the test input data generation extension of JPF uses symbolic
execution of a repOK method, the methods precondition, to
generate all (non-isomorphic) input data. A manual bound
for the input data size is given. Multiple extensions to JPF
exist that even add Design by Contract™ support, but unfor-
tunately most of them are research prototypes or even not
more than research ideas. JPFs test data generation capabil-
ity is not included in this survey due to missing industrial
size case studies.

In 2005 Sen was co-author of two very successful tools
with respect to their publication count: DART and Cute.
DART [20] (citation count: 569) is a test data generation tool
that tries to cover all paths within the system under test, by
combining concrete and symbolic execution. Cute [43] (cita-
tion count: 395) combines concrete and symbolic (concolic)
execution, as well, but extends it to pointer structures. Note,
concolic execution is equivalent to dynamic symbolic exe-
cution of PEX. DART combines three main techniques: (a)
automated interface extraction, (b) automatic generation of
test driver, and (c) automatic generation of new test input
data based on dynamic analysis of program behavior with
respect to its input data. Program crashes or assertion vio-
lations build the test oracle. DART gathers path constraints
while executing the program under test with initially random

input values. New input values for the same test force the
execution to take a new path (for all reachable paths). Due
to concolic execution DART can replace a path constraint,
which the corresponding constraint/SAT solver cannot solve,
with a concrete value, e.g., true or false. This allows DART to
be used for more complex case studies. Cute is a close work
to DART, but improves some steps in the process of test data
generation. Sen points out in the related work section [43, p.
271] that unlike DART, Cute can handle pointers and data
structures as input parameters and it implements a new con-
straint solver that significantly speeds up the analysis.

EXE [10] (citation count: 258) is the “youngest” test data
generation tool that already achieved enough citations to be
mentioned in this survey. EXE uses symbolic execution to
generate input data that forces the program under test to crash.
The programmer can mark variables, i.e., memory locations,
to be traced symbolically. The program is then instrumented
to execute all feasible paths. In case a path terminates, e.g.,
program crashes, a call to exit(), or an assertion fails, a con-
crete value is generated which can reproduce the error/crash
when executing the original program without instrumenta-
tion. EXE performed well on the BSD and Linux packet fil-
ter implementations, udhcpd DHCP server, the pcre regular
expression library, and three Linux file systems [10].

4.2 Black-Box testing tools

SpecExplorer [11] (citation count: 71) [48] (citation count:
69) is a model-based testing tool from Microsoft for .NET
programs. Initially, models had to be written in Abstract State
Machine Language (AsmL) format. Later, the Spec# [4] lan-
guage was developed to get the syntax of the specification
language closer to the syntax of the programming language
used for the implementation [22]. Spec# is a superset of
the prominent C# programming language and basically adds
Design by Contract™ keywords to it. Programs written in
Spec# are thus model programs, that include a formal spec-
ification and can be executed. The latest release of SpecEx-
plorer further reduces the gap, and the model can be written
in C# syntax and fully integrates into the Visual Studio 2010
integrated development environment for .NET. Therefore, a
SpecExplorer solution in Visual Studio 2010 consists of three
projects: (1) the model in C#, (2) the implementation in any
.NET language, e.g., C#, and (3) the test suite, in the Visual
Studio Unit Test format. Being able to write the model in the
same language as the implementation improves applicabil-
ity of the approach and tool since developer can reuse their
knowledge about the programming language. They can focus
on what is the best model abstraction of the implementation,
and not on how to write it [22]. The SpecExplorer Visual
Studio tool is very mature and able to automatically generate
test input data for complex models by means of a combi-
nation of generation techniques. For example it integrates

123



746 S. J. Galler, B. K. Aichernig

combinatorial testing techniques, and SMT constraint solv-
ing [23]. Still the SpecExplorer approach is to separate the
model from the implementation. SpecExplorer is designed
to handle non-deterministic and multi-threaded software.

Furthermore, SpecExplorer provides a facility to spec-
ify accepting states through a condition. This is important
since multi-threaded and non-deterministic programs do not
always terminate. A model program may correspond to an
infinite large automaton. A test purpose can be used to slice
a model to the parts a test is interested in. SpecExplorer sup-
ports both offline and online testing. Offline tests are gener-
ated from that model either to provide some kind of coverage
or based on a random walk in the state space. Online tests
are created on the fly as testing proceeds [48]. At each step
one controllable action is selected, based on predefined or
dynamically updated weights, to be executed.

UniTesK [6] (citation count: 40) is a general architecture
for test generation with two specialized versions: JavaTesK
for Java and CTesK for C and C++ programs. UniTesK test
sequence generation tool family works on the specification
only. It requires Mediator instances to link the specification
with a given implementation and keep those two indepen-
dent systems synchronized during test execution. UniTesK
traverses all states of the specification which are limited by an
arbitrary coverage criterion. This coverage criterion can be
described by a set of predicates, whose values are calculated
based on the system’s state, the current operation and all its
parameters. As with all other approaches and tools UniTesK
uses the given specification as test oracle. UniTesK and its
related tools for Java and C are developed to be used in testing
industrial software.

5 Conclusion

For this survey we evaluated only tools that are able to auto-
matically generate tests including test input for a white- and
gray-box scenario. Only tools that (a) are publicly available,
(b) have already been applied on industrial size case studies,
(c) and received an update within the last 2 calendar years,
are considered.

Table 32 summarizes the necessary input to the tool and the
provided output. Most of the tools work on the actual source
code, only C++test and RANDOOP require the compiled
executable, either in addition or instead of the source code.
All tools produce unit tests in the format that is most com-
mon for the corresponding programming language. In other
words, JUnit tests for Java, Eiffel tests for Eiffel, CppTest for
C++. Only PEX, which is the most advanced tool of all since
it is not only a research tool but also part of the Visual studio
distribution, interfaces to multiple unit test frameworks that
are available for .NET applications.

In addition to the source code, some tools are able to
understand contracts. Depending on the tool these contracts
can be either assertions, as provided by the standard lan-
guage definition of the corresponding programming lan-
guage, or Design by Contract™ specifications integrated
into or supported through add-ons to the programming lan-
guage.

Eiffel is the leading programming language with respect to
integration of Design by Contract™ specifications. From the
very beginning of the language definition, Bertrand Mayer
focused on creating a programming language that fully inte-
grates mathematical correctness techniques and tools into
the language. Based on the success of Eiffel, research groups
began to develop Design by Contract™ add-ons for other lan-
guages as well. The JMLSpec initiative became the more or
less standard for Java applications. Unfortunately, Jtest took
another approach and developed their own set of Design by
Contract™ specifications. The syntax is very similar to JML-
Spec but unfortunately not equal. It is again PEX, that pro-
vides the most flexible and advanced support for additional
specifications. It understands assertions and seamlessly inte-
grates with the Code Contracts (Microsoft) project. In addi-
tion, PEX is the only tool in that evaluation that collects path
constraints based on standard programming language fea-
tures, such as if-statements, for- or while-loops, and method
calls. Therefore, PEX is able to produce not only one single
input that satisfies a given specification as evaluated in this
survey, but a set of input values that tries to achieve path
coverage for the provided software.

Each of the tools were evaluated on a standard set of bench-
marks that are presented in Sect. 2.2. This set of benchmarks
was designed to find out the capability borders of each tool.
The evaluation results are summarized and discussed in detail
in each tool section. Furthermore, Tables 33 and 34 provide
an overview over all tools, such that a tool comparison is
achievable.

Jtest is a very mature tool that can deal with Java programs
with and without Design by Contract™ specifications. The
supported Design by Contract™ syntax is simple but misses
important specification features, such as quantifiers. It satis-
fied most of the benchmark tests due to very useful practical
technique: Jtest uses constants present in the method under
test, and slightly modified values of those constants as test
input. For example, Jtest adds and subtracts one from each
integer value found. Such manipulation rules are available
for all primitive data types.

C++test is the small brother of Jtest. It is Parasoft’s test
generation tool for C/C++ programs. C++test includes most
of Jtest’s features, but due to C/C++ limitations with respect
to Java (e.g., Java reflection), it performs not as well as Jtest
for object types. For primitive types it uses—similar to Jtest,
CodePro AnalytiX, and AgitarOne—constants found in the
source code and manipulates them. Therefore, the four men-

123



Survey on test data generation tools 747

Table 32 Tool input and output

Required input Optional input Output Section

AgitarOne Source JUnit tests 3.3

AnalytiX Source Assertions JUnit tests 3.5

AutoTest Source Eiffel specifications Eiffel tests 3.4

C++test Source + binary Unit tests 3.2

Jtest Source Jcontract specification JUnit tests 3.1

RANDOOP Assembly RANDOOP contracts/filters JUnit tests 3.6

PEX Source Assertions, code contracts Visual studio unit tests, NUnit tests, Mb unit tests, XUnit.net tests 3.7

Summary of required and optional input as well as the output of each evaluated tool

Table 33 Primitive data type benchmark results overview

AgitarOne AnalytiX AutoTest C++test Jtest RANDOOP PEX
Sect. 3.3 Sect. 3.5 Sect. 3.4 Sect. 3.2 Sect. 3.1 Sect. 3.6 Sect. 3.7

Boolean

Constant � � � � � � �
Linear � � � � � � �
Non-linear – – – – – – –

Inequality � � � � � � �
Character

Constant � � × � � × �
Linear – – – – – – –

Non-linear – – – – – – –

Inequality � � � � � × �
Integer

Constant � � � � � � �
Linear � � � � � × �
Non-linear � � × � � × �
Inequality � � � � � � �

Float

Constant � � × � � × �
Linear � � × � � × �
Non-linear � � × � � × �
Inequality � � � � � � �

Double

Constant � � × � � × �
Linear � � × � � × �
Non-linear � � × � � × �
Inequality � � � � � � �

String

Constant � � × � � × �
Linear � � – – � × �
Non-linear – – – – – – –

Inequality � � � � � � �

tioned tools together with PEX (that uses a completely differ-
ent approach) are able to generate tests for all evaluated prim-
itive data type benchmarks. For object type tests C++test uses

public constructors of the requested type. Therefore, C++test
was able to generate the “trivial” test that checked if the tool
is able to generate an object in general. But it failed on all

123



748 S. J. Galler, B. K. Aichernig

Table 34 Object type benchmark generation results overview

AgitarOne AnalytiX AutoTest C++test Jtest RANDOOP PEX
Sect. 3.3 Sect. 3.5 Sect. 3.4 Sect. 3.2 Sect. 3.1 Sect. 3.6 Sect. 3.7

Parameter dependencies � � × × � × �
Null object � � � × � � �
Object type � × × � � � �
Array type � � × × � � �
Forall quantifier � × × × × × �
Exists quantifier � × × × × × �
Scalene triangle example � × × × × × �

other tests that required some form of advanced generation
technique.

AgitarOne is very similar to Jtest. It successfully made
the transformation from a research project to a commercial
application. It is one of two tools (the other is PEX) that
passed all benchmark tests. Again, the key to success is the
strategy to use slightly modified values found in the method
under test by means of mathematical operations. In addi-
tion, AgitarOne generates mock object stubs for all object
types that can be used to manually add objects of interest.
It is the only tool that provides that kind of mechanism. Of
course, others such as PEX use mock objects as well but they
are able to fully generate them automatically. AgitarOne dif-
ferentiates itself from Jtest for primitive data generation by
incorporating constraint solving techniques.

AutoTest and RANDOOP are the only two pure random
tools that qualified to be part of this survey. AutoTest per-
formed a little bit better on the primitive type benchmark
tests than RANDOOP. This can be explained by the focus
of the tools. AutoTest randomly chooses values for primitive
types, whereas RANDOOP selects a value from a prede-
fined pool. On the structural benchmark tests RANDOOP
performed better. Since both tools work on different pro-
gramming languages they do not compete against each other.
Therefore, Eiffel is still the only programming language that
fully incorporates Design by Contract™ specifications and
has a precise mathematical semantics. RANDOOP on the
other hand competes with Jtest, CodePro AnalytiX, and Agi-
tarOne for Java programs, and with PEX for .NET programs.
In both categories it is outperformed by all other mentioned
and evaluated tools.

CodePro AnalytiX is another commercial tool for test-
ing Java applications. It incorporates similar technologies
as Jtest, but misses the functionality of modifying constants
found in the method under test. Furthermore, it does not
include any constraint solving techniques. These are the rea-
sons why CodePro AnalytiX do not pass that much primi-
tive type benchmark tests as Jtest does. CodePro AnalytiX
claims to support Design by Contract™ specification, which
we could not relate to. It looks like Design by Contract™

support is planned for the future but not part of the current
release that was given to us for evaluation purposes.

PEX features the most sophisticated and recent data gener-
ation techniques. Research on string generation, mock object
instantiation, parameterized unit tests, and constraint solving
are perfectly incorporated in PEX. This allowed PEX to pass
all benchmark tests. One has to note that PEX is the only eval-
uated tool that does not only try to generate unit tests, but a
set of unit tests that achieves code coverage. It therefore col-
lects path constraints with each generated test and tries to
generate values that take another path in the next generation
iteration.

Nevertheless, Tillmann et al. [45] list limitations of PEX
that are mentioned here to point out common limitations to
other tools as well:

Concurrency PEX works for single threaded programs
only.
Native code Native code cannot be instrumented and
therefore PEX cannot collect constraints on it. Neverthe-
less, PEX will try to generate input even without exact
knowledge about the native code.
Nondeterminism PEX assumes that the program under
test is deterministic. In case PEX determines non-
deterministic behavior through comparing actual with
expected behavior (from previous runs) the search space
is pruned and a warning is issued.
Symbolic reasoning PEX uses Z3 for instantiating con-
crete values from (path) constraints, but SMT solvers do
have limitations which therefore apply to PEX as well.

The first two issues hold for all tools. The third for all
tools that try to achieve coverage in a systematic way. The
remaining issues only for tools that use constraint solving.

The impressive evaluation results shown by AgitarOne
and PEX are due to progress in solving technologies in recent
years. Random testing did not perform very well in this eval-
uation. We therefore conclude that it does not perfectly fit for
testing with respect to coverage. Nevertheless, random test-

123



Survey on test data generation tools 749

Table 35 Tool generation techniques overview

AgitarOne AnalytiX AutoTest C++test Jtest RANDOOP PEX
Sect. 3.3 Sect. 3.5 Sect. 3.4 Sect. 3.2 Sect. 3.1 Sect. 3.6 Sect. 3.7

Primitive types

Manual � � � �
Pre-defined values � � � � �
Random � �
Constants extraction � � � �
Constants extraction + manip. �
Combinatorial testing � � �
Constraint logic � �

Object types

Null objects � � � � � �
Manual objects � � �
Pre-defined objects

Random constructor � � � � � �
Random constructor + manip. � � �
Mock/stub generation � � �
Constraint logic �

This table lists all incorporated generation techniques of the evaluated tools with respect to primitive and object data types

ing should be intensively used for robustness testing, which
means testing for unexpected input values.

We do not want to classify the tools according to their
generation technique, since the evaluation showed that those
tools that incorporate different techniques work best. Instead
Table 35 gives an overview what different techniques each
of the evaluated tools incorporates, according to their pub-
lications and the manual inspection of the generated tests.
The following paragraphs shortly explain the authors under-
standing of the row captions.

Manual The tool provides a mechanism to add manual
values or objects that are used in generated tests. Typ-
ically, tools allow to write some lines of code that add
manual values or manually constructed objects to a pool
of values/objects.
Pre-defined values The tool randomly selects one value
from a set of hard-coded values for each data type. For
example, AutoTest fills its INTEGER pool from which
it randomly selects one value with, minimum/maximum
value, 0 +1, −1, +2, −2, +10, and −10.
Random The tool randomly generates a value on the fly.
Constants extraction The tool extracts constants from the
source file, or uses other constant values such as the name
of the method, class, or path of the source file.
Constants extraction + manipulation Those tools manip-
ulate the extracted constants by a pre-defined set of rules.
For example, AgitarOne generates integer type input val-
ues that differ by one from those extracted in the source
(extracted value: 6; tested values: 5,6,7).

Combinatorial testing In case more than one input value
has to be generated, tools try to generate (a subset of) all
possible combinations of values they have stored in their
pool. This row is very unspecific, since all tools generate
more than one test, and no tool generates all combina-
tions. Therefore, all tools do some form of combinatorial
testing but none of them incorporates the strict definition.
Constraint logic Those tools build up a constraint sys-
tem that models the testing problem and uses tools such
as constraint solvers, or SMT solvers to generate input
values that satisfy the constraint system. Typically, those
tools incorporate tricks and tweaks to improve generation
results that are not well documented or easy to analyze.
Therefore, we do not distinguish between different con-
straint logic approaches.
Null objects Those tools use the null object as test input.
Random constructor Those tools construct objects by
randomly choosing one of the public constructors and
executing it with random parameters.
Random constructor + manipulation Those tools further
manipulate the object state by calling randomly any other
methods on the object after construction.
Mock/stub generation Those tools generate stub or mock
objects. A stub object is only a class or method definition
without implementation. A human being has to look at
all the generated stubs and write code that returns mean-
ingful values/objects (similar to factory methods). Mock
objects include already an implementation describing an
object sequence that is for example extracted from a test
execution.

123



750 S. J. Galler, B. K. Aichernig

The evaluation summarizes the capabilities of the tools
to generate input values that satisfies either a given pre-
condition or an assertion (in case the tool does not support
Design by Contract™ specifications). In our point of view it
is valid to use this evaluation mechanism since the asserted
expressions are not specific to Design by Contract™ but can
occur through out the source code as (branching-)conditions
as well. The used expressions are synthetic, i.e., look very
constructed. This is due to the fact that we wanted to clearly
find the boundaries of a tool with respect to value generation
capabilities. All used expressions are trivial and focus on one
feature at a time. In real applications assertion statements
or branching conditions are a combination of those simple
evaluation expressions. We argue that if a tool is not able
to solve the trivial evaluation expression it will not be able
to generate data that satisfies combinations of those expres-
sions. Therefore, we conclude that the presented evaluation
result is a good starting point to find out the boundaries of
state-of-the art test data generation tools and techniques for
object-oriented languages.

Acknowledgments The authors wish to thank the anonymous ref-
erees for their detailed and constructive feedback in order to improve
the paper. The research herein is partially conducted within the com-
petence network Softnet Austria (http://www.soft-net.at) and funded
by the Austrian Federal Ministry of Economics (bm:wa), the province
of Styria, the Steirische Wirtschaftsförderungsgesellschaft mbH (SFG),
and the city of Vienna in terms of the center for innovation and tech-
nology (ZIT).

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing. Cam-
bridge University Press, Cambridge (2008)

2. Thomas A., John, H., Joakim, J., Ulf, W.: Testing Telecoms Soft-
ware With Quviq QuickCheck. In: 2006 ACM SIGPLAN workshop
on Erlang, Portland, Oregon, USA, 2006. ACM, New York

3. Barnett, M., Fähndrich, M., de Halleux, J., Logozzo, F., Tillmann,
N.: Exploiting the synergy between automated-test-generation and
programming-by-contract. In: Proceedings of the 31st International
Conference on Software Engineering (ICSE’2009). IEEE (2009)

4. Mike, B., Leino, K.R.M., Wolfram, Schulte.: The Spec# program-
ming system: an overview. In: Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices (CASSIS 2004), vol. 3362
of Lecture Notes in Computer Science, pp. 49–69. Springer, Berlin
(2005)

5. Boshernitsan, M., Doong, R., Savoia, A.: From Daikon to agitator:
lessons and challenges in building a commercial tool for developer
testing. In: 2006 International Symposium on Software Testing and
Analysis, pp. 169–180. ACM Press, New York (2006)

6. Bourdonov, I.B., Kossatchev, A., Kuliamin, V.V., Petrenko, A.:
UniTesK test suite architecture. In: FME 2002: Formal Methods
Getting IT Right, vol. 2391 of Lecture Notes in Computer Science,
pp. 121–152. Springer (2002)

7. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing
based on Java predicates. In: International Symposium on Software
Testing and Analysis, pp. 123–133. ACM Press, New York (2002)

8. Brat, G., Drusinsky, D., Giannakopoulou, D., Goldberg, A.,
Havelund, K., Lowry, M., Pasareanu, C., Venet, A., Visser, W.,
Washington, R.: Experimental evaluation of verification and val-
idation tools on Martian Rover software. Formal Methods Syst.
Design 25(2/3), 167–198 (2004)

9. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs.
In: USENIX Symposium on Operating Systems Design and Imple-
mentation, pp. 209–224. USENIX (2008)

10. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.:
EXE: automatically generating inputs of death. ACM Trans. Inf.
Syst. Secur. 12(2), 322–335 (2008)

11. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Till-
mann, N., Veanes, M.: Model-based testing of object-oriented
reactive systems with Spec explorer. Technical report, Microsoft
Research, Redmond (2005)

12. Ciupa, I., Leitner, A.: Automatic testing based on design by con-
tract. In: Proceedings of Net. ObjectDays 2005, pp. 545–557 (2005)

13. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: ARTOO: adaptive
random testing for object-oriented software. In: 30th International
Conference on Software Engineering, pp. 71–80. ACM, New York
(2008)

14. Csallner, C., Smaragdakis, Y.: JCrasher: an automatic Robustness
tester for Java. Softw.: Pract. Exp. 34(11), 1025–1050 (2004)

15. Csallner, C., Smaragdakis, Y.: Check ’n’ crash: combining static
checking and testing. In: 27th ACM/IEEE International Conference
on Software Engineering, pp. 422–431. ACM, New York (2005)

16. de Halleux, J., Tillmann, N.: Moles: tool-assisted environment iso-
lation with closures. Vol. 6141 of Lecture Notes in Computer Sci-
ence, pp. 253–270. Springer, Berlin/Heidelberg (2010)

17. Ernst, M.D., CockrelI, J., Griswold, W.G., Notkin, D.: Dynamically
discovering likely program invariants to support program evolu-
tion. In: 21st International Conference on Software Engineering,
pp. 213–222, Los Alamitos, CA, USA, 1999. IEEE (1999)

18. Cormac, F., Rustan, K., Leino, M., Lillibridge, M., Nelson, G.,
Saxe, J.B., Stata, R.: Extended static checking for Java. ACM SIG-
PLAN Not. Confer. Program. Lang. Design Implement. 37(5), 234–
245 (2002)

19. Freese, T.: EasyMock: dynamic mock objects for JUnit. In: 3nd
International Conference on Extreme Programming and Flexible
Processes in Software Engineering (XP 2002), pp. 2–5 (2002)

20. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated
random testing. ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 213–223 (2005)

21. Google Inc. ToT: Friends you can depend on. http://googletesting.
blogspot.com/2008/06/tott-friends-you-can-depend-on.html
(2008)

22. Grieskamp, W.: Multi-paradigmatic model-based testing. In: For-
mal Approaches to Software Testing and Runtime Verification, vol.
4262 of Lecture Notes in Computer Science, pp. 1–19. Springer,
Berlin (2006)

23. Grieskamp, W., Qu, X., Wei, X., Kicillof, N., Cohen, M.: Interac-
tion coverage meets path coverage by SMT constraint solving. In:
Testing of Software and Communication Systems, vol. 58262 of
Lecture Notes in Computer Science, pp. 97–112. Springer, Berlin
(2009)

24. Huima, A.: Implementing conformiq Qtronic. In: Testing of Soft-
ware and Communicating Systems, vol. 4581 of Lecture Notes in
Computer Science, pp. 1–12. Springer, Berlin/Heidelberg (2007)

25. Google Inc. Codepro analytix user guide. http://developers.google.
com/java-dev-tools/codepro/doc/. Accessed Nov 2011

26. Jaffuel, E., Legeard, B.: LEIRIOS test generator: automated test
generation from B models. In: B 2007: Formal Specification and
Development in B, vol. 4355 of Lecture Notes in Computer Sci-
ence, pp. 277–280. Springer, Berlin/Heidelberg (2006)

123

http://www.soft-net.at
http://googletesting.blogspot.com/2008/06/tott-friends-you-can-depend-on.html
http://googletesting.blogspot.com/2008/06/tott-friends-you-can-depend-on.html
http://developers.google.com/java-dev-tools/codepro/doc/
http://developers.google.com/java-dev-tools/codepro/doc/


Survey on test data generation tools 751

27. Kuliamin, V.V., Petrenko, A.K., Kossatchev, A.S., Bourdonov, I.B.:
UniTesK: model based testing in industrial practice. In: 1st Euro-
pean Conference on Model Driven, Software Engineering, pp. 55–
63 (2003)

28. Legeard, B., Peureux, F., Utting, M.: Automated boundary testing
from Z and B. In: Eriksson L.-H., Lindsay, P. (eds.) Formal Meth-
ods, vol. 2391 of Lecture Notes in Computer Science, pp 221–236.
Springer (2002)

29. Meyer, B., Ciupa, I., Leitner, A., Liu, L.: Automatic testing of
object-oriented software. In: SOFSEM 2007: Theory and Practice
of Computer Science, vol. 4362 of Lecture Notes in Computer
Science, pp. 114–129. Springer, Heidelberg (2007)

30. Meyers, S.: Effective C++: 55 specific ways to improve your pro-
grams and design, 3rd edn. Addison-Wesley Professional, Boston
(2005)

31. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In:
TACAS’08: Tools and Algorithms for the Construction and Analy-
sis of Systems, vol. 4963 of Lecture Notes in Computer Science,
pp. 337–340. Springer, Heidelberg (2008)

32. Myers, G.J., Sandler, C., Badgett, T., Thomas, T.M.: The Art of
Software Testing, 2nd edn. Wiley, New York (2004)

33. Pacheco, C., Ernst, M.D.: Eclat: automatic generation and clas-
sification of test inputs. In: ECOOP 2005: Object-Oriented Pro-
gramming, vol. 3568 of Lecture Notes in Computer Science, pp.
504–527. Springer (2005)

34. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random test-
ing for Java. In: OOPSLA 2007: Conference on Object Oriented
Programming Systems Languages and Applications, pp. 815–816.
ACM, New York (2007)

35. Pacheco, C., Lahiri, S.K., Ball, T.: Finding errors in.NET with
feedback-directed random testing. ISSTA’08: International Sym-
posium on Software Testing and, Analysis, pp. 87–96 (2008)

36. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed
random test generation. In: Proceedings of the 29th International
Conference on Software Engineering, pp. 75–84, Minneapolis,
MN, USA, 2007. IEEE (2007)

37. Parasoft. Parasoft C++test user’s guide (2010)
38. Parasoft. http://www.parasoft.com. Accessed Nov 2011
39. Parasoft. Using design by contract to automate Java software and

component testing. http://www.parasoft.com/jsp/products/article.
jsp?articleId=579&product=Jcontract. Accessed Nov 2011

40. Penix, J., Visser, W., Park, S., Pasareanu, C., Engstrom, E., Lar-
son, A., Weininger, N.: Verifying time partitioning in the DEOS
scheduling Kernel. Formal Methods Syst. Design 26(2), 103–135
(2005)

41. Microsoft Research. Advanced concepts: parameterized unit
testing with Microsoft Pex. http://research.microsoft.com/en-us/
projects/pex/pexconcepts.pdf (2010)

42. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and
explicit path model-checking tools. In: 18th International Confer-
ence on Computer Aided Verification, vol. 4144 of Lecture Notes in
Computer Science, pp. 419–423, Seattle, Washington, USA, 2006.
Springer, New York (2006)

43. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing
engine for C. In: 10th European Software Engineering Conference,
vol. 30 of ACM SIGSOFT Software Engineering Notes, pp. 263–
272, Lisbon, Portugal, 2005. ACM, New York (2005)

44. SMTCOMP. Call for Entrants. http://www.smtcomp.org/2010/
call10.txt (2010)

45. Tillmann N., De Halleux, J.: Pex–White Box Test Generation
for.NET. In: Proceedings of the 2nd international conference on
tests and proofs (TAP 2008), vol. 4966 of Lecture Notes in Com-
puter Science, pp. 134–153. Springer (2008)

46. Tillmann, N., Grieskamp, W., Schulte, W.: Parameterized unit tests.
SIGSOFT Softw. Eng. Notes 30(5), 253–262 (2005)

47. Veanes, M., de Halleux P., Tillmann, N.: Rex: Symbolic Regular
Expression Explorer. In: 2010 Third International Conference on
Software Testing, Verification and Validation, pp. 498–507. IEEE
(2010)

48. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann,
N., Nachmanson, L.: Model-based testing of object-oriented reac-
tive systems with Spec explorer. In: Formal Methods and Test-
ing, vol. 4949 of Lecture Notes in Computer Science, pp. 39–76.
Springer (2008)

49. Visser, W., Havelund, K., Brat, G.: Model checking programs.
Autom. Softw. Eng. 10(2), 203–232 (2003)

50. Visser, W., Psreanu, C.S.: Test input generation with Java
PathFinder. ACM SIGSOFT Softw. Eng. Notes 29(4), 97–107
(2004)

51. Wei, Y., Gebhardt, S., Oriol, M., Meyer, B.: Satisfying test pre-
conditions through guided object selection. In: 3rd International
Conference on Software Testing, Verification and Validation, pp.
1–10, Paris, France, 2010. IEEE (2010)

123

http://www.parasoft.com
http://www.parasoft.com/jsp/products/article.jsp?articleId=579&product=Jcontract
http://www.parasoft.com/jsp/products/article.jsp?articleId=579&product=Jcontract
http://research.microsoft.com/en-us/projects/pex/pexconcepts.pdf
http://research.microsoft.com/en-us/projects/pex/pexconcepts.pdf
http://www.smtcomp.org/2010/call10.txt
http://www.smtcomp.org/2010/call10.txt

	Survey on test data generation tools
	An evaluation of white- and gray-box testing tools for C#, C++, Eiffel, and Java
	Abstract 
	1 Introduction
	2 Evaluation procedure
	2.1 Candidate tools
	2.2 Evaluation criteria

	3 Evaluation
	3.1 Jtest
	3.1.1 General information
	3.1.2 Data generation approach
	3.1.3 Evaluation

	3.2 C++test
	3.2.1 General information
	3.2.2 Test data generation
	3.2.3 Evaluation

	3.3 AgitarOne
	3.3.1 General information
	3.3.2 Data generation approach
	3.3.3 Evaluation

	3.4 AutoTest
	3.4.1 General information
	3.4.2 Data generation approach
	3.4.3 Evaluation

	3.5 CodePro AnalytiX
	3.5.1 General information
	3.5.2 Data generation approach
	3.5.3 Evaluation results

	3.6 RANDOOP
	3.6.1 General information
	3.6.2 Data generation approach
	3.6.3 Evaluation results

	3.7 PEX
	3.7.1 General information
	3.7.2 Data generation approach
	3.7.3 Evaluation results


	4 Related work
	4.1 Test data generation tools
	4.2 Black-Box testing tools

	5 Conclusion
	Acknowledgments
	References



