
Int J Softw Tools Technol Transfer (2012) 14:383–386
DOI 10.1007/s10009-012-0240-3

INTRODUCTION

Model-based testing of software and systems: recent advances
and challenges

Alexandre Petrenko · Adenilso Simao ·
José Carlos Maldonado

Published online: 22 June 2012
© Springer-Verlag 2012

Abstract Model-based testing is focused on testing tech-
niques which rely on the use of models. The diversity of
systems and software to be tested implies the need for
research on a variety of models and methods for test automa-
tion. We briefly review this research area and introduce sev-
eral papers selected from the 22nd International Conference
on Testing Software and Systems (ICTSS).

Keywords Software testing · Model-based testing

1 Introduction

The importance of testing in the development of various
software and systems has been growing steadily with the
increasingly crucial role they play in the modern society.
Even though testing is a familiar and unavoidable practical
activity, the ever growing variety of software-based systems
poses big challenges for the development teams. It is not sur-
prising that testing has evolved during the last decades from
an ad hoc and under-exposed area of systems development
to an important and active research area.

The quest for high quality systems and for a rapid develop-
ment cycle has demanded testing techniques which are both
rigorous and automatic. Model-based testing (MBT) offers
techniques which meet these requirements.

A. Petrenko
Centre de recherche informatique de Montreal (CRIM),
Montreal, Quebec, Canada
e-mail: petrenko@crim.ca

A. Simao (B) · J. C. Maldonado
São Paulo University, São Carlos, São Paulo, Brazil
e-mail: adenilso@icmc.usp.br

J. C. Maldonado
e-mail: jcmaldon@icmc.usp.br

In this Special Section, we first provide a brief overview
of MBT main techniques and outline several research chal-
lenges. We highlight some possible future work on MBT, as
an invitation for further contributions in this area. Second,
we introduce the papers of this Special Section which were
selected from the 22nd International Conference on Test-
ing Software and Systems (ICTSS), held in Natal, Brazil, in
2010.

2 Model-based testing

Model-based testing is an approach that relies on a formal
model built to support the testing activity. This approach
can offer a number of benefits, such as high fault detection
ratio, reduced cost and time, traceability, and ease of handling
requirements evolution [11,30].

As models play a crucial role in MBT, a major testing chal-
lenge moves to the modeling the SUT itself. The use of mod-
els for various purposes, from capturing the requirements,
model checking of properties of designed systems to test-
ing existing systems, has a long history in computer science
and engineering. However, it seems that it is only recently
that test models have been combined with test purposes and
properties for test generation.

As Lund et al. [21] justly observe, there are numerous
languages for modeling computer systems; the semantics for
the languages ranges from English explanations of modeling
language constructs to highly formal mathematical or log-
ical definitions. A number of issues need to be taken into
consideration when choosing a language and accompanying
semantics. For instance, it is important to know who will use
the models and what level of training they would have. As
stated by Lund et al. [21], the language needs to have a nota-
tion that is understandable by the users of the models, at least

123



384 A. Petrenko et al.

at the intuitive level. In this context, formal and semi-formal
models with intuitive notation and semantics may be useful,
since mathematical and logical formulas may be well under-
stood by computer scientists and some developers, but will
be incomprehensible for most practitioners.

The system modeling for testing has been facing a num-
ber of challenges. First, test models should indeed match the
level of mastering formal approaches by the existing testing
personnel. Then, models should be related to the test require-
ments or at least provide some means to trace features of
test models to the requirements. Models should have formal
semantics to allow for test automation and to ensure sound-
ness of the produced verdicts. On one hand, a test model has
to capture the relevant characteristics of the system, so that
the tests derived from it are meaningful. On the other hand,
the model should not be too detailed, since otherwise the
testing activity would be unfeasible due to the complexity
of handling all the details. Finding a compromise between
these two conflicting requirements is an engineering task.
To ease this task, different modeling techniques have been
investigated.

Two main types of models are currently considered in the
testing context, holistic models and scenario models. The
former are models which attempt to describe the expected
behavior of a system under test (SUT) as completely as pos-
sible in a single formal specification, while the latter focus
on a number of test scenarios describing various aspects of
the expected behavior.

Holistic models describe the behavior of the SUT with
some level of detail, trying to capture the features that are
relevant to testing. They can be divided into sequential and
true-concurrency models.

Sequential models include finite state machines (FSMs),
input/output transition systems (IOTSs), and various, e.g.,
UML, state machines. Testing with classical deterministic
Mealy machines is a topic which was initiated more than 50
years ago [22]. The family of FSMs currently used for testing
includes machines that are not necessarily completely spec-
ified and deterministic and extended (with data) FSMs. The
main research challenges are related to nondeterminism, fault
models, and executability of EFSM tests. IOTSs differ from
FSMs in dropping coupling of inputs with outputs resulting
in “unstable” states reached by inputs from which outputs
could be produced. If no input is enabled in unstable states,
then the two models, FSM and IOTS, have the same input–
output traces, though the former needs fewer states than the
latter. Otherwise, if inputs are also enabled in unstable states,
the IOTS has traces no FSM can have. This feature along with
the use of nonobservable transitions makes the IOTS model
more suitable for specifying certain types of nondeterminism
and concurrency than the FSM model.

While sequential models do not distinguish nondetermin-
ism and concurrency, as they model the latter by interleav-

ings, true-concurrency models, such as Petri Nets, see, e.g.,
[2,18] and partial order input/output automata [12], avoid
interleaved representation of concurrent events achieving
better compactness.

In spite of this disadvantage, sequential models currently
offer more mature results to the practice of MBT.

Scenarios are usually described using message sequence
charts (MSC) and UML sequence diagrams, including a vari-
ety of timed scenario notations, see, e.g., [13]. One of the
main challenges in using scenarios for testing is to ensure
that the chosen test scenarios are consistent and sufficiently
formal to allow executable tester’s generation.

Another type of scenario is test purposes and properties,
which are used to force the test generation process to con-
sider, instead of a complete test model, only a part of it which
is related to a given test purpose. This allows one to reduce
the number of tests generated from the model.

Once a test model of the system’s behavior is available, it
is then used to obtain a set of tests. Simplistic, but nonethe-
less sometimes useful, approaches just “walk” through the
model according to some algorithm, collecting the events
along the way which are used to build tests. For instance,
tests can be obtained from a state-based model by navi-
gating from state to state, according to some predefined
schema, and registering the traversed path. One of the main
challenges here is the chosen path executability, especially
when the model uses variables and predicates, as mentioned
above. More elaborated approaches use coverage criteria to
guide the test case generation. A coverage criterion says
when certain elements of the model are “covered” by the
test cases; the goal is then to cover all such elements, see,
e.g., [25].

The existing approaches for model-based test generation
could be grouped according to a criterion used to terminate
the test generation process. Among the mostly investigated
criteria are the model coverage criteria, which include the use
of test purposes. Another type of criteria is related to fault
models. The main motivation for using fault models is to have
tests which can detect, i.e., cover, certain types of implemen-
tation faults. Such tests offer a “guarantee” for the test qual-
ity in terms of fault coverage as opposed to model coverage.
Fault coverage criteria are in fact also used in mutation-based
approaches, which construct a test suite by choosing tests
killing a selected number of mutants.

Mutants can be derived from test models with some fault
models in mind. In case of holistic models, fault models
include output, predicate, and transition faults. In case of
test scenarios, if both negative and expected behaviors are
described, then the former model, in fact, represents certain
implementation faults which should be detected by tests.

Fault modeling approaches rely on conformance relations
to discriminate between the expected and erroneous behav-
iors. These relations are also needed in model coverage

123



Model-based testing of software and systems 385

approaches to design the verdict mechanism of the tester.
One of the main challenges in choosing an appropriate con-
formance relation is to ensure that wrapping an SUT by a test
harness or test adapter within a given test architecture does
not violate the soundness of tests generated for the chosen
relation.

There are ongoing discussions on distributed and asyn-
chronous testing using not only FSM models, but also the
IOTS model along with the ioco-like conformance rela-
tions [16,17,26,27,29]. These discussions are important,
since, coincidentally or not, the existing tools, including
Spec Explorer [31], TGV [19], UPPAAL/Tron [20] and
TorX [28], rely on different assumptions about inputs and
outputs, making some events synchronous (which could
thus be blocked) and others asynchronous. Apparently, more
research is needed to better address the problems with various
test architectures.

A long-term challenge in test generation is related to
the data aspect of test models. This is a continuous line
of research where various approaches for treating symbolic
models and tests are tried [3,4,8,9,23].

Other stringent problems should be dealt with when test-
ing real-time systems, i.e., systems whose correctness can
only be assessed if time instances when events occur are
also taken into account. The test generation for real-time
systems becomes more challenging [1,6,14]. The gener-
ation algorithm should determine not only which input to
send to (and which output to receive from) the SUT, but
also when an input should be sent and when an output
should be received. One of the biggest issues is the inherent
nondeterminism of real-time systems; see, e.g., [5]. Test-
ing is somewhat simplified if nondeterminism in outputs is
forbidden in both, the specification and the SUT [15], e.g.,
assuming the so-called isolated outputs in UPPAAL/Tron
[20].

Another important factor that constrains the algorithm
used for test generation is the test harness available for
executing tests. Test execution can be online or off-line.
In off-line execution, the test cases are generated from
the model a priori. Afterward, the SUT is executed with
the concretized test cases. In online execution, the test
cases are generated on-the-fly while executing the SUT.
While the off-line execution schema is usually simpler to
implement, online execution is more suitable to deal with
nondeterminism.

3 The 22nd International Conference on Testing
Software and Systems

The 22nd ICTSS, held in Natal, Brazil, in November 2010,
is the merging of two traditional and important events in the
model-based testing area, which has served the testing com-

munity as an important venue for discussing advancements
in the area.

The objective of ICTSS 2010 was to be a forum for
researchers from academia as well as from industry, devel-
opers, and testers to present, discuss, and learn about new
approaches, theories, methods, and tools in the field of test-
ing of software and systems.

The authors of four papers published in the ICTSS pro-
ceedings were invited to submit extended versions of their
papers for this special issue. The first two papers discuss how
formal models and properties of tests can be enhanced; the
other two papers address the problem of test generation; one
proposes an approach for test case generation using genetic
algorithms, whereas the other proposes an approach based
on solving a first-order logic. In summary, the chosen four
papers represent a wide range of active research topics in
testing of software and systems.

The first paper [32] by Margus Veanes and Nikolaj
Bjørner, “Alternating Simulation and IOCO”, proposes a
symbolic framework called Guarded Labeled Assignment
Systems (GLAS) and discusses how it can be used for analy-
sis of formal specification languages. The analysis of sym-
bolic models is becoming a realistic approach, mainly due to
advances in satisfiability modulo theories technology.

The second paper [7] by Yliès Falcone, Jean-Claude
Fernandez, Thierry Jéron, Hervé Marchand and Laurent
Mounier, “More testable properties”, discusses the testabil-
ity of various properties w.r.t. to several relations between
the SUT and the specification. A property is testable if it is
possible to establish that it holds for a given SUT.

The third paper [10] by Christoph D. Gladisch, “Model
Generation for Quantified Formulas with Application to Test
Data Generation”, proposes a model generation algorithm,
which solves first-order logic formulae with quantifiers. The
model can be converted into a test preamble for state initial-
ization.

Finally, the fourth paper [24] by Aurora Pozo, João Car-
los Garcia Árias, Rafael da Veiga Cabral, Silvia Regina
Vergilio, and Tiago Nobre, “Multi-objective Optimization
Algorithms Applied to the Class Integration and Test Order
Problem”, describes an algorithm for integration test, in
which the best order for testing the classes of an object-
oriented software is sought. The main criteria used to deter-
mine which test order is better are the effort required to
develop test drivers and test stubs. The algorithm is based
on multi-objective optimization techniques, such as Pareto
ant colony, multi-objective Tabu search and nondominated
sorting.

In conclusion, the presented techniques have a solid for-
mal background and robust tool supporting. Together, they
indicate that research on model-based testing has been reach-
ing the level of maturity required for transferring theoretical
results to industry.

123



386 A. Petrenko et al.

References

1. Andrade, W.L., Machado, P.D.L., Jeron, T., Marchand, H.:
Abstracting time and data for conformance Testing of teal-time
systems. In: A-MOST 2011, 9–17 (2011)

2. Bochmann, G.v., Jourdan, G.-V.: Testing k-safe petri nets. In: Test-
Com/FATES 09, LNCS, vol. 5826, pp. 33–48, Springer, Berlin
(2009)

3. Clarke, D., Jéron, T., Rusu, V., Zinovieva, E., Katoen, J.-P.,
Stevens, P.: STG: A symbolic test generation tool. ETAPS 2002
and TACAS 2002, LNCS, vol. 2280, pp. 151–173. Springer,
Heidelberg (2002)

4. Constant, C., Jéron, T., Marchand, H., Rusu, V.: Integrating formal
verification and conformance testing for reactive systems. IEEE
Trans. Softw. Eng. 33(8), 558–574 (2007)

5. El-Fakih, K., Yevtushenko, N., Fouchal, H.: Testing timed finite
state machines with guaranteed fault coverage. In: TestCom 2009,
LNCS, vol. 5826, pp. 66–80. Springer, Eindhoven (2009)

6. En-Nouaary A.: A scalable method for testing real-time sys-
tems. Softw. Qual. J. 16(1), 3–22 (2008)

7. Falcone, Y., Fernandez, J.-C., Jéron, T., Marchand, H., Mounier,
L.: More testable properties, in this volume

8. Frantzen, L., Tretmans, J., Willemse, T.: A Symbolic Framework
for Model-Based Testing. FATES 2006 and RV 2006. LNCS, vol.
4262, pp. 40–54. Springer, Heidelberg (2006)

9. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execu-
tion techniques for Test Purpose Definition. In: TESTCOM 2006,
LNCS, vol. 3964, pp. 1–18. Springer, Heidelberg (2006)

10. Gladisch, C.: Model Generation for Quantified Formulas with
Application to Test Data Generation, in this volume

11. Grieskamp, W., Kicillof, N., Stobie, K., Braberman, V.: Model-
based quality assurance of protocol documentation: tools and
methodology. Softw. Test. Verification Reliab. 21(1), 55–71 (2011)

12. Haar, S., Jard, C., Jourdan, G.-V.: Testing input/output partial order
automata. In: TestCom 2007, LNCS 4581, pp. 171–185, Springer,
Berlin (2007)

13. Hassine, J., Rilling, J., Dssouli, R.: An evaluation of timed scenario
notations. J. Syst. Softw. 83(2), 326–350 (2010)

14. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson,
P., Skou, A.: Testing Real-Time Systems Using UPPAAL. In:
FORTEST 2008. LNCS, vol. 4949, pp. 77–117. Springer, Heidel-
berg (2008)

15. Hessel, A., Larsen, K.G., Nielsen, B., Pettersson, P., Skou., A.:
Time-optimal real-time test case generation using UPPAAL. In:
FATES’03, LNCS, vol. 2931, pp. 136–151. Springer, Heidelberg
(2003)

16. Hierons, R.M.: Controllable testing from Nondeterministic
Finite State Machines with Multiple Ports. IEEE Trans. Com-
put. 60(12), 1818–1822 (2011)

17. Huo J., Petrenko A. (2009) Transition covering tests for systems
with queues. Softw. Test. Verification Reliability, 19(1):55–83

18. Jard, C.: Synthesis of distributed testers from true-concurrency
models of reactive systems. Int. J. Inform. Softw. Tech-
nol. 45(12), 805–814 (2003)

19. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. Softw.
Tools Technol. Transf. 7(4), 297–315 (2005)

20. Larsen, K., Mikucionis, M., Nielsen, B., Skou, A.: Testing Teal-
time embedded software using UPPAAL-TRON: an industrial case
study. In: 5th ACM international conference on Embedded soft-
ware, pp. 299–306. ACM Press, NY (2005)

21. Lund, M.S., Refsdal, A., Stølen, K.: Semantics of UML Models for
Dynamic Behavior: A survey of different approaches. In: Model-
Based Engineering of Embedded Real-Time Systems, LNCS, vol.
6100, pp. 77–103. Springer, Berlin (2011)

22. Moore, E.F.: Gedanken-experiments on sequential machines.
Automata Studies. vol. 34, 129–153. Princeton University Press,
Princeton (1956)

23. Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in
EFSM testing. IEEE Trans. Softw. Eng. 30(1), 29–42 (2004)

24. Pozo, A., Árias, J.C.G., Cabral, R.V., Vergilio, S.R. and Nobre,
T.: Multi-objective optimization algorithms applied to the class
integration and test order problem, in this volume

25. Simao, A., Petrenko, A., Maldonado, J.C.: Comparing finite state
machine test coverage criteria. IET Softw. 3(2), 91–105 (2009)

26. Simao, A., Petrenko, A.: Generating asynchronous test cases from
test purposes. Inform. Softw. Technol. 53(11), 1252–1262 (2011)

27. Tretmans, J.: Test generation with inputs, outputs and repetitive
quiescence. Softw. Concept Tools. 17(3), 103–120 (1996)

28. Tretmans, J., Brinksma, E.: TorX: Automated model-based testing.
In: First European Conference on Model-Driven Software Engi-
neering, pp. 31–43 (2003)

29. Tretmans, J.: Model based testing with labelled transition sys-
tems. In: Formal Methods and Testing, LNCS, vol. 4949, pp. 1–38.
Springer, Berlin, (2008)

30. Utting, M., Legeard, B.: Practical model-based testing: a tools
approach. Morgan Kaufmann, San Francisco (2007)

31. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann,
N., Nachmanson L.: Model-based testing of object-oriented reac-
tive systems with Spec Explore. In: Formal Methods and Testing,
LNCS, vol. 4949, pp. 39–76. Springer, Berlin, (2008)

32. Veanes, M., Bjørner, N.: Alternating Simulation and IOCO, in this
volume.

123


	Model-based testing of software and systems: recent advances and challenges
	Abstract
	1 Introduction
	2 Model-based testing
	3 The 22nd International Conference on Testing Software and Systems
	References


