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Published online: 12 June 2012
© Springer-Verlag 2012

Abstract We present a specification theory for timed
systems implemented in the Ecdar tool. We illustrate the
operations of the specification theory on a running example,
showing the models and verification checks. To demonstrate
the power of the compositional verification, we perform an
in depth case study of a leader election protocol; Modeling it
in Ecdar as Timed input/output automata Specifications and
performing both monolithic and compositional verification
of two interesting properties on it. We compare the execution
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time of the compositional to the classical verification show-
ing a huge difference in favor of compositional verification.
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1 Introduction

Programs are intrinsically component based, they are built
from simple commands, and when we reason about their cor-
rectness, we intuitively think in terms of what we can assume
about the program state before the command is performed
and what it guarantees about the state afterwards. This sim-
ple fact was formalized early on in terms of Floyd assertions
[19] and led to Floyd–Hoare logic [21] and is really the foun-
dation of program verification, which led to much fruitful
research in the following years. In particular, the challenge of
compositional analysis of concurrent programs was pursued
first by Owicki and Gries [32], who extended Floyd–Hoare
logic to parallel programs with shared variables, and later
by Jones [24], who introduced the rely-guarantee method,
allowing for a compositional version of the Owicki-Gries
method. Yet, there are larger components in software appli-
cations: subroutines from libraries, classes in object-oriented
languages, service modules in service-oriented architectures,
control modules in embedded systems, etc.

Common for such larger scale components are the char-
acteristics made explicit by Szyperski [36]:

a unit of composition with contractually specified inter-
faces and fully explicit context dependencies that can be
deployed independently and is a subject to third party
composition.
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We shall not consider deployment or component implemen-
tation. These are interesting questions, but we get to grips
with composition at the level of interfaces, because this is
essential for getting a useful product out of gluing compo-
nents together and deploying them. Interfaces are essentially
specifications of what we assume about the environment of
the component and what the implementation guarantees to
deliver. To have a good theory for reasoning about component
interface specification, we expect that for a given specifica-
tion, we can determine:

Consistency When a specification is satisfied by at least one
implementation it is consistent. Consistency is needed to ver-
ify that specifications are well formed and do not contain
contradictory statements. Without consistency, we can spec-
ify miraculous components which no one can deliver.

Conjunction Specifications are essentially logics, and when
composing them using conjunction this should give exactly
the intersection of feasible implementations of the constitu-
ents. Should the intersection be empty, that is, the conjunc-
tion is not consistent, it is useless to put those components
together.

Composition When actual components are deployed together,
they form a new composite component. A similar parallel
composition operation is needed for their specifications to
build systems in a stepwise manner.

Refinement There is a natural partial order on components
defined by replacement of one by another, while maintain-
ing the functionality of the system as a whole. When such
substitutions are possible, the more detailed and constrain-
ing specification refines the one for the component that is
replaced.

Specification theories with refinement were pioneered by
Jones [25] in a setting of sequential program components
and it has lead to further development of such theories, most
recently in the area of object-oriented programming with
design by contract and for instance the Java Modeling Lan-
guage (JML) [29].

However, since we wish to deal with a context of dis-
tributed, communicating components, a specification theory
with the state given by program variables is not well suited.
Specifications for such systems are better built on process
algebras [5] and their underlying transition system seman-
tics. Transition systems are also intimately linked to automata
models. Since transition systems generate traces of events or
actions, specification logics describe properties of traces, and
here a very liberal use of assumptions and guarantees may
lead to unsound reasoning. Essentially, a guarantee can spec-
ify that the past is changed to fit an assumption, or an assump-
tion can speak about a future that the guarantee contradicts.

This was investigated by Abadi and Lamport [1]. However,
since the specification formalism employed here is automata
based, it does not suffer from these anomalies.

An interesting question with (parallel) composition of
components is whether one can find a strongest specifica-
tion for an unknown component that composes with a given
one to give a desired result. It is the question of finding a quo-
tient or a weakest prespecification. This can be done for the
current theory, a result that originates in [4,27,28]. Similar
results in a logic-based refinement theory are found in [22],
although this solution is more a proof of existence than an
actual construction.

1.1 Related work

In a series of recent work, it has been advocated that spec-
ifications can be represented by interface automata that are
automata whose transitions are typed with input and output.
The semantics of such an automaton is given by a two-player
game: the input player represents the environment, and the
output player represents the component itself. Contrary to
the input/output model proposed by Lynch [31], this semantic
offers an optimistic treatment of composition: two interfaces
can be composed if there exists at least one environment
in which they can interact together in a safe way. In [16],
a timed extension of the theory of interface automata has
been introduced, motivated by the fact that time can be a
crucial parameter in practice, e.g., in embedded systems. In
this paper, we represent specifications by timed input/output
automata (TIOAs) [26], i.e., timed automata whose sets of
discrete transitions are split into input and output transitions.
Contrary to [16] and [26], we distinguish between imple-
mentations and specifications by adding conditions on the
models. This is done by assuming that implementations have
fixed timing behavior and they can always advance either by
producing an output or delaying. Also, we provide a game-
based methodology to decide whether a specification is con-
sistent, i.e. whether it has at least one implementation. An
implementation exists when there is a strategy that despite
the behavior of the environment will avoid states that cannot
possibly satisfy the implementation requirements.

Our theory is rich in the sense that it captures all the
good operations for a compositional design theory discussed
above. Also, all the algorithms have been implemented in
the Ecdar tool set. This implementation (available at http://
ecdar.cs.aau.dk/) is build on top of the Uppaal-tiga tool-
set [7]. Uppaal-tiga is a tool that implements a series of
algorithms for solving timed games [10] as well as checking
timed temporal logic properties. Ecdar uses Uppaal-tiga
to solve various games that arise in computing the composi-
tion operations and refinements.

The first part of the paper presents an overview of the
theory implemented in the Ecdar tool set. The second, and
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maybe most interesting part of the paper, applies Ecdar the-
ory to a leader election protocol. More precisely, we show
how compositional design can be used to check two impor-
tant properties of the protocol in an incremental manner, out-
performing classical model checking techniques for timed
automata that are working on the entire system directly. The
incremental approach used is based on the concept of inde-
pendent implementability [15], in which a specification can
be refined into a more detailed specification independently
of what it is composed with. This method is correct because
our refinement operator is a precongruence with respect to
parallel composition [13].

Another tool supporting refinement is PAT [34,35]. Unlike
Ecdar , it builds on CSP with a failures, divergences and
refusal semantics which makes a direct comparison difficult.
However, the CSP theory does not support quotienting or
simple conjunction of specifications. And thus in contrast to
Ecdar , PAT does not support assume/guarantee reasoning
about systems.

1.2 Structure

The rest of the paper falls in three parts: Theory, Case-study
and Conclusion. The theory is presented in Sect. 2 on
page 705. The theory with its definitions is included to make
the paper self-contained. Theorems and proofs can be found
in [13]. The case-study, a leader election protocol, is pre-
sented in Sect. 3 on page 711. While conclusion and future
work is given in Sect. 4 on page 717.

2 Timed input/output automata specifications

Before we proceed to discuss our case study, let us present
the main concepts and constructions of the specification the-
ory for real-time systems supported by the Ecdar tool. We
only focus on the designer-facing aspects of the framework.
A reader interested in the theoretical discussions is referred
to [13].

The main concept in our modeling framework is that of a
specification—an abstract, usually under-specified, descrip-
tion of an implementation of a system. Each specification nor-
mally admits multiple implementations that can be derived
by different resolutions of detailed design choices.

We use the syntax of TIOAs to represent specifications.
We will now recall their definition and only then proceed
to define specifications themselves along with a notion of
satisfaction of a specification by an implementation, notion
of refinement between specifications, and the compositional
design operators that allow manipulating and combining
specifications.

TIOAs are essentially the usual timed automata [2]
extended with two types of edges: inputs and outputs. Input

grant patent

patent!

grant?grant?

grant?

u>2

u<=2

u<=20

grant?
u=0

patent! u=0

Fig. 1 University specification UniSpec

edges are drawn as solid arrows labeled by actions followed
by a question mark. Output edges are dashed and their actions
are suffixed with an exclamation point. Figure 1 shows an
example of a TIOA describing the main research process at a
hypothetical university, that, given grants as inputs produces
patents as outputs.

The kind of communication an automaton can engage in
is limited by its sort—a signature of available input and
output actions. In Fig. 1, the sort is depicted as incoming
arrows (inputs) and outgoing arrows (outputs) incident with
the border surrounding the automaton. The initial location is
indicated by a doubly circled outline. In this initial location,
after the university receives the grant input, it will output
a patent.

The colors used in the figures do not carry semantic mean-
ing but are used consistently to increase the readability of the
models. These colors—guards (green), resets (navy blue),
invariants (violet), and actions (turquoise)—are the same as
used in the editor of Ecdar and in related tools such as
Uppaal.

Additional labels on edges denote timing constraints over
clocks (known as guards) and clock resets. For example, the
grant must be received before the clock u exceeds two time
units (u ≤ 2). This clock is reset immediately upon recep-
tion of the grant (u = 0). Then, the patent is issued within
20 time units, as the automaton can only reside in the target
location for twenty time units as indicated by the location
invariant u ≤ 20. Any further grants received within this
time interval are ignored through the grant input loop that
has no guard and no resets. When the patent is issued the
clock u is again reset.

If the first grant arrives after more than two time units, or
if any subsequent grant arrives later than two time units after
a patent has been filed, then the behavior of the university
automaton becomes unpredictable. This is captured by the
leftmost location in the figure, a so-called universal location,
in which any communication can appear at any time; the loca-
tion has outgoing edges for any available action and imposes
no timing constraints. Strictly speaking, the behavior of the
automaton is still completely specified, but since it provides
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no guarantees about its output in a universal location we also
call this unpredictable.

Let us now recall a formal definition of a TIOA:

Definition 1 A timed I/O automaton (TIOA) is a tuple A =
(Loc, q0, Clk, E, Act, Inv) where Loc is a finite set of loca-
tions, q0 ∈ Loc is the initial location, Clkis a finite set of
clocks, E ⊆ Loc×Act×B(Clk)×P(Clk)×Loc is a set of
edges with B(Clk) being a set of clock constraints, P(Clk)

is the set of clocks to reset, Act = Acti�Acto is a finite set
of actions, partitioned into inputs and outputs, respectively,
and Inv : Loc �→ B(Clk) is a set of location invariants.

As we have intuitively sketched above, TIOA syntax has
a semantic interpretation as a timed execution of a branching
process. This is formally captured by a Timed I/O transition
system (TIOTS), which is like a usual discrete automaton
but infinitely branching and over an infinite state space. In
a TIOTS, time delays are modeled as continuously many
‘discrete’ actions.

Definition 2 (TIOTS) A TIOTS is a quadruple S = (StS,

s0,Σ
S,−→S), where StS is an infinite set of states, s0 ∈ St is

the initial state, Σ S = Σ S
i ⊕Σ S

o is a finite set of actions par-
titioned into inputs (Σ S

i ) and outputs (Σ S
o ) and −→S : StS ×

(Σ S ∪ R≥0) × StS is a transition relation. We write s a−→Ss′
instead of (s, a, s′) ∈ −→S and use i?, o! and d to range over
inputs, outputs and R≥0, respectively. We sometimes omit
the transition system name (s a−→s′) if obvious from the con-
text and we omit the target location (s a−→S) if we only need to
know the existence but not the identity of the target location.
In addition any TIOTS satisfies the following:

[time determinism] whenever s d−→Ss′ and s d−→Ss′′ then s′ =
s′′
[time reflexivity] s 0−→Ss for all s ∈ St S

[time additivity] for all s, s′′ ∈ StS and all d1, d2 ∈ R≥0 we
have s d1+d2−−−−→Ss′′ iff s d1−→Ss′ and s′ d2−→Ss′′ for an s′ ∈ StS

A state of the TIOTS derived from a TIOA A is a pair
(q, V ) where q is a location and V : Clk �→ R≥0 is a valua-
tion function that assigns a non-negative value to each clock
in Clk. We use u, u′ to range over clock valuations. We write
u + d, where d ∈ R≥0 is a delay, to denote a valuation such
that for any clock r we have (u +d)(r) = x +d iff u(r) = x .
Given c ⊆ Clk, we write u[r �→ 0]r∈c for a valuation which
agrees with u on all values for clocks not in c, and returns 0
for all clocks in c. We use 0 to denote the constant function
mapping all clocks to zero. The initial state of A is the pair
(q0, 0).

The semantics of a TIOA A = (Loc, q0, Clk, E, Act,
Inv) is a TIOTS [[A]]sem = (Loc × (Clk �→ R≥0), (q0, 0),

Act,−→), where −→ is the transition relation defined by the
following rules:

• Each (q, a, ϕ, c, q ′) ∈ E gives rise to (q, u) a−→(q ′, u′)
for each clock valuation u ∈ [

Clk �→ R≥0
]

such that
u |� ϕ and u′ = u[r �→ 0]r∈c and u′ |� Inv(q ′).

• Each location q ∈Loc with a valuation u ∈[
Clk �→ R≥0

]

gives rise to a transition (q, u) d−→(q, u + d) for each
delay d ∈ R≥0 such that u + d |� Inv(q).

We only consider deterministic TIOAs, so TIOAs whose
semantics results in a deterministic TIOTS: for each action–
state pair at most one action is enabled.

2.1 Specifications

We now define specifications in terms of TIOAs.

Definition 3 A specification automaton is a TIOA that is
input-enabled, i.e., in each state all the inputs should be avail-
able at all times.

The assumption of input-enabledness, also seen in many
interface theories [17,20,30,33,37], reflects our belief that
an input cannot be prevented from being sent to a system,
but it might be unpredictable how the system behaves after
receiving it. The idea is actually quite old, and can be traced
to the notion of a CHAOS process in CSP [23].

Input-enabledness encourages explicit modelling of unpr-
edictability, and compositional reasoning about it; e.g.,
deciding if an unpredictable behavior of one component
induces unpredictability of the entire system. Observe that, it
is easy to check whether a TIOA is input-enabled. In practice,
tools can interpret absent input transitions in at least two rea-
sonable ways. First, they can be interpreted as ignored inputs,
corresponding to location loops in the automaton. Second,
they may be seen as unavailable (‘blocking’) inputs, which
can be achieved by assuming implicit transitions to a desig-
nated error state.

We note that our example of Fig. 1 can always accept
grant? from any location. It is also deterministic. Thus,
UniSpec TIOA is a well-formed specification.

2.2 Implementations

The role of specifications in a specification theory is to
abstract, or under-specify, sets of possible implementations.
Implementations are concrete executable realizations of sys-
tems. We will assume that implementations of timed sys-
tems have fixed timing behavior (outputs occur at predictable
times) and systems can always advance either by producing
an output or delaying. An implementation that cannot volun-
tarily output or delay would have to block passage of time,
which is not realistic.

Definition 4 An implementation P is a specification whose
underlying TIOTS satisfies the following conditions:
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Fig. 2 a Specification of a coffee/tea Machine, b an implementation, and (c–h) more specifications of a coffee/tea machine

1. Independent progress: in each state, either an
output is possible or one can delay until an output is
enabled.
either (∀d ≥ 0. p d−→P ) or

∃ d ∈R≥0. ∃ o!∈Σ P
o . p d−→p′ and p′ o!−→P .

2. Output urgency: an available output cannot be
delayed:
∀ p′, p′′ ∈ StP if p o!−→P p′ and p d−→P p′′ then d = 0 (and
consequently, due to determinism and time reflexivity we
have p = p′′)

Example Figure 2a specifies a vending machine that can
serve tea or coffee. We will use this as a component in our
example. A possible implementation of this machine can be
found in Fig. 2b. The implementation refines the specifica-
tion, which is defined in the next section. Both automata are
deterministic. Note that the output transitions of the imple-
mentation Impl arrive at a fixed moment in time and cannot
be delayed, which guarantees output urgency (the invariant
guarantees progress and the guard constrains the transition).
Each time, the output tea! from Idle to Idle is taken,
the clock y is reset. Without this reset, independent progress
would not be guaranteed for valuations of the clock y that
are greater than 6.

2.3 Satisfaction and refinement

Refinement is always a pivotal element of a specification the-
ory. Akin to entailment for logical specifications, refinement
allows to start with very abstract models, and elaborate them
towards more specific ones. An early abstract specification
would typically allow a large set of diverse implementations.
This set is monotonically reduced in a stepwise refinement

process towards a detailed, more fine grained and concrete
specification that can be implemented directly.

Any refinement should satisfy the following substitutabil-
ity condition: If AS refines AT , it should be possible to replace
AT with AS in every context and obtain a safe system. It is
well known from the literature [8,14,15] that to give these
kind of guarantees a refinement should have the flavor of
alternating (timed) simulation [3].

In our theory, we define the refinement between specifi-
cations, by requiring a suitable refinement relation in their
semantic expansion (TIOTS).

Definition 5 (Refinement relation) Let AS and AT be two
specification automata and S = (StS, s0,Σ, −→S) and T =
(StT, t0,Σ,−→T ) be their corresponding timed transition sys-
tems. We say that AS refines AT , written AS ≤ AT , iff there
exists a binary relation R ⊆ StS×StT containing (s0, t0) and
for all states s Rt implies:

1. Whenever t i?−→T t ′ for some t ′ ∈StT then s i?−→Ss′ and s′ Rt ′
for some s′ ∈StS

2. Whenever s o!−→Ss′ for some s′ ∈ StS then t o!−→T t ′ and
s′ Rt ′ for some t ′ ∈ StT

3. Whenever s d−→Ss′ for d ∈ R≥0 then t d−→T t ′ and s′ Rt ′ for
some t ′ ∈ StT .

Intuitively, if AS refines AT then it can delay at most as
much as AT can, and it can only produce outputs that AT pro-
duces—not others. It, however, may admit more inputs than
AT , as long as all AT ’s inputs are handled. This construction
ensures substitutability, because then, if placed in the same
context, AS will engage in less computations than AT , while
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Fig. 3 Specification of a the Researcher, and the Administration as a conjunction of two components, b HalfAdm1 and c HalfAdm2

maintaining ability to always receive the same inputs. This
means that safety properties will be preserved.

In the example of Fig. 2,Machine2 (Fig. 2c),Machine3
(Fig. 2d), and Machine4 (Fig. 2e) refine Machine
(Fig. 2a). Machine6 (Fig. 2f) refines both Machine3
(Fig. 2d) and Machine4 (Fig. 2e). Machine7 (Fig. 2h)
refines Machine4 (Fig. 2e).

Definition 5 is non-constructive in the sense that it cannot
be directly used to decide refinement between two automata.
Discussion of a proper efficient refinement checking algo-
rithm is out of scope for this work. See [8,13] for details.

We relate specifications to implementations using a notion
of satisfaction. A proper implementation of a specification
is said to satisfy it. Technically, in our framework, the satis-
faction is a special case of the refinement, when the left hand
side is an implementation (it satisfies independent progress
and output urgency—see Definition 4).

The set of all implementations of A is denoted [[A]]mod. In
[13], we have shown that the refinement relation is complete
for our implementation model, i.e., AS refines AT if and only
if the set of implementations that satisfy AS is included in
the set of implementations that satisfy AT . This is an impor-
tant usability criterion for tools. It means that if you indeed
elaborated AT into AS such that any implementation of the
latter implements the former, the tool will never report a false
positive when checking AS ≤ AT .

Consistency It can happen that a specification cannot be
implemented, e.g., because it enforces reachability of a stuck
state, which violates independent progress. As all imple-
mentations satisfy independent progress, they can never sat-
isfy such a specification. We say that a specification which
admits at least one implementation is (globally) consistent.
For example, coffee machine of Fig. 2, the implementation
Fig. 2b refines Fig. 2a. Since Fig. 2a admits at least one
implementation, it is a consistent specification.

In the example of Fig. 2, Machine5 (Fig. 2g) is in
fact inconsistent since, in the state Serving no output is

available and time cannot diverge, thus violating indepen-
dent progress.

Inconsistency of a specification in a stepwise design pro-
cess is normally unintended—an error on behalf of the spec-
ifier. Thus, it is important for tools to provide feedback on
consistency. In [13], we have shown that this question can
be answered automatically using an algorithm that decides
if there exists a strategy for the system (output) to avoid
reaching stuck states in the specification. Furthermore, we
added a facility called pruning that removes from the TIOA
all behaviors that are not covered by such a maximal strategy.
Pruning thus reduces the size of the TIOA specification by
removing inconsistent parts, while maintaining the same set
of implementations (Theorem 5 in [13]).

2.4 Step-wise refinement

We decompose and refine our University specification
of Fig. 1 in a top-down manner. The refinement is based on
a knowledge of how the system under design is supposed to
meet the overall requirements. We decompose our specifica-
tion into three components in parallel: a Coffee/Tea machine,
a Researcher, and an Administration. TheMachine (Fig. 2a)
needs coins to function and provides the Researcher with
coffee and tea. In addition, it may offer tea for free. The
Researcher (Fig. 3a) produces publications with some
guaranteed timing constraints when provided with coffee and
tea regularly, otherwise the publication output is not guar-
anteed any more. The Administration is in charge of
turning grants into coins to enable the use of the Machine
and also to file patents when publications are produced by
the Researcher. We could make one TIOA to specify this
behavior, but it is naturally expressed as a conjunction and
making this TIOA manually is error prone. Instead, we spec-
ify our Administration as a conjunction of HalfAdm1
and HalfAdm2, each in charge of one of the tasks. Figure 3b
shows the alternation between coin! and grant? while
Fig. 3c shows the alternation between patent! and pub?
We note that since both automata are parts of the admin-
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istration, HalfAdm1 always allows patent! and Hal-
fAdm2 always allows coin!. Both sub-specifications are
also input-enabled and can always accept grant? andpub?

Verification of this refinement is carried out step-wise
using pruning at every step. In this example, the compo-
nents are checked for consistency individually and pruned
to valid behaviors. Then, they are combined step-wise, first
with the conjunction operator (explained later), the result
being pruned, and then with the composition operator, and
then pruned. The resulting state graphs for both specifications
are finally checked for refinement.

The result here is that the refinement does not hold, which
may seem surprising. It turns out that the original specifica-
tion of Fig. 1 does not allow for “free” patents: grants must
be received before a patent is produced. However, given that
the Machine can produce free tea, free publications may
appear and, therefore, free patents as well, which was not
specified. It is possible to correct this by either allowing for
free patents or removing free tea in the Machine.

In the following sections, we will elaborate how the spec-
ifications are composed in the framework.

2.5 Combining specifications

In our example, we used parallel composition and conjunc-
tion intuitively. Now, we give more details on all available
operators, namely parallel composition, conjunction, and
quotient. In the rest of the section, we will consider two spec-
ification automata AS = (Loc1, q1

0 , Clk1, E1, Act1, Inv1)

and AT = (Loc2, q2
0 , Clk2, E2, Act2, Inv2). For technical

reasons, we also assume that Clk1 ∩ Clk2 = ∅.
There are two main ways of composing specifications in

our framework: conjunction and parallel composition. The
latter is the well-known structural combination of compo-
nents—parallel composition is meant to combine specifica-
tions of two separate interacting components into a single
box. In our example, theResearcher specification is com-
posed with the beverage dispensing Machine specification
in this manner.

The other operator, conjunction, is meant to combine two
different specifications for the same component. The two
specifications can typically represent requirements from a
different viewpoint. In our example HalfAdm1 represented
requirements with respect to providing funding (coins);
HalfAdm2 represented requirements on producing patents.

Conjunction In our framework, conjunction can only be
defined if ActS

i = ActTi and ActS
o = ActTo (the exten-

sion to dissimilar alphabets is straightforward). The oper-
ation reduces to check whether the two specifications
can progress in the same way. Formally, the conjunction
of AS and AT , denoted AS ∧ AT , is the TIOA A =
(Loc, q0, Clk, E, ActS, Inv) given by: Loc = LocS × LocT ,

q0 = (q S
0 , qT

0 ), Clk = ClkS � ClkT , Inv((qS, qT )) =
Inv(qS) ∧ Inv(qT ). The set of edges E is generated by the
following rule:

(qS, a, ϕS, cS, q ′
S) ∈ ES (qT , a, ϕT , cT , q ′

T ) ∈ ET

((qS, qT ), a, ϕS ∧ ϕT , cS ∪ cT , (q ′
S, q ′

T )) ∈ E

The conjunction operator may introduce locally inconsis-
tent states. For example, assume that AS reaches a state from
s where the only available action is the output a and AT

reaches a state t from where the only available action is the
output b. Assume also that AS and AT cannot delay in s and
t . In (s, t), the conjunction will not issue any output and will
not be able to delay, which violates the independent progress
property. As stated above, the locally inconsistent states are
removed by Ecdar using the pruning facility.

In the example of Fig. 2, Machine5 (Fig. 2g) is a con-
junction of Machine2 (Fig. 2c) and Machine4 (Fig. 2e)
(though it is an inconsistent conjunction). Furthermore,
Machine6 (Fig. 2f) is a conjunction of Machine3 (Fig. 2d)
and Machine4 (Fig. 2e).

Parallel composition This operation computes the classical
product between timed specifications [26], where compo-
nents synchronize on common inputs/outputs. Two compo-
nents are composable iff the intersection between their output
alphabets is empty.

Formally, the parallel composition of AS with AT ,
denoted AS||AT , is the TIOA A = (Loc, q0, Clk, E, Act,
Inv) given by: Loc = LocS × LocT , q0 = (q S

0 , qT
0 ),

Clk = ClkS � ClkT , Inv((qS, qT )) = Inv(qS) ∧ Inv(qT )

and the set of actions Act = Acti � Acto is given by
Acti = ActS

i \ActTo ∪ ActTi \ActS
o and Acto = ActS

o ∪ ActTo .
The set of edges E is generated by the following rules:

1. Whenever (qS, a, ϕS, cS, q ′
S)∈ES

with a ∈ ActS \ActT then for each qT ∈ LocT

also ((qS, qT ), a, ϕS, cS, (q ′
S, qT )) ∈E

2. Whenever (qT , a, ϕT , cT , q ′
T ) ∈ ET

with a ∈ ActT \ ActS then for each qS ∈ LocS

also ((qS, qT ), a, ϕS, cS, (qS, q ′
T )) ∈E

3. Whenever (qS, a, ϕS, cS, q ′
S)∈ES and

(qT , a, ϕT , cT , q ′
T )∈ET with a ∈ActS ∩ActT then

also ((qS, qT ), a, ϕS ∧ϕT , cS ∪ cT , (q ′
S, q ′

T )) ∈ E.

The first rule represents all the cases where AS makes an
individual move, be it input or output, because a is not in the
signature of AT . Similarly, the second rule handles all indi-
vidual moves by the second component AT . The third rule
handles all synchronizations between the two components.
The possibilities are input/input which again gives an input
or input/output which gives an output.
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(a)

bad good button1 button2

button1?

button2?

bad!

good!

s1 s2

button2?

button1?
good!

(b)

bad good button1 button2

button1!

good?

bad?

(c)

bad good button1 button2

button2?

good!button1?
G

Fig. 4 Specification of a the ButtonSpec, b the assumption ButtonA, c the guarantee ButtonG

Quotient The operation of quotienting is radically different
from the other composition operators. It is a differencing
operator [18] that can be used to synthesize requirements
for missing components in a project. Two fix attention, let
us assume that we have an abstract specification AT for the
entire system, and a specification AS of an existing available
component. The quotient synthesizes a specification AT \\AS

for the missing component—the component that when com-
posed with AS would implement AT .

The use of quotient simplifies independent design of com-
ponents. Assume that X is the missing component that needs
to be designed by another person, or even another vendor
than the rest of the system. The correctness requirement
for X is AS||X ≤ AT . In general, this requirement might
be a rather complicated verification expression. Fortunately,
it is sufficient to separate the concerns using quotienting.
The new designer does not need to have access to the entire
system, nor does he need to perform the verification of the
entire system each time he checks his current design for X .
It suffices to synthesize the quotient AT \\AS and he can
simply check whether X ≤ AT \\AS . This latter specifi-
cation effectively captures all contextual requirements for
X .

Summarizing, quotienting allows for factoring out behav-
ior from a larger component. If one has a large component
specification AT and a small one AS then AT \\AS is the spec-
ification of exactly those components that when composed
with AS refine AT .

Quotienting for specifications is defined in the follow-
ing way. Consider two specifications AT = (LocT , qT

0 ,

ClkT , ET , ActT , InvT ) and AS = (LocS, q S
0 , ClkS, ES,

ActS, InvS) with ActS
i ⊆ ActTi ∪ ActTo and ActS

o ⊆ ActTo .
The quotient, which is denoted AT \\AS is the TIOA given
by: Loc = LocT × LocS ∪ {lu, l∅}, q0 = (qT

0 , q S
0 ), Clk =

ClkT � ClkS � {xnew}, Inv((qT , qS)) = Inv(lu) = tt and
Inv(l∅) = {xnew ≤ 0}. The two new locations lu and l∅ are,
respectively, universal and inconsistent. The set of actions
Act = Acti � Acto is given by Acti = ActTi ∪ ActS

o ∪ {inew}
and Acto = ActTo \ ActS

o .

The set of edges E is generated by the following rules:

• Whenever qT ∈ LocT , qS ∈ LocS and a ∈ Act
then also ((qT , qS), a,¬InvS(qS), {xnew}, lu) ∈ E.

• Whenever qT ∈ LocT , qS ∈ LocS then also
((qT , qS), inew,¬InvT (qT )∧InvS(qS), {xnew}, l∅)∈E.

• Whenever (qT , a, ϕT , cT , q ′
T ) ∈ ET

and (qS, a, ϕS, cS, q ′
S) ∈ ES

then ((qT , qS), a, ϕT ∧ ϕS, cT ∪ cS, (q ′
T , q ′

S)) ∈ E
• Each (qS, a, ϕS, cS, q ′

S) ∈ ES with a ∈ ActS
o

gives rise to ((qT , qS), a, ϕS ∧ ¬GT , {xnew}, l∅) where
GT = ∨{ϕT | (qT , a, ϕT , cT , q ′

T )}
• Each (qT , a, ϕT , cT , q ′

T ) ∈ ET and a /∈ ActS

gives ((qT , qS), a, ϕT , cT , (q ′
T , qS)) ∈ E

• Each (qT , a, ϕT , cT , q ′
T ) ∈ ET with a ∈ ActS

o
gives rise to ((qT , qS), a,¬GS, {}, lu) where GS = ∨

{ϕS | (qS, a, ϕS, cS, q ′
S)}

• Each a ∈ Acti gives rise to (l∅, a, xnew = 0, {}, l∅)
• For each a ∈ Act gives rise to (lu, a, tt, {}, lu).

Just like conjunction, the quotient operation may produce
(locally) inconsistent specifications. Hence, each quotient
operation is followed by pruning.

In the following, we will illustrate the quotienting through
a very simple example. The example consists of three TIOAs
Specifications as shown in Fig. 4. We start with a simple spec-
ification, shown in Fig. 4a of a system with two buttons. The
specification states that as long as only button1 is pressed
then only good output will be produced. If at some point,
button2 is pressed then the system could start to produce
bad output.

The following definition defines an operator known as
weaken or weakening that is used for easier specification of
assume guarantee specifications.

Definition 6 Weaken >>:
For any two TIOAs specifications A and G we define G >>

A as follows:

G >> A ≡ (A||G)\\A

123



Compositional verification of real-time systems 711

In our simple example, we would like to express the assu-
mptions and guarantees that we have to the system sepa-
rately. In Fig. 4b, we specify the assumption that button2
is never pressed, while in Fig. 4c we specify the guarantee
that the system never produces bad output. Even though, in
this example, our ButtonSpec is quite simple the assump-
tion ButtonA and guarantee ButtonG are even simpler
and extremely easy to understand.

For this example, we can use Ecdar to prove the follow-
ing two refinements:

refinement: (ButtonG >> ButtonA) <= ButtonSpec
refinement: ButtonSpec <= (ButtonG >> ButtonA)

Thus effectively being able to substitute ButtonG >>

ButtonA for ButtonSpec in any context.
The possibility of splitting assumptions from guarantees

becomes even more appealing when having multiple assump-
tions and guarantees that are conjoined.

2.6 Syntactic extensions

The Ecdar tool offers a range of syntactic extensions build
over the core language described above. These extensions
do not affect the theoretical expressiveness of the language,
but instead they enable more natural description of systems
using primitives such as finite domain types, variables, con-
stants, channels, committed locations, and arrays. These are
the same extensions as known from Uppaal, but adapted to
the two player semantics.

Types, variables and constants Ecdar allows to introduce
finite domain variables ranging over restricted integer types.
The variables are more concise descriptions of counters
and value placeholders than finite state machines. Named
constants allow easy parameterization of models, e.g., with
allowed delays.

Channels and arrays Actions are defined using the syntax:
“broadcast chan a” which gives both the input label
a? and the output label a!. Actions are, as defined in the
theory, broadcast and thus outputs are never blocked.

Channels can be organized in arrays.This is very conve-
nient to encode local communication—e.g., a two
-dimensional n × n array of channels can model individual
two-ended channels between n processes.

Select statements The modeling language of Ecdar also
allows for using select statements of the form e:id_t on
a transition. This translates into a set of transitions with e
having each of the possible values that the type id_t can

assume. This is only syntactic sugar which allows for much
more compact models.

Templates Templates are specifications parameterized with
named but unresolved constants. Templates can be instanti-
ated by providing values for constants, and the semantics is
given by macro expansion. Templates are useful for instan-
tiating many similar processes, perhaps with different initial
conditions. They interplay well with constants and channel
array.

Instantiating templates allows not only to change tim-
ing properties, but also to configure various communication
topologies. For example, parameterize the template with the
name (index in an array) of a channel to be used for commu-
nication. Then instantiate the parameters so that the instances
create trees, rings, and other layouts. We will use this tech-
nique to model rings in the case study in the following section.

3 The leader election protocol

We analyze a variant of the leader election protocol that oper-
ates on a ring topology. The protocol can be instantiated for
an arbitrary number of nodes. Each node in the ring has both
a place in the ring represented by its id and, apart from this,
also a unique priority. The protocol performs one round of
leader election selecting the node with the highest priority
as the leader. When the protocol is initiated all nodes know
that the election has started and can thus start to send their
own priority to the next node in the ring topology. Figure 5
illustrates an instantiation of the protocol for six nodes, with
their initial priorities and the communication channels used
between the nodes. If a node receives a priority that is lower

Fig. 5 Overview of the ring topology and communication channels in
a ring with 6 nodes. Each node has both an id given by its name (e.g.
N0) and a priority (e.g. pr5). Between each set of nodes in the ring there
is a set of communication channels used to mimic value passing
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Fig. 6 Illustration of one scenario of how the information could be
passed around the ring using the protocol. For the sake of illustration,
every node happens to send the information to the next node at exactly

the same time thus giving us six distinct steps. Notice that the maximum
priority will travel exactly once around the ring. In this case giving a
total of 30 messages

than its own priority it will just discard the received priority.
If it receives a priority that is higher than its own priority, it
will keep a copy of the new priority and then send it on at
the same time stopping to send its own priority. If at some
point, a node receives its own priority, it will know that it is
the leader, since this priority has traveled one full round on
the ring topology without being discarded and thus is greater
than all other priorities.

The execution of the protocol is illustrated in Fig. 6 which
shows how the information flows in a ring of 6 nodes, in the
case where all nodes just happen to send the information at
exactly the same time (synchronously).

We proceed to specify the protocol using TIOAs in the
Ecdar tool. Let N be a constant that determines the number
of nodes in the ring.

const int N = 6;

We also declare a constant for the maximum delay before a
node sends the maximal priority that it has seen to the next
node in the ring.

const int MaxD = 2;

Finally, we declare a data type id_t which is used for all
the variables containing ids and priorities.

typedef int[0,N-1] id_t;

Using the constant N, we declare two global arrays of chan-
nels that are used to communicate the information in the
model.

broadcast chan send[N][N];
broadcast chan leader[N];

The send channel is actually an array of N by N channels.
In the channel expression send[4][3]!, the first index (in
this case node number 4) represents the id of the node that is
the receiver of the message. The second index (in this case 3)
represents the priority pr that is being send as the message.
This is the standard way of modeling value passing in time
(i/o) automata.

3.1 Specification model for the nodes

Figure 7 shows the template for specifying the nodes. Each
node is instantiated with an identifier id and a priority pr.
Each node uses a local variable cur of type id_t to store
the current priority value, initialized with the value of the pr
constant:

id_t cur := pr;

The node consists of three locations. The top location which
is also the initial location represents the normal operation of
the protocol. This state has an invariant x<=MaxD ensuring
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send[id][e]?

send[id][pr]?

leader[id]!

send[id][e]?

send[id][e]?

send[(id+1)%N][cur]!

send[id][e]?

e:id_t

e:id_t

x<=MaxD

Leader

x=0

e<=cur &&
    !(e==pr)

cur=e

e:id_t
e>cur

e:id_t

Fig. 7 Node template used for each of the nodes in the ring topology

Fig. 8 The most basic
specification S stating that only
the correct node declares itself
leader

leader[0]!

that the node will send the maximal priority that it has seen
so far, stored in the local variable cur to the next node in the
ring with intervals of no more that MaxD time units.
Each node receives on the set of channels send[id][e]?
where e can be any priority. Similarly, it sends on a set of
channels send[(id+1)%N][e] to the next node in the
ring (the % is the modulus operator). On a given edge in
the template, say the top leftmost one in Fig. 7, the select
statement e:id_t semantically translates into the instanti-
ated template being able to receive any priority which is then
bound to the variable e.

The node template has three input transitions in its ini-
tial location. The one leading to the second location is taken
exactly in the case where the priority received matches the
priority of the node itself. If this transition is taken, the node
will declare itself leader. The other two represents the two
cases where the local variable cur should be updated or not.

Both the second and third location are input enabled but
does nothing with the input. The second location, marked
with a u meaning that it is urgent, will immediately send out
the leader[id]! output.

3.2 Verification

The correctness of a ring of N nodes we are interested in has
both a functional part—i.e. the correct leader is elected—as
well as a non-function part—i.e. the leader is elected within
an acceptable upper time bound. For this, we formulate and
verify the two general properties elaborated below.

leader[e]!

leader[e]!

x<=(N+1)*MaxD

e:id_t

e:id_t

Fig. 9 A property T stating that a leader is elected within the specified
time-bound

The first property S , shown in Fig. 8, states that only the
correct node, the one with the lowest priority, can declare
itself leader.

The second property T , shown in Fig. 9, states that a leader
will be elected within x<=(N+1)*MaxD time units, being
equal to the maximal priority traveling exactly one round as
slowly as possible.

These overall properties of the ring of nodes can be veri-
fied with the following refinement checks:

refinement:
(N0 || N1 || N2 || N3 || N4 || N5) <= S
refinement:
(N0 || N1 || N2 || N3 || N4 || N5) <= T

We call this type of verification monolithic, since it con-
structs and explores the specification representing the entire
systems to settle the suggested refinements. In the present
case with 6 nodes, Ecdar quickly proves the refinements and
provides a witnessing strategy which can be exercised inter-
actively. However, it is clear that the monolithic approach
will suffer from the exponential growth of the states in the
number of nodes in the ring.

3.3 Compositional verification

To combat the state-space explosion problem and enable ver-
ification of the correctness of the protocol for larger numbers
of nodes, we will apply compositional verification for both
the functional correctness property S and the non-functional
correctness property T . The idea is to create N sub-specifi-
cations Si (and Ti ) that may be shown to capture the behavior
of the sub-ring NN || . . . ||Ni inductively, by demonstrating
the following sequence of refinements:

NN ≤ SN (1)

Si+1||Ni ≤ Si for i = (N − 1) . . . 1 (2)

S1||N0 ≤ S (3)

As mentioned in the introduction this compositional ver-
ification is sound because our refinement operator is a pre-
congruence with regard to parallel composition [13].

Using that the refinement relation ≤ is a precongruence
with respect to parallel composition and transitive, it may be
concluded that the ring is a refinement of S. Given six nodes
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Fig. 10 Overview of how the induction hypothesis ϕ1 is used to prove
the property for a larger and larger set of nodes

(1), (2) and (3) amounts to performing the following series
of refinement checks:

refinement: N5 <= S5
refinement: ( S5 || N4 ) <= S4
refinement: ( S4 || N3 ) <= S3
refinement: ( S3 || N2 ) <= S2
refinement: ( S2 || N1 ) <= S1
refinement: ( S1 || N0 ) <= S

The series of refinement checks is illustrated in Fig. 10.
Though greater in number than the single monolithic verifi-
cation each of the six refinement checks only involve three
small components, thus making the overall verification effort
linear rather than exponential in the number of nodes in the
ring.

To obtain the sub-specifications Si and Ti as instances of
general templates, we define the following set of Boolean
arrays which are simply used as a reverse look up of which
ids are included in the set of nodes that a given instantiation
of the induction hypothesis covers.

const bool S5[N] = { 0, 0, 0, 1, 0, 0};
const bool S4[N] = { 0, 0, 1, 1, 0, 0};
const bool S3[N] = { 0, 0, 1, 1, 1, 0};
const bool S2[N] = { 0, 1, 1, 1, 1, 0};
const bool S1[N] = { 1, 1, 1, 1, 1, 0};

These Boolean arrays are then used as input parameters to
the corresponding instantiations of the induction hypotheses.
The sub-specifications Si used to inductively prove the func-
tional property S is shown in Fig. 11, and may be informally
described as follows:

Si first and final version:
Whenever the sub-ring NN || . . . ||Ni receives priorities

send[0][e]!

send[i][e]?

leader[e]!

S[e]==0

send[i][e]?

send[i][e]?send[0][e]!

e : id_t

e : id_t

e : id_t

S[e]==1

e>=i

e : id_t

e : id_t
e : id_t

Fig. 11 The sub-specification Si . The nodes covered by the sub-spec-
ification (NN , . . . , Ni ) can only declare themselves leader after having
received a priority also covered by the sub-specification

outside those belonging to one of its nodes, no leader
is declared. If a priority belonging to one of the nodes
of the sub-ring is received, it is allowed for any of the
nodes to declare leader-ship.

The sub-specification does not restrict that it has to be the
same node that declares itself leader as the one that receives
its own id. It is worth noting that the sub-specification is this
way captures the part of the behavior that is important to
prove exactly this property, while ignoring other aspects. In
particular, nothing is said about timing of events.

3.3.1 Timing property

Now let us apply the compositional approach to establish the
non-functional property T , i.e. that a leader will be elected
within (N+1)*MaxD time units. Thus, we are searching a
(timed) sub-specification Ti , for i = N . . . 1 satisfying the
following set of refinements:

NN ≤ TN (4)

Ti+1||Ni ≤ Ti for i = (N − 1) . . . 1 (5)

T1||N0 ≤ T (6)

The first attempt at defining the timed sub-specification is
shown in Fig. 12 and may informally be read as follows:

Ti first attempt:
Whenever the sub-ring NN || . . . ||Ni receives a pri-
ority larger than any one belonging to one of its
nodes, this priority will be delivered to N0 before
(N-i+1)*MaxD time-units.

Note the use of the local variable g for ensuring that the
priority delivered is the one received. However, this proposal
for a sub-specification Ti turned out to be too erroneous (too
strong) as it is too strong to be used as the induction hypoth-
esis as it is possible to prove the final step but neither the
iterative step nor the base case.
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Fig. 12 The first version of Ti
turned out to be too strong

leader[e]!

leader[e]!leader[e]!

send[i][e]? send[0][e]!

x=0, g=e

send[i][e]?

leader[i]!send[0][e]!

(exists (j : id_t) S[j] && e<=j)
send[i][e]?

send[0][g]!

send[i][e]?

send[0][e]!

send[0][e]!

send[i][e]? e:id_t

e:id_te:id_t

e : id_t e : id_t

x<=(N−i+1)* MaxD

e:id_t

e:id_te:id_t

( forall (j:id_t) S[j] imply e>j)

e>=i

e>=ie>=i

e != ge : id_t

e : id_te : id_t

e : id_t

e>=i

e : id_t

Fig. 13 The second version of
Ti , which turns out to be too
weak

send[i][e]?leader[e]!

send[0][e]!

send[0][g]!x=0, g=e
leader[e]!

leader[e]!

(exists (j : id_t) S[j] && e<=j)
send[i][e]?

send[i][e]?

send[0][e]!

send[0][e]!
send[i][e]?

e : id_t
e:id_t

e : id_t

e : id_t

x<=(N−i+1)* MaxD

e:id_t

e:id_t

( forall (j:id_t) S[j] imply e>j)

e>=i

e>=i

e != g
e : id_t

e : id_t e : id_t

e>=i

e : id_t

In particular, the base case does not hold as there is no
guarantee that a “large” priority received will eventually be
delivered to N0 as an even “priority” may be received by the
sub-ring in the mean-time. An attempt of correcting this is
given in Fig. 13, and may be read informally as follows:

Ti second attempt:
Whenever the sub-ring NN || . . . ||Ni receives a pri-
ority larger than any one belonging to one of its
nodes, this priority will be delivered to N0 before
(N-i+1)*MaxD time-units, unless another priority is
received before.

As desired, the modified sub-specification validates the
refinements required in the base case and the final case.
Unfortunately, though seemingly a true property, it turns out
that it is too weak for the refinement of the iterative step to
hold.

Figure 14 is an attempt of finding a sub-specification for
which the refinements of the iterative steps are valid. Here,
the behavior after having received a priority and storing it
in g is made dependent on whether the priority received is
equal to the one stored in g. Unfortunately, this renders all
the refinement checks incorrect.

After three (and in fact several) more failing attempts, we
finally obtain the satisfactory sub-specification in Fig. 15,
which radically differs from the previous in that it only keeps
track of what happens to the messages that contains the max-
imum priority. Informally, the sub-specification reads as fol-
lows:

Ti final version:
Whenever the sub-ring NN || . . . ||Ni receives the max-
imum priority before i*MaxD time-units - and unless
one of the nodes of the sub-ring declares itself leader
- the maximum priority will be delivered to N0 before
(N-i+1)*MaxD time-units.

Fortunately, this make the sub-specification strong enough
to prove the final property T as well as the iterative refine-
ment steps, yet weak enough to be able to prove the base case
and pass the consistency check.

3.4 Assume/guarantee specifications

To make the hunt for the correct sub-specifications easier, we
will specify S and T in the form of a pair of an assumption
and a guarantee part. The assumption and guarantee equiva-
lents of S are shown in Figs. 16 and 17, respectively.

123



716 A. David et al.

Fig. 14 Third version of Ti

leader[e]!

leader[e]!

leader[e]! send[i][e]?

(exists (j : id_t) S[j] && e<=j) send[i][e]?

x=0, g=e

x=0, g=e

(forall (j:id_t) S[j] imply e>j)

send[i][e]?

send[0][e]!

send[0][e]!

send[0][g]!

send[i][e]?

send[i][e]?

send[0][e]!

e : id_te:id_t

e : id_t

e : id_t

x<=(N−i+1)* MaxD

e:id_t

e:id_t

e:id_t

e != g

e>=i

e>=i

e>=i

(forall (j:id_t) S[j] imply e>j)

e : id_t

e : id_t e : id_t

(exists (j : id_t) S[j] && e<=j)e : id_t

Fig. 15 Final version of Ti ,
which only keeps track of the
timing regarding messages
carrying the maximum priority

send[i][e]?leader[e]!

send[0][e]!

send[0][(N−1)]!

send[i][(N−1)]?

leader[e]!

leader[e]!

e<(N−1)
send[i][e]? send[i][e]? send[0][e]!

send[0][e]!
send[i][(N−1)]?

e : id_te:id_t

e : id_t

e : id_t

x<=(N+1)* MaxD

e:id_t

e:id_t

x<=i*MaxD

e>=i

e>=i

e<(N−1)
e : id_te : id_t

e : id_t

e>=i

x>i*MaxD

leader[e]?

S[e]==0
send[0][e]? send[i][e]!

e:id_t
e>=i

e:id_t e:id_t

Fig. 16 The simple assumption SAi that no input will be sent with
priorities that belong to the set of nodes represented by the sub-specifi-
cation

Fig. 17 The simple guarantee
SGi that no leader output will be
generated

send[0][e]!

send[i][e]?
e:id_t

e:id_t

SAi first and final version:
We will never send any priority to the sub-ring NN || . . .
||Ni with priorities belonging to one of its nodes.

SGi first and final version:
The sub-ring NN || . . . ||Ni will never generate any lea-
der output.

These two very simple TIOAs can be combined into a
contract using the weakening operator >>.

The following two refinements hold (for each i):

refinement: S1 <= (SG1 >> SA1)
refinement: (SG1 >> SA1) <= S1

Thus, we have shown that the S that we have come up with
is identical to the more easily understandable assumption and
guarantee.

The assumption and guarantee equivalents of T are shown
in Figs. 18 and 19, respectively.

T Ai first and final version:
The maximum priority will be delivered to the sub-ring
NN || . . . ||Ni before i ∗ Max D time units.

T Gi first and final version:
The sub-ring NN || . . . ||Ni deliver a message with the
maximum priority to the node 0 before (N +1)∗Max D
time units.
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leader[e]?

send[i][e]!

leader[e]?send[i][(N−1)]!

e<(N−1)

send[0][e]?

send[i][e]!

send[0][e]?

e:id_t

e:id_t

e:id_t

x<=i*MaxD

e>=i

e>=i

e:id_t

e : id_t

e : id_t

Fig. 18 The assumption T Ai that a message with the maximum pri-
ority will be delivered to the sub-specification before i ∗ Max D time
units

send[i][e]?

send[0][e]!

leader[e]!

leader[e]!

e<(N−1)

send[0][(N−1)]!

send[0][e]!

send[i][e]?

e:id_t

e : id_t
e:id_t

x<=(N+1)* MaxD e>=i

e>=i

e : id_t

e : id_t

e : id_t

Fig. 19 The guarantee T Gi the sub-specification will deliver a mes-
sage with the maximum priority within (N + 1) ∗ Max D time units

Similarly as for the other case we can now combine these
two specifications into a contract. For this case only one way
of the refinements hold (for each i):

refinement: (TG1 >> TA1) <= T1

This means that in this case we can conclude that the com-
posed sub-specification T that we have come up with refines

the contract composed from the assumption and guarantee
and thus we can use T when performing the verification and
still rely on the fact the guarantee will hold.

3.5 Performance comparison of analysis methods

To compare the efficiency of regular monolithic and com-
positional verification we timed the verification of the two
properties S and T for several different values of N. All the
verification was performed on the same machine and all ver-
ification instances where allowed a maximum of 5 min to
terminate. The choice of exactly 5 min as the upper bound
is arbitrary and will not effect the shape of the graphs that
we obtain, but only determine the point at which the graphs
stop. The upper bound is needed to be able to run a large
amount of experiments efficiently. The results are listed in
Fig. 20. For both the properties in the monolithic cases, they
took more than 5 min to verify for rings with 7 nodes.

As can be seen from the graph, the compositional
verification method is capable of handling much larger
instances within a reasonable time bound. Besides this,
the compositional method also has a much larger theoret-
ical upper bound. It will only verify one step at a time
and thus will not suffer from lack of available memory
as long as a single step can be handled with the available
memory.

4 Conclusion and further work

Conclusion In this paper, we have presented the complete
specification theory for timed systems underlying the Ecdar

Fig. 20 Timing results of
verification of S and T for the
compositional and monolithic
cases
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tool. Being powered by the game solving engine of the branch
Uppaal-tiga , the Ecdar tool provides support for refine-
ment and consistency checking between specifications as
well as allow for the logical and structural composition. In
particular, as demonstrated in our treatment of the leader
election protocol example, the theory and tool allow for effi-
cient compositional verification of systems by the exploi-
tation of engineer-provided sub-specifications. As such, the
compositional usage of the tool is not fully automated, and
the design of appropriate sub-specifications—strong enough
to entail an overall specification and sufficiently weak to be
entailed themselves—is a major challenge. We believe that
engineers will always be unfamiliar with any new specifica-
tion formalism. However, we believe that engineer-provided
sub-specifications are not only necessary in the development
of realistic systems, but also extremely useful for raising
the overall understanding of the systems. In order for the
method to be applicable in large-scale projects it needs to
be supported by a mature tool that is as intuitive as possi-
ble to use. As demonstrated in the leader election protocol,
tool support is vital in establishing a coherent set of sub-
specifications. The need for programmer generated speci-
fications is in no way unique to our approach and is also
needed in frameworks such as SPEC# [6] in which asser-
tions (invariants) written by the programmer about a C#
program are checked by a range of different analysis tech-
niques.

An important feature of our theory is the existence of a
quotient construct (i.e. weakest property transformer with
respect to parallel composition), which, in particular, allows
for sub-specifications to be obtained from pairs of assump-
tions and guarantees. As demonstrated, this often allow for
substantially simpler specifications of sub-systems.

Performance analysis The specification theory presented and
the tool Ecdar provide support for establishing hard real-
time guaranteed properties from TIOA models. However,
as we will sketch in the following, it is possible to also
derive soft real-time properties in terms of expected behav-
ior from the same TIOA models. E.g. in the extensive treat-
ment of the leader election protocol of Sect. 3, we have
firmly established that the correct leader is guaranteed to
be declared within (N+1)*MaxD time-units, given a ring of
N nodes each implementing the TIOA specification of Fig.
7, i.e. 14 time-units for a ring with 6 nodes. The specifi-
cation theory presented in this paper, assumes that imple-
mentations are concrete executable realizations of specifi-
cations. In particular, implementations are assumed to have
fixed timing behavior, meaning that outputs occur at predict-
able and exact time moments. However, in a richer setting,
the timing behavior of implementations could be stochastic,
with timing delays of components being chosen by distribu-
tions.

Fig. 21 Performance Analysis of the leader election protocol, giving
the probability that the leader will be declared a within T time-units and
b within M messages being send, estimated by Uppaal-smc

In a line of recent work [9,11,12], such a stochastic seman-
tics has been put forward for networks of TIOA, giving a
probability measure on sets of runs. This allows for refined
probabilistic performance properties to be defined and ana-
lyzed, such as the property “the probability of the set of runs
where a leader is declared within 4 time-units is greater than
0.3”, which could be highly interesting for the leader election
protocol. The new Uppaal-smc branch offers a simulation
engine allowing to settle such probabilistic properties within
desired levels of confidence based on a number of random
runs of the system. Assuming that the delay of each node
is given by uniform distribution on the interval [0,MaxD]
Fig. 21a gives the estimated probability, that the leader (node
N2) is declared within T time-units, with T ranging from 0
to 14. Knowing from our previous verification effort that
14 is the guaranteed upper bound, it is interesting to see
that the average time before election is significantly lower,
namely 4.42624 time-units. Using Uppaal-smc , we obtain
[0.38241, 0.402412] as a 95% confidence interval for the
probability of that the leader is elected within 4 time-units
using 18,445 random runs. On the other hand, directly testing
whether this probability is greater than 0.3 with significance
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level 0.05 is confirmed with only 266 runs, using the sequen-
tial testing method implemented in Uppaal-smc .

Extending the model slightly, we may also estimate the
“probability that a leader is declared within a given num-
ber M of messages being send”. Figure 21b gives an esti-
mation of this probability for M ranging from 0 to 50. We
note that on average transmission of some 25 messages is
needed.

Following the sketch above for the leader election proto-
col, we believe that a semantically well-founded extension of
the presented TIOA-based specification theory to allow for
stochastic implementation would be extremely interesting.
In particular, it would enable the refinement of hard real-
time guarantees with soft performance statistics in a consis-
tent manner, and allow for the analysis and development of
mixed-criticality systems.
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