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Abstract A fundamental challenge in the synthesis of reac-
tive systems is the size of the search space: the number of
candidate implementations of a temporal specification is typ-
ically superexponential or even, for distributed system archi-
tectures, infinite. In this article, we introduce the bounded
synthesis approach, which makes it possible to traverse this
immense search space in a structured manner. We fix a bound
on a system parameter, such as the number of states, and limit
the search to those implementations that fall below the bound.
By incrementally expanding the search to larger bounds, we
maintain completeness, while orienting the search towards
the simplest (and often most useful) solutions. The technical
backbone of this solution is a novel translation from for-
mulas of linear-time temporal logic to sequences of safety
tree automata, which are guaranteed to underapproximate
the specification and to eventually become emptiness-equiv-
alent. Bounded synthesis is applicable to the entire range
of synthesis problems, from individual processes to syn-
chronous and asynchronous distributed systems, to systems
with additional design constraints, such as symmetry. We
include experimental results from a SMT-based implementa-
tion, which demonstrate that bounded synthesis solves many
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synthesis problems that were previously considered intrac-
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1 Introduction

Verification and synthesis both provide a formal guaran-
tee that a system is implemented correctly. The difference
between the two approaches is that while verification proves
that a given implementation satisfies the specification, syn-
thesis automatically derives one such implementation. Syn-
thesis, thus, has the obvious advantage that it completely
eliminates the need for manually writing and debugging
code.

The common argument against synthesis is its complex-
ity. Measured in the size of the system specification, given
as a formula of linear-time temporal logic (LTL), e.g., the
synthesis problem is 2EXPTIME-complete, while the model
checking problem is in PSPACE. The comparison is even
less favorable when one is interested in distributed systems.
In verification, one can separately measure the complexity
in the size of the specification and in the size of the system,
and in either case the problem remains in PSPACE. The syn-
thesis problem, however, is already undecidable for simple
distributed architectures. Consider, e.g., the typical 2-pro-
cess arbiter architecture shown in Fig. 1b: the environment
(env) sends requests (r1, r2) for access to a critical resource to
two processes p1 and p2, which react by sending out grants
(g1, g2). As shown by Pnueli and Rosner [21], the synthesis
problem is undecidable for this architecture, because both p1

and p2 have access to information (r1 and r2, respectively)
that is hidden from the other process. For system architec-
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Fig. 1 Distributed
architectures:
a pipeline architecture,
b 2-process arbiter architecture,
c 2-process arbiter architecture
with complete information,
d single-process architecture

(d) (b) (c)

(a)

tures without such information forks [8], like pipeline archi-
tectures (Fig. 1a shows a pipeline of length 3), the synthesis
problem is decidable, but has non-elementary complexity.

But is this comparison between verification and synthesis
fair? The high complexity of synthesis is explained by the
fact that, as pointed out by Rosner [22], a small LTL formula
of size n which refers to m different processes already suf-
fices to specify a system that cannot be implemented with less
than m-exp(n) states. It is questionable, however, if this worst
case situation should be used as an argument that synthesis,
unlike verification, is an intractable problem. From a techni-
cal point of view, synthesis looks worse, because the size of
the implementation is an explicit parameter in the complexity
of verification, and left implicit in the complexity of synthe-
sis; from a practical point of view, it is questionable whether
or not huge implementations should even be considered by
the synthesis algorithm, because they are likely to violate
other design considerations (such as the available memory).

In this article, we introduce the bounded approach to
synthesis, where we focus the search towards simple imple-
mentations, by setting an upper limit on selected sys-
tem parameters—like the size of the implementation—in
advance. Our starting point is the representation of the LTL
specification as a universal co-Büchi tree automaton. We
show that the acceptance of a finite-state transition system
by a universal co-Büchi automaton can be characterized by
the existence of an annotation that maps each pair of a state
of the automaton and a state of the transition system to a nat-
ural number. The advantage of this characterization is that
the acceptance condition can be simplified to a simple safety
condition: we show that the universal co-Büchi automaton
can be translated to an (emptiness-equivalent) deterministic
safety automaton that implicitly builds a valid annotation.

We focus the search towards simple implementations by
bounding the number of rejecting states that appear in a run
of the automaton. For a universal co-Büchi tree automaton
with n states and a bound b, we obtain a universal safety
tree automaton with b · n states that can be determined to a
deterministic safety tree automaton with bn states. The lan-
guage of the resulting safety automaton is a sub-language
of the language of the initial universal co-Büchi automaton,
and becomes emptiness-equivalent to the universal co-Büchi
automaton for sufficiently high bounds. The emptiness of

the safety automaton can then be determined in a simple
two-player game, where player accept represents the system
implementation and wins the game if the (strengthened) spec-
ification is satisfied, while the opponent, player reject, wins
the game if the specification is violated.

The argument that the safety automata are, for a suffi-
ciently large bound, emptiness-equivalent to the universal
co-Büchi automaton relies on the existence of an upper bound
on the maximal size of a minimal implementation [15,18,23,
24]. A natural variation of the problem is to limit the number
of states directly, by setting an a-priori bound, or by incre-
mentally increasing such a bound. Inspired by the success of
bounded model checking [1,2], we show that the bounded
synthesis problem of finding an implementation whose size
is bounded by b can be effectively reduced to a SMT problem.
We define a constraint system that describes the existence of
a valid annotation.

The reduction to SMT has two major advantages: The
first advantage is that, in practice, there are often small solu-
tions, and by first searching for small solutions we can greatly
accelerate the synthesis process. The second advantage is the
flexibility of the approach, which becomes apparent when we
turn to extensions of the synthesis problem. We show that
bounded synthesis can easily be extended to the synthesis
of distributed systems [8,11,21,28], partial designs [8,28],
asynchronous systems [20,26,29], distributed architectures/
partial designs with asynchronous composition [26], and syn-
thesis from component libraries [13].

The reason for this flexibility is in the difference in the
way the incomplete information is represented. If the archi-
tecture consists of more than one process, as in the arbi-
ter architecture of Fig. 1b, then a victory for player accept
only means that the specification can be implemented in the
slightly modified architecture (shown for the arbiter example
in Fig. 1c), where all processes have the same information.
An implementation for the architecture with incompletely
informed processes must additionally satisfy a consistency
requirement: if a process cannot distinguish between two dif-
ferent computation paths, it must react in the same way.

Since the consistency requirement is not a regular
property, it is hard (or even impossible for most archi-
tectures [8,21,26,28]) to encode the requirement in the
standard automata-based approach [8,11,21,26]. In the
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SMT-based approach, on the other hand, this is a sim-
ple task: we add constraints which require that the
resulting implementation is consistent with the limited infor-
mation available to the distributed processes. For this pur-
pose, we introduce a mapping that decomposes the states of
the safety game into the states of the individual processes:
because the reaction of a process only depends on its local
state, the process is forced to give the same reaction whenever
it cannot distinguish between two paths in the safety game.
The satisfiability of the constraint system can be checked
using standard SMT solvers [10,14].

As a result, we obtain an effective algorithm for the syn-
thesis of size-bounded implementations from LTL specifi-
cations in arbitrary distributed architectures. By iteratively
increasing the bound, our construction can also be used as a
semi-decision procedure for the standard (unbounded) syn-
thesis problem.

Related work The synthesis of distributed reactive systems
was pioneered by Pnueli and Rosner [21], who showed
that the synthesis problem is undecidable in general and
has non-elementary complexity for pipeline architectures.
An automata-based synthesis algorithm for pipeline and
ring architectures is due to Kupferman and Vardi [11];
Walukiewicz and Mohalik provided an alternative game-
based construction [30]. We showed that the synthesis
problem is decidable if, and only if, the architecture does
not contain an information fork [8]. Madhusudan and Thi-
agarajan [16] consider the special case of local speci-
fications (each property refers only to the variables of
a single process). Among the class of acyclic architec-
tures (without broadcast) this synthesis problem is decid-
able for exactly the doubly flanked pipelines. Castellan-
i et al. [3] consider transition systems as the specifica-
tion language: an implementation is correct if the product
of the processes is bisimilar to the specification. In this
case, the synthesis problem is decidable independently of
the architecture.

The extension to asynchronous distributed systems has
been discussed in [17,26]. The general result is that synthe-
sis in asynchronous systems becomes undecidable as soon as
we try to synthesize two or more components [26], the auto-
mated construction of distributed asynchronous controllers
remains decidable if severe restrictions are imposed on the
languages [17].

Our translation of LTL formulas to safety tree automata
is based on Kupferman and Vardi’s Safraless decision
procedures [12]. We use their idea of avoiding Safra’s
determinization using universal co-Büchi automata. Our
construction improves on [12] in that it produces determinis-
tic safety automata instead of non-deterministic Büchi auto-
mata. The resulting safety automata are also smaller than
the Büchi automata from their construction. Since the orig-

inal publication of the bounded synthesis approach in the
preliminary version of this article [27], there have been
several successful implementations based on bounded syn-
thesis, notably the antichain-based Acacia [7] and the BDD-
based Unbeast [5,6].

2 The synthesis problem

The synthesis problem is to decide whether or not there exists
an implementation that satisfies a given specification. In the
following, we formalize this problem statement using LTL
as the specification language, and labeled transition systems
as the representation of implementations.

2.1 Specifications

We use LTL [19] as the specification logic.

Syntax Let Π be a set of atomic propositions. The syntax of
LTL over a finite set V of atomic propositions defined by the
following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕ U ϕ,

where p ∈ Π is an atomic proposition.
As additional abbreviations, we will also use the Even-

tually operator  and the Globally operator �, which are
defined as follows:

ϕ ≡ true U ϕ,
ϕ ≡ ¬(¬ϕ).

Semantics LTL formulas are interpreted over infinite words.
For an infinite word σ ∈ ω → 2Π and a natural number
i ∈ ω, the semantics of an LTL formula is defined as fol-
lows:

– for atomic propositions p ∈ Π ,

– σ, i |� p :⇔ p ∈ σ(i)
– for the boolean connectives, where ϕ and ψ are LTL for-

mulas,

– σ, i |� ¬ϕ :⇔ σ, i �|� ϕ, and
– σ, i |� ϕ ∨ ψ :⇔ σ, i |� ϕ or σ, i |� ψ ;

– for the temporal path operators, where ϕ and ψ are LTL
formulas,

– σ, i |� ϕ :⇔ σ, i + 1 |� ϕ, and
– σ, i |� ϕ U ψ :⇔ ∃n ≥ i. σ, n |� ψ and

∀m ∈ {i, . . . , n − 1}. σ,m |� ϕ.

A sequence σ ∈ ω → 2Π is a model of an LTL formula ϕ,
denoted by σ |� ϕ, if, and only if, σ, 0 |� ϕ.
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Fig. 2 Example of a labeled transition system with directions Υ =
2{r1,r2} and labels Σ = 2{r1,r2,g1,g2}. Each state t is depicted with
its label o(t). The transition function is chosen so that the transi-
tion system is input-enabled, i.e., τ(t0, r1r2) = t4, τ (t0, r1r2) = t5,

etc. The transition system satisfies the specification ψ = �(r1 →
g1) ∧ �(r2 →g2) ∧ �¬(g1 ∧ g2) in the arbiter synthesis exam-
ple ({r1, r2}, {g1, g2},∅, ψ)

2.2 Implementations

For a given finite set Υ of directions and a finite set Σ
of labels, a Σ-labeled Υ -transition system is a tuple T =
(T, t0, τ, o), consisting of a set of states T , an initial state
t0 ∈ T , a transition function τ : T ×Υ → T , and a labeling
function o : T → Σ . T is a finite-state transition system if,
and only if, T is finite.

We are interested in 2Π -labeled 2I -transition systems,
which describe implementations for a given setΠ of atomic
propositions that is partitioned into a set I of boolean input
variables and a set O of boolean output variables.

A 2Π -labeled 2I -transition system (T, t0, τ, o) satisfies an
LTL formula ϕ if, for all sequences μ : ω → T that start
in the initial state μ(0) = t0 and adhere to the successor
relation, i.e., ∀i ∈ ω ∃υ ∈ Υ. μ(i + 1) = τ

(
μ(i), υ

)
, the

sequence σμ : i �→ o
(
μ(i)

)
is a model of ϕ.

We assume that the initial input is some fixed set i0 ⊆ I .
We call a 2Π -labeled 2I -transition system input preserving
if the label of each state accurately reflects the last input,
i.e., if, for all states t ∈ T and inputs i ⊆ I , it holds that
o(τ (t, i))∩ I = i , and for the initial state t0, we additionally
have that o(t0) ∩ I = i0.

2.3 The synthesis problem

The synthesis problem is given as a tuple (I, O, i0, ϕ), where
I is a set of boolean input variables, O is a set of boolean
output variables, i0 ⊆ I is the fixed initial input, and ϕ is an
LTL formula over the setΠ = I ∪̇O of atomic propositions.

We say that the specification ϕ is (finite-state) realizable
if there exists an input preserving 2Π -labeled 2I -transition
system that satisfies ϕ. The synthesis problem is to decide
whether or not ϕ is realizable.

Example We consider the synthesis of a simple arbiter,
which receives requests from two clients, represented by
two input variables I = {r1, r2}, and responds by assigning

grants, represented by two output variables O = {g1, g2}.
We specify that each request should eventually be followed
by a grant, and that the two grants should never be assigned
simultaneously:

ψ = (r1 →g1) ∧ (r2 →g2) ∧ �¬(g1 ∧ g2).

We assume that initially there are no requests: i0 = ∅. In
the synthesis problem (I, O, i0, ψ), the specification ψ is
realizable. Figure 2 shows a {r1, r2, g1, g2}-labeled {r1, r2}-
transition system that satisfies ϕ by alternating between set-
ting g1 to true and g2 to false, denoted by g1g2, and setting
g1 to false and g2 to true. The transition system has a total
of eight states, corresponding to the two output assignments
g1g2 and g1g2 for each of the four possible input assignments
r1r2, r1r2, r1r2, and r1r2.

3 Bounded synthesis

We now introduce the bounded synthesis approach. After
reviewing some basic terminology from automata theory in
the following subsection, we define an annotation function
for transition systems that maps each state to a bounded
domain, such that the existence of a valid annotation implies
the satisfaction of the specification. In Sect. 3.3, we show
that, for every transition system that satisfies the specifica-
tion, there exists a bound and a valid annotation function. In
Sect. 3.4, we show how annotations can be used to reduce
the synthesis problem to a simple emptiness check on safety
automata.

3.1 Preliminaries: tree automata

An alternating parity tree automaton is a tuple A =
(Σ,Υ, Q, q0, δ, α), where Σ denotes a finite set of labels,
Υ denotes a finite set of directions, Q denotes a finite set of
states, q0 ∈ Q denotes a designated initial state, δ denotes
a transition function, and α : Q → C ⊂ N is a coloring
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function. The transition function δ : Q ×Σ → B
+(Q ×Υ )

maps a state and an input letter to a positive boolean com-
bination of atoms that are pairs of states and directions (i.e.,
δ(q, σ ) is a formula built from elements of Q ×Υ , conjunc-
tion ∧, disjunction ∨, true, and false).

In our setting, the automaton runs onΣ-labeled Υ -transi-
tion systems. The acceptance mechanism is defined in terms
of run graphs.

A run graph of an automaton A = (Σ,Υ, Q, q0, δ, α) on
a Σ-labeled Υ -transition system T = (T, t0, τ, o) is a min-
imal directed graph G = (G, E) that satisfies the following
constraints:

– The vertices G ⊆ Q × T form a subset of the product of
Q and T .

– The pair of initial states (q0, t0) ∈ G is a vertex of G.
– For each vertex (q, t) ∈ G, the set {(q ′, υ) ∈ Q × Υ |

((q, t), (q ′, τ (t, υ))) ∈ E} satisfies δ(q, o(t)).

A run graph is accepting if every infinite path g0g1g2 . . . ∈
Gω in the run graph satisfies the parity condition, which
requires that the highest number occurring infinitely often in
the sequence α0α1α2 ∈ N with αi = α(qi ) and gi = (qi , ti )
is even. A transition system is accepted if it has an accepting
run graph.

The set of transition systems accepted by an automaton A
is called its language L(A). An automaton is empty if, and
only if, its language is empty.

The acceptance of a transition system can also be viewed
as the outcome of a game, where player accept chooses, for
a pair (q, t) ∈ Q × T , a set of atoms satisfying δ(q, o(t)),
and player reject chooses one of these atoms, which is exe-
cuted. The transition system is accepted if, and only if, player
accept has a strategy enforcing a path that satisfies the parity
condition.

A non-deterministic automaton is a special alternating
automaton, where the image of δ consists only of such for-
mulas that, when rewritten in disjunctive normal form, con-
tain in every disjunct at most one element of Q × {υ} for
each υ ∈ Υ . The emptiness of a non-deterministic automa-
ton can be checked with a variation of the acceptance game
called the emptiness game, where, in each step, player accept
additionally chooses the label from Σ . A non-deterministic
automaton is empty if the emptiness game is won by player
reject.

An alternating automaton is called universal if, for all
states q and input letters σ, δ(q, σ ) does not contain disjunc-
tions. In an abuse of notation, we also denote, in this case, by
δ(q, σ ) the set of conjuncts. A universal and non-determin-
istic automaton is called deterministic.

A parity automaton is called a Büchi automaton if the
image of α is contained in {1, 2}, a co-Büchi automaton if
the image of α is contained in {0, 1}, and a safety automaton

if the image of α is {0}. Büchi and co-Büchi automata are
denoted by (Σ,Υ, Q, q0, δ, F), where F ⊆ Q denotes the
states with the higher color. In a Büchi automaton, we call
the states in F accepting, in a co-Büchi automaton reject-
ing. Safety automata are denoted by (Σ,Υ, Q, q0, δ). A run
graph of a Büchi automaton is, thus, accepting if, on every
infinite path, there are infinitely many visits to F ; a run graph
of a co-Büchi automaton is accepting if, on every path, there
are only finitely many visits to F . For safety automata, every
run graph is accepting.

3.2 Annotated transition systems

We now introduce an annotation function for labeled tran-
sition systems. Our starting point is a representation of the
specification as a universal co-Büchi automaton. Since the
automaton is universal, every transition system in the lan-
guage of the automaton has a unique run graph. The annota-
tion assigns to each pair (q, t) of a state q of the automaton
and a state t of the transition system either a natural number
or a blank sign. The natural number indicates the maximal
number of rejecting states that occur on some path to (q, t) in
the run graph. Transition systems for which there is an anno-
tation that assigns only natural numbers to the vertices of the
run graph, thus, have an upper bound on the number of visits
to the rejecting states. We call such annotations valid. The
transition systems with valid annotations are exactly those
that are accepted by the automaton.

Universal co-Büchi automata We translate a given LTL
specificationϕ into an equivalent universal co-Büchi automa-
ton Uϕ . This can be done with a single exponential blow-up by
first negating ϕ, then translating ¬ϕ into an equivalent non-
deterministic Büchi word automaton, and then constructing
a universal co-Büchi automaton that simulates the Büchi
automaton along each path: if each path is co-Büchi accepting
(i.e., it violates the Büchi condition), then the specification
ϕ must hold along every path.

Theorem 1 [12] Given an LTL formula ϕ, we can construct
a universal co-Büchi automaton Uϕ with 2O(|ϕ|) states that
accepts a transition system T if, and only if, T satisfies ϕ.

Example Figure 3 shows a universal co-Büchi automaton for
the specification ψ = (r1 →g1) ∧ �(r2 →g2) ∧
�¬(g1 ∧ g2) of the simple arbiter from Sect. 2.3.

Annotations An annotation of a transition system T =
(T, t0, τ, o) on a universal co-Büchi automaton U = (Σ,Υ,

Q, δ, F) is a function λ : Q × T → {_} ∪ N. We call
an annotation c-bounded if its mapping is contained in
{_} ∪ {0, . . . , c}, and bounded if it is c-bounded for some
c ∈ N. An annotation is valid if it satisfies the following
conditions:
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Fig. 3 Specification of a simple arbiter, represented as a universal
co-Büchi automaton. The states depicted as double circles (2 and 3)
are the rejecting states in F

– the pair (q0, t0) of initial states is annotated with a natural
number (λ(q0, t0) �= _), and

– if a pair (q, t) is annotated with a natural number
(λ(q, t) = n �= _) and (q ′, υ) ∈ δ(q, o(t)) is an atom of
the conjunction δ(q, o(t)), then (q ′, τ (t, υ)) is annotated
with a greater number, which needs to be strictly greater
if q ′ ∈ F is rejecting. That is, λ(q ′, τ (t, υ)) �q ′ n where
�q ′ is > for q ′ ∈ F and ≥ otherwise.

Theorem 2 A finite-state Σ-labeled Υ -transition system
T = (T, t0, τ, o) is accepted by a universal co-Büchi autom-
aton U = (Σ,Υ, Q, δ, F) if, and only if, it has a valid
(|T | · |F |)-bounded annotation.

Proof Since U is universal, U has a unique run graph G =
(G, E) on T . Since T and U are finite, G is finite, too.

If G contains a lasso with a rejecting state in its loop,
i.e., a path (q0, t0)(q1, t1) . . . (qn, tn) = (q ′

0, t ′0) and a
path (q ′

0, t ′0)(q ′
1, t ′1) . . . (q ′

m, t ′m) = (q ′
0, t ′0) such that q ′

i is
rejecting for some i ∈ {1, . . . ,m}, then, by induction,
any valid annotation λ satisfies λ(q j , t j ) ∈ N for all
j ∈ {0, . . . , n}, λ(q ′

j , t ′j ) ∈ N for all j ∈ {0, . . . ,m},
λ(q ′

j−1, t ′j−1) ≤ λ(q ′
j , t ′j ) for all j ∈ {1, . . . ,m}, and

λ(q ′
i−1, t ′i−1) < λ(q ′

i , t ′i ).
If, on the other hand, G does not contain a lasso with a

rejecting state in its loop, we can easily infer a valid (|T |·|F |)-
bounded annotation by assigning to each vertex (q, t) ∈ G
of the run graph the highest number of rejecting states occur-
ring on some path (q0, t0)(q1, t1) . . . (q, t), and by assigning
_ to every pair of states (q, t) /∈ G not in G. ��

3.3 Estimating the bound

Theorem 2 shows that the existence of a transition system
with a valid annotation is a sufficient condition for the real-
izability of the specification. We now show that it is also a
necessary condition, i.e., there exists a bound c such that a
transition system with a valid c-bounded annotation exists
if the specification is realizable. If the specification is realiz-
able, then there exists an implementation of minimal size. We

compute the bound c by estimating the size of such minimal
implementations.

Theorem 3 [18,24] Given a universal co-Büchi automaton
U with n states, we can construct an equivalent deterministic
parity automaton P with n!2 states and 2n colors.

A solution to the synthesis problem is required to be input
preserving, i.e., in every state, the label must accurately
reflect the input. Input preservation can be checked with a
deterministic safety automaton DI , whose states are formed
by the possible inputs I = 2Oenv . In every state i ∈ I,DI
checks if the label agrees with the input i , and sends the suc-
cessor state i ′ ∈ I into the direction i ′. If U accepts an input-
preserving transition system, then we can construct a finite
input-preserving transition system, which is accepted by U ,
by evaluating the emptiness game of the product automaton
of P and DI . The minimal size of such an input-preserving
transition system can be estimated by the size of P and I.

Corollary 1 If a universal co-Büchi automaton U with n
states and m rejecting states accepts an input-preserving
transition system, then U accepts a finite input-preserving
transition system T with n!2 · |I| states, where I = 2Oenv . T
has a valid m · n!2 · |I|-bounded annotation for U .

3.4 Bounded synthesis

Using the annotation function, we can reduce the synthesis
problem to a simple emptiness check on safety automata.
The following theorem shows that there is a deterministic
safety automaton that, for a given parameter value c, accepts
a transition system if, and only if, it has a valid c-bounded
annotation. This leads to the following synthesis procedure:

Given a specification, represented as a universal co-Büchi
automaton U = (Σ,Υ, Q, q0, δ, F), we construct a sequence
of safety automata that check for valid bounded annotations
up to the bound c = |F | · b, where b is either the prede-
fined bound bA on the size of the transition system, or the
sufficient bound n!2 · |I| from Corollary 1. If the intersec-
tion of DI with one of these automata is non-empty, then the
specification is realizable; if the intersection with the safety
automaton for the largest parameter value c is empty, then the
specification is unrealizable. The emptiness of the automata
can be checked by solving their emptiness games.

Theorem 4 Given a universal co-Büchi automaton U =
(Σ,Υ, Q, q0, δ, F), we can construct a family of determin-
istic safety automata {Dc = (Σ,Υ, Sc, s0, δc) | c ∈ N} such
that Dc accepts a transition system if, and only if, it has a
valid c-bounded annotation.

Construction We choose the functions from Q to the union
of N and a blank sign (S = Q → {_} ∪ N) as the state space
of a deterministic safety automaton D = (Σ,Υ, S, s0, δ∞).
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Each state of D indicates how many times a rejecting state
may have been visited in some trace of the run graph that
passes the current position in the transition system. The ini-
tial state of D maps the initial state of U to 0 (s0(q0) = 0)
and all other states of U to blank (∀q ∈ Q �{q0}. s0(q) = _).

We compute the update of a mapping s after reading let-
ter σ with the help of an auxiliary function δ+∞(s, σ ), which
records, for all directions υ and successor states q ′, the new
number of visits to rejecting states. We define δ+∞(s, σ ) =
{((q ′, s(q)+ f (q)), υ) | q, q ′ ∈ Q, s(q) �= _, and (q ′, υ) ∈
δ(q, σ )}, where f (q) = 1 for all q ∈ F and f (q) = 0 for
all q /∈ F .

The transition function δ∞ is defined as follows:
δ∞(s, σ ) = ∧

υ∈Υ (sυ, υ) with sυ(q) = max{n ∈ N |
((q, n), υ) ∈ δ+∞(s, σ )}, where max{∅} = _. The family
of safety automata Dc is formed by restricting the states of
D to Sc = Q → {_} ∪ {0, . . . , c}.
Proof Let λ be a valid c-bounded annotation of T =
(T, t0, τ, o) for U , and let λt denote the function with
λt (q) = λ(q, t). For two functions s, s′ : Q → {_} ∪ N,
we write s ≤ s′ if s(q) ≤ s′(q) holds for all q ∈ Q, where
_ is the minimal element (_ < n for all n ∈ N). We show by
induction that Dc has a run graph G = (G, E) for T , such
that s ≤ λt holds for all vertices (s, t) ∈ G of the run graph.
For the induction basis, s0 ≤ λt0 holds by definition. For the
induction step, let (s, t) ∈ G be a vertex of G. By induction
hypothesis, we have s ≤ λt . With the definition of δ+∞ and
the validity of λ, we can conclude that ((q ′, n), υ) ∈
δ+∞(s, o(t)) implies n ≤ λτ(t,υ)(q ′), which immediately
implies s′ ≤ λt ′ for all successors (s′, t ′) of (s, t) in G.

Let now G = (G, E) be an accepting run graph of Dc

for T , and let λ(q, t) = max{s(q) | (s, t) ∈ G}. Then
λ is obviously a c-bounded annotation. For the validity of
λ, λ(q0, t0) ∈ N holds since s0(q0) ∈ N is a natural num-
ber and (s0, t0) ∈ G is a vertex of G. Also, if a pair (q, t)
is annotated with a natural number λ(q, t) = n �= _,
then there is a vertex (s, t) ∈ G with s(q) = n. If now
(q ′, υ) ∈ δ(q, o(t)) is an atom of the conjunction δ(q, o(t)),
then ((q ′, n + f (q ′)), υ) ∈ δ+∞(s, o(t)) holds, and the υ-suc-
cessor (s′, τ (t, υ)) of (s, t) satisfies s′(q ′)�q ′ n. The validity
of λ now follows with λ(q ′, τ (t, υ) ≥ s′(q ′). ��
Remark Since U may accept transition systems where the
number of rejecting states occurring on a path is unbounded,
the union of the languages of all Dc is, in general, a strict
subset of the language of U . Every finite-state transition sys-
tem in the language of U , however, is accepted by almost
all Dc.

Example Consider again the universal co-Büchi automaton
shown in Fig. 3, which corresponds to the arbiter specifica-
tion from Sect. 2.3. The emptiness game for D1 intersected
with DI is depicted in Fig. 4.

4 Synthesis of systems with bounded size

A natural variation of the synthesis problem is to only con-
sider implementations whose size satisfies a given limit on
the number of states. As discussed in Sect. 3.3, a limit on the
number of states immediately provides a bound for bounded
synthesis.

We present a constraint-based approach for the synthe-
sis of systems with bounded size. Based on an appropriate
encoding of transition systems and annotations, we use a
SMT solver to find both the input-preserving transition sys-
tem and a valid annotation. We represent the (unknown) tran-
sition system and its annotation by uninterpreted functions.
The existence of a valid annotation is, thus, reduced to the sat-
isfiability of a constraint system in first-order logic modulo
finite integer arithmetic. The advantage of this representation
is that the size of the constraint system is small (bilinear in
the size of U and the number of directions). Furthermore, the
additional constraints needed for distributed and asynchro-
nous synthesis, which will be defined in Sects. 5 and 6, have
a compact representation as well (logarithmic in the number
of directions of the individual processes).

Remark Integer arithmetic is useful for explaining the algo-
rithm, but we do not need to build on integer arithmetic:
the essential property is to guarantee the absence of cycles
that contain a rejecting state. But to prove this absence, any
ordered set (finite or not) suffices for the labels. Finiteness,
in turn, is only used to restrict the size of the system. An effi-
cient implementation will, therefore, build on theories with
more efficient algorithms, such as real arithmetic.

The constraint system specifies the existence of a finite
input-preserving 2V -labeled 2Oenv -transition system T =
(T, t0, τ, o) that is accepted by the universal co-Büchi autom-
aton Uϕ = (Σ,Υ, Q, q0, δ, F) and has a valid annotation λ.

To encode the transition function τ , we introduce a unary
function symbol τυ for every output υ ⊆ Oenv of the environ-
ment. Intuitively, τυ maps a state t of the transition system
T to its υ-successor τυ(t) = τ(t, υ).

To encode the labeling function o, we introduce a unary
predicate symbol a for every variable a ∈ V . Intuitively, a
maps a state t of the transition system T to true if, and only
if, it is part of the label o(t) � a of T in t .

To encode the annotation, we introduce, for each state q
of the universal co-Büchi automaton U , a unary predicate
symbol λB

q and a unary function symbol λ#
q . Intuitively, λB

q
maps a state t of the transition system T to true if, and only
if, λ(q, t) is a natural number, and λ#

q maps a state t of the
transition system T to λ(q, t) if λ(q, t) is a natural number
and is unconstrained if λ(q, t) = _.

We can now formalize that the annotation of the transi-
tion system is valid by the following first-order constraints
(modulo finite integer arithmetic):
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Fig. 4 Example of a safety game. The figure shows the emptiness game
for the intersection of D1 and DI in the arbiter example (Fig. 3). Circles
denote game positions for player accept, rectangles denote game posi-
tions for player reject. Game positions that are not completely expanded

(i.e., that have more successors if the parameter is increased) are dashed.
The starting position specifies r1r2 as the (arbitrarily chosen) root direc-
tion. Player accept wins the game by avoiding the move to (0, 1, 1)

∀t. λB
q (t) ∧ (q ′, υ)∈δ(q,−→a (t)) → λB

q ′(τυ(t)) ∧
λ#

q ′(τυ(t)) �q ′ λ#
q(t), where −→a (t) represents the label o(t),

(q ′, υ)∈δ(q,−→a (t)) represents the corresponding proposi-
tional formula, and �q ′ stands for �q ′ ≡> if q ′ ∈ F and
�q ′ ≡≥ otherwise. Additionally, we require λB

q0
(0), i.e., we

require the pair of initial states to be labeled by a natural
number (without loss of generality t0 = 0).

To guarantee that the resulting transition system is input-
preserving, we add, for each a ∈ Oenv and each υ ⊆

Oenv, a constraint ∀t. a(τυ(t)) if a ∈ υ, and a constraint
∀t.¬a(τυ(t)) if a /∈ υ. Additionally, we require that the
initial state is labeled with the root direction.

As an obvious implication of Theorem 2, this constraint
system is satisfiable if, and only if, U accepts a finite input-
preserving transition system.

Theorem 5 The constraint system inferred from the specifi-
cation is satisfiable modulo a theory with order if, and only
if, the specification is finite-state realizable.
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Lemma 1 For a specification represented as a universal co-
Büchi automaton U = (2V , 2Oenv , Q, q0, δ, F), the inferred
constraint system has size O(|δ| · |V | + |Oenv| · |2Oenv |).

The main parameter of the constraint system is the bound
bA on the size of the transition system TA. If we use bA to
unravel the constraint system completely (i.e., if we resolve
the universal quantification explicitly), the size of the result-
ing constraint system is linear in bA.

Theorem 6 For a specification, represented as a univer-
sal co-Büchi automaton U = (2V , 2Oenv , Q, q0, δ, F), and
a given bound bA on the size of the transition system TA,
the unraveled constraint system has size O(bA · (|δ|·|V | +
|Oenv|·|2Oenv |)). It is satisfiable if, and only if, the spec-
ification is realizable in the fully informed architecture
({env, p}, V, {Ip = Oenv}, {Oenv, Op = V � Oenv}) with
respect to bound bA.

Example Figure 5 shows the constraint system, resulting
from the specification of an arbiter by the universal co-Büchi
automaton depicted in Fig. 3.

The first constraint represents the requirement that the
resulting transition system must be input preserving, the sec-
ond requirement represents the initialization (where ¬r1(0)∧
¬r2(0) represents an arbitrarily chosen root direction), and
the requirements 3 through 8 each encode one transition of
the universal automaton of Fig. 3. Following the notation of
Fig. 3, r1 and r2 represent the requests and g1 and g2 represent
the grants.

5 Synthesizing distributed systems

We now generalize the synthesis problem to the case of dis-
tributed systems, where we synthesize several independent
processes that must cooperate to guarantee that the specifi-
cation is satisfied.

5.1 The distributed synthesis problem

Given a system architecture A and an LTL formula ϕ, the dis-
tributed synthesis problem is to decide whether or not there
is an implementation for each system process in A, such that
the composition of the implementations satisfies ϕ.

Architectures An architecture A is a tuple (P, env, V, I,
O), where P is a set of processes consisting of a desig-
nated environment process env ∈ P and a set of system
processes P− = P � {env}. V is a set of boolean sys-
tem variables (which also serve as atomic propositions),
I = {Ip ⊆ V | p ∈ P−} assigns a set Ip of input variables to
each system process p ∈ P−, and O = {Op ⊆ V | p ∈ P}
assigns a set Op of output variables to each process p ∈ P
such that

⋃
p∈P Op = V . While the same variable v ∈ V

may occur in multiple sets in I to indicate broadcasting, the
sets in O are assumed to be pairwise disjoint. If Oenv ⊆ Ip

for every system process p ∈ P−, we say the architecture
is fully informed. Since every process in a fully informed
architecture has enough information to simulate every other
process, we can assume without loss of generality that a fully
informed architecture contains only a single system process

Fig. 5 Example of a constraint system for synthesis. The figure shows the constraint system for the arbiter example (Fig. 3)
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p, and that the input variables of p are the output variables
of the environment process Ip = Oenv.
Distributed implementations Each system process p ∈ P−
is implemented as a 2Op -labeled 2Ip -transition system Tp =
(Tp, tp, τp, op). The environment process is unconstrained
except for the initial input, which we again assume to be
given as a fixed set i0 ⊆ I .

Let P− = {p1, p2, . . . , pk}. The composition of the pro-
cess implementations is the 2V -labeled 2Oenv -transition sys-
tem TA = (T, t0, τ, o) defined as follows: the set T =
Tp1 × Tp2 × . . . × Tpk × 2Oenv of states is formed by the
product of the states of the process transition systems and
the possible values of the output variables of the environ-
ment. The initial state t0 = (tp1, tp2 , . . . , tpk , e0) is the tuple
consisting of the initial states of the process transition sys-
tems and the initial environment output e0. The labeling
function o labels each state with the union of the labels
of the process transition systems and the environment out-
put: o(sp1 , sp2 , . . . , spk , e) = op1(sp1) ∪ op2(sp2) ∪ . . . ∪
opk (spk ) ∪ e. The transition function updates, for each sys-
tem process p, the Tp part of the state in accordance with the
transition function τp, using the visible part of the state label
as input, and updates the 2Oenv part of the state with the output
of the environment process: τ((sp1, sp2 , . . . , spk , e), e′) =
(τp1(sp1, l ∩ Ip1), τp2(sp2 , l ∩ Ip2), . . . , τp1(spk , l ∩ Ipk ), e′),
where l = o(sp1 , sp2 , . . . , spk , e).

Synthesis of distributed systems with bounded size We intro-
duce bounds on the size of the process implementations and
on the size of the composition. Given an architecture A =
(P, V, I, O), a specification ϕ is realizable with respect to
a family of bounds {bp ∈ N | p ∈ P−} on the size of the
system processes and a bound bA ∈ N on the size of the
composition TA, if there exists a family of implementations
{Tp | p ∈ P−}, where, for each process p ∈ P−, Tp has at
most bp states, such that the composition TA satisfies ϕ and
has at most bA states.

5.2 Synthesizing distributed systems

To solve the distributed synthesis problem for a given archi-
tecture A = (P, V, I, O), we need to find a family of (finite-
state) transition systems {Tp = (Tp, t p

0 , τp, op) | p ∈ P−}
such that their composition to TA satisfies the specification.
The constraint system developed in the previous section can
be adapted to distributed synthesis by explicitly decompos-
ing the global state space of the combined transition system
TA: we introduce a unary function symbol dp for each pro-
cess p ∈ P−, which, intuitively, maps a state t ∈ TA of the
product state space to its p-component tp ∈ Tp.

The value of an output variable a ∈ Op may only depend
on the state of the process transition system Tp . We, therefore,
replace every occurrence of a(t) in the constraint system of

the previous section by a(dp(t)). Additionally, we require
that every process p acts consistently on any two histories
that it cannot distinguish. The update of the state of Tp may,
thus, only depend on the state of Tp and the input visible to
p. This is formalized by the following constraints:

1. ∀t. dp(τυ(t)) = dp(τυ ′(t)) for all decisions υ, υ ′ ⊆
Oenv of the environment that are indistinguishable for
p (i.e., υ ∩ Ip = υ ′ ∩ Ip).

2. ∀t, u. dp(t) = dp(u) ∧ ∧
a∈Ip�Oenv

(
a(dpa (t)) ↔

a(dpa (u))
) → dp(τυ(t)) = dp(τυ(u)) for all decisions

υ ⊆ Oenv ∩ Ip (picking one representative for each
class of environment decisions that p can distinguish).
pa ∈ P− denotes the process controlling the output
variable a ∈ Opa .

Since the combined transition system TA is finite-state, the
satisfiability of this constraint system modulo finite integer
arithmetic (or any other theory with order) is equivalent to
the distributed synthesis problem.

Theorem 7 The constraint system inferred from the spec-
ification, represented as the universal co-Büchi automaton
U , and the architecture A are satisfiable modulo theories
with order iff the specification is finite-state realizable in the
architecture A.

The constraint system for distributed synthesis is quite
small:

Lemma 2 For a specification, represented as a universal
co-Büchi automaton U = (2V , 2Oenv , Q, q0, δ, F), and an
architecture A, the inferred constraint system for distributed
synthesis has size O(|δ|·|V |+|Oenv|·|2Oenv |+∑

p∈P− |Ip �

Oenv|).
The main parameters of the constraint system for distrib-

uted synthesis are the bound bA on the size of the transi-
tion system TA and the family {bp | p ∈ P−} of bounds
on the process transition systems {Tp | p ∈ P−}. If we use
these parameters to unravel the constraint system completely
(i.e., if we resolve the universal quantification explicitly), the
resulting transition system is linear in bA, and quadratic in bp .

Theorem 8 For a given specification, represented as a uni-
versal co-Büchi automaton U = (2V , 2Oenv , Q, q0, δ, F),
an architecture A = (P, V, I, O), a bound bA on the size
of the input-preserving transition system TA, and a family
{bp | p ∈ P−} of bounds on the process transition systems
{Tp | p ∈ P−}, the unraveled constraint system has size
O(bA ·(|δ|·|V |+|Oenv|·|2Oenv |)+∑

p∈P− bp
2 ·|Ip �Oenv|)).

It is satisfiable if, and only if, the specification is realizable
in A with respect to the bounds bA and {bp | p ∈ P−}.
Example As an example for the reduction of the distributed
synthesis problem to a constraint system, we consider the
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Fig. 6 Example of a constraint system for distributed synthesis. The figure shows modifications and extensions to the constraint system from Fig. 5
for the arbiter example (Fig. 3) to implement the arbiter in the distributed architecture shown in Fig. 1b

problem of finding a distributed implementation to the arbi-
ter specified by the universal automaton of Fig. 3 in the archi-
tecture of Fig. 1b. The functions d1 and d2 are the mappings
to the processes p1 and p2, which receive requests r1 and r2

and provide grants g1 and g2, respectively. Figure 6 shows
the resulting constraint system. Constraints 1–3, 5, and 6 are
the same as in the fully informed case (Fig. 5). The consis-
tency constraints 9–11 guarantee that processes p1 and p2

display the same behavior on all input histories they cannot
distinguish.

6 Synthesis of asynchronous systems

The distributed synthesis problem discussed in the previ-
ous section becomes even harder if the processes are com-
posed asynchronously: synthesis for asynchronous systems
[20,26,29] is undecidable for all architectures that contain
more than one black-box process [26].

In asynchronously composed systems, not all processes
are scheduled at the same time. A simple way to model
this is to explicitly introduce a scheduler that can activate or
disable processes (including the environment) in every turn.
To guarantee that the implementation works for all possible
schedulings, we consider the scheduler as part of the environ-
ment.1 In addition to being able to change the input variables

1 The distinction between scheduler and environment in [26] is moti-
vated by the use of branching-time logics. For linear-time logics (and
universal specifications in general), the distinction is unnecessary as
discussed in [26].

(whenever the environment process is scheduled), the envi-
ronment can now also disable any and all processes, includ-
ing itself. When the environment is not scheduled, its output
decisions stay the same. When a system process p ∈ P− is
not scheduled, its state—and, as a result, its output—stays
the same.

The set of environment outputs, thus, grows to

Oenv = (
2V ∪̇{env}) × 2P− ∪̇ 2P−

,

and the asynchronously composed system is a 2V -labeled
Oenv-transition system.2

Bounded synthesis can be extended to the asynchronous
setting by introducing a restriction on the local transition sys-
tems that requires that, whenever a process p is not scheduled,
the local state of p does not change: we add the constraint

∀t.∀υ �� p. dp(t) = dp
(
τυ(t)

)

for every processes p ∈ P−. Likewise, we have to add a
constraint that the transition of the process only depends on
its current state and the input it sees. For simplicity, we depict
the local transition function of a process p, τ p, as a function
from its state and the input it sees to its successor,

∀t.∀υ � p. dp(τυ(t)) = dp
(
τ p;−→v (t)),

where −→v (t) is the vector of assignments to input variables
to p.

2 If fairness constraints are added to the system, it might become neces-
sary (or, at least, useful) to keeping track of the set of enabled processes.
In this case, we would consider 2P∪̇V -labeled Oenv-transition systems.
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The parameters and arguments from the previous section
remain essentially unchanged modulo the increased number
of environment outputs:

Theorem 9 For a specification, represented as a universal
co-Büchi automaton U = (2V , 2Oenv , Q, q0, δ, F), and an
architecture A = (P, V, I, O), the inferred constraint sys-
tem for asynchronous synthesis has size O(|δ| · |V |+ |Oenv| ·
|Oenv| + ∑

p∈P− |Ip � Oenv|).
For a bound bA on the size of the input-preserving tran-

sition system TA and a family {bp | p ∈ P−} of bounds on
the process transition systems {Tp | p ∈ P−}, the unraveled
constraint system has size O(bA ·(|δ| · |V |+|Oenv| · |Oenv|)+∑

p∈P− bp
2 · |Ip � Oenv|)). It is satisfiable if, and only if, the

specification is bounded realizable in A for the bounds bA

and {bp | p ∈ P−}.
In our concurrency model, we allow an arbitrary number

of processes to be scheduled, which results in a large number
of environment outputs. In practice, it is usually appropriate
to restrict Oenv to a subset of these cases. If, e.g., we assume
that there is always exactly one process scheduled, then the
number of outputs merely increases by |P−|.
Example As an example for the reduction of the
asynchronous synthesis problem to SMT, we could con-
sider the problem of finding an implementation of the arbi-
ter for the specification ψ = (r1 → g1) ∧ (r2 →
g2) ∧ ¬(g1 ∧ g2) of the simple arbiter from Sect. 2.3
an the monolithic architecture of Fig. 1d. However, such
an arbiter would be unrealizable in an asynchronous setting
without fairness (consider the case where the arbiter is never
scheduled). We, therefore, use an adjusted specification with
the fairness constraint that the arbiter is scheduled infinitely
many times, ψ f = (a) → ψ . Figure 7 shows a univer-
sal co-Büchi automaton forψ f . Figure 8 shows the resulting
constraint system.

Fig. 7 Specification of an arbiter that is composed asynchronously
with its environment. The specification includes a fairness requirement
that excludes paths, on which the arbiter is scheduled only finitely many
times, where a and a represent the situation where the arbiter was and
was not scheduled, respectively

7 Additional design constraints

A key advantage of the constraint-based synthesis approach
is that it is easy to add additional design constraints. In this
section, we give several examples of such extensions.

A common situation in the synthesis of distributed systems
is that a subset of the processes has a fixed implementation.
For example, some processes may represent legacy compo-
nents, or their implementation may be provided by someone
else. Partially fixing an implementation can also be used as
a manual step to simplify the synthesis problem, removing
some of the non-determinism. This extension of the synthe-
sis problem has been introduced as the concept of partial
designs in [8], where the components that are known and
fixed are called white-box components, while the processes
with unknown implementations are called black-box.

A similar variation of the problem occurs when the pro-
cesses are not be fixed, but restricted to come from some
component library. As a final design constraint we consider
the restriction to symmetric solutions. Systems that are built
from identical processes are easier to build and maintain;
symmetry is, therefore, often an important design goal, e.g.,
in VLSI designs. Additionally, the restriction to symmetric
solutions may simplify the synthesis problem. When synthe-
sizing an arbiter tree, e.g., the search will be much faster if
we look for an implementation of a single component in the
tree and then apply it to all components.

7.1 Partial designs

To extend the methods proposed in Sects. 4, 5, and 6 to the
setting with white-box processes, we add constraints of the
form

∀t. dp(t) = s → dp(τv(t)) = s′,

for all states s of the given implementation of a white-box
process p, where s′ is the v-successor of s. Additionally, we
add constraints of the form a(s) or ¬a(s) that fix the value
of each output variable a ∈ Op that belongs to the process;
finally, the initial state of the white-box process is set to the
global state 0 with the constraint

dp(0) = 0.

7.2 Symmetry constraints

When designing a system, we are often aware that several of
its components are similar. A simple example for this is an
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Fig. 8 Example of a constraint
system for asynchronous
synthesis. The figure shows the
constraint system for the arbiter
example (Fig. 7). Variables env
and a are used to reflect whether
or not the environment and the
arbiter were scheduled,
respectively

arbiter tree: an arbiter for 2n requests is composed of similar
2n −1 arbiters components as shown in the illustration below.

Similarities between processes, as they appear in an arbi-
ter tree, can be introduced as design constraints. We refer
to such design constraints as symmetry constraints, as they
impose symmetries between different components.

The requirements on the level of symmetry can vary: in
the arbiter example, it would be reasonable to require that
the processes start in the same initial state, follow the same
transitions, and produce the same output in the same states.
Beside this strong notion of symmetry, we can consider a
weak version, where the transitions are expected to be identi-
cal, but the initial states and/or the output function may vary.

Weak symmetry is useful as a ‘hint’ to the synthesis algo-
rithm that the solution is expected to exhibit some level of
similarity, without restricting the search to symmetric solu-
tions only.

To encode weak symmetry, we modify the constraints
from Sect. 5 that describe a correct distribution as follows:

∀t, u.∀υ, υ ′ ⊆ Oenv with −→o (t)∪̇υ ∼p
−→o (t)∪̇υ ′.

dp(t) = dp(u) → d
(
τυ(t)

) = d
(
τυ ′(u)

)
,

where −→o (t) denotes the valuation of the processes’ output
variables O � Oenv and ∼p is an abbreviation for ‘results in
indistinguishable inputs to p’.

To extend this to inter-component constraints, we can
introduce a similar restriction ∼q

p that abbreviates ‘the input
left input looks to p like the input on the right to q’, and
impose the additional restrictions

∀t, u.∀υ, υ ′ ⊆ Oenv with −→o (t)∪̇υ ∼q
p

−→o (t)∪̇υ ′.
dp(t) = dq(u) → d

(
τυ(t)

) = d
(
τυ ′(u)

)
.

When imposing the additional symmetry constraint that
the processes share a single output function, we replace
occurrences of oq

(
dq(.)

)
by op

(
dq(.)

)
, and to force the
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Fig. 9 Example of a constraint system for distributed synthesis. The
figure shows modifications and extensions to the constraint system from
Fig. 6 for the arbiter example (Fig. 3) in order to implement the arbiter
in the distributed architecture shown in Fig. 1b. The constraints 10 and
11 can be dropped

processes to start in the same initial state, we add the con-
straint

dp(0) = dq(0).

The extension to symmetry between subsets of the pro-
cesses is straightforward. However, if there are multiple sim-
ilar processes, it is typically more efficient to encode the local
transition function explicitly instead of implicitly, i.e., to
describe the transition function directly (cf. [9]), as opposed
to the implicit restrictions discussed in the previous sections.

To encode the transition function τp, we introduce an
|Ip| + 1-ary function symbol τp, where the first argument is
the state and the remaining arguments are the boolean input
variables presented in a predefined order. To simplify nota-
tion, we use a function inputp that takes the current values
of the system output O � Oenv and the direction υ and orders
their subset Ip in a predefined way (while dropping the rest).
This leads to the constraint

∀t. dp
(
τυ(t)

) = τp
(
dp(t); inputp(

−→o (t), υ))

for every black-box process p.
If we use explicit instead of implicit constraints, the con-

straint system from Fig. 6 changes as shown in Fig. 9.
Imposing similarity on the structure of the transition sys-

tem then reduces to replacing τq by τp. In the example, this
leads to changing requirement 9b to

9. (b) ∀t. d2(τr1r2(t)) = d2(τr1r2(t)) = τ1
(
d2(t);�,

g1(d1(t))
) ∧ d2(τr1r2(t)) = d2(τr1r2(t)) =

τ1
(
d2(t);⊥, g1(d1(t))

)
.

Similarly, an equivalent output function can be imposed
by replacing every occurrence of g2 by g1.

7.3 Component libraries

The design constraint that the implementations of certain
processes must be chosen from a library can be added in a
similar manner: the implementations available in the library
can simply be modeled as a single white-box process with
multiple initial states. Let init be the set of names for the ini-
tial states. We generalize the constraint that fixes the initial

state in a partial design to the disjunction over this set:

∨

i∈init

dp(0) = i.

A particular form of synthesis from component libraries
has been studied in [13], where it is assumed that the deter-
ministic components are provided as a finite library, and we
synthesize a composer component that decides on certain exit
points in the computation which of the components should
be active. Similar to the case of asynchronous synthesis dis-
cussed in Sect. 6, the composer component is unaware of the
full history and decides based on the history of exit points.

The components in the library can be represented as
Σ-labeled Υ -transition systems that have designated exit
states in addition to the designated initial state. For simplic-
ity, we use numbers Nn = {0, 1, . . . , n − 1} to identify the
respective exit of each component. The components can then,
as in the case of distributed synthesis discussed in Sect. 5,
be modeled as a single white-box process with a designated
set init of initial states and pairwise disjoint sets exiti of exit
states with numbers i ∈ Nn , whose union is denoted by exit.

We introduce a mapping s that maps global states to the
state of the joint transition system that indicates the active
component and its current state and a mapping c that maps
global states to the state of the composer component.

The constraints can then be formalized as follows:

1. ∀u.
∨

i∈init c(u) = i , which requires that c always maps
to the initial state of some component,

2. s(0) = c(0), which requires that we start in an initial
state, and

3. λB
q0
(0) to complete the initialization,

4. ∀t. s(t) /∈ exit → ∧
υ∈Υ c(τυ(t)) = c(t),

5. ∀t. s(t) /∈ exit → ∧
υ∈Υ s(τυ(t)) = τ(s(t), υ),

6. ∀t∀i ∈ Nm . s(t) ∈ exiti → ∧
υ∈Υ c(τυ(t)) = τ c

i (c(t)),
and

7. ∀t∀i ∈ Nm . s(t) ∈ exiti → ∧
υ∈Υ s(τυ(t)) =

c(τ c
i (c(t))) for the dynamics of the system, where τ c

i
represents the i th direction of the transition of the com-
poser, τ is the transition function from the joint transition
system that represents all components in the library, and
the τυ describe the global transition function.

Compliance with the specifying universal co-Büchi
automaton can then be encoded as follows:

∀t. λB
q (t)→

∧

(q ′,υ)∈δ(q,o(s(t)))
λB

q ′(τυ(t))∧λ#
q ′(τυ(t)) �q ′ λ#

q(t),

where �q ′ again stands for �q ′ ≡> if q ′ ∈ F and �q ′ ≡≥
otherwise.
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8 Optimizations

We now discuss several optimizations to the bounded syn-
thesis techniques described in the previous sections.

8.1 Edge acceptance conditions

The number of states in the universal automaton can be
reduced by up to 50% by switching from the state accep-
tance condition to an edge acceptance condition.

A universal co-Büchi tree automaton with edge accep-
tance is a tuple A = (Σ,Υ, Q, Q0, E, F), whereΣ denotes
a finite set of labels, Υ denotes a finite set of directions, Q
denotes a finite set of states, Q0 ⊆ Q denotes a designated
set of initial states, E ⊆ Q ×Σ × ({⊥} ∪ Q × Υ ) denotes
a set of transitions, and F ⊆ T is a set of rejecting transi-
tions.

In our setting, the automaton runs on Σ-labeled Υ -tran-
sition systems. The acceptance mechanism is again defined
in terms of run graphs.

A run graph of an automaton A = (Σ,Υ, Q, Q0, E, F)
on a Σ-labeled Υ -transition system T = (T, t0, τ, o) is
a minimal directed graph G = (G, D) with vertices G
and edges D such that the following conditions are satis-
fied:

– The vertices G ⊆ Q × T form a subset of the product of
Q and T .

– For all initial states q ∈ Q0 of A, the pair (q0, t0) of q
and the initial state t0 of T , is a vertex of G.

– For each vertex (q, t) ∈ G, (q, o(t),⊥) /∈ E is not a
transition of A.3

– For each vertex g = (q, t) ∈ G of the run and
each edge

(
q, o(t), (q ′, υ)

) ∈ E of the automaton,
g′ = (

q ′, τ (t, υ)
) ∈ G is a vertex of the run and

e = (g, g′) ∈ D) is an edge of the run. We call this
edge rejecting if

(
q, o(t), (q ′, υ)

) ∈ F is rejecting.

A run graph is accepting if every infinite path g0g1g2 . . . ∈
Gω contains only finitely many rejecting edges, and a
transition system is accepted if it has an accepting run
graph.

It is simple to translate universal co-Büchi automata with
state acceptance into universal co-Büchi automata with edge
acceptance and vice versa. To translate an automaton with
state acceptance into an equivalent automaton with edge
acceptance, we set Q0 = {q0} and include a transition into
the set of final transitions iff the target is a final state. To
translate an automaton with edge acceptance into an autom-
aton with state acceptance, we apply the following two steps:

3 This constraint mimics the immediate reaction of an alternating
automaton for δ(q, σ ) = ⊥.

Fig. 10 Example of a universal co-Büchi automaton with edge accep-
tance. The automaton is equivalent to the arbiter specification as a co-
Büchi automaton with state acceptance in Fig. 7. Rejecting edges are
depicted with double lines

In the first step, we replace each state q by a final copy (q, f )
and a non-final copy (q, n) of q state. The transition function
is the same for both copies:

– δ
(
(q, f ), σ

) = δ
(
(q, n), σ

) = false if (q, σ,⊥) ∈ T
and

– δ
(
(q, f ), σ

) = δ
(
(q, n), σ

) =∧

(q,σ,(q ′,υ))∈F

(
(q ′, f ), υ

) ∧ ∧

(q,σ,(q ′,υ))∈T �F

(
(q ′, n), υ

)

otherwise.

In the second step, we reduce the initial states to a sin-
gleton set, using a fresh initial state q0 and adding, for all
q ∈ Q0, σ ∈ Σ , and t ∈ {⊥} ∪ (Q × Υ ), a transition
(q0, σ, t) if (q, σ, t) ∈ T is a transition. Since the new tran-
sitions will be traversed at most once, they do not need to
considered for the set of rejecting transitions.

Example Figure 10 shows a universal co-Büchi automaton
with edge acceptance that is equivalent to the automaton with
state acceptance from Fig. 3.

8.2 Reduced annotations

We can obviously eliminate annotations corresponding to
output variables if the variables do not occur in the specifica-
tion. Beyond that, we can reduce the annotation of the tran-
sition system based on the internal structure of the universal
co-Büchi automaton. Almost all rejecting edges in a run refer
to a single strongly connected component in directed graph
(Q, {(q, q ′) | (

q, σ, (q, υ)
) ∈ T ). We can, therefore, limit

the annotation functionλ# corresponding to the edge to SCCs
that actually contain the edge.

8.3 Input elimination

Analogously to the elimination of output variables, we can
eliminate input variables if they are irrelevant for the spec-
ification. Eliminating input variables is particularly helpful,
because it reduces the branching degree of the transition
system.
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Fig. 11 Example of a
constraint system for the
synthesis of an asynchronous
arbiter. The constraint system is
a simplified version of the
system from Fig. 8. The
constraints are obtained from the
universal automaton with edge
acceptance from Fig. 10. The
annotation function λ#

1 and the
variable env, which reflects the
scheduling of the environment,
have been eliminated

In asynchronous systems, it is often possible to eliminate
the variables that reflect whether or not a process was sched-
uled. If the specification does not refer to the scheduling
of a system process (in particular, if there is no fairness
constraint), then we can assume that the process is never
scheduled, without affecting the realizability of the speci-
fication. Likewise, if the specification does not refer to the
scheduling of the environment, we can assume that the envi-
ronment is always scheduled.

Example The arbiter specification given as the universal
automaton in Fig. 10 leads to the simplified constraint system
shown in Fig. 11. The annotation function λ#

1 and the variable
env, which reflects the scheduling of the environment, have
been eliminated.

8.4 Semantic variations

In our semantic model, we view the interaction of an envi-
ronment with the system as a sequence of environment and
system outputs. There are two natural ways to couple these
outputs to pairs: the system output could be coupled to the
previous or to the next environment output.

While neither of these choices is more natural than the
other, the choice can have a significant impact on the size
of the transition system, and, hence, on the effort required
for synthesis. Our definition in Sect. 2 couples the system
output to the previous environment output. In input-preserv-
ing transition systems, the previous output is stored in the
state. If, instead, we couple the system output to the subse-
quent environment output, we can map different environment
decisions to the same successor states. The resulting models

can, therefore, be much more concise: preserving n bits of
input requires 2n different successor states.

9 Experimental results

Our experimental results are based on the SMT solver
Yices [4] version 1.0.9 on a 2.6 Ghz Opteron system. Among
other theories, Yices efficiently solves constraints with unin-
terpreted function symbols. Yices has only incomplete sup-
port for quantifiers, and was in fact unable to determine the
satisfiability of our quantified formulas. We, therefore, elim-
inated the quantifiers in a preprocessing step, in which uni-
versal quantifiers are replaced by explicit conjunctions.

9.1 Single-process arbiter

The first benchmark is the single-process arbiter introduced
in Sect. 2.3. The arbiter can be implemented as a transi-
tion system with eight states, as illustrated in Fig. 2. Table 1
shows the time and memory consumption of Yices solving
the constraints from Fig. 5 with the quantifiers unraveled for
different upper bounds on the number of states. A correct
implementation with eight states is found in 8 s.

Figure 12 shows a universal co-Büchi automaton with
edge acceptance for an extended version of the arbiter spec-
ification. We now require that, once a grant is given, it is
not retracted until there is no longer a request. The extended
specification allows for implementations with a minimum of
only five states.
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Table 1 Experimental results from the synthesis of a single-process arbiter using the specification from Fig. 3

Bound 4 5 6 7 8 9

Result Unsatisfiable Unsatisfiable Unsatisfiable Unsatisfiable Satisfiable Satisfiable

# Decisions 3,957 13,329 23,881 68,628 72,655 72,655

# Conflicts 209 724 1,998 15,859 4,478 4,478

# Boolean variables 1,011 2,486 4,169 9,904 5,214 5,214

Memory (MB) 16.9102 18.1133 20.168 27.4141 26.4375 26.4414

Time (s) 0.05 0.28 1.53 35.99 7.53 7.31

The table shows the time and memory consumption of Yices 1.0.9 when solving the SMT problem from Fig. 5, with all quantifiers replaced by
explicit conjunctions for different bounds on the number of states in the transition system

Fig. 12 Extended specification of an arbiter, represented as a universal
co-Büchi automaton with edge acceptance

As shown in Table 2, Yices determines the satisfiability of
the constraint system much faster (less than 1 s), even though
the universal automaton has more states.

9.2 Distributed arbiter

For the synthesis of a distributed arbiter with two processes,
the quantifiers in the constraint system from Fig. 9 were
unraveled for different bounds on the size of the global transi-
tion system, and also with additional bounds on the size of the
processes. As shown in Table 3, a correct solution with eight
global states is found in 78 s if the number of process states
is left unconstrained; restricting the process states explicitly
to 2 (the additional bound is shown in parentheses) leads to
an slows down the synthesis by a factor of two (138 s).

9.3 Symmetric distributed arbiter

Table 4 shows experimental data from the synthesis of a
weakly symmetric distributed arbiter with two processes. A
correct solution with eight global states is found by Yices in
71 s.

The performance for the extended arbiter specification
from Fig. 12 is shown in Table 5. Yices needs only half
a minute to construct a correct distributed implementation.
The table also shows that borderline cases like the unsuccess-
ful search for an implementation with eight states, but only
two local states, can become very expensive; in the example,
Yices needed more than 1.5 h to determine unsatisfiability,
while correct implementations with eight states and three or
four local states are found in approximately 30 s.

9.4 Asynchronous arbiter

Table 6 shows experimental results for the synthesis of an
asynchronous arbiter based on the specification from Fig. 13,
using optimization techniques from Sect. 8. A correct imple-
mentation is found in about 8.5 h.

9.5 Dining philosophers

Table 7 shows the time and memory consumption for syn-
thesizing a strategy for the dining philosophers to satisfy the
specification shown in Fig. 14. In the dining philosophers

Table 2 Experimental results from the synthesis of a single-process arbiter using the specification from Fig. 12

Bound 4 5 6 7 8

Result Unsatisfiable Satisfiable Satisfiable Satisfiable Satisfiable

# Decisions 17,566 30,011 52,140 123,932 161,570

# Conflicts 458 800 1,375 2,614 3,987

# Boolean variables 1,850 2,854 3,734 5,406 6,319

Memory (MB) 18.3008 20.0586 22.5781 27.5000 35.7148

Time (s) 0.21 0.63 1.72 5.15 12.38

The table shows the time and memory consumption of Yices 1.0.9 when solving the resulting SMT problem, with all quantifiers replaced by explicit
conjunctions for different bounds on the number of states in the transition system
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Table 3 Experimental results from the synthesis of a two-process arbiter using the specification from Fig. 3 and the architecture from Fig. 1b

Bound 4 5 6 7

Result Unsatisfiable Unsatisfiable Unsatisfiable Unsatisfiable

# Decisions 4,994 22,302 40,567 300,641

# Conflicts 253 1,206 5,376 122,863

# Boolean variables 1,393 3,274 5,793 11,427

Memory (MB) 17.6289 19.9336 22.9102 40.543

Time (s) 0.08 0.72 6.58 359.84

Bound 8 9 8 (1) 8 (2)

Result Satisfiable Satisfiable Unsatisfiable Satisfiable

# Decisions 254,465 365,158 171,117 157,829

# Conflicts 34,565 47,739 84,016 64,139

# Boolean variables 11,414 9,055 12,403 6,733

Memory (MB) 42.957 61.8477 32.1641 37.3242

Time (s) 77.95 213.6 114.88 137.89

The table shows the time and memory consumption of Yices 1.0.9 when solving the SMT problem from Fig. 6, with all quantifiers replaced by
explicit conjunctions for different bounds on the number of states in the global transition system and on the number of states in the individual
processes (shown in parentheses)

Table 4 Experimental results from the synthesis of a weakly symmetric two-process arbiter using the specification from Fig. 3 and the architecture
from Fig. 1b

Bound 4 5 6 7

Result Unsatisfiable Unsatisfiable Unsatisfiable Unsatisfiable

# Decisions 6,041 15,008 35,977 89,766

# Conflicts 236 929 2,954 30,454

# Boolean variables 1,269 2,944 5,793 9,194

Memory (MB) 17.0469 18.4766 22.1992 33.1211

Time (s) 0.06 0.35 3.3 120.56

Bound 8 9 8 (1) 8 (2)

Result Satisfiable Satisfiable Unsatisfiable Satisfiable

# Decisions 197,150 154,315 178,350 71,074

# Conflicts 33,496 24,607 96,961 18,263

# Boolean variables 7,766 8,533 12,403 6,382

Memory (MB) 37.4297 36.2734 39.4922 29.1992

Time (s) 70.97 58.43 200.07 36.38

The table shows the time and memory consumption of Yices 1.0.9 when solving the SMT problem from Fig. 6, with all quantifiers replaced by
explicit conjunctions for different bounds on the number of states in the global transition system and on the number of states in the individual
processes (shown in parentheses)

benchmark, the size of the specification grows linearly with
the number of philosophers; for 10,000 philosophers this
results in systems of hundreds of thousands constraints. In
spite of the large size of the resulting constraint system,
the synthesis problem remains tractable; Yices solves all
resulting constraint systems within a few hours, and within
a minutes for small constraint systems with up to 1,000
philosophers.

10 Conclusions

Despite its obvious advantages, synthesis has been less pop-
ular than verification. While the complexity of verification
is determined by the size of the implementation under anal-
ysis, standard synthesis algorithms [8,11,21,26,30] suffer
from the daunting complexity determined by the theoreti-
cal upper bound on the smallest implementation, which, as
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Table 5 Experimental results from the synthesis of a weakly symmetric two-process arbiter using the specification from Fig. 12 and the architecture
from Fig. 1b

Bound 4 5 6 7 8 9

Result Unsat Unsat Unsat Unsat Sat Sat

# Decisions 16,725 47,600 91,480 216,129 204,062 344,244

# Conflicts 326 1,422 8,310 61,010 11,478 16,347

# Boolean variables 1,890 7,788 5,793 13,028 8,330 10,665

Memory (MB) 18.0273 22.2109 28.5312 43.8594 42.2344 61.9727

Time (s) 0.16 1.72 14.84 208.78 32.47 72.97

Bound 8 (1) 8 (2) 8 (3) 8 (4)

Result Unsat Unsat Sat Sat

# Decisions 309,700 1,122,755 167,397 208,255

# Conflicts 92,712 775,573 13,086 13,153

# Boolean variables 15,395 25,340 8,240 7,806

Memory (MB) 54.1641 120.0160 42.1484 42.7188

Time (s) 263.44 5537.68 31.12 30.36

The table shows the time and memory consumption of Yices 1.0.9 when solving the resulting SMT problem, with all quantifiers replaced by explicit
conjunctions for different bounds on the number of states in the global transition system and on the number of states in the individual processes
(shown in parentheses)

Table 6 Experimental results from the synthesis of an asynchronous arbiter

Bound 6 7 8 9 10 11–15 16

Result Unsatisfiable Unsatisfiable Unsatisfiable Unsatisfiable Unsatisfiable No result Satisfiable

# Decisions 51,865 58,976 219,396 736,917 3,387,162 – 6,543,861

# Conflicts 2,027 3,093 23,338 282,704 2,240,601 – 3,704,294

# Boolean variables 3,671 4,810 9,755 40,693 66,887 – 51,456

Memory (MB) 20.3164 21.1328 30.8516 117.016 230.406 – 269.246

Time (s) 0.91 1.64 59.63 5,217.76 68,656.6 – 28,186.6

The table shows the time and memory consumption of Yices 1.0.9 for the specification shown in Fig. 11. For 11–15 states, no result was obtained
within 24 h

Fig. 13 Extended specification of an asynchronous arbiter, represented
as a universal co-Büchi automaton with edge acceptance

shown by Rosner [22], increases by an extra exponent with
each additional process for pipeline architecture in a synchro-
nous setting. For general architectures, the situation is even
worse: the realizability problem is undecidable for most dis-
tributed architectures in the synchronous setting [8,22] and
all distributed architectures in the asynchronous setting [26],

simply because there is no upper bound on the size of a min-
imal distributed implementation.

A bound on the size, however, is a practical design con-
straint, because, in reality, the size of an implementable
program is limited. Also, the size of an implementation is
a measure of its simplicity and quality. Bounded synthesis
makes this design constraint explicit, by emphasizing the
complexity of the synthesized implementation (the output)
rather than the size of the specification (the input). The effect
of moving from input to output complexity is astonishing:
the problem is transformed from a technically very difficult
and mostly undecidable problem, which is non-elementary
even in the decidable fragment [8,22], into a problem in the
tame class NP.

Once the complexity is measured in the output, the playing
field between verification and synthesis, thus, appears much
more leveled and, indeed, our experimental results give hope
that many synthesis problems that were previously consid-
ered intractable can in fact be solved efficiently.
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Table 7 Experimental results from the synthesis of a strategy for the dining philosophers using the specification from Fig. 14

# phil. 3 states 4 states 6 states

Time (s) Memory (MB) Result Time (s) Memory (MB) Result Time (s) Memory (MB) Result

125 1.52 23.2695 Unsat 23.84 36.2305 Unsat 236.5 87.7852 Sat

250 5.41 29.2695 Unsat 130.07 52.0859 Sat 141.36 91.1328 Sat

375 22.81 38.9727 Unsat 128.83 58.1992 Unsat 890.58 154.355 Sat

500 17.98 39.9297 Unsat 15.84 52.9336 Sat 237.04 119.309 Sat

625 35.57 49.5586 Unsat 417.05 94.7188 Unsat 486.5 130.977 Sat

750 22.25 52.3359 Unsat 20.85 69.1562 Sat 82.63 99.707 Sat

875 51.98 56.0859 Unsat 628.84 119.363 Unsat 2,546.88 255.965 Sat

1,000 168.17 70.3906 Unsat 734.74 117.703 Sat 46.18 124.691 Sat

1,125 67.14 70.1133 Unsat 1,555.18 165.922 Unsat 1,854.77 246.848 Sat

1,250 165.59 76.2227 Unsat 122.8 107.645 Sat 596.8 203.012 Sat

1,375 104.27 75.4531 Unsat 3,518.85 191.113 Unsat 8,486.18 490.566 Sat

1,500 187.25 82.8867 Unsat 85.52 129.215 Sat 232.81 214.68 Sat

1,625 85.83 88.8047 Unsat 2,651.82 246.734 Unsat 1,437.45 281.203 Sat

1,750 169.93 97.543 Unsat 107.14 126.477 Sat 257.77 185.887 Sat

1,875 174.03 105.25 Unsat 3,629.18 234.527 Unsat 4,641.03 405.781 Sat

2,000 25.86 102.125 Unsat 242.55 157.734 Sat 811.78 269.375 Sat

2,125 163.39 113.27 Unsat 5,932.24 315.711 Unsat 6,465.75 424.121 Sat

2,250 412.37 115.438 Unsat 523.87 162.391 Sat 5,034.83 456.316 Sat

2,375 201.95 120.047 Unsat 7,311.03 313.168 Unsat 4,887.76 451.332 Sat

2,500 375.29 135.535 Unsat 235.17 202.59 Sat 319.78 253.781 Sat

2,625 544.03 135.379 Unsat 6,560.53 312.355 Unsat 23,990.5 808.633 Sat

2,750 559.35 139.137 Unsat 817.41 226.082 Sat 632.28 349.992 Sat

2,875 308.36 151.727 Unsat 7,273.89 299.016 Unsat 8,638.96 551.5 Sat

3,000 666.18 155.57 Unsat 533.23 228.961 Sat 3,158.26 493.617 Sat

3,125 235.52 141.93 Unsat 12,596.6 377.328 Unsat 10,819.7 693.133 Sat

3,250 869.53 153.633 Unsat 2,089.72 308.719 Sat 21,298.8 889.285 Sat

3,375 260.88 145.918 Unsat 11,581.7 379.949 Unsat 21,560 741.09 Sat

3,500 308.23 169.348 Unsat 897.6 270.676 Sat 829.52 398.008 Sat

5,000 982.68 240.273 Unsat 3,603.7 421.832 Sat 1,357.48 582.457 Sat

7,000 2,351.87 313.277 Unsat 7,069.55 535.98 Sat 6,438.73 1,081.68 Sat

10,000 4,338.83 448.648 Unsat 4,224.28 761.008 Sat 10,504.6 1121.58 Sat

The table shows the time and memory consumption of Yices 1.0.9 when solving the resulting SMT problem, with all quantifiers replaced by explicit
conjunctions for different bounds on the number of states in the transition system

Fig. 14 Specification of a dining philosopher problem with n philos-
ophers. The environment can cause the philosophers to become hungry
(by setting h to true). The states depicted as double circles (1 through
n) are the rejecting states in F ; state i refers to the situation where phi-
losopher i is hungry and starving (si ). A fail state is reached when two
adjacent philosophers try to reach for their common chopstick; the fail
state refers to the resulting eternal philosophical quarrel that keeps the
affected philosophers from eating
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