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Abstract In the game-theoretic approach to the synthe-
sis of reactive systems, specifications are often expressed
as ω-regular languages. Computing a winning strategy to
an infinite game whose winning condition is an ω-regular
language is then the main step in obtaining an implemen-
tation. Conjoining all the properties of a specification to
obtain a monolithic game suffers from the doubly exponential
determinization that is required. Despite the success of sym-
bolic algorithms, the monolithic approach is not practical.
Existing techniques achieve efficiency by imposing restric-
tions on the ω-regular languages they deal with. In contrast,
we present an approach that achieves improvement in perfor-
mance through the decomposition of the problem while still
accepting the full set ofω-regular languages. Each property is
translated into a deterministicω-regular automaton explicitly
while the two-player game defined by the collection of auto-
mata is played symbolically. Safety and persistence proper-
ties usually make up the majority of a specification. We take
advantage of this by solving the game incrementally. Each
safety and persistence property is used to gradually construct
the parity game. Optimizations are applied after each refine-
ment of the graph. This process produces a compact symbolic
encoding of the parity game. We then compose the remain-
ing properties and solve one final game after possibly solving
smaller games to further optimize the graph. An implementa-
tion is finally derived from the winning strategies computed.
We compare the results of our tool to those of the synthesis
tool Anzu.
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1 Introduction

The game-theoretic approach to the synthesis of reactive sys-
tems is the focus of renewed attention, thanks to the signif-
icant algorithmic advances of the last few years. While the
doubly exponential bound established in Pnueli and Rosner’s
[37] seminal paper suggests that challenges to scalability will
persist, there is increasing hope that synthesis algorithms may
be applied to the design and diagnosis of intricate, safety-crit-
ical protocols.

In the game-theoretic approach to synthesis, the specifica-
tion of a reactive system is converted into a two-player game.
One player represents the environment to which the system
must react; the other player represents the system itself. The
game is a finite graph and a play is an infinite sequence of ver-
tices. A winning strategy for the system player—if it exists—
yields an implementation of the specification.

A system’s intended behavior is often described by sev-
eral simple properties, each given as either a formula in lin-
ear temporal logic (LTL) or as an ω-regular automaton. In a
naive approach, all formulae and automata are reduced to one
deterministic automaton, whose transition structure provides
the parity game and whose acceptance condition is taken as
the winning condition. This approach suffers from the high
cost of determinization [25,38], which is prohibitive for even
moderate-sized automata.

Several remedies have been proposed, ranging from
restricting specifications to a subset of ω-regular proper-
ties that allows one to use algorithms more efficient than
the general ones [36]1 to avoiding determinization through

1 Synthesis of reactive (1) specifications is converted to a Streett (1)
game.
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alternate constructions [11,12,17,22,24]. In [42], we have
presented an approach based on deriving a deterministic
parity automaton for each property in the specification, thus
avoiding in most cases the application of the expensive de-
terminization procedure to large automata. The price to be
paid is the switch from the solution of a parity game [20]
to that of a more complex conjunctive generalized parity
game—one equipped with multiple parity winning condi-
tions that must be simultaneously satisfied [8]. In [42], we
argued that this trade-off is advantageous because the most
expensive operation—namely, the solution of the game—can
be done symbolically, that is, by an algorithm that manipu-
lates characteristic functions of sets rather than their mem-
bers. (Determinization, on the other hand, is carried out by
an explicit enumeration algorithm.)

Since the number of components of a conjunctive gen-
eralized parity winning condition sharply affects the time
required to solve the game, one may conjoin some prop-
erties before translating them to deterministic automata as
long as no blow up occurs. The choice of the properties to
be merged is, however, heuristic. In contrast, in this paper
we propose a two-stage approach to improve the solution of
the generalized parity game. We prove that safety and per-
sistence properties can be dealt with before the rest of the
properties without affecting the algorithm’s completeness.
Safety and persistence properties make up the bulk of most
specifications of reactive system. Their presence allows us
to improve the worst-case runtime of the game solving algo-
rithm and leads to significant time savings.

The rest of this paper is organized as follows. Section 2
recalls the notions onω automata, temporal logic, and games
that are relevant to this paper. Sections 3 and 4 describe
the two-stage algorithm and our implementation. Section 5
discusses related work. Section 6 presents our experimental
results and Sect. 7 concludes.

2 Automata, logic and games

2.1 Automata and logic

A finite automaton on ω-words 〈�, Q, qin, δ, α〉 (an
ω-automaton) is defined by a finite alphabet�, a finite set of
states Q, an initial state qin ∈ Q, a transition function δ : Q×
�→ 2Q that maps a state and an input letter to a set of possi-
ble successors, and an acceptance condition α that describes
a subset of Qω, that is, a set of infinite sequences of states. A
deterministic automaton is such that δ(q, σ ) is a singleton for
all states q ∈ Q and all letters σ ∈ �. A run of automaton M
on ω-word w = w0w1 . . . is a sequence q0, q1, . . . such that
q0 = qin, and for i ≥ 0, qi+1 ∈ δ(qi , wi ). A run is accepting
iff (if and only if) it belongs to the set described by α, and a
word is accepted iff it has an accepting run in M . The subset
of �ω accepted by M is the language of M .

Several types of acceptance conditions α are in use. We
are concerned with Büchi [7], and parity [10,31] acceptance
conditions. Both conditions are about the set of states inf(ρ)
that occur infinitely often in a run ρ. A run ρ is accepting for
a Büchi acceptance condition F ⊆ Q iff inf(ρ) ∩ F 	= ∅. A
parity acceptance condition assigns a priority to each state
of the automaton. Letting [k] = {i | 0 ≤ i < k}, a parity
condition of index k is a function π : Q → [k]. A run ρ
is accepting iff max{π(q) | q ∈ inf(ρ)} is odd; that is, iff
the highest recurring priority is odd [8,9,19]. A determinis-
tic parity automaton is of minimum index if there is no other
such automaton for the same language with an acceptance
condition of lower index. In the rest of the paper, the parity
automata are assumed to be of minimum index [9].

Büchi and parity acceptance conditions may be general-
ized. A generalized Büchi condition consists of a collection
F ⊆ 2Q of Büchi conditions. A run ρ is accepting for a
generalized Büchi condition iff it is accepting according to
each F ∈ F . A generalized parity condition may be either
conjunctive or disjunctive and is given as a collection 	 of
priority functions. A run ρ is accepting according to a con-
junctive (disjunctive) condition	 iff it is accepting according
to each (some) π ∈ 	. Disjunctive and conjunctive general-
ized parity conditions are dual: if one of the two players has
a winning condition of one type, the opponent has a winning
condition of the other type.

An ω-automaton equipped with a Büchi acceptance con-
dition is called a Büchi automaton; likewise for the other
acceptance conditions. In this paper, we adopt popular three-
letter abbreviations to designate different types of automata.
The first letter of each abbreviation distinguishes non-deter-
ministic (N) from deterministic (D) structures. The second
letter denotes the type of acceptance condition: Büchi (B) or
parity (P). The final letter indicates that the automata read
infinite words (W) or infinite trees (T). As examples, NBW
designates a non-deterministic Büchi automaton (on infinite
words), while DPW is the acronym for a deterministic parity
automaton (also on infinite words).

A subset S ⊆ �ω is a safety property iff every word not
in S has a prefix that cannot be extended to a word in S. A
liveness property L ⊆ �ω is such that every finite word in
�∗ can be extended to a word in L . Safety properties cor-
respond to closed sets of the product topology of �ω, while
liveness properties correspond to dense sets [1].

NBWs, DPWs, and NPW are equally expressive: they
accept all ω-regular languages. DBWs are less expressive;
accordingly, determinization of Büchi automata is only pos-
sible in general by switching to a more powerful acceptance
condition. Piterman has adapted Safra’s procedure [38] so
that it produces a DPW from an NBW [35]. The construc-
tion extends the well-known subset construction for automata
on finite words. Rather than labeling each state of the deter-
ministic automaton with a subset of states of the NBW, it
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labels it with a tree of subsets. As a result, the upper bound
on the number of states of the DPW derived from an NBW
with n states is n2n+2. This fast-growing function discour-
ages determinization of large NBWs.

Linear Time Logic (LTL) [28,44] is a popular temporal
logic for the specification of non-terminating reactive sys-
tems. LTL is a strict subset of ω-regular languages. LTL for-
mulae are built from a set of atomic propositions, Boolean
connectives, and basic temporal operators X (next), U (until),
and R (releases). Derived operators G (always) and F (even-
tually) are usually included for convenience. Procedures exist
(e.g., [14]) to translate an LTL formula into an NBW that
accepts the language defined by the formula. On the other
hand, DBWs are not sufficient to translate all of LTL. Sistla
[41] has shown that LTL formulae in negation normal form
that do not use the until operator define safety properties.

The classification of ω-regular languages was first pro-
posed in [26]. The ω-regular languages are fully described
by the sets G1, F1,G2 ∩ F2, F2,G2 and G3 ∩ F3 which are
all very low in the Borel hierarchy. In [32] the authors named
these classes as safety, guarantee, obligation, persistence,
recurrence and general reactivity. The authors also provide
a syntactic characterization of the LTL formulae belonging to
each of these classes. The general reactivity class is layered
into sub-classes denoted by general reactivity(n) for n ≥ 0.
The formulae belonging to general reactivity (1)2 have the
following form:
∧

1≤k≤m

(G F J 1
k )→

∧

1≤k≤n

(G F J 2
k ).

where J i
k for i ∈ {1, 2} is a propositional formula.

Deterministic ω-regular automata can be used to define
infinite games [43] in several ways. We consider turn-based
and input-based two-player games, in which Player 0 (the
antagonist) and Player 1 (the protagonist) move a token
along the transitions of the game. If the resulting infinite
sequence of states is an accepting play (run) of the game,
Player 1 wins, otherwise Player 0 wins. In the rest of the
paper, if the identity of the winner is not mentioned then
Player 1 is understood.

When synthesizing a reactive system, the properties of the
specification describe the constraints on its input and output
signals. The input signals are controlled by the environment
and the output signals are controlled by the system.

2.2 Input-based games versus turn-based games

Definition 1 An input-based game is

G = (�, Q, D, δ, α),

2 Also known as General Streett(1).

where � is the finite input alphabet, Q is the set of states,
D ⊆ Q × � specifies the allowed input letters for each
state, δ : D → Q is the transition function such that ∀q ∈
Q . ∃σ ∈ � .(q, σ ) ∈ D, and α is the winning condition.
The alphabet� is the Cartesian product�0d ×�1×�0p of
a disclosed antagonist alphabet �0d , a protagonist alphabet
�1, and a private antagonist alphabet �0p. Throughout this
paper σ0d ∈ �0d , σ1 ∈ �1, σ0p ∈ �0p and σ ∈ �. When
the token is in state q ∈ Q, initially Player 0 chooses a letter
σ0d such that

∃σ1 . ∃σ0p .(q, (σ0d , σ1, σ0p)) ∈ D,

and discloses it to Player 1; then Player 1 chooses a letter σ1

such that

∃σ0p .(q, (σ0d , σ1, σ0p)) ∈ D,

and discloses it to Player 0; then Player 0 selects a letter σ0p

such that (q, (σ0d , σ1, σ0p)) ∈ D; finally the token moves to
q ′ = δ(q, (σ0d , σ1, σ0p)).

The specification of a reactive-system is naturally trans-
lated into an input-based game. The inputs of the reactive-
system are partitioned into two groups, the first group of
inputs encodes the letters of the alphabet �0d , and the sec-
ond group of inputs encodes the letters of the alphabet �0p.
The outputs encode the letters of the alphabet�1. The input-
based game and the winning strategy for Player 1 (if it exists)
implement a reactive system that satisfies the specification.

Definition 2 A turn-based game is

G = (Q, Q0, Q1, δ, α),

where Q is the set of states, partitioned into Q0 (antagonist
states) and Q1 (protagonist states), δ : Q → 2Q\∅ is the
transition function and α is the winning condition. In state
q ∈ Qi , Player i moves to a successor q ′ such that q ′ ∈ δ(q).

Turn-based games are games of perfect information; on
the other hand, in an input-based game a player may have
full, partial, or no advance knowledge of the other player’s
choices. The amount of information available to one player
obviously affects its ability to win the game. In particular, if
Player 1 has no advance knowledge of the opponent’s moves,
the synthesized reactive system is constrained to be of Moore
type. Since this may be restrictive, in our input-based games
we assume that Player 1 has partial advance knowledge of
the other player’s choices. The three-phase selection process
allows us to synthesize Mealy controllers whose outputs may
depend on some inputs, but not on others.

Definition 3 Turn-based game Ĝ = {Q̂, Q̂0, Q̂1, δ̂, α̂} is
the associate of input-based game G = {�, Q, D, δ, α} if
the following conditions hold. Q̂ = Q̂0 ∪ Q̂1 with

Q̂0 = Q ∪ {(q, σ0d , σ1) | ∃σ0p .(q, (σ0d , σ1, σ0p)) ∈ D},
Q̂1 = {(q, σ0p, σ1, σ0p) | (q, (σ0d , σ1, σ0p)) ∈ D} ∪

{(q, σ0d)|∃σ1 . ∃σ0p .(q, (σ0d , σ1, σ0p)) ∈ D}.
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The states in Q ⊆ Q̂ are the base states of Ĝ. The transition
function δ̂ : Q̂ → 2Q̂ is defined by:

δ̂(q) = {(q, σ0d) | ∃σ1 . ∃σ0p .(q, (σ0d , σ1, σ0p)) ∈ D},
δ̂((q, σ0d)) = {(q, σ0d , σ1) | ∃σ0p .(q, (σ0d , σ1, σ1)) ∈ D} ,
δ̂((q, σ0d , σ1)){(q, σ0d , σ1, σ0p) |

(q, (σ0d , σ1, σ0p)) ∈ D}
δ̂((q, σ0d , σ1, σ0p)) = {δ(q, (σ0d , σ1, σ0p))}.

Let γ : Q̂ → Q be the projection function that maps each
base state to itself and any other state of turn-based game
Ĝ to its first component. We write γ (S) for the point-wise
extension of γ to sets of states. Let � : Q̂ω → Qω map a
sequence of states of Ĝ to the result of applying γ to every
fourth state:

�(ρ̂)n = γ (ρ̂4n).

Then,

α̂ = {ρ̂ ∈ Q̂ω|�(ρ̂) ∈ α}
is the winning condition of turn-based game Ĝ. If Ĝ is the
associate of G, then we also say that G is the associate of Ĝ.

Note that Ĝ is four-partite. If G is a game with generalized
parity winning condition 	 = {π1, π2, . . . , πk} then α̂ can
be written as 	̂ = {π̂1, π̂2, . . . , π̂k}, where

∀q ∈ Q̂ . π̂k(q) = πk(γ (q)).

Later in this section (Theorem 1) we shall see that associate
Ĝ can be solved instead of the input-based game G.

The existence and computation of winning strategies are
central problems in the study of infinite games. A strategy is
a function that defines the letter or successor of the current
state a player should choose at each move. A strategy for
Player i in a turn-based game can be defined equivalently
as either a function τi : Q∗ × Qi → Q, or as a function
τi : Si × Qi → Si × Q. (We use the second form later in
this section.) The set Si is Player i’s memory, which con-
tains an initial element s̃i . According to the cardinality of Si ,
strategies are classified as infinite memory, finite memory,
and memoryless (or positional). A strategy τi is winning for
Player i from a given state of the game iff victory is secured
from that state regardless of the opponent’s choices as long
as Player i plays according to τi . In an input-based game, a
strategy for Player 0 can be defined equivalently as either a
pair of functions:

τ 1
0 : Q∗ × Q → �0d and

τ 2
0 : Q∗ × Q ×�0d ×�1 → �0p,

or as a pair of functions:

τ 1
0 : S0 × Q → �0d and

τ 2
0 : S0 × Q ×�0d ×�1 → S0 ×�0p.

A strategy for Player 1 can be defined equivalently as a func-
tion: τ1 : Q∗ × Q × �0d → �1 or as function: τ1 : S1 ×
Q ×�0d → S1 ×�1. (We use the second form later in this
section.)

Definition 4 Let G = (�, Q, D, δ, α) be an input-based
game and Ĝ = (Q̂, Q̂0, Q̂1, δ̂, α̂) its associate game. Given
Player 1’s strategy τ̂1 : S1 × Q̂1 → S1 × Q̂0 for Ĝ, then

τ1 : S1 × Q ×�0d → S1 ×�1

is Player 1’s associate strategy of τ̂1 defined as follows. Let

τ̂1(s
1
1 , (q, σ0d)) = (s2

1 , (q, σ0d , σ1)),

τ̂1(s
2
1 , (q, σ0d , σ1, σ0p)) = (s3

1 , q ′),

then

τ1(s
1
1 , q, σ0d) = (s3

1 , σ1).

Given Player 0’s strategy τ̂0 : S0 × Q̂0 → S0 × Q̂1 for Ĝ,
then

τ 1
0 : S0 × Q → �0d

τ 2
0 : S0 × Q ×�0d ×�1 → S0 ×�0p

is Player 0’s associate strategy of τ̂0 defined as follows. Let

τ̂0(s
1
0 , q) = (s2

0 , (q, σ0d)) and

τ̂0(s
2
0 , (q, σ0d , σ1)) = (s3

0 , (q, σ0d , σ1, σ0p)),

then

τ 1
0 (s

1
0 , q) = σ0d and

τ 2
0 (s

1
0 , q, σ0d , σ1) = (s3

0 , σ0p).

Given Player 1’s strategy τ1 : S1× Q×�0d → S1×�1 for
G,

τ̂1 : S1 × Q̂1 → S1 × Q̂0

is Player 1’s associate strategy of τ1 for Ĝ defined as follows.
Let

τ1(s
1
1 , q, σ0d) = (s2

1 , σ1),

then

τ̂1(s
1
1 , (q, σ0d)) = (s1

1 , (q, σ0d , σ1)),

while the strategy for a state q ∈ Q × �0d × �1 × �0p is
determined by the transition function δ as follows:

τ̂1(s
1
1 , (q, σ0d , σ1, σ0p)) = (s2

1 , δ(q, (σ0d , σ1, σ0p))).

Given Player 0’s strategy τ 1
0 : S0 × Q → �0d and τ 2

0 :
S0 ×�0d ×�1 → S0 ×�0p for G,

τ̂0 : S0 × Q̂0 → S0 × Q̂1

is Player 0’s associate strategy of (τ 1
0 , τ

2
0 ) for Ĝ defined as

follows. Let

τ 1
0 (s

1
0 , q) = σ0d ,

τ 2
0 (s

1
0 , q, σ0d , σ1) = (s2

0 , σ0p),
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then

τ̂0(s
1
0 , q) = (s1

0 , (q, σ0d)) and

τ̂0(s
1
0 , (q, σ0d , σ1)) = (s2

0 , (q, σ0d , σ1, σ0p)).

If τi is Player i’s strategy for G, then as(τi ) is Player i’s
associate strategy for the associate game Ĝ. If τ̂i is Player
i’s strategy for Ĝ then as(τ̂i ) is Player i’s associate strat-
egy for the associate game G. Note that a strategy and its
associate use the same memory. In the rest of the section,
if ρ is a play of G then ρl,m is a segment of ρ such that
ρl,m = ρl , ρl+1, . . . , ρm−1, ρm .

We now show that the strategy as(τi ) is winning for Pla-
yer i iff τi is. The following two lemmas prove that using
associate strategies preserves the outcome of a play.

Lemma 1 Let G = (�, Q, D, δ, α) be an input-based game
and Ĝ = (Q̂, Q̂0, Q̂1, δ̂, α̂) be its associate game. Let ρ̂ be
the play of Ĝ starting from base state q ∈ Q when, for
i ∈ {0, 1}, Player i plays according to strategy τ̂i . If ρ is the
play of G starting from q when Player i plays according to
strategy as(τ̂i ), then ρ = �(ρ̂).
Proof For the play ρ of G, let ρSi be the corresponding
sequence of Player i’s memory states. For the play ρ̂ of Ĝ,
let ρ̂Si be the corresponding sequence of Player i’s memory
states. We prove by induction on length of the play ρ and the
corresponding sequence of Player i’s memory states ρSi that
ρ = �(ρ̂) and ∀n ∈ N . ρ

Si
n = ρ̂

Si
4n . Since the initial states

of the runs ρ̂ and ρ are the same, while Player i’s memory is
always initialized to s̃i , the base case holds.

For the inductive step, let ρ0,n = �(ρ̂0,4n) and ∀x .(0 ≤
x ≤ n)→ ρ

Si
x = ρ̂Si

4x . Let

ρ̂4n = ρn = u

ρ̂
S0
4n = ρS0

n = s1
0 and

ρ̂
S1
4n = ρS1

n = s1
1 .

Suppose Player i plays according to

τ̂0(s
1
0 , u) = (s2

0 , (u, σ0d)),

τ̂1(s
1
1 , (u, σ0d)) = (s2

1 , (u, σ0d , σ1)),

τ̂0(s
2
0 , (u, σ0d , σ1)) = (s3

0 , (u, σ0d , σ1, σ0p)) and

τ̂1(s
2
1 , (u, σ0d , σ1, σ0p)) = (s3

1 , v).

then

ρ̂4n+1 = (u, σ0d), ρ̂
S0
4n+1 = s2

0 , ρ̂
S1
4n+1 = s1

1 ,

ρ̂4n+2 = (u, σ0d , σ1), ρ̂
S0
4n+2 = s2

0 , ρ̂
S1
4n+2 = s2

1 ,

ρ̂4n+3 = (u, σ0d , σ1, σ0p), ρ̂
S0
4n+3 = s3

0 , ρ̂
S1
4n+3 = s2

1

and

ρ̂4n+4 = v, ρ̂
S0
4n+4 = s3

0 , ρ̂
S1
4n+4 = s3

1 .

Let τi = as(τ̂i ). By Definition 4

τ 1
0 (s

1
0 , u) = σ0d ,

τ1(s
1
1 , u, σ0d) = (s3

1 , σ1) and

τ 2
0 (s

1
0 , u, σ0d , σ1) = (s3

0 , σ0p).

By Definition 3, δ(u, (σ0d , σ1, σ0p)) = v. Hence ρn+1 = v,

ρ
S0
n+1 = s3

0 and ρ
S1
n+1 = s3

1 . Thus we have ρ0,n+1 =
�(ρ̂0,4n+4) and ∀x(0 ≤ x ≤ n + 1) → ρ

Si
x = ρ̂Si

4x . There-
fore, we can conclude ρ = �(ρ̂) which by definition of α̂
implies that ρ̂ is winning iff ρ is winning. ��
Lemma 2 Let G = (�, Q, D, δ, α) be an input-based game
and Ĝ = (Q̂, Q̂0, Q̂1, δ̂, α̂) be its associate game. Let ρ be
the play of G starting from q ∈ Q when, for i ∈ {0, 1},
Player i plays according to strategy τi . If ρ̂ is the play of
Ĝ starting in q when Player i plays according to strategy
as(τi ), then �(ρ̂) = ρ.

Proof For the play ρ of G, let ρSi be the corresponding
sequence of Player i’s memory states. For the play ρ̂ of Ĝ,
let ρ̂Si be the corresponding sequence of Player i’s memory
states. We prove on length of the play ρ̂ and the correspond-
ing sequence of Player i’s memory states ρ̂Si that ρ = �(ρ̂)
and ∀n ∈ N → ρ

Si
n = ρ̂Si

4n . Since the starting states of both
runs ρ and ρ̂ are the same, while the memory is always ini-
tialized to s̃i , the base case holds. For the inductive step, let
�(ρ̂0,4n) = ρ0,n and ∀x .(0 ≤ x ≤ n)→ ρ̂

Si
4x = ρSi

x . Let

ρn = ρ̂4n = u

ρS0
n = ρ̂S0

4n = s1
0 and

ρS1
n = ρ̂S1

4n = s1
1 .

Suppose

τ 1
0 (s

1
0 , u) = σ0d ,

τ1(s
1
1 , u, σ0d) = (s2

1 , σ1),

τ 2
0 (s

1
0 , u, σ0d , σ1) = (s2

0 , σ0p) and

δ(u, (σ0d , σ1, σ0p)) = v,
then ρn+1 = v, ρS0 = s2

0 and ρS1 = s2
1 . Let τ̂i = as(τi ).

Then, by Definition 4

τ̂0(s
1
0 , u) = (s1

0 , (u, σ0d)),

which means that

ρ̂4n+1 = (u, σ0d), ρ̂
S0
4n+1 = s1

0 and ρ̂
S1
4n+1 = s1

1 .

Then, by Definition 4

τ̂1(s
1
1 , (u, σ0d)) = (s1

1 , (u, σ0d , σ1)),

which means that

ρ̂4n+2 = (u, σ0d , σ1), ρ̂
S0
4n+2 = s1

0 and ρ̂
S1
4n+2 = s1

1 .

Then, by Definition 4

τ̂0(s
1
0 , (u, σ0d , σ1)) = (s2

0 , (v, σ0d , σ1, σ0p)),
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which means that

ρ̂4n+3 = (u, σ0d , σ1, σ0p), ρ̂
S0
4n+3 = s2

0 and ρ̂
S1
4n+3 = s1

1 .

Finally, by Definition 4

τ̂0(s
1
1 , (u, σ0d , σ1, σ0p)) = (s2

1 , v),

which means that

ρ̂4n+4 = v, ρ̂
S0
4n+4 = s2

0 and ρ̂
S1
4n+4 = s2

1 .

Thus we have �(ρ̂0,4n+4) = ρ0,n+1 and ∀x .(0 ≤ x ≤ n +
1) → ρ̂

Si
4x = ρ

Si
x . Therefore, we can conclude �(ρ̂) = ρ,

which by definition of α̂ implies that ρ̂ is winning iff ρ is
winning. ��

If τi is a strategy for Player i in an input-based game G,
then Lemma 3 proves that as(as(τi )) = τi . On the other
hand if τ̂i is a strategy for Player i in the associate game
Ĝ, then Lemma 4 proves that even though as(as(τ̂i )) may
differ from τ̂i , the two strategies are interchangeable.

Lemma 3 Let G = (�, Q, D, δ, α) be an input-based game
and Ĝ = (Q̂, Q̂0, Q̂1, δ̂, α̂) be its associate game. If τi is the
strategy of Player i in G, then as(as(τi )) = τi .

Proof Suppose

τ 1
0 (s

1
0 , u) = σ0d ,

τ1(s
1
1 , u, σ0d) = (s2

1 , σ1) and

τ 2
0 (s

1
0 , u, σ0d , σ1) = (s2

0 , σ0p).

By Definition 4

as(τ0)(s
1
0 , u) = (s1

0 , (u, σ0d)),

as(τ1)(s
1
1 , (u, σ0d)) = (s1

1 , (u, σ0d , σ1)),

as(τ0)(s
1
0 , (u, σ0d , σ1)) = (s2

0 , (u, σ0d , σ1, σ0p)) and,

as(τ1)(s
1
1 , (u, σ0d , σ1, σ0p)) = (s1

1 , v).

By Definition 4

as(as(τ 1
0 ))(s

1
0 , u) = σ0d ,

as(as(τ1))s
1
1 , u, σ0d) = (s2

1 , σ1) and

as(as(τ 2
0 ))(s

1
0 , u, σ0d , σ1) = (s2

0 , σ0p).

Hence as(as(τi )) = τi . ��
Lemma 4 Let G = (�, Q, D, δ, α) be an input-based game
and Ĝ = (Q̂, Q̂0, Q̂1, δ̂, α̂) be its associate. Let ρ̂ be the play
of Ĝ starting in q ∈ Q̂ when Player k plays according to τ̂k .
For i ∈ {0, 1}, let j = ¬i , and let ρi be the play of Ĝ starting
in q ∈ Q̂ by Player i playing according to τ̂i and Player j
playing according to as(as(τ ′j )). Then, ρ0 = ρ1 = ρ̂.

Proof For the play ρ̂ of Ĝ, let ρ̂Si be the corresponding
sequence of Player i’s memory states. For the play ρ0 of Ĝ,
let ρ0,Si be the corresponding sequence of Player i’s memory

states. Likewise, for the play ρ1 of Ĝ, let ρ1,Si be the cor-
responding sequence of Player i’s memory states. We prove
by induction on the length of the runs and the corresponding
sequence of Player i’s memory states that for p ∈ {0, 1},
ρ̂ = ρ p and ∀n ∈ N . ρ̂

Si
4n = ρ p,Si

4n .
Since both runs start in the same state, while the memory is

always initialized to s̃i , the base case holds. For the inductive
step, let ρ̂0,4n = ρ p

0,4n and ∀x . 0 ≤ x ≤ n → ρ̂
Si
4x = ρ p,Si

4x .

Suppose we have ρ̂4n = u, ρ̂S0
4n = s1

0 and ρ̂S1
4n = s1

1 ; then

ρi
4n = u, ρ p,S0

4n = s1
0 and ρ p,S1

4n = s1
1 . Suppose

τ̂0(s
1
0 , u) = (s2

0 , (u, σ0d)),

τ̂1(s
1
1 , (u, σ0d)) = (s2

1 , (u, σ0d , σ1)),

τ̂0(s
2
0 , (u, σ0d , σ1)) = (s3

0 , (u, σ0d , σ1, σ0p)) and,

τ̂1(s
2
1 , (u, σ0d , σ1, σ0p)) = (s3

1 , v).

This implies that

ρ̂4n+1 = (u, σ0d), ρ̂
S0
4n+1 = s2

0 , ρ̂
S0
4n+1 = s1

1

ρ̂4n+2 = (u, σ0d , σ1), ρ̂
S0
4n+2 = s2

0 , ρ̂
S1
4n+2 = s2

1

ρ̂4n+3 = (u, σ0d , σ1, σ0p), ρ̂
S0
4n+3 = s3

0 , ρ̂
S1
4n+3 = s2

1

and

ρ̂4n+4 = v, ρ̂
S0
4n+4 = s3

0 , ρ̂
S1
4n+4 = s3

1 .

Definition 4

as(τ̂ 1
0 )(s

1
0 , u) = σ0d ,

as(τ̂1)(s
1
1 , u, σ0d) = (s3

1 , σ1) and

as(τ̂ 2
0 )(s

1
0 , u, σ0d , σ1) = (s3

0 , σ0p).

By Definition 4

as(as(τ̂0))(s
1
0 , u) = (s1

0 , (u, σ0d)),

as(as(τ̂1))(s
1
1 , (u, σ0d)) = (s1

1 , (u, σ0d , σ1)),

as(as(τ̂0))(s
1
0 , (u, σ0d , σ1)) = (s3

0 , (u, σ0d , σ1, σ0p)

and

as(as(τ̂1))(s
1
1 , (u, σ0d , σ1, σ0p)) = (s3

1 , v).

If Player 1 plays according to as(as(τ̂1)) and Player j plays
according to τ̂0, then we have

ρ1
4n+1 = (u, σ0d), ρ

1,S0
4n+1 = s1

0 , ρ
1,S1
4n+1 = s1

1 ,

ρ1
4n+2 = (u, σ0d , σ1), ρ

1,S0
4n+2 = s1

0 , ρ
1,S1
4n+2 = s1

1 ,

ρ1
4n+3 = (u, σ0d , σ1, σ0p), ρ

1,S0
4n+3 = s3

0 , ρ
1,S1
4n+3 = s1

1 ,

and

ρ1
4n+4 = v, ρ

1,S0
4n+4 = s3

0 , ρ
1,S1
4n+1 = s3

1 .

Hence ρ1
0,4n+4 = ρ′4n+4. Similarly, if Player 0 plays accord-

ing to as(as(τ̂0)) and Player 1 plays according to τ̂1, then
we have ρ̂0,4n+4 = ρ0

0,4n+4. Therefore, ρ′0,4n+4 = ρi
0,4n+4.

Hence we conclude that ρ̂ = ρi . ��
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Finally, the following theorem proves that a winning strat-
egy for Player i in G can be translated to a winning strategy
for the associate game Ĝ.

Theorem 1 A strategy τ̂i for Player i in Ĝ is winning iff the
strategy as(τ̂i ) for Player i in G is winning. Conversely, a
strategy τi for Player i in G is winning iff the strategy as(τi )

for Player i in Ĝ is winning.

Proof For i ∈ {0, 1}, let j = ¬i , let τ̂i be a winning strat-
egy for Player i in Ĝ. Let Player i play according to as(τ̂i )

in G and suppose it loses to Player j’s strategy τ j . Let ρ̂
be the play of Ĝ produced by as(as(τ̂i )) and as(τ j ). From
Lemma 2, ρ̂ is a losing play for Player i . From Lemma 4,
as(as(τ̂i )) and τ̂i produce an identical play when Player j
uses a fixed strategy. Since τ̂i is a winning strategy, we have
reached a contradiction. Therefore, our assumption is wrong
and there does not exist a winning strategy for Player j in G
when Player i plays according to as(τ̂i ). Hence as(τ̂i ) is a
winning strategy for Player i in G.

Similarly, it is proved that τi for Player i in G is winning
iff the strategy as(τi ) for Player i in Ĝ is winning. ��

The existing literature focuses on turn-based games. We
will leverage results for turn-based games in the rest of this
section and Sect. 3. In Sect. 4.1, we prove that it is not nec-
essary to explicitly play the associate turn-based game. We
implicitly play the associate turn-based game using the rep-
resentation of the input-based game.

2.3 From LTL games to parity games

If the winning condition of an infinite game is given as an
LTL formula on the states of the game, then an LTL game
is obtained. Such a game can be solved by translating the
formula into a deterministic ω-automaton and composing
it with the graph of the given game. Not all LTL formu-
lae have an equivalent DBW. Therefore, determinization to a
more powerful type of automaton is required in general. With
Piterman’s improvement of Safra’s construction [35,38], the
parity condition is the natural choice.

Since determinization is expensive, there have been
attempts to circumvent it based on the notion of fair simula-
tion [15]. An ω-automaton P = (�, Q P , q P

in , δ
P , αP ) fair

simulates another ω-automaton A = (�, Q A, q A
in, δ

A, αA)

with the same alphabet if Player 1 (protagonist) has a win-
ning strategy for the following turn-based game: Initially,
the antagonist token is placed on q A

in and the protagonist
token is placed on q P

in . At each turn, let p ∈ Q P be the
state with the protagonist token and let a ∈ Q A be the state
with the antagonist token. Player 0 chooses a letter σ ∈ �
and moves the A token to one of the states in δA(a, σ ). Player
1 then moves the P token to one of the states in δP (p, σ ).
Player 1 wins if either the run of A is not in αA or the run

of P is in αP . A winning strategy for Player1 is a function
τ : (Q A × Q P × �)+ → Q P that is consistent with δP

(∀a ∈ Q A .∀p ∈ Q P .∀σ . τ (a, p, σ ) ∈ δP (p, σ )) and that
guarantees victory regardless of the opponent’s choices.

In [42, Theorem 1] it is proved that an NBW cannot fair
simulate a DPW with (minimum) index greater than two. The
following theorem is a generalization of [42, Theorem 1]; a
DPW of (minimum) index k, cannot be fair simulated by any
NPW with index less than k.

Theorem 2 Let L ⊆ �ω be an ω-regular language. Let
N = (�, QN , δN , πN ) be an NPW accepting L with πN :
QN → [k] and D = (�, Q D, δD, πD) be a DPW accepting
L with πD : Q D → [k′]. Let k′ be the minimum number of
colors for L and k < k′. Then N does not fair simulate D.

Proof Suppose a fair simulation strategy τ : QN × Q D ×
� → QN exists for N . (W.l.o.g. τ is positional because
the winning condition is the disjunction of two parity condi-
tions.) Consider the DPW C = (�, Q, δ, π), where

Q = QN × Q D

δ((q N , q D), σ ) = (τ (q N , q D, σ ), δD(q D, σ ))

π((q N , q D)) = πN (q N ).

Suppose w ∈ �ω is accepted by C . Let ρ be the play of N
on the wordw when obeying the strategy τ . The play ρ is the
projection on QN of the play of C , moreover it is accepting
because C accepts. Therefore,w ∈ L . Conversely, ifw ∈ L ,
its play in D is accepting. Since τ is a simulation strategy for
N , the play of N onw according to τ is also accepting. Hence
the play of C on w is also accepting and C is a DPW that
accepts L such that π : Q → [k]. This, however, contradicts
the assumption that k′ > k is minimum for L . Hence τ does
not exits. ��

In [18], the authors present a method in which the NBW
need not be determinized. A shift automaton, which offers
the ability to rectify a non-deterministic choice, is composed
with the NBW. If the resulting three-color NPW embeds
(hence, fair simulates) a DPW for the given property, then the
NPW can be used to solve the game. Although the approach
of [18] avoids determinization, it is not complete (in partic-
ular, for properties for which the minimum index of a DPW
is three) and the NPW is roughly the same size of the DPW
obtained by the procedure [35].

In [17], the authors proved that for the purpose of synthe-
sis of reactive system, the translation of a property from the
specification to a non-deterministic good for games (GFG)
parity automaton can be composed with the graph of the
given game when the non-deterministic automaton fair sim-
ulates the deterministic translation of the property. Although
the approach of [17] avoids determinization, the GFG parity
automaton may be larger than its deterministic counterpart.
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Secondly, the GFG parity automaton cannot use fewer colors
than its deterministic counterpart. Thus, avoiding determini-
zation may incur an additional cost during game play.

2.4 Solving parity games

We consider parity games, and their generalized counter-
part. All these games are determinate [30]; that is, from each
state of the game if a player has no winning strategy then
the opponent has one. Non-generalized parity and disjunc-
tive generalized parity games admit memoryless strategies.
Conjunctive generalized parity games admit finite memory
strategies [45].

In [42], we have presented an algorithm that takes as input
a collection of LTL formulae and NBWs over an alphabet
� = �0 × �1. The input is converted into a conjunctive
generalized parity game with one parity function for each
formula and automaton. At each turn, Player 0 chooses a
letter from �0 and Player 1 chooses a letter from �1. The
objective of Player 1 is to satisfy the conjunctive generalized
parity acceptance condition. A winning strategy for Player
1 from the initial state of the parity automaton thus corre-
sponds to an implementation of a reactive system that reads
inputs from alphabet�0 and produces outputs from alphabet
�1. The reactive system satisfies all the linear-time prop-
erties given as LTL formulae or Büchi automata from its
initial state. If no such winning strategy exists, there exists
no implementation of the given specification. The “classi-
cal” algorithm described in [8] is used to compute winning
strategies for generalized parity conditions. This algorithm
is based on [16], which in turn extends Zielonka’s algorithm
for parity conditions [45].

Zielonka’s algorithm is representative of a class of proce-
dures used to compute winning strategies of a parity game.
Though other algorithms have better worst-case complex-
ity, it has the advantage of lending itself to efficient sym-
bolic implementation. Zielonka’s algorithm, when applied
to the solution of Büchi and co-Büchi games (regarded as
two-color parity games), is as efficient as dedicated (sym-
bolic) algorithms. It is simpler—and therefore easier to pres-
ent succinctly—than the procedure of [16] or the “classical”
procedure of [8]; however, it is close enough to those algo-
rithms that its discussion sheds light on them as well.

The pseudo code shown in Fig. 1 extends the one given
in [19] with the computation of the strategies. The reader is
referred to [19] for a detailed explanation of its operation.
Here we focus on strategy computation, which is related to
our approach. The algorithm of Fig. 1 takes as input a parity
game G, whose set of vertices Q is partitioned into Q0 and
Q1, and a parity condition; it returns the winning positions
of each player and two sets of transitions T0 and T1 of the
parity game G such that the transitions in Ti belong to win-
ning strategies of Player i . Specifically, Ti contains at least a

Fig. 1 Zielonka’s algorithm for parity games. In the code, d(G) is the
largest color of G and Ad (G) is the set of vertices of G with color d

transition from each vertex in Ui ∩ Qi , and any strategy for
Player i that is consistent with Ti is a winning strategy from
all winning positions of Player i . A strategy σ is consistent
with Ti iff ∀u ∈ (Ui ∩ Qi ) .(u, σ (u)) ∈ Ti .

A key step in the algorithm of Fig. 1 is the computation
of the i-attraction in G of a set of vertices A, that is, the set
of vertices attri (G, A) of G from which Player i can force a
visit of some vertex in A.

Definition 5 Given a turn-based game G = (Q, Q0, Q1,

δ, α) and the set of states A ⊆ Q, the set Ai ⊆ Q is the
i-attraction of A in G if it is the least set such that

1. A ⊆ Ai ,
2. ∀q ∈ (Qi\Ai ) . δ(q) ⊆ (Q\Ai ) and
3. ∀q ∈ (Q¬i\Ai ) . δ(q) 	⊆ Ai .

The computation of attri (G, A) is a least fixpoint compu-
tation, in which Ai is initialized to A and the set of attrac-
tion transitions 
i is initially empty. Vertices of G in Qi

(controlled by Player i) are added if they have at least one
transition into a vertex already acquired to attri (G, A), while
vertices of G in Q j are added if all their transitions lead to
vertices already acquired to attri (G, A). When a vertex in Qi

is added to Ai , the transitions from it to vertices already in
attri (G, A) are added to 
i .

At Line 6, the algorithm recurs on the subgame induced
by the removal of states in Ai from the game G.

Definition 6 A turn-based game GS = (QS, QS
0 , QS

1 , δ
S,

	S) is the subgame of turn-based game G = (Q, Q0, Q1, δ,

	) induced by QS ⊆ Q if

1. QS
i = Qi ∩ QS,
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2. ∀u, v ∈ QS . v ∈ δS(u) ↔ v ∈ δ(u) and
3. 	S is the restriction of 	 to QS .

If U j returned by the recursive call is empty, then Player
i wins from all vertices of the current G whenever the play
stays in G. In this case, Ti is obtained as the union of three
sets: The set 
i produced by the attraction computation at
Line 5, the set of transitions for Player i returned by the
recursive call at Line 6, and the transitions from vertices in
A ∩ Qi .

If U j is not empty at Line 7, then Player j wins from every
vertex in U j using the transitions computed in the recursive
call at Line 6. Moreover, Player j wins from every vertex in
A j from which she can force a visit of U j . To force such a
visit, she uses the transitions in 
 j . (Note that if any vertex
is added to A j by the attraction computation, at least one
such vertex is from A.) The second recursive call (Line 12)
returns winning positions and transitions for the residual sub-
game. For Player i these are the only winning positions and
transitions in G. For Player j , the resulting positions and
transitions are added to those computed at Lines 6 and 12.

Figure 2 shows a state-based parity game with two col-
ors. Squares denote vertices in Q1 and circles denote vertices
in Q0. Zielonka’s algorithm returns all vertices of the graph
in U1. The bold arrows denote transitions in T1. Since both
transitions out of vertices d and g are in T1, there are four
distinct memoryless winning strategies for Player 1.

Note that transitions (e, b) and ( f, c) are not in T1. A
strategy that used both of them would have to use mem-
ory to prevent the play from cycling through b, f , c, and
e without visiting a. Exclusion of (e, b) and ( f, c) from T1

prevents such cycles, but also rules out eight memoryless
strategies that include one but not the other. The computa-
tion of attractions imposes a preorder on the vertices in the
fixpoint: v � u iff v is added to attri (G, A) no later than u. (It
is a preorder, because breadth-first computation of the attrac-
tion may add multiple vertices simultaneously.) A transition
(u, v) between two vertices of attri (G, A) is in T1 iff v ≺ u.

Fig. 2 A parity game. Vertex colors are shown in parentheses

Game solving algorithms based on attraction computa-
tions—not just Zielonkas’s—therefore only compute a subset
of all memoryless strategies. Even in algorithms not explic-
itly based on attraction computations like the one of [20],
strategy computation relies on the order in which vertices
are added to the set of winning positions to select transitions.
Even though we have used Zielonka’s algorithm for the pur-
pose of illustration, this observation applies more generally.

3 Solving games incrementally

A player wins a game with a conjunctive generalized parity
winning condition iff it has a strategy that simultaneously
works for each parity condition. If one could compute all
winning strategies for one parity condition, one would then
be able to play the conjunctive game incrementally by initial-
izing the set of candidate strategies to all possible strategies
and then successively removing all strategies that are not
winning for each parity condition. The surviving strategies
would be winning for the conjunctive game.

An incremental approach is particularly attractive when
symbolic algorithms are used to solve the games, because
it allows the parity game to be restructured between steps.
However, the simple scheme outlined above does not work
because algorithms for parity games only compute a subset
of the winning strategies. For instance, algorithms for par-
ity games only compute a subset of the memoryless winning
strategies, as shown in the previous section. In this section,
we show that the subset of strategies computed is not suf-
ficient to solve conjunctive generalized parity games in an
iterative fashion. We prove, however, that it is possible to
decompose the solution in stages when some of the parity
conditions correspond to safety or persistence properties.

Consider the parity game shown in Fig. 3 with the con-
junctive winning condition {π1, π2}, where π1 assigns color
1 to b and color 0 to the other vertices, while π2 assigns color
1 to c and color 0 to the other vertices. Player 1 moves from
vertex a. (That is, Q0 = {b, c} and Q1 = {a}.) Note that
the parity conditions are effectively Büchi conditions corre-
sponding to the LTL formula (G F b) ∧ (G F c).

Suppose the algorithm of Fig. 1 is used to compute the
winning positions according to π1. For the graph G in Fig. 3,
the attractor of {b} for Player 1 is computed as follows at
Line 5. Initially b is in the attractor and the set of transitions
is empty; a is then added to attr1(G, {b}) and the transition

Fig. 3 A simple generalized parity game
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from a to b is added to
1. Finally c is added to the attractor
and the transition from c to a is added to the set of transitions.
Since G\A1 is empty, the recursive call returns immediately
with U0 = ∅. Therefore all positions are winning for Player
1. The transition from b to a is added to 
1 to produce T1.
It is clear that there is no winning strategy for π2 when only
transitions from T1 are allowed from vertices in Q1, though
there exist strategies to win both π1 and π2 on G. One such
strategy uses one bit of memory to alternate between the two
transitions out of a.

Though in general one cannot solve generalized parity
games by incrementally applying Zielonka’s algorithm—one
must resort instead to algorithms that can deal with multiple
winning conditions like the ones of [8]—there are cases of
practical relevance when it is possible to decompose the com-
putation, namely when some of the winning conditions cor-
respond to safety or persistence properties [32].

Definition 7 A safety winning condition for a parity game
G = (Q, Q0, Q1, δ, π) is a function π : Q → {0, 1} such
that for every state u ∈ Q such that π(u) = 0 there is no
state v ∈ δ(u) such that π(v) = 1.

The winning plays according to such a condition form a
closed set of the product topology of �ω recognized by a
finite automaton. Hence they form an ω-regular safety prop-
erty. Closed sets form the F1 class in the Borel hierarchy
[26]. Conversely, an ω-regular safety property is accepted
by a DPW with a safety winning condition [2].

While most translators guarantee that a syntactically safe
property [41] expressed in LTL is translated into a DPW with
a safety acceptance condition (a safety DPW), pathological
safety properties [23] may not be recognized as such. This,
however, is not a significant drawback, because such prop-
erties are quite rare in practice.3

Definition 8 A persistence winning condition for a parity
game G = (Q, Q0, Q1, δ, π) is a function π : Q → {1, 2}.

The winning plays according to a persistence winning con-
dition form a regular F2 set in the Borel hierarchy. Many com-
monly-used properties are recognized by weak automata. A
weak automaton can be interpreted as a Büchi automaton
such that every strongly connected component of the state
graph is either included in the accepting states F or has null
intersection with it [34]. It is known that non-determinis-
tic weak word automata (NWW) and deterministic co-Büchi
word automata (DCW) are equally expressive [29]. There-
fore, an NWW translates into a DPW with a persistence
acceptance condition.

Definition 9 For game G = (Q, Q0, Q1, δ, α), G[α← α′]
denotes the game (Q, Q0, Q1, δ, α

′).

3 Even mildly pathological cases like (p U q)∨G p are usually recog-
nized as safety properties by translators.

Definition 10 Given game G = (Q, Q0, Q1, δ, α), α′ is
equivalent to α with respect to G if a play is winning in
G iff it is winning in G[α← α′].

Since F1 ⊂ F2, we could limit our discussion to per-
sistence winning conditions. If a winning condition satisfies
Definition 7 then we can convert it to a winning condition that
satisfies Definition 8 as described in the following lemma.

Lemma 5 Let 	 = {π1, . . . , πk}(k > 1) be a conjunctive
winning condition for a parity game G = (Q, Q0, Q1, δ,	).
Suppose that πk is a winning condition such that no cycle in
G contains both states of even color and states of odd color;
then there exists a persistence winning conditionπ ′k such that
	′ = {π1, . . . , π

′
k} is equivalent to 	 with respect to G.

Proof The lack of cycles of mixed parity in G implies that
πk is equivalent (with respect to G) to π ′k : Q → {1, 2} such
that π ′k(q) = 2 iff πk(q) is even. Therefore,	′ is equivalent
to 	. ��

Note that all properties in F2 ∩G2 of the Borel hierarchy
(the obligation properties, a superset of the safety properties)
are accepted by DPWs of minimum index that satisfy the con-
dition of Lemma 5 and use colors 0 and 1. For all of them,
it is easy to “upgrade” their DPWs to persistence acceptance
conditions. The DPW of minimum index computed by the
procedure of [9] for a property in F2\G2, on the other hand,
may use color 0 beside 1 and 2. If, however, all states of a
maximal strongly connected component (SCC) have color 0,
then they can all be colored 2; otherwise, if all the cycles in
that SCC involve at least one state of color 1 or 2, then its 0
states can be colored 1. If states colored 0 remain, then the
property accepted by the automaton is not in F2. Therefore,
every DPW for a persistence property produced by the pro-
cedure of [9] can be equipped with a persistence acceptance
condition.

In spite of Lemma 5, practical reasons that will become
apparent suggest that we distinguish the case of safety condi-
tions from the more general one of persistence conditions. It
is immediate that a set {π1, . . . , πk} of safety conditions can
be replaced by a single safety condition π such that π(q) =∏

1≤i≤k πi (q). The details of how this observation is put to
use are in the algorithm of Fig. 4.

A conjunctive parity winning condition can be converted
to an equivalent one thanks to the following observation.

Theorem 3 Let	 = {π1, . . . , πk} (k > 1) be a conjunctive
winning condition for parity game G = (�, Q, D, δ,	).
Suppose that the largest odd color in the co-domain of πk is
m and the largest odd color in the co-domain of πk−1 is l.
Then 	 is equivalent to 	′ = {π1, π2, . . . , π

′
k−1, πk} with

respect to G, where, for each q ∈ Q,

π ′k−1(q) =
{

l + 1 if πk(q) = m + 1

πk−1(q) otherwise.
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Fig. 4 An incremental algorithm for conjunctive parity games. S :
M × (U1 ∩ Q1) → (U1 ∩ Q0) is a strategy, where M is the finite
memory. G0 is the identity game such that G0 × Gi = Gi

Proof Let Ak
m+1 be the states of G with color m + 1 with

respect to πk . Suppose a play ρ is winning according to πk

and πk−1 then

inf(ρ) ∩ Ak
m+1 = ∅ and inf(ρ) ∩ Ak−1

l+1 = ∅.
From definition of π ′k−1 we have

∀q ∈ inf(ρ) . πk−1(q) = π ′k−1(q)

implying that

max (πk−1(inf(ρ))) = max (π ′k−1(inf(ρ))).

Hence max (π ′k−1(inf(ρ))) is odd. Therefore ρ is winning
according to π ′k−1 (and πk).

Conversely, a play ρ′ winning according to π ′k−1 and πk

is such that

inf(ρ′) ∩ A′k−1
l+1 = ∅ and inf(ρ′) ∩ Ak

m+1 = ∅.
From definition of π ′k−1 we have

∀q ∈ inf(ρ′) . π ′k−1(q) = πk−1(q).

Hence max (πk−1(inf(ρ′))) is odd. Therefore ρ′ is winning
according to πk−1 (and πk). ��

Note that for any state q that satisfies F Ak
m+1, πk(q) can

be set to m + 1.

Corollary 1 Let	 = {π1, . . . , πk} (k > 1) be a conjunctive
winning condition for parity game G = (�, Q, D, δ,	).
Suppose that πk is a persistence winning condition and that
the largest odd color in the co-domain of πk−1 is m. Then
	 is equivalent to 	′ = {π1, . . . , π

′
k−1} with respect to G,

where, for each q ∈ Q,

π ′k−1(q) =
{

m + 1 if πk(q) is 2

πk−1(q) otherwise.

Proof Let Ak
2 be the states of G with color 2 with respect to

πk . It follows from Theorem 3 that a play ρ winning accord-
ing to πk and πk−1 is winning according to π ′k−1.

Conversely, suppose ρ′ is winning according to π ′k−1 then

inf(ρ′) ∩ A′k−1
m+1 = ∅.

Since

Ak
2 ∪ Ak−1

m+1 = A′k−1
m+1

we have

inf(ρ′) ∩ Ak
2 = ∅.

Thus we have ρ′ is winning according to πk . Therefore	′ is
equivalent to {π1, π2, . . . , π

′
k−1, πk}, which, by Theorem 3,

is equivalent to 	. ��
As an example, consider the LTL games defined by a graph

�, which encodes permissible moves, and an objective ϕ∧ψ ,
where ϕ is one of

ϕ1 = G(favorable→ Fwin)

ϕ2 = G(favorable→ G¬lose)
ϕ3 = favorable→ (favorableUwin),

and ψ is either

ψ1 = F(win ∨ lose)
or ψ2 = F G(win ∨ lose).
In these LTL formulae, favorable,win, and lose are
atomic propositions labeling the states of�. The initial trans-
lation of ϕ ∧ψ determines the NBWs for ϕ and ψ and com-
poses them to produce a DPW with conjunctive acceptance
condition 	 = {πϕ, πψ }. Note that ϕ1 is a recurrence (G2)
property, ϕ2 is a safety (F1) property, ϕ3 is an obligation
(F2 ∩G2) property, ψ1 is a guarantee (G1) property, and ψ2

is a persistence (F2) property. In all six games, 	 can be
reduced to an equivalent non-generalized acceptance condi-
tion with at most three colors.

Repeated application of Lemma 5 and Corollary 1 elim-
inates all safety and persistence winning conditions (except
one if there are no other winning conditions) with a maxi-
mum increase of one color in one of the surviving winning
conditions (if all remaining winning conditions have an odd
color as maximum priority). Repeated application of Theo-
rem 3 may further reduce the number of used colors (hence
possibly the index) of one or more parity winning conditions.
The “classical” algorithm of [8] runs in

O(m · n2d) ·
(

d

d1, d2, . . . , dk

)
, (1)

where n = |Q|, m = |E |, πi : Q → [di + 1] is the i th
component of the winning condition, k is the number of com-
ponents, and d =∑

1≤i≤k di . The simplification of the con-
junctive condition afforded by Corollary 3 and Theorem 1
improves the bound by reducing k and, in most cases, also d.
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Our objective is to find winning strategies for the conjunc-
tive player (Player 1). A state which is losing with respect
to any parity winning condition π ∈ 	 is also losing with
respect to the conjunctive parity winning condition 	. This
suggests a way to play conjunctive generalized parity games
iteratively. After eliminating all the safety and persistence
winning conditions we can play each parity winning con-
dition individually and for each of them, restrict G to the
winning states, until Player 1 can win each parity winning
condition individually in the pruned game G. Only at this
point all conditions are considered simultaneously.

The iterative approach just outlined operates on a turn-
based game G. In practice, G is built through the compo-
sition of several input-based non-generalized parity games,
each coming from the translation of a property into a DPW.

Definition 11 Given two input-based games G1 = (�, Q1,

D1, δ1, α1) and G2 = (�, Q2, D2, δ2, α2) then G =
(�, Q, δ, α) is the composition of G1 and G2, written
G1 × G2, if

Q = Q1 × Q2,

D = {((q1, q2), σ )|(q1, σ ) ∈ D1 ∧ (q2, σ ) ∈ D2},
δ((u1, u2, ), σ ) = (δ1(u1, σ ), δ2(u2, σ )).

For i ∈ {1, 2}, let γi : Q1 × Q2 → Qi map a state of the
composed game to its i th component:

γi ((u
1, u2)) = ui for i ∈ {1, 2}.

For a play ρ, we write γi (ρ) for γi (ρ0), γi (ρ1), . . . for i ∈
{1, 2}. A play ρ ∈ α iff

∀i ∈ {1, 2} . γi (ρ) ∈ αi .

If G1 and G2 are games with generalized parity winning
conditions	1 = {π1

1 , π
1
1 , . . . , π

1
n1
} and	2 = {π2

1 , π
2
2 , . . . ,

π2
n2
}, respectively, thenα can be written as	 = {π1, π2, . . . ,

πn1+n2}, where

πk((q
1, q2)) =

{
π1

k (q
1) 1 ≤ k ≤ n1

π2
k−n1

(q2) n1 < k ≤ n1 + n2.

Figure 4 shows the application of Theorem 3 and Corol-
lary 1 during the construction of G. If π from line 2.2 is a
safety or persistence winning condition then the Simplify
procedure removes π from 	. In case of a persistence win-
ning condition 	 is modified as described in Corollary 1. If
π was neither a safety nor a persistence winning condition
then modifications to 	 are made if Theorem 3 is applica-
ble. When G is restricted to the set of winning states with
respect to π , some of the winning states become unreach-
able. The unreachable states are removed and the losing states
are replaced with one representative losing state. This often
improves the symbolic encoding of G. The iterative approach
discussed earlier is still applicable inside ConjParityWin.

The procedure of Fig. 4 partitions Q into the set of win-
ning and losing states. Player 0 can win from any state in U
by following any positional strategy in T . Player 1 can win
from any state in U1 by following any memoried strategy in
S. We can use line 2.3 because a losing state with respect
to π ∈ 	 is losing with respect to 	. The Simplify proce-
dure modifies	 according to Theorem 3 and Corollary 1. G
is restricted to winning reachable states because no winning
strategy can visit unreachable states or losing states.

Since safety properties often form the bulk of a specifi-
cation, the ability to treat them incrementally is significant.
Safety properties are a special case of persistence properties
as no modification of other components of the winning con-
dition is necessary. This special case was already discussed
in [6].

The complexity of “classical” algorithm of [8] is given in
(1). If πk is a safety condition, solving the game in two stages
leads to a better bound for the second stage, O(m · n2d−2) ·( d−1

d1,...,dk−1

)
, while the first stage runs in O(m ·n2). In practice,

in the second stage, the number of transitions may decrease,
and the removal of losing positions for π1 may reduce the
number of colors in the remaining conditions. This may fur-
ther speed up execution. Similar considerations apply when
πk is a persistence condition.

The separation of safety and liveness specifications is part
of the approach of [36], which synthesizes from reactive(1)
specifications that are made up of assumptions and guar-
antees. The system has to satisfy the guarantees when the
environment satisfies its assumptions. The specification has
the form
(

Ie ∧ Se ∧
∧

i

G F Li
e

)
→

(
Is ∧ Ss ∧

∧

i

G F Li
s

)
, (2)

where Ie(Is) are constraints on initial states of environment
(system), similarly Se(Ss) and Le(Ss) are safety and liveness
constraints. The specification is translated from (2) to the
following form

(Ie ∧ Se → Is ∧ Ss) ∧
(

∧

i

G F Li
e →

∧

i

G F Li
s

)
. (3)

The realizability of (3) is checked by solving a GR(1) game.
In [21], the translation from (2) to (3) is proven to be

correct only when the environment is well-separated from
the system. A well-separated environment has the ability to
satisfy the assumptions without any cooperation from the
system. In [21], it is proven that the specification in the form
of (2) can be rewritten as follows:

(Ie → Is) ∧ (Ss W¬Se)

∧
(

Ie ∧ Se ∧
∧

i

G F Li
e →

∧

i

G F Li
s

)
, (4)
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where W is the weak until operator. The specifications in
the forms of (2) or (4) are equi-realizable even when the
environment is not well-separated.

While our approach deals with unrestricted LTL, it bene-
fits significantly if the specification is in the form of (3) or
(4). Each representative set Ie, Se, Is and Ss is a conjunc-
tion of safety properties. For (3), the incremental approach
starts by considering each property in Ie ∧ Se by reversing
the roles of the system and environment (system becomes
Player 0 and environment becomes Player 1). This allows
us to restrict the game to the states where the environment
satisfies its assumptions. The states where the environment
can not satisfy the assumptions are winning for the system
because the system has a winning strategy or in the case of a
well-separated environment any strategy for the system is a
winning strategy. In the next stage, the incremental approach
considers each property in Is∧Ss followed by the reactive(1)
property

∧
i G F Li

e →
∧

i G F Li
s .

For (4), the incremental approach considers each prop-
erty in Ie first by reversing the roles of the two players, then
each property in Is is considered, followed by (Ss W¬Se)

which is a safety property. Finally, the reactive(1) property
Ie ∧ Se ∧∧

i G F Li
e →

∧
i G F Li

s is solved.

4 Implementation

4.1 Solving input-based games

As discussed in Sect. 2.2, a specification is naturally
translated into an input-based game G= (�, Q, D, δ,	)
with D= Q×�. The input-based G can be transformed
into a turn-based game Ĝ = (�, Q̂, Q̂0, Q̂1, δ̂, 	̂), for
instance using Definition 3. The turn-based game has sig-
nificantly larger state space because the size of state space is
O(|Q×�|). When deploying symbolic algorithms for play-
ing games, more variables are required to encode the states.
It can be observed from Definition 3 that the base states that
appear in a sequence are sufficient to decide if the sequence
is winning. This suggests that we collapse the four transitions
from a base state to another base state into one transition so
as to play the associate game Ĝ without explicitly creating
it. In this section, we discuss the details of this process in the
context of symbolic graph algorithms.

For a symbolic implementation, the number of variables
appearing in the characteristic functions is important; among
other things, the search for a good BDD variable order is
affected and this has a negative impact on the performance of
the synthesis process. In our approach we try to avoid promot-
ing all the input variables to state variables as in [11,12,36].

We adapt both Zielonka’s algorithm for non-generalized
parity winning conditions and its extension to conjunctive
parity winning conditions [8] to play directly the input-based

games. The input-based Zielonka (ib-Z) algorithm requires
appropriate definition of i-attraction of a set and of subgame
when an i-attraction is removed from an input-based game.
We prove the correctness of our adaptation by relating the run
of ib-Z on the input-based game G to the run of Zielonka’s
algorithm on the associate game Ĝ.

The key observation is that tracking the base states of Ĝ is
sufficient if the input choices of each player are properly con-
strained. These constraints hold in the original game and the
subgames that ib-Z recursively examines. (The proper notion
of a subgame of input-based games is established in Defini-
tion 13.) We build up to the main result by proving that the
i-attractions computed in G and Ĝ agree on the base states
and that the subgames encountered while solving the asso-
ciate game Ĝ are related to the associates of the subgames
encountered while solving G.

The computation of i-attractions in input-based games
relies on the pre-image operator EX. We define the EX oper-
ator so that it quantifies target states from the transition rela-
tion, but does not quantify the inputs σ . For input-based game
G = (�, Q, D, δ,	) the pre-image of T ⊆ Q is defined by

EXG T = {(u, σ ) ∈ D | δ(u, σ ) ∈ T }.
When the context is clear, we write EX instead of EXG .

Definition 12 Given an input-based game G = (�, Q, D,
δ,	) and the set of states T ⊆ Q, let

MX0 T = {q ∈ Q | ∃σ0d .(∃σ1 . ∃σ0p .(q, (σ0d , σ1, σ0p)) ∈ D)

∧(∀σ1 .(∃σ0p .(q, (σ0d , σ1, σ0p)) ∈ EX T )

∨ (∀σ0p .(q, (σ0d , σ1, σ0p)) 	∈ D)
)},

MX1 T = {q ∈ Q | ∀σ0d .(∀σ1 .∀σ0p .(q, (σ0d , σ1, σ0p)) 	∈ D)

∨(∃σ1 .(∀σ0p .(q, (σ0d , σ1, σ0p)) 	∈ (D\EX T ))

∧ (∃σ0p .(q, (σ0d , σ1, σ0p)) ∈ D)
)}.

The set Ti ⊆ Q is the i-attraction of T in the input-based
game G (written attri (G, T ) as for turn-based games) if it is
the least set Z such that

1. T ⊆ Z and
2. (Q\Z) ∩MXi Z = ∅.

Lemma 6 Let Ĝ = (Q̂, Q̂0, Q̂1, δ̂, 	̂) be the associate
game of the input-based game G = (�, Q, D, δ,	). Let
T ⊆ Q be the set of base states and let T̂ = T . Let Ti be
the states of G that can be forced by Player i into T in one
or less steps and T̂i be the states of Ĝ that can be forced by
Player i into T̂ in four or less steps then Ti = Q ∩ T̂i .

Proof Let M̂Xi S be the set of states that Player i can control
to S in one step. Since Ĝ is four-partite, whenever T is a set
of base states we have the following:
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M̂X
0
i T = T,

M̂X
1
i T = {(q, σ0d , σ1, σ0p)∈ Q̂ | δ((q, σ0d , σ1, σ0p))∈T },

M̂X
2
0T = {(q, σ0d , σ1) ∈ Q̂ |

∃σ0p .(q, σ0d , σ1, σ0p) ∈ M̂X
1
0T },

M̂X
3
0T = {(q, σ0d) ∈ Q̂ |

∀σ1 .(q, σ0d , σ1) 	∈ (Q̂\M̂X
2
0T )},

M̂X
4
0T = {q ∈ Q | ∃σ0d .(q, σ0d) ∈ M̂X

3
0T },

M̂X
2
1T = {(q, σ0d , σ1) ∈ Q̂ |

∀σ0p .(q, σ0d , σ1, σ0p) 	∈ (Q̂\M̂X
1
1T )},

M̂X
3
1T = {(q, σ0d) ∈ Q̂ | ∃σ1 .(q, σ0d , σ1) ∈ M̂X

2
1},

M̂X
4
1T = {q ∈ Q | ∀σ0d .(q, σ0d) 	∈ (Q̂\M̂X

3
1T )}.

From Definition 3 we have

∀q .∀σ0d .∀σ1 .∀σ0p .(q, σ0d , σ1, σ0p) ∈ Q̂

↔ (q, (σ0d , σ1, σ0p)) ∈ D. (5)

Then it follows from the definitions of EX T in G and M̂Xi T
in Ĝ that:

∀(q, σ0d , σ1, σ0p) ∈ Q̂ .

(q, σ0d , σ1, σ0p) ∈ M̂X
1
i T↔(q, (σ0d , σ1, σ0p)) ∈ EX T .

We can therefore rewrite M̂X
4
1T as follows:

M̂X
4
1T = {q ∈ Q | ∀σ0d .(∀σ1 .∀σ0p .(q, (σ0d , σ1, σ0p)) 	∈ D)

∨(∃σ1(∀σ0p .((q, (σ0d , σ1, σ0p)) 	∈ (D\EX T )))

∧(∃σ0p .(q, (σ0d , σ1, σ0p)) ∈ D)
)},

which leads to the conclusion that MX1 T = M̂X
4
1T . Since

T̂i = M̂X
0−4
1 T, where

M̂X
i− j
1 T = M̂X

i
1T ∪ · · · ∪ M̂X

j
1T,

and only M̂X
0
1T and M̂X

4
1T contain base states, we conclude

that T1 = Q ∩ T̂1. Similarly, we can show that T0 = Q ∩ T̂0.
Therefore Ti = Q ∩ T̂i . ��
Corollary 2 Let Ĝ = (Q̂, Q̂0, Q̂1, δ̂, 	̂) be the associate of
input-based game G = (�, Q, D, δ,	). Let T ⊆ Q be a
set of base states. Then
⋃

n≥0

hn(∅) =
⋃

n≥0

gn(∅), where

h(X) = T ∨MXi X and

g(X) = T ∨̂MX
4
i X.

Proof By induction on n. Since h0(∅) = g0(∅) = ∅, the base
case holds. Suppose gn−1(∅) = hn−1(∅); thanks to Lemma 6
we have hn(∅) = gn(∅). ��

Let Ŝ ⊆ Q̂ be a set of states of Ĝ and let S ⊆ Ŝ be the set
of non-base states such that

S = {q ∈ Ŝ | γ (q) 	∈ Ŝ}.
Then Ŝ is an i -based set if

∀q ∈ S . q ∈ M̂X
1−3
i (Ŝ\S).

Let

S̃ = {q ∈ Ŝ\S | q 	= γ (q)}.
Then Ŝ = S ∪ (Ŝ ∩ Q) ∪ S̃. Note that an i-closed set (one
such that Player i can prevent the play from escaping it) is
also i-based.

Lemma 7 Let Ĝ = (Q̂, Q̂0, Q̂1, δ̂, 	̂) be the associate of
input-based game G = (�, Q, D, δ,	). Let Ŝ ⊆ Q̂ be a
set of states in Ĝ. Then γ (q) 	∈ γ (Ŝ) implies that if q can
be attracted to Ŝ by Player i then q can also be attracted to
γ (Ŝ) by Player i .

Proof From Definition 3 it follows that if there is a path
between states q and q ′ in Q̂ such that γ (q) 	= γ (q ′), then
that path must visit γ (q ′). Therefore q can only be forced to
visit any state in Ŝ after visiting γ (Ŝ). Therefore q is attracted
to γ (Ŝ). ��
Lemma 8 Let Ĝ = (Q̂, Q̂0, Q̂1, δ̂, 	̂) be the associate of
input-based game G = (�, Q, D, δ,	). Let T̂ ⊆ Q̂ be an
i-based set and P̂ = Q ∩ T̂ . Let T̂i be attri (Ĝ, T̂ ) and P̂i be
attri (Ĝ, P̂). Then Q ∩ P̂i = Q ∩ T̂i .

Proof Consider q ∈ Q. If q ∈ T̂ , then q trivially belongs
to both attractions. If, on the other hand, q 	∈ T̂ , it must be
γ (q) 	∈ γ (T̂ ). Suppose q ∈ T̂i . Then Player i can force a
visit of T̂ from q. By definition of i-based set, Player i can
force a visit of T̂ \T from every state of T . Therefore, Player
i can force a visit of T̂ \T from q. Since γ (T̂ \T ) = T̂ ∩ Q,
Lemma 7 implies that Q∩ T̂i ⊆ Q∩ P̂i . The inclusion in the
opposite direction follows from the monotonicity of attrac-
tions. ��

We now establish the correspondence between i-attrac-
tions in G and Ĝ.

Lemma 9 Let Ĝ = (Q̂, Q̂0, Q̂1, δ̂, 	̂) be the associate of
input-based game G = (�, Q, D, δ,	). Let T̂ ⊆ Q̂ be an
i-based set and T = Q ∩ T̂ . Then

Ti = Q ∩ T̂i ,

where T̂i = attri (Ĝ, T̂ ) and Ti = attri (G, T ).

Proof Let f (X) = T̂ ∨ M̂Xi X , φ(X) = T ∨ M̂Xi X , and

g(X) = T ∨ M̂X
4
i X . These functions are monotonic over
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finite lattices; therefore they are continuous. Thanks to Cor-
ollary 2, we have the following:

T̂i =
⋃

n≥0

f n(∅) and Ti =
⋃

n≥0

gn(∅).

Moreover, from Lemma 8 and the fact that T̂ is i-based,

Q ∩
⋃

n≥0

f n(∅) = Q ∩
⋃

n≥0

φn(∅).

While in general M̂Xi does not distribute over union, Ĝ is
four-partite, therefore:

M̂Xi (S1 ∪ S2) = M̂Xi S1 ∪ M̂Xi S2

if every state in S1 is of different type from every state in S2.
Hence,
⋃

n≥0

φn(∅) =
⋃

n≥0

⋃

0≤ j<4

M̂X
j
i g�

n+3− j
4 �(∅).

This can be rewritten as
⋃

n≥0

φn(∅) =
⋃

0≤ j<4

⋃

n≥0

M̂X
j
i gn(∅).

Only the first of the four components ( j = 0) has a non-null
intersection with the set of base states. Therefore

Q ∩
⋃

n≥0

f n(∅) = Q ∩
⋃

n≥0

φn(∅) =
⋃

n≥0

gn(∅).

Hence Ti = Q ∩ T̂i . ��
As shown in Fig. 1, Zielonka’s algorithm recurs on the

subgame ĜS induced by the removal of T̂i from Ĝ. In Fig. 5,
T̂0 	= T̂1 but T0 = T1 which indicates that the subgame ĜS is
not necessarily the associate of the subgame of G obtained
by removing Ti . Two issues confront us. The first is that the
game graph of a subgame G\Ti is not the subgraph induced
by Q\Ti . The input-based subgame must account for the fact
that even when two base states of a turn-based game belong
to a subgame, some of the paths connecting them may not be
entirely contained in it. In Fig. 5, the subgame of G induced
by removing T0 must not contain the edge (q, (1, 1, 1), t)
even though both q and t belong to the subgame (G\T0).
The following is the proper definition of the induced sub-
game with respect to the removal of i-attraction Ti from G.

Definition 13 An input-based game Gsi = (�, Qsi , Dsi ,

δsi , 	si ) is a subgame of input-based game G = (�, Q,
D, δ, 	) induced by removing from G an i-attraction Ti , if

1. T = Ti ×�
2. Qsi = Q\Ti ,

3. Ds1 = D\(T ∪ EX T1 ∪ {(q, (σ0d , σ1, σ0p)) |
∃σ ′1 .∀σ ′0p .(q, (σ0d , σ

′
1, σ
′
0p)) 	∈ (D\EX T1)}

)
,

Ds0 = D\(T ∪ {(q, (σ0d , σ1, σ0d)) | ∃σ ′0p .

(q, (σ0d , σ1, σ
′
0d)) ∈ EX T0}

)
,

Fig. 5 The subgame of an input-based game induced by the removal
of states in i-attraction depends on the value of i

4. ∀u, v ∈ Qsi .∀(u, σ ) ∈ Dsi .

δsi (u, σ ) = v ↔ δ(u, σ ) = v,
5. 	si is the restriction of 	 to Qsi .

The second issue that we confront is that the subgame ĜS

is not necessarily the associate of any subgame of input-based
game G. However, there exists a subgame Ĝs of ĜS that is the
associate of the corresponding subgame of G. Let Bu be the
states of ĜS unreachable from the base states Q ∩ Q̂S ; then
Ĝs , the subgame of ĜS obtained by removing the states in
Bu , is the subgame of Ĝ reach-reduced from QS . Lemma 10
and 11 prove that Ĝs is the associate of GS when ĜS and
GS are obtained by removing corresponding attractions from
associate games.

No play starting in a state in Q̂S\Bu visits any state in
Bu . Thus, no strategy in Ĝs relies on states in Bu , and a win-
ning strategy for Player i in Ĝs is a winning strategy in ĜS

for the same player from the same state. The computation of
strategies for states in Bu involves attraction computations.
This means that the ability to derive strategies for one game
from the strategies of its associate established in Theorem 1
extends to subgames induced by corresponding i-attractions.
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We now prove that the subgames encountered during
the run of ib-Z on an input-based game are the associates
of the reach-reduced subgames encountered when playing
of the turn-based game.

Lemma 10 Let Ĝ = (Q̂, Q̂0, Q̂1, δ̂, 	̂) be the associate of
input-based game G = (�, Q, D, δ,	) and T̂1 be attr1(Ĝ,
T̂ ). If Ĝs is the subgame of Ĝ reach-reduced from Q̂\T̂1 then
it is the associate of Gs1 = (�, Qs1 , Ds1 , δs1 ,	s1), where
Gs1 is the subgame of G induced by Q\T1, where T1 = Q∩T̂i

is the corresponding 1-attraction of T = Q ∩ T̂ in G.

Proof The parent game Ĝ is the associate game of G, thus
the base states of Ĝ are the states of G. To prove that Ĝs

is the associate of Gs1 , we first show that the base states
of Ĝs are the states of Gs1 . According to the definition of
reach-reduced game, the base states of Ĝs are Q\T̂1. Since,
Qs1 = Q\T1 and T1 = Q ∩ T̂1, the base states of Ĝs are the
states of Gs1 . From Definition 3 we know that (5) relates the
non-base states of the associate game and the set of state and
input-label pairs. We show that (5) also holds for Gs1 and Ĝs .

We first show that

∀q .∀σ0d .∀σ1 .∀σ0p .(q, σ0d , σ1, σ0p) ∈ Q̂s

→ (q, (σ0d , σ1, σ0p)) ∈ Ds1 . (6)

Suppose (q, σ0d , σ1, σ0p) ∈ Q̂s , but (q, (σ0d , σ1, σ0p)) 	∈
Ds1 . Since (q, σ0d , σ1, σ0p) ∈ Q̂s , the base state q is in Qs

and therefore q 	∈ T1. This implies that

(q, (σ0d , σ1, σ0p)) 	∈ T .

From Definition 3, δ̂((q, σ0d , σ1, σ0p)) is a singleton and its
element is a base state; this implies that δ̂((q, σ0d , σ1, σ0p))

⊆ Q̂s , therefore δ((q, (σ0d , σ1, σ0p))) ∈ Qs which means
(q, (σ0d , σ1, σ0p)) ∈ EX Qs1 . Since Qs1 ∩ T1 = ∅,
(q, (σ0d , σ1, σ0p)) 	∈ EX T1.

Since Ĝs is reach-reduced, (q, σ0d , σ1, σ0p) is reachable
from q in Ĝs ; therefore Player 1 cannot force a visit of T1

from q in G. Since (q, (σ0d , σ1, σ0p)) ∈ D, from Defini-
tion 12 we conclude that

(q, (σ0d , σ1, σ0p)) 	∈ {(q, (σ0d , σ1, σ0p)) |
∃σ ′1 .∀σ ′0p .(q, (σ0d , σ

′
1, σ
′
0p)) 	∈ (D\EX T1)}

)
.

Therefore (q, (σ0d , σ1, σ0p))∈Ds1 , our assumption is wrong
and (6) holds.

We now show that

∀q .∀σ0d .∀σ1 .∀σ0p .(q, (σ0d , σ1, σ0p)) ∈ Ds1

→ (q, σ0d , σ1, σ0p) ∈ Q̂s . (7)

Suppose (q, (σ0d , σ1, σ0p)) ∈ Ds1 , but (q, σ0d , σ1, σ0p) 	∈
Q̂s . If the base state q is not in Q̂s then q ∈ T̂1, which
implies q ∈ T1. Therefore (q, (σ0d , σ1, σ0p)) ∈ T . Hence
(q, (σ0d , σ1, σ0p)) 	∈ Ds1 .

If the base state q is in Q̂s , then either (q, σ0d , σ1, σ0p) ∈
T̂1 or (q, σ0d , σ1, σ0p) is unreachable from any base
state in Q̂s . If (q, σ0d , σ1, σ0p) ∈ T̂1 then δ((q, (σ0d , σ1,

σ0p))) ∈ T1 because δ̂((q, σ0d , σ1, σ0p)) ⊆ T1 is a
singleton. Therefore (q, (σ0d , σ1, σ0p)) ∈ EX T1. Hence
(q, (σ0d , σ1, σ0p)) 	∈ Ds1 .

In the latter case, (q, σ0d , σ1, σ0p) is unreachable from any
base state in Q̂s because (q, σ0d) ∈ T̂1. Since (q, (σ0d , σ1,

σ0p)) ∈ D, from Definition 12 we conclude that

(q, (σ0d , σ1, σ0p)) ∈ {(q, (σ0d , σ1, σ0p)) |
∃σ ′1 .∀σ ′0p .(q, (σ0d , σ

′
1, σ
′
0p)) 	∈ (D\EX T1)}

)
.

Hence (q, (σ0d , σ1, σ0p)) 	∈ Ds1 . All the cases contradict our
assumption and therefore (7) holds. Since both (6) and (7)
are true, we conclude that (5) holds.

From Definition 3, the set of non-base states in Ĝs can
be determined directly from Ds1 . State (q, σ0d , σ1, σ0p) is
only reachable from base state q through (q, σ0d) and then
(q, σ0d , σ1). Since (5) holds, the state (q, σ0d , σ1, σ0p) is in
Ĝs and ∀q ∈ Q̂s . δ̂s(q) 	= ∅,
Q̂s = Qs ∪ {(q, (σ0d , σ1, σ0p)) ∈ Ds1 | (q, σ0d)}

∪ {(q, (σ0d , σ1, σ0p)) ∈ Ds1 | (q, σ0d , σ1)}
∪ {(q, (σ0d , σ1, σ0p)) ∈ Ds1 | (q, σ0d , σ1, σ0p)} .

The states of Ĝs and the states of Gs1 are in correspondence
with each other according to Definition 3. Since Ĝ is the
associate of G, both 	s1 and δs1 are restrictions of 	 and δ
with respect to Qs1 , while both 	̂s and δ̂s are restrictions of
	̂ and δ̂ with respect to Q̂s . We can conclude that Ĝs is the
associate of Gs1 . ��
Lemma 11 Let Ĝ = (Q̂, Q̂0, Q̂1, δ̂, 	̂) be the associate of
input-based game G = (�, Q, D, δ,	) and T̂0 be attr0(Ĝ,
T̂ ). If Ĝs is the subgame of Ĝ reach-reduced from Q̂\T̂0 then
it is the associate of Gs0 = (�, Qs0 , Ds0 , δs0 ,	s0), where
Gs0 is the subgame of G induced by Q\T0, where T0 = Q∩T̂0

is the corresponding 0-attraction of T = Q ∩ T̂ in G.

Proof The parent game Ĝ is the associate game of G, thus
the base states of Ĝ are the states of G. To prove that Ĝs

is the associate of Gs0 , we first show that the base states
of Ĝs are the states of Gs0 . According to the definition of
reach-reduced game, the base states of Ĝs are Q\T̂0. Since,
Qs0 = Q\T0 and T0 = Q ∩ T̂0, the base states of Ĝs are the
states of Gs0 . From Definition 3 we know that (5) relates the
non-base states of the associate game and the set of state and
input-label pairs. We show that (5) also holds for Gs0 and
Ĝs .

We first show that

∀q .∀σ0d .∀σ1 .∀σ0p .(q, σ0d , σ1, σ0p) ∈ Q̂s

→ (q, (σ0d , σ1, σ0p)) ∈ Ds0 . (8)
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Suppose (q, σ0d , σ1, σ0p) ∈ Q̂s , but (q, (σ0d , σ1, σ0p)) 	∈
Ds0 . Since (q, σ0d , σ1, σ0p) ∈ Q̂s , the base state q is in Qs .
Therefore q 	∈ T0. This implies that (q, (σ0d , σ1, σ0p)) 	∈ T .

From Definition 3, δ̂((q, σ0d , σ1, σ0p)) is a singleton and
its element is a base state; this implies that δ̂((q, σ0d , σ1,

σ0p)) ⊆ Q̂s , therefore δ((q, (σ0d , σ1, σ0p))) ∈ Qs which
means (q, (σ0d , σ1, σ0p)) ∈ EX Qs0 . Since Qs0 ∩ T0 = ∅,
(q, (σ0d , σ1, σ0p)) 	∈ EX T0.

Since Ĝs is reach-reduced, (q, σ0d , σ1, σ0p) is reachable
from q in Ĝs ; therefore Player 0 cannot force a visit of T0

from q in G. Since (q, (σ0d , σ1, σ0p)) ∈ D, from Defini-
tion 12 we conclude that

(q, (σ0d , σ1, σ0p)) 	∈ {(q, (σ0d , σ1, σ0p)) |
∃ σ ′0p .(q, (σ0d , σ1, σ

′
0d)) ∈ EX T0}

)
.

Therefore (q, (σ0d , σ1, σ0p)) ∈ Ds0 , our assumption is
wrong and (8) holds.

We now show that

∀q .∀σ0d .∀σ1 .∀σ0p .(q, (σ0d , σ1, σ0p)) ∈ Ds1

→ (q, σ0d , σ1, σ0p) ∈ Q̂s . (9)

Suppose (q, (σ0d , σ1, σ0p)) ∈ Ds0 , but (q, σ0d , σ1, σ0p) 	∈
Q̂s . If the base state q is not in Q̂s then q ∈ T̂0, which
implies that q ∈ T0. Therefore (q, (σ0d , σ1, σ0p)) ∈ T .
Hence (q, (σ0d , σ1, σ0p)) 	∈ Ds0 .

If the base state q ∈ Q̂s , then either (q, σ0d , σ1, σ0p) ∈ T̂0

or (q, σ0d , σ1, σ0p) is unreachable from any base state in Q̂s .
If (q, σ0d , σ1, σ0p) ∈ T̂0 then δ((q, (σ0d , σ1, σ0p))) ∈ T0

because δ̂((q, σ0d , σ1, σ0p)) ⊆ T0 is a singleton. Therefore
(q, (σ0d , σ1, σ0p)) ∈ EX T0. Hence (q, (σ0d , σ1, σ0p)) 	∈
Ds0 .

In the latter case, (q, σ0d , σ1, σ0p) is unreachable from any
base state in Q̂s because (q, σ0d , σ1) ∈ T̂0. Since (q, (σ0d ,

σ1, σ0p)) ∈ D, from Definition 12 we conclude that

(q, (σ0d , σ1, σ0p)) ∈ {(q, (σ0d , σ1, σ0p)) |
∃σ ′0p .(q, (σ0d , σ1, σ

′
0d)) ∈ EX T0}

)
.

Hence (q, (σ0d , σ1, σ0p)) 	∈ Ds0 . All the cases contradict our
assumption and therefore (8) holds. Since both (8) and (9)
are true, we conclude that(5) holds.

From Definition 3, the set of non-base states in Ĝs can
be determined directly from Ds0 . State (q, σ0d , σ1, σ0p) is
only reachable from base state q through (q, σ0d) and then
(q, σ0d , σ1). Since ∀q ∈ Q̂s . δ̂s(q) 	= ∅,
Q̂s = Qs ∪ {(q, (σ0d , σ1, σ0p)) ∈ Ds1 | (q, σ0d)}

∪ {(q, (σ0d , σ1, σ0p)) ∈ Ds1 | (q, σ0d , σ1)}
∪ {(q, (σ0d , σ1, σ0p)) ∈ Ds1 | (q, σ0d , σ1, σ0p)} .

The states of Ĝs and the states of Gs0 are in correspon-
dence with each other according to Definition 3. Since Ĝ is
the associate of G, both	s0 and δs0 are restrictions of	 and

δ with respect to Qs0 , while both 	̂s and δ̂s are restrictions
of 	̂ and δ̂ with respect to Q̂s . We can conclude that Ĝs is
the associate of Gs0 . ��

The algorithm of ib-Z is obtained from Zielonka’s algo-
rithm in Fig. 1 by replacing Definition 5 with Definition 12
and Definition 6 with Definition 13. We now prove that the
adapted algorithm correctly computes Player i’s winning and
losing states.

Theorem 4 For an input-based game G = (�, Q, D, δ, π)
ib-Z returns W0 = Q ∩ Ŵ0 and W1 = Q ∩ Ŵ1 where Ŵ0

and Ŵ1 are the set of states returned by Zielonka’s algorithm
for the associate turn-based game Ĝ = (Q̂, Q̂0, Q̂1, δ̂, π̂).

Proof We prove by induction that ib-Z returns Player i’s win-
ning and losing base states. If G is an empty game then Ĝ
is also empty; then, on Line 2, ib-Z returns Wi = W j = ∅
in agreement with the result of Zielonka’s algorithm on Ĝ.
Therefore the base case holds trivially.

If G is a non-empty game then so is Ĝ. Both ib-Z and
Zielonka’s algorithm recur on subgames of G and Ĝ respec-
tively. We now show the correspondence between the two
subgames. At Line 3 let T ⊆ Q be the set of states colored k
with respect toπ and T̂ ⊆ Q̂ be the set of states colored k with
respect to π̂ . From Definition 3 we know that T = Q∩T̂ . The
set of states T̂ is i-based because T = ∅. At Line 5 let Ti be
the i-attraction of T in G and T̂i be the i-attraction of T̂ in Ĝ.
Thanks to Lemma 9, Ti = Q∩T̂i . At Line 6 ib-Z recurs on the
subgame Gsi = (�, Qsi , Dsi , δsi , π si ) where Qsi = Q\Ti .
Since Ti = Q ∩ T̂i and thanks to Lemmas 10 and 11, the
reach-reduced subgame Ĝs = (Q̂s, Q̂s

0, Q̂s
1, δ̂

s, π̂ s) induced
by Q̂\T̂i is the associate of Gsi . On the other hand, Zie-
lonka’s algorithm recurs on the subgame ĜS = (Q̂S, Q̂S

0 ,

Q̂S
1 , δ̂

S, π̂ S) induced by Q̂\T̂i . Since Player i’s winning and
losing base states in Ĝs are the same as the winning and los-
ing base states in ĜS , we can invoke the inductive hypothesis
and conclude that at Line 7, Ui = Q∩ Ûi and U j = Q∩ Û j .

If at Line 7 U j = ∅ then Q ∩ Û j = ∅. Since every path
through a non-base state must visit some base state, it fol-
lows that Q ∩ Û j = ∅ implies Û j = ∅. Therefore the Line 7
evaluates to true in Zielonka’s algorithm as well. Hence, all
states of both G and Ĝ are winning for Player i . ib-Z returns
Wi = Q = Q ∩ Q̂ and W j = Q ∩ Q̂ = ∅ in agreement with
the results of Zielonka’s algorithm on Ĝ.

If at Line 7 U j 	= ∅ then Û j 	= ∅ because we have estab-
lished U j = Q ∩ Û j . The set Û j is j-based because Û j

is j-closed in Ĝ. At Line 12, with argument similar to the
one for Line 6, we can again invoke the inductive hypoth-
esis, hence Ui = Q ∩ Ûi and U j = Q ∩ Û j . At Line 13
ib-Z assigns all the base states in Q\Ui to Player j in agree-
ment with Zielonka’s algorithm. Therefore Ui = Q∩Ûi and
U j = Q ∩ Û j is true after Line 13.
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At Line 17 ib-Z returns Wi = Q ∩ Ŵi = Q ∩ Ûi and
W j = Q∩ Ŵ j = Q∩Û j . Therefore ib-Z correctly identifies
the set of Player i’s winning and losing states for G. ��

By extending Lemma 9 and Theorem 4 we can show that
the strategies for both players computed by ib-Z are related to
those returned by Zielonka’s algorithm through Definition 4.

4.2 Framework

Our implementation takes as input a set of LTL properties
and NBWs. In addition, it takes as input a partial model of
the environment in Verilog. Each LTL property is translated
into an NBW. Safety properties are identified at this point,
by checking Definition 7 on the NBWs. If the check passes
then we use the subset construction method [40] for determ-
inization to a DPW. The rest of NBWs are converted into
DPWs of minimal index. We use an extension of Wring [39]
for translating an LTL formula into an NBW and then into a
DPW. The composition of the DPWs and the Verilog model
define a game and a conjunctive generalized parity winning
condition as described in Sect. 3.

A winning strategy for Player 1 in this game—if it exists—
is a realization of the specifications. The game has an ini-
tial vertex, corresponding to the initial states of the various
DPWs. The winning set of Player 1 must contain this vertex.

Alternatively our implementation can also handle a speci-
fication as described at the end of Sect. 3. As discussed earlier,
Persistence- First described in Fig. 4 restricts the game to
the Player i’s winning states where Player i is obligated to
satisfy the acceptance condition of the game. After the algo-
rithm returns, one strategy is extracted from the computed set
of strategies. The algorithm outlined in [5] is used to heuristi-
cally attempt to extract one strategy with low implementation
cost, which is written to the output in the form of a Verilog
module.

5 Related work

In this section, we discuss approaches to game solving that
promote some form of decomposition or incrementality and
compare these ideas to our work. For a broader discussion
the reader is referred to [42].

In [36], the specification conforming to restricted LTL is
translated into a Generalized Streett(1) game. LTL properties
that translate into DBWs can be added to the specification by
adding the acceptance conditions of the DBWs to the liveness
specification that has the following shape:

∧

1≤k≤m

(G F J 1
k )→

∧

1≤k≤n

(G F J 2
k ). (10)

The transition relation of the DBWs is expressed as safety
constraints. Specifications which cannot be directly trans-
lated into a General Strett(1) game can sometimes be hand-
modified to be translated into a General Streett(1) game; but
such modifications are not always possible.

The “Safraless” approach of [22,24] is another exam-
ple of multi-stage synthesis process. When the specifica-
tion is a safety property, the universal co-Büchi tree autom-
aton produced as intermediate stage can be made weak;
this speeds up synthesis. However, the “Safraless” approach
does not separate the safety component of the specifica-
tion. Rather, in [22] it is extended so that synthesizing
the conjunction of specifications can take advantage of the
computations performed for the individual specifications.
Our approach benefits from the weakness of the specifi-
cation when it applies to some properties only, thanks to
Theorem 3.

The “Safraless” approach of [11,12] translates the spec-
ification to a universal co-Büchi word automaton (UCW).
Instead of determinizing UCW, a counter with a bound K is
added to each state of UCW and the resulting automaton is
denoted by UKCW. For every accepting run of UKCW the
accepting states are visited K or fewer times. A UKCW is a
safety automaton and it can easily be determinized through
the well known subset construction. UKCW is interpreted as
a two player game between the system and the environment.
Since L(UKCW) ⊆ L(UCW), a game has to be played for
every K ≥ 0 until the system is able to win the game or it
is proven that the specification is unrealizable. In [12] the
authors convert each LTL formula in the specification to a
UKCW interpreted as a two player game. It is also shown that
for some K ≥ 0 if the system wins all these games then the
specification is realizable and an implementation can be syn-
thesized. Their approach is shown to be practical for small
examples but it remains to be seen how it will perform on
examples such as the Amba bus specification [5,13], both in
terms of runtime and quality of implementation.

The authors of [6] study a partial permissivity ordering on
non-deterministic strategies. They show that safety games
have maximal strategies that are memoryless, and that every
game that has a maximal memoryless strategy is equivalent
to a safety game. For other types of games, they define a
permissive strategy as one that allows the behaviors of all
memoryless strategies. They show how to build such permis-
sive strategies with memory bounded by the size of the game
graph. In our approach, we account for all the strategies for
persistent winning conditions (not just the memoryless ones)
without introducing memory.

The authors of [17] propose an incremental approach in
which a sequence of good-for-games automata is built until
a winning strategy is found or specification is proved unre-
alizable. The algorithm does not lend itself to efficient sym-
bolic implementation. Since no experimental results were
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published it is difficult to assess the effectiveness of that
approach.

The authors of [33] also translate each property in the spec-
ification to DPW but they avoid the explicit determinization
phase by employing symbolic methods for determinization.
The DPWs are composed together to form a game with a con-
junctive parity winning condition. They too use [8] to solve
the conjunctive parity game but without simplification of the
conjunctive parity winning condition through Theorem 3.
Their symbolic approach to determinization is an example
of an algorithm that allocates one BDD variable to each state
as to represent collections of subsets by the characteristic
functions of their occurrence vectors (as also required by the
algorithms of [17,24]). Therefore, their approach is limited
in most cases to automata of hundred states or less. For such
reasons we prefer an explicit implementation of Piterman’s
improved determinization procedure [35] to the approach of
[17,33].

6 Experiments

The approach described in Sects. 3 and 4 has been imple-
mented in Vis [3] as an extension of the technique described
in [42]. In this section we report on experiments conducted

on examples coming from [42] (RRobin) and [4] (Amba
Bus). Crane is the controller of a traveling crane [27].

Table 1 illustrates the benefits of the two-stage approach
to playing the generalized parity games described in Sect. 3
and then compares it to the approach of Anzu [4]. SF is the
approach of Sect. 3 in which every property is converted into
a DPW. Pre-SF is the approach in which properties of the
following type

G
(∨

x1 ∧ . . . x j ∧ X(x1 ∧ . . . x j )
)

(11)

are conjoined together. The resulting property is treated as
an implicit transition relation. The translation of this implicit
transition relation to a valid transition relation still requires
some care as observed in the following example.

Example 1 System controls {m, g0, g1} and the environment
controls {h}. System does not snoop anything (the sys-
tem makes its selection first and environment completes the
move).

G(h→ (g0 → X(¬m))), G(h→ (g1 → X(m))),

G(h→ (g0 → X(g0))) and G(h→ (g1 → X(g1))).

The system must make sure that g0 and g1 are always mutu-
ally exclusive. The mutual exclusion property is implicitly
stated in the above LTL formulae.

Table 1 Experimental results

Model Safety Parity Properties Latches Time (s) Reduced Time (s)

E S E S Anzu SF Pre-SF Anzu SF Pre-SF Anzu Opt Pre+Opt No-Opt

RRobin 0 10 0 0 20 7 n/a 6 0.16 n/a 0.2 8 n/a 0.19

Crane 2 12 2 2 n/a 11 n/a n/a 6.3 n/a n/a 3 n/a 6.7

GenBuf2 13 19 2 3 51 40 n/a 18 4.03 n/a 0.38 26 n/a 7.64

GenBuf3 15 25 2 4 61 49 n/a 21 6.49 n/a 0.6 31 n/a 14.09

GenBuf4 17 32 2 5 78 55 n/a 24 11.04 n/a 0.99 36 n/a 24.49

GenBuf5 18 43 2 6 79 61 n/a 27 15.48 n/a 2.11 45 n/a 49.20

GenBuf6 20 52 2 7 96 71 n/a 29 28.28 n/a 4.74 47 n/a 215.79

Amba2 3 17 2 3 56 37 19 24 6.87 3.4 2.39 6 3 4.83

Amba3 4 22 2 4 68 42 23 30 14.2 4.6 44.67 9 4 31.80

Amba4 5 26 2 5 80 48 25 34 109.9 10.8 35.30 6 5 578.8

Amba5 6 31 2 6 93 56 28 39 139.7 15.7 224.06 11 6 345.7

Amba6 7 34 2 7 105 55 31 43 301.1 20.6 1011.7 11 8 789.9

Amba7 8 38 2 8 117 61 33 48 965.6 71.7 1758.5 10 8 1955.6

Amba8 9 41 2 9 129 67 35 52 875.3 131.7 2034.9 12 9 2375.6

Amba9 10 44 2 10 141 77 38 57 1439.6 275.5 7861.2 14 10 8128.7

Amba10 11 48 2 11 153 81 41 61 3727.6 233.3 28319.8 16 12 11234.6

Amba11 12 51 2 12 165 87 43 65 3154.0 224.5 8403.3 22 13 TO

Amba12 13 55 2 13 177 92 46 69 6641.2 742.3 49138.7 21 15 TO

Amba13 14 60 2 14 189 98 47 73 32562.4 504.9 13163.4 25 15 TO

Amba14 15 64 2 15 200 105 49 77 12202.2 1006.7 17104.9 19 16 TO

Amba15 16 69 2 16 212 − 52 – TO 2281.4 TO − 17 TO
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Table 2 Experimental results of improved Amba specification

Model Safety Parity Properties Latches Time (s) Reduced

E S E S Anzu SF Anzu SF Anzu SF

Amba2 15 16 2 3 55 48 23 10.17 1.67 7

Amba3 17 21 2 4 68 54 29 31.53 6.75 7

Amba4 19 26 2 5 79 65 33 83.74 20.83 9

Amba5 21 31 2 6 92 72 38 218.22 158.40 10

Amba6 23 35 2 7 103 78 42 1075.99 412.28 11

The implicit transition relation is translated to a game G
such that every state of G is winning for the system. The game
G is language equivalent to the game obtained from the incre-
mental approach of SF. 4 The game G is significantly smaller
than the game obtained from the incremental approach. SF
then operates on the remaining properties [which were not
of type (11)] with the exception that instead of G0 being an
identity game we have G0 = G.

Anzu is a synthesis tool for GR(1) specifications. For each
model, the numbers of persistence and non-persistence prop-
erties are given for both system (S) and environment (E) in
Columns 2–5. All the persistent properties in the experiments
were of the safety type. Column 6 reports the number of prop-
erties required by Anzu. Columns 7–9 report the number of
latches in the final solution for the three methods. The num-
ber of latches represents a crude measure of the magnitude
of the synthesized model. Columns 10–12 report the time
spent to compute the final solution for the three methods. Col-
umns 13 and 14 report the number of constant and equivalent
bits removed by the optimizations applied in between games
by SF and Pre-SF. The last column reports the time required
to compute the solution when optimizations are turned off for
SF. Times were measured on a 2.4-GHz Quad Core Pentium
Duo with 4 GB of RAM. The table shows that the advantages
of incremental game playing interleaved with optimizations
are quite significant for the larger examples.

A monolithic specification of an 8-client Amba Arbiter,
where all the properties were combined together, was also
considered, but the game play did not complete in three hours;
playing the game incrementally, however, finished in just
over two minutes.

Table 2 compares our approach with Anzu on the
improved Amba specification of [13]. Our implementation
of Pre-SF does not currently handle specifications in which
both the environment assumptions and system guarantees
contain properties of the type of (11). Even though the new
specification is meant to produce improved synthesis results
the limitation of the pre-synthesis technique results in poor

4 Let� = {φ1, φ2, . . . , φk} be the set of properties of type (11), then the
incremental approach produces the game Gk . The translation procedure
guarantees that L(G) = L(Gk).

performance of our algorithm. Without pre-synthesis some
outputs of the reactive system are defined by multiple latches
instead of a single latch. This is evident when comparing the
solutions of SF and Pre-SF.

The comparison with Anzu reveals several interesting dif-
ferences. The number of properties required to specify the
same system is much smaller in our approach. This reflects
the fact that our two-stage approach accepts a more general
form of specification. The input properties to our tool and
Anzu are identical except for the fact that if a safety prop-
erty requires memory to be realizable then Anzu requires
that the property be broken down into sub-properties and
partially synthesized by hand. Table 3 compares two proper-
ties from the Amba Arbiter specification; one that is identical
for both tools; the other that needs decomposition. Thanks
to incremental synthesis and the optimizations that it allows,
our synthesis times are quite competitive. Our approach does,
may however, pay a price if pre-synthesis is not applicable.
More optimizations, and in particular, avoiding the blowup
of state space due to the properties described by (11) are
required to produce more efficient implementations.

7 Conclusions

We have shown that in the game-theoretic approach to the
synthesis of reactive systems it is possible to separate the
safety and persistence component of the specification. This
allows one to solve the generalized parity game into which the
specification is translated into two stages. In the presence of
persistence and safety properties—a common occurrence—
one therefore achieves an improved bound on the runtime of
the game solving procedure. The separation in two stages also
opens the door to optimizations of the game graph in between
the two stages only the most straightforward of which are cur-
rently exploited by our implementation. Though these opti-
mizations may not affect the worst-case complexity, they
are practically significant and allow our algorithm to out-
perform in speed the best known synthesis algorithms in
spite of accepting a more general and less detailed specifica-
tion. Analysis of our initial results has suggested numerous
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Table 3 Partial LTL specification of 2-Client Amba Bus Arbiter

Property type SF: safety-first Anzu

1. In case there are no requests, G((DECIDE ∧ ∀i : ¬HBUSREQi)) G((DECIDE ∧ ∀i : ¬HBUSREQi)

the bus is granted to Master 0 → X(HGRANT0)) → X (HGRANT0))

2. No spurious grants except ∀i 	= 0 .G(¬HGRANTi ∀i 	= 0 .G(((Q = init)∧
to Master 0 → (HBUSREQi R¬HGRANTi) (HGRANTi ∨ HBUSREQi))→ X(Q = init))

∀i 	= 0 .G(((Q = init)∧
(¬HGRANTi ∧ ¬HBUSREQi))→ X(Q = NG))

∀i 	= 0 .G(((Q = NG)∧
(¬HGRANTi ∧ ¬HBUSREQi))→ X(Q = NG))

∀i 	= 0 .G(((Q = NG) ∧ HBUSREQi)

→ X(Q = init))

∀i 	= 0 .G(((Q = NG) ∧ HGRANTi)→⊥)

optimizations that should further increase the speed of syn-
thesis and the quality of the resulting reactive system.

Acknowledgments Thanks to Yashdeep Godhal, Krishnendu Chat-
terjee and Barbara Jobstmann for their help with Anzu and the Amba
bus models.
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