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Abstract Testing remains a widely used validation tech-
nique for software systems. However, recent needs in soft-
ware development (e.g., in terms of security concerns) may
require to extend this technique to address a larger set of
properties. In this article, we explore the set of testable prop-
erties within the Safety-Progress classification where test-
ability means to establish by testing that a relation, between
the tested system and the property under scrutiny, holds.
We characterize testable properties w.r.t. several relations
of interest. For each relation, we give a sufficient condition
for a property to be testable. Then, we study and delineate
a fine-grain characterization of testable properties: for each
Safety-Progress class, we identify the subset of testable prop-
erties and their corresponding test oracle. Furthermore, we
address automatic test generation for the proposed frame-
work by providing a general synthesis technique that allows
to obtain canonical testers for the testable properties in the
Safety-Progress classification. Moreover, we show how the
usual notion of quiescence can be taken into account in our
general framework, and, how quiescence improves the test-
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ability results. Then, we list some existing testing approaches
that could benefit from this work by addressing a wider set
of properties. Finally, we propose Java-PT, a prototype Java
toolbox that implements the results introduced in this article.
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1 Introduction

Due to its ability to scale up well and its practical efficiency,
testing remains one of the most effective and widely used
validation techniques for software systems. However, due to
recent needs in the software industry (for instance, in terms of
security), it is important to reconsider the classes of require-
ments this technique allows to validate or invalidate. The aim
of a testing stage may be either to find defects or to witness
expected behaviors on an implementation under test (IUT).
From a practical point of view, a test campaign consists in pro-
ducing a test suite (test generation) from some initial system
description, and executing it on the system implementation
(test execution). The test suite consists in a set of test cases,
where each test case is a sequence of interactions to be exe-
cuted by an external tester (performed on the points of control
and observation, PCOs). Any execution of a test case should
lead to a test verdict, indicating if the system succeeded or not
on this particular test (or if the test was not conclusive).

Since testing is intrinsically a partial validation technique,
an important issue raised when conducting a test campaign is
to produce and select the most relevant test cases. A possible
approach consists in using a property to drive the test gen-
eration and/or test execution steps. In this case, the property
is used to generate the so-called test purposes [18,19], so
as to select test cases according to some predefined abstract
test scenario. A property may also represent the desired or
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408 Y. Falcone et al.

undesired behavior of the system. As an example, such a
property may formalize some security policy describing both
prohibited behaviors and user expectations, as considered
in [22,30]. Moreover, several approaches (e.g., [6]) combine
classical testing techniques and property verification so as
to improve the test activity. Most of these approaches used
safety1 and co-safety2 properties. Then, a natural question is
whether other kinds of properties can be tested, which arises
in defining a precise notion of testability.

In [17,25], Nahm, Grabowski, and Hogrefe addressed the
testability issue by discussing the set of temporal properties
that can be tested on an implementation. A property is said
to be testable if, from a finite test execution σ , it is possible
to determine if a given relation R holds between the set of
executions satisfying this property and the set of (finite and
infinite) executions that could be produced by possible con-
tinuations of σ . Thus, depending on the choice of the relation
R, a test campaign can answer specific questions such as:

R1: Is the set of execution sequences of the IUT included
in the set of execution sequences described by the
property?

R2: Is the set of execution sequences described by the
property included in the set of execution sequences
of the IUT?

R3: Is the set of execution sequences of the IUT equal to
the set of execution sequences described by the prop-
erty?

R4: Do the set of execution sequences of the IUT and the
set of execution sequences described by the property
intersect?

In [17,25], this notion of testability is studied w.r.t. the Safety-
Progress classification (see [4] and Sect. 4) for infinitary
properties. The announced classes of testable properties are
the safety and guarantee3 classes. Then, it is not too sur-
prising that most of the previously depicted approaches used
safety and co-safety properties during testing. Then, an inter-
esting question is “Are there other properties (beyond safety
and guarantee properties) that are also testable?”. Answer-
ing positively this question would open the way to design and
extend testing frameworks, so that they can validate a broader
class of expected behaviors of software systems, and thus
would allow to address the validation of nowadays more and
more complex requirements of software systems. As we shall

1 Let us recall that safety properties are the properties stating that “a
bad thing should not happen”.
2 Let us recall that a co-safety property is a property whose negation is
a safety property.
3 In the Safety-Progress classification guarantee properties state that “a
good thing should happen in a finite amount of time”. The guarantee
class corresponds to the co-safety class in the Safety-Liveness classifi-
cation.

see, in this article we give a positive answer to this question
by exhibiting properties in the Safety-Progress classification
that are strictly more expressive than safety and guarantee
properties.

Context In this paper, we shall use the same notion of test-
ability. We consider a generic approach, where an underlying
property is compared to the possibly infinite executions of
the IUT triggered by a tester. This property expresses finite
and infinite4 observable behaviors (which may be desired or
not). Obviously, the challenge addressed by a tester is to be
able to perform this aforementioned comparison using only a
finite execution of the IUT. Note that in practice, the property
under scrutiny is sometimes expressed using more abstract
events than the ones occurring at the IUT’s execution level.
However, this testability problem can still be addressed while
abstracting this alphabet discrepancy. Moreover, a character-
istic of this testability definition is that it does not require the
existence of an executable specification to generate the test
cases. As we shall see, using a property (instead of an exe-
cutable specification) allows to encompass several existing
conformance testing approaches.

Main contributions This article contributes to property-
oriented testing activities by leveraging the use of an
extension of the Safety-Progress classification dedicated to
runtime techniques. More specifically, the contributions of
the article are as follows:

1. to propose a general approach for property-oriented soft-
ware testing discussed along four relevant implementa-
tion relations that compare the set of executions of the
IUT with those described by a property (e.g., inclusion
of the former in the latter), and that represent a compre-
hensive set of property-oriented testing activities;

2. to propose a formal framework that generalizes some
existing testing activities (e.g., conformance testing) and
provides a formal basis for some other testing activities;

3. to give a precise characterization of testable properties
that extends the initial results on testability in [17,25] by
showing that lots of interesting properties (neither safety
nor guarantee) are also testable (i.e., there exist test exe-
cutions allowing to produce a verdict);

4. to propose a framework that allows to easily obtain test
oracles producing verdicts according to the possible test
executions;

5. to show how this material can be applied to existing test
generation frameworks;

6. and, finally, to present the Java toolbox Java-PT, a soft-
ware implementation allowing a test designer to improve

4 The tester observes a finite execution of the IUT and should state a
verdict about all potential continuations of this execution (finite and
infinite ones).
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a test activity using a property, following the results pro-
posed in the article.

A preliminary version of this paper appeared in the pro-
ceedings of ICTSS’10 [11]. This paper brings the following
additional contributions. Firstly, the paper is given a more
detailed theoretical treatment. Concerning the implementa-
tion relations, we explore the set of testable properties for
three additional implementation relations (in [11] only rela-
tion R1 mentioned above was studied). Moreover, we add
additional examples and complete proofs for all announced
results. We propose a deeper study of related work, first by
describing some testing frameworks that can be leveraged
by the results provided by this paper, and second by showing
that our results also encompass the (usual) notion of confor-
mance testing [31]. Finally, we introduce Java-PT by giving
some implementation details and usage examples.

Paper organization The remainder of this paper is organized
as follows. First, we present in Sect. 2, a small motivating
example that will be used in the rest of the paper. In Sect. 3,
some preliminary concepts and notation are introduced. A
quick overview of the Safety-Progress classification of prop-
erties for runtime validation techniques is given in Sect. 4.
Section 5 introduces the notion of testability considered in
this paper. In Sect. 6, testable properties are characterized.
Automatic test generation is addressed in Sect. 7, and then
we show in Sect. 8 how to take into account some notion
of quiescence from the IUT. Next, in Sect. 9, we overview
related work and propose a discussion on the results pro-
vided by this paper. A presentation of Java-PT, a prototype
tool implementing the results afforded by this paper, is given
in Sect. 10. Finally, Sect. 11 gives some concluding remarks
and raises perspectives. To lighten the presentation of the
Safety-Progress classification, some concepts are presented
informally, and the corresponding formal definitions can be

found in Appendix A. To facilitate the reading of this article,
some proofs are sketched; complete versions can been found
in Appendix B, and the main notations used throughout the
article are summarized in Appendix C.

2 A motivating example

In this section, using an example, we illustrate informally
that there exist interesting properties to be validated, which
do not belong to the safety and guarantee classes.

Let us consider a (very simple) operating system, provid-
ing three execution modes:

– a non-secure mode, in which only non-secure opera-
tions (op-uns) are allowed and their results should not
be encrypted (uncrypt);

– a secure mode, in which only secure (op-sec) operations
can be performed, but such that (i) every occurrence of a
secure operation should be (automatically) logged (log)
by the system, and (ii) results of secure operations should
be encrypted (crypt);

– a system maintenance mode, in which every operation is
permitted.

Switching from the non-secure mode to the secure one needs
some authentication. It is achieved by emitting a request
(auth-req). Such a request can be either granted by the system
(grant) or denied (deny). A logout operation (logout) allows
to switch back to the non-secure mode. The maintenance
mode can be accessed only from the secure mode through
action maintain. Again, this access can be either granted or
denied by the system.

This very abstract system specification can be expressed
by the finite-state automaton depicted in Fig. 1. Its alpha-
bet is � = {op-uns, op-sec, auth-req, grant, deny, log, crypt,
uncrypt, logout, maintain}. Square states are the accepting

Fig. 1 A simple operating system
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states. The non-secure mode (highlighted in red) consists of
states {1, 4}, the secure mode (highlighted in green) in states
{3, 5, 6} and the maintenance mode (highlighted in blue) in
state {9}. States 2 and 8 are transient states between these
modes. State 7 is an “error” state, from which no accept-
ing state is reachable. Testing this system essentially means
testing several distinct properties:

– a property ψos
1 , stating that “secure operations are not

allowed in the non-secure mode”;
– a property ψos

2 , stating that “the maintenance mode is
accessible from the secure mode”;

– a property ψos
3 , stating that “secure operations are not

allowed in the non-secure mode, or the maintenance
mode is called when no operation is ongoing”;

– a property ψos
4 , stating that “each secure operation per-

formed has to be logged”;
– a propertyψos

5 , stating that “the user should be eventually
permanently disconnected”;

– etc.

Propertyψos
1 is clearly a safety property: once violated during

an execution sequence, it remains false (on this execution)
forever. Property ψos

2 is called a guarantee property in the
Safety-Progress classification: once satisfied during an exe-
cution sequence, it remains true (on this execution) forever.

Such properties are known to be testable [25] in the follow-
ing sense: it is possible to produce a tester able to report a vio-
lation of ψos

1 (resp., a satisfaction of ψos
2 ) during a finite test

execution. Property ψos
4 corresponds to a so-called response

property in the Safety-Progress classification. In particular,
valid execution sequences with respect to ψos

4 may con-
tain (possibly infinitely many) invalid prefixes. Therefore,
finding, during a test campaign, a finite invalid execution
sequence is not a sufficient condition to reject the IUT. We
shall see however in this article that, under certain conditions,
this property can be also considered as testable, and how to
produce a corresponding tester. Such a result clearly extends
previous work [17,25] and allows to test a much larger class
of properties than the ones considered so far.

3 Preliminaries and notation

In this section, we introduce some preliminary concepts and
notations.

3.1 Sequences and execution sequences

The notion of sequence is used to formalize executions. Given
an alphabet of actions�, a sequenceσ on� is a total function
σ : I → � where I is either the integer interval [0, n] for
some n ∈ N, or N itself; where N is the set of non-negative

integers (including 0). The empty sequence is denoted by ε.

We denote by�∗ the set of finite sequences over�, by�+ def=
�∗\{ε} the set of non-empty finite sequences over�, and by
�ω the set of infinite sequences over �. �∗ ∪ �ω is noted
�∞. The length (number of elements) of a finite sequence σ
is noted |σ |. For σ ∈ �+ and n ∈ [0, |σ |− 1], the (n + 1)-th
element of σ is noted σn . For σ ∈ �∗, σ ′ ∈ �∞, σ ·σ ′ is the
concatenation of σ and σ ′. The sequence σ ∈ �∗ is a strict
prefix of σ ′ ∈ �∞ (equivalently σ ′ is a strict continuation
of σ ), noted σ ≺ σ ′, when ∀i ∈ [0, |σ | − 1] : σi = σ ′

i

and |σ | < |σ ′|. When σ ′ ∈ �∗, we note σ 
 σ ′ def= σ ≺
σ ′ ∨ σ = σ ′. The set of prefixes of σ ∈ �∞ is pref (σ )

def=
{σ ′ ∈ �∗ | σ ′ 
 σ }. For a finite sequence σ ∈ �∗, the set of

finite continuations is cont(σ )
def= {σ ′ ∈ �∗ | σ 
 σ ′}. For

σ ∈ �∞\{ε} and n < |σ |, σ···n is the prefix of σ containing
the n + 1 first elements.

3.2 The IUT as a generator of execution sequences

The IUT is a programP abstracted as a generator of execution
sequences. During a program execution, we are interested in
a restricted set of operations that may influence the truth
value of the properties we want to test.5 We abstract these
operations by an alphabet �. We denote by P� a program
with alphabet �. The set of execution sequences of P� is
denoted by Exec(P�) ⊆ �∞. This set is prefix-closed, i.e.,

∀σ ∈ Exec(P�) : pref (σ ) ⊆ Exec(P�).
We use Execf(P�) (resp. Execω(P�)) to refer to the finite
(resp. infinite) execution sequences of P� , that is:

– Execf(P�) def= Exec(P�) ∩�∗,
– Execω(P�) def= Exec(P�) ∩�ω.

3.3 Labeled transition systems

A labeled transition system (LTS) defined over an alphabet
� is a 4-tuple G = (QG, qG

init, �,−→G) where QG is a
non-empty set of states and qG

init ∈ QG is the initial state.
−→G⊆ QG ×�G × QG is the transition relation.

For Q′ ⊆ QG , we note Q′ def= QG\Q′, the complement of
Q′ in QG . Moreover, for σ ∈ �∗ of length n and q, q ′ ∈ QG ,

we note q
σ−→G q ′ when ∃q1, . . . , qn−1 ∈ QG : q

σ0−→G

q1 ∧ qn−1
σn−1−→G q ′ ∧ ∀i ∈ [1, n − 2] : qi

σi−→G qi+1. For
q ∈ QG ,ReachG(q)

def= {q ′ ∈ QG | ∃σ ∈ �∗ : q
σ−→G q ′}

is the set of reachable states from q. For X ⊆ QG , the set of

5 Note that in practice properties are sometimes expressed using more
abstract operations than the ones occurring at the IUT’s execution level.
However, the testability issues we address in this paper are still valid in
spite of this alphabet discrepancy.
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co-reachable states from X is defined as CoReachG(X)
def=

{q ∈ QG | ReachG(q) ∩ X �= ∅}. For σ ∈ �∞, the run of
σ on G is the sequence of states involved in the execution

of σ on G. It is formally defined as run(σ,G)
def= q0 · q1 · · ·

where ∀i : qi
σi−→G qi+1 ∧ q0 = qG

init . An LTS G is said
to be deterministic if ∀q ∈ QG,∀e ∈ �,∀q1, q2 ∈ QG :
(q

e−→G q1 ∧ q
e−→G q2) ⇒ q1 = q2. Finally, G is said

to be �′-complete for �′ ⊆ � whenever ∀q ∈ QG,∀a ∈
�′, ∃q ′ ∈ QG : q

a−→G q ′. G is said to be complete if it is
�-complete.

Previous notations transpose to Moore automata (LTSs
with output function), Streett automata (the automata used
to define properties), and IOLTS (Input Output LTS) that
will be introduced in the remainder of this paper.

3.4 Properties as sets of execution sequences

A finitary property (resp. an infinitary property) is a subset
of execution sequences of �∗ (resp. �ω) (i.e., a finitary or
infinitary language). Given a finite (resp. infinite) execution
sequence σ and a finitary propertyφ (resp. infinitary property
ϕ), we say thatσ satisfiesφ (resp.ϕ) whenσ ∈ φ, notedφ(σ)
(resp. σ ∈ ϕ, noted ϕ(σ)). A consequence of this definition
is that properties we will consider are restricted to linear
time execution sequences, excluding properties defined on
powersets of execution sequences and branching properties
(cf. [10]).

3.5 Runtime properties [12]

In this paper, we are interested in runtime properties, namely
the properties that can be used in runtime-based validation
techniques (e.g., runtime verification, testing). As stated in
the introduction, we need to consider both finite and infinite
execution sequences that a program may produce. Runtime
properties should characterize satisfaction for both kinds of
sequences (finite and infinite) in a uniform way. To do so, we
define r-properties as pairs	 = (φ, ϕ) ⊆ �∗ ×�ω i.e., φ is
a finitary language and ϕ an infinitary language. We say that
σ ∈ Exec(P�) satisfies (φ, ϕ), noted	(σ), when σ ∈ �∗ ∧
φ(σ)∨σ ∈ �ω∧ϕ(σ). The negation of a finitary property φ
(resp. an infinitary property ϕ) w.r.t. an alphabet � is �∗\φ
(resp. �ω\ϕ), denoted φ (resp. ϕ) when clear from context.
The definition of the negation of an r-property follows from
the definition of the negation for finitary and infinitary prop-
erties. For an r-property (φ, ϕ), we define (φ, ϕ) as (φ, ϕ).
Boolean combinations of r-properties are defined in a natural
way. For ∗ ∈ {∨,∧}, (φ1, ϕ1)∗(φ2, ϕ2)

def= (φ1 ∗φ2, ϕ1 ∗ϕ2).
In the sequel, we will need the notion of positive and neg-

ative determinacy [27], first introduced by Pnueli and Zaks to
define monitorability (i.e., to state when it is worth verifying

a property at runtime). Here, we rephrase this notion in our
context of r-properties.

Definition 1 (Positive/Negative determinacy of an r-property
[27]) An r-property 	 ⊆ �∗ ×�ω is said to be:

– positively determined by σ ∈ �∗ if

∀μ ∈ �∞ : 	(σ · μ),

denoted ⊕−determined(σ,	);
– negatively determined by σ ∈ �∗ if

∀μ ∈ �∞ : ¬	(σ · μ).

denoted �−determined(σ,	).

Intuitively, an r-property 	 is positively (resp. negatively)
determined by a finite sequence σ , if σ satisfies (resp. does
not satisfy)	 and every finite and infinite continuation does
(resp. does not) satisfy the r-property.

Remark 1 One can remark that an r-property 	 is posi-
tively determined iff ¬	 is negatively determined, that is:
∀σ ∈ �∗,∀	 ⊆ �∗ × �ω : ⊕−determined(σ,	) ⇔
�−determined(σ,¬	).

4 A Safety-Progress classification for runtime
techniques

The Safety-Progress (SP) classification of properties [4,23]
introduces a hierarchy between regular (linear time) proper-
ties6 initially defined as sets of infinite execution sequences.
The classification has been extended in [12] to also deal
with finite-length execution sequences by revisiting it using
r-properties. In this section, we recall the necessary concepts
of the extended version of the Safety-Progress classification.

4.1 Informal presentation

The Safety-Progress classification is an alternative to the clas-
sical Safety-Liveness [1,20] dichotomy. Unlike this latter, the
Safety-Progress classification is a hierarchy and not a parti-
tion, and provides a finer-grain classification of properties in
a uniform way according to four views [5]: a language-theo-
retic view (seeing properties as languages built using specific
operators), a logical view (seeing properties as LTL formu-
las), a topological view (seeing properties as open or closed
sets) and an automata view (seeing properties as accepted
words of Streett automata [29]).

6 In the remainder of this paper, the term property will stand for regular
property.
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Fig. 2 The SP classification

Recall that the Safety-Liveness classification partitions
properties into two classes: safety properties (stating that
“a bad thing should not happen”) and liveness properties
(stating that “a good thing should eventually happen”). The
Safety-Progress classification introduces four basic classes
of properties that are distinguished according to how a good
thing is supposed to happen during an (infinite) execution:

– safety properties require that only good things happen;
– guarantee properties require that a good thing happens

at least once;
– response properties require that a good thing happens

infinitely often;
– persistence properties require that a good thing happens

persistently (equivalently, to not occur a finite number of
times).

Moreover, two composite classes are defined over basic clas-
ses: obligation (resp. reactivity) properties are obtained by
finite Boolean combinations of safety and guarantee (resp.
response and persistence) properties. Any linear-time prop-
erty, i.e., that can be expressed as a set of sequences, belongs
to the reactivity class.

A graphical and hierarchical representation of the Safety-
Progress classification of properties is depicted in Fig. 2. A
link between two classes means that the upper class strictly
contains the lower one. Further details and results can be
found in [13]. Here, we consider only the needed results
from the language-theoretic and the automata views.

4.2 The language-theoretic view of r-properties

The language-theoretic view of the SP classification is based
on the construction of infinitary properties and finitary prop-
erties from finitary ones. It relies on the use of four operators
A, E, R, P (building infinitary properties) and four opera-
tors A f , E f , R f , Pf (building finitary properties) applied
to finitary properties. Formal definitions were introduced
in [13] and are recalled in Appendix A. In the following,
ψ ⊆ �∗ is a finitary property.

A(ψ) consists of all infinite words σ s.t. all prefixes of
σ belonging to ψ . E(ψ) consists of all infinite words σ s.t.

(a)

(b)

Fig. 3 DFA for ψ1 and ψ2. a Aψ1 defining ψ1 = a∗ · (
b∗ + c · (c +

a)∗ · b+)
. b Aψ2 defining ψ2 = (a · b)+

some prefixes of σ belonging to ψ . R(ψ) consists of all infi-
nite words σ s.t. infinitely many prefixes of σ belonging to
ψ . P(ψ) consists of all infinite words σ s.t. all but finitely
many prefixes of σ belonging to ψ .

A f (ψ) consists of all finite words σ s.t. all prefixes of σ
belonging to ψ . One can observe that A f (ψ) is the largest
prefix-closed subset of ψ . E f (ψ) consists of all finite words
σ s.t. some prefixes of σ belonging to ψ . One can observe
that E f (ψ) = ψ · �∗. R f (ψ) consists of all finite words
σ s.t. ψ(σ) and there exists an infinite number of continua-
tions σ ′ of σ also belonging toψ . Pf (ψ) consists of all finite
words σ belonging to ψ s.t. there exists a continuation σ ′ of
σ s.t. σ ′ persistently has continuations staying in ψ .

Example 1 (Language operators) Let us illustrate the appli-
cation of the previously introduced language operators on
some finitary properties:

– Let us consider �1 = {a, b, c} and the finitary property
ψ1 = a∗·(b∗+c·(c+a)∗·b+)

defined by the determinis-
tic finite-state automaton (DFA) in Fig. 3a with accepting
states 1, 2. We have:

– A(ψ1) = aω + a+ · bω, A f (ψ1) = a∗ · b∗,
– E(ψ1) = �ω1 , E f (ψ1) = �∗

1 ,
– R(ψ1) = aω + a∗ · (b + (c · (a + c)∗ · b) · bω,

R f (ψ1) = a∗ + a∗ · (b + (c · (a + c)∗ · b) · b∗,
– P(ψ1) = aω + a∗ · (b + (c · (a + c)∗ · b) · bω,

Pf (ψ1) = a∗ + a∗ · (b + (c · (a + c)∗ · b) · b∗.

– Let us consider �2 = {a, b}, and the finitary property
ψ2 = (a · b)+ defined by the DFA depicted in Fig. 3b.
We have:

– A(ψ2) = A f (ψ2) = ∅,
– E(ψ2) = a · b ·�ω2 , E f (ψ2) = a · b ·�∗

2 ,
– R(ψ2) = a · b · (a · b)ω, R f (ψ2) = a · b · (a · b)∗,
– P(ψ2) = Pf (ψ2) = ∅.
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(a) (b) (c)

Fig. 4 Streett Automata for (A f (ψ1), A(ψ1)), (E f (ψ2), E(ψ2)), (R f (ψ2), R(ψ2)). a A	1 safety automaton s.t. P = {1, 2} and R = ∅. b A	2

guarantee automaton s.t. R = {3} and P = ∅. c A	3 response automaton s.t. R = {3} and P = ∅

4.3 The automata view of r-properties [12]

We define a variant of deterministic and complete Streett
automata (introduced in [29] and used in [5]). We add to the
original Streett automata an acceptance condition for finite
sequences in such a way that these automata uniformly define
r-properties.

Definition 2 (Streett automaton) A deterministic Streett
automaton A is a tuple (QA, qA

init, �,−→A, {(R1, P1), . . . ,

(Rm, Pm)}). The set QA is the set of states, qA
init ∈ QA is

the initial state. −→A: QA × � → QA is the (complete)
transition function. {(R1, P1), . . . , (Rm, Pm)} is the set of
accepting pairs, for i ∈ [1,m], Ri ⊆ QA and Pi ⊆ QA
are the sets of recurrent and persistent states, respectively.
Without loss of generality, we suppose that in the considered
Streett automata, all states are reachable from the initial state:
ReachA(qA

init) = QA.

An automaton with m accepting pairs is called an m-autom-
aton. A plain-automaton is a 1-automaton, and R1 and P1

are then referred to as R and P . For an execution sequence
σ ∈ �ω on a Streett automaton A, vinf (σ,A) denotes the
set of states appearing infinitely often in run(σ,A).
Definition 3 (Acceptance conditions of Streett automata)
Considering an m-automaton A = (QA, qA

init, �,−→A,
{(R1, P1), . . . , (Rm, Pm)}), the acceptance conditions are
defined as follows.

– For σ ∈ �ω,A accepts σ if

∀i ∈ [1,m] : vinf (σ,A) ∩ Ri �= ∅ ∨ vinf (σ,A) ⊆ Pi .

An infinite sequence σ is accepted by A if, during the
run of σ on A, the set of states visited infinitely often are
either all in Pi -states or contains at least one Ri -state, for
each i ∈ [1,m].

– For σ ∈ �∗,A accepts σ if

qA
init

σ−→A q ⇒ ∀i ∈ [1,m] : q ∈ Ri ∪ Pi .

A finite sequence σ is accepted by A if the run of σ
on A ends in either a Pi -state or in a Ri -state, for each
i ∈ [1,m].

Example 2 (Acceptance conditions of Streett automata)
Following the definition of the acceptance conditions, we can
determine the accepted sequences of some Streett automata:

– The Streett automaton A	1 in Fig. 4a accepts finite
sequences whose runs end either in state 1 or 2 and
infinite sequences whose runs visit infinitely often only
states 1 and/or 2. One can remark that the set of finite
(resp. infinite) sequences accepted by A	1 is A f (ψ1)

(resp. A(ψ1)), see Example 1.
– The Streett automata A	2 in Fig. 4b and A	3 in Fig. 4c

accept finite sequences whose runs end in state 3, and
infinite sequences whose runs visit infinitely often at
least state 3. One can remark that the set of finite
(resp. infinite) sequences accepted by A	2 is E f (ψ2)

(resp. E(ψ2)). Similarly, the set of finite (resp. infinite)
sequences accepted by A	3 is R f (ψ2) (resp. R(ψ2)).

As stated before, in the automata view, Streett automata are
used to define r-properties:

Definition 4 (r-property defined by a Streett automaton)
A Streett automaton A defines an r-property (φ, ϕ) ⊆
�∗ ×�ω if and only if the set of finite sequences accepted
by A equals φ and the set of infinite sequences accepted by
A equals ϕ.

4.4 The hierarchy of r-properties

The hierarchical organization of r-properties can be seen in
the language view using the operators and in the automata
view using syntactic restrictions on Streett automata.

Definition 5 (Safety-Progress classes) An r-property 	,
defined by A	 = (QA	, qA	

init , �,−→A	
, {(R1, P1), . . . ,

(Rm, Pm)}), is said to be:

– A safety r-property if 	 = (A f (ψ), A(ψ)) for some
ψ ⊆ �∗ or equivalently A	 is a plain-automaton s.t.
R = ∅ and there is no transition from P to P .

– A guarantee r-property if	 = (E f (ψ), E(ψ)) for some
ψ ⊆ �∗ or equivalently A	 is a plain-automaton s.t.
P = ∅ and there is no transition from R to R.

– An m-obligation r-property if 	 = ⋂m
i=1(Si (ψi ) ∪

Gi (ψ
′
i )) or 	 = ⋃m

i=1(Si (ψi ) ∩ Gi (ψ
′
i )) where S(ψi )
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Fig. 5 A	op : reactivity Streett automaton specifying the behavior of the operating system

(resp. G(ψ ′
i )) are safety (resp. guarantee) r-properties

defined over the ψi and the ψ ′
i ; or equivalently A	 is

an m-automaton s.t. for i ∈ [1,m] there is no transition
from Pi to Pi and from Ri to Ri .

– A response r-property if 	 = (R f (ψ), R(ψ)) for some
ψ ⊆ �∗ or equivalently A	 is a plain-automaton s.t.
P = ∅.

– A persistence r-property if 	 = (Pf (ψ), P(ψ)) for
some ψ ⊆ �∗ or equivalently A	 is a plain-automa-
ton s.t. R = ∅.

– A reactivity r-property if	 is obtained by finite Boolean
combinations of response and persistence r-properties or
equivalently A	 is an unrestricted automaton.

An r-property of a given class is pure when not belonging to
any other sub-class.

Example 3 (r-properties)

– The Streett automaton A	1 in Fig. 4a is a safety autom-
aton and defines the safety r-property (A f (ψ1), A(ψ1))

built upon ψ1.
– The Streett automaton A	2 in Fig. 4b is a guaran-

tee automaton and defines the guarantee r-property
(E f (ψ2), E(ψ2)) built upon ψ2.

– The Streett automaton A	3 in Fig. 4c is a response
automaton and defines the response r-property (R f (ψ2),

R(ψ2)) built upon ψ2.

Example 4 (r-properties for the operating system) The glo-
bal specification of the operating system introduced in Sect. 2
can be formalized as one general reactivity r-property 	op

defined by the Streett automaton A	op depicted in Fig. 5.
For the sake of readability, we have represented only the
most interesting transitions of the automaton. In the states
where transitions are omitted for some events, there is implic-

itly a transition starting from this state, labeled with each
omitted event, and ending in state 7. Note that, using an
r-property (here through recurrent and persistent states of
a Streett automaton) allow us to more precisely formalize
the specification for infinite sequences. Moreover, addition-
ally to the properties mentioned in Sect. 2, the automaton for-
malizes additional requirements. For instance, authentication
granting should be “fair”: the authentication request cannot
be denied forever (e.g., the execution (auth-req · deny)ω is
not accepted by the automaton).

Moreover, from this reactivity r-property, one can derive
several smaller r-properties defined using Streett automata.
These r-properties formalize the informal properties intro-
duced in Sect. 2.

– The safety r-property 	op
1 formalizes the property ψop

1
and is defined by A	

op
1

depicted in Fig. 7a.

– The guarantee r-property 	op
2 formalizes the property

ψ
op
2 and is defined by A	

op
2

depicted in Fig. 7c.

– The obligation r-property 	op
3 formalizes the property

ψ
op
3 and is defined by A	

op
3

depicted in Fig. 7b.

– The response r-property	op
4 formalizes the propertyψop

4
and is defined by A	

op
4

depicted in Fig. 7d.

– The persistence r-property 	op
5 formalizes the property

ψ
op
5 and is defined by A	

op
5

depicted in Fig. 7e.

Figure 6 illustrates the syntactic restrictions on Streett auto-
mata for each basic class. A squared box represents a group of
states. States are grouped according to whether they are recur-
rent or not (respectively denoted by “R” and “R”), and per-
sistent or not (respectively denoted by “P” and “P”). Arrows
represent possible transitions between groups of states.7 For

7 This will be used later in the paper for test generation from properties
(Sect. 7).
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Fig. 6 Schematic illustrations
of the shapes of Streett automata
for basic classes

instance, for safety automata, there are P-states, P-states,
and only R-states. For this kind of automata, the P-states
can be distinguished according to whether P-states can be
reached (the right-hand side group of states) or not (the left-
hand side group of states).

To refine Fig. 2, a graphical representation of the Safety-
Progress hierarchy of properties is depicted in Fig. 8: for
each class of properties, characterizations are recalled in
the language-theoretic and automata views, as defined in
Definition 5.

5 Some notions of testability

Recall that Exec(P�) = Execf(P�) ∪ Execω(P�). From
some finite interaction with the underlying IUT, the tester
observes a sequence of events σ in �∗. We study the condi-
tions, for a such tester, using this sequence σ , to determine
whether a given relation holds between the set of all (finite
and infinite) execution sequences that can be produced by
the IUT (Exec(P�)), and the set of sequences satisfying the
r-property 	. Roughly speaking, the challenge addressed
by a tester is thus to determine a verdict between 	 and
Exec(P�), from a finite sequence taken from Execf(P�).8

Let us recall that the r-property is a pair consisting of
a set of finite sequences and a set of infinite sequences. In
the sequel, we shall compare this pair with the set of (finite
and infinite) execution sequences of the IUT. As noticed
in [25], one may consider several possible relations between
the execution sequences produced by the program and those
described by the property. Those relations are recalled here
in the context of r-properties.

Definition 6 (Relations between IUT sequences and an
r-property [25]) The possible relations of interest between
Exec(P�) and 	 = (φ, ϕ) are:

– Execf(P�) ⊆ φ and Execω(P�) ⊆ ϕ: the IUT respects
the r-property; all behaviors of the IUT are allowed by
the r-property (denoted Exec(P�) ⊆ 	).

– Execf(P�) = φ and Execω(P�) = ϕ: the observable
behaviors of the IUT are exactly those described by the
r-property (denoted Exec(P�) = 	).

8 Or from a finite set of finite sequences, as a straightforward extension.

– Execf(P�)∩φ �= ∅ and Execω(P�)∩ϕ �= ∅: the behav-
iors expected by the r-property and those of the IUT are
not disjoint (denoted Exec(P�) ∩	 �= ∅).

– φ ⊆ Execf(P�) and ϕ ⊆ Execω(P�): the IUT imple-
ments the r-property; all behaviors described by the
r-property are feasible by the IUT (denoted 	 ⊆
Exec(P�)).

We use R to denote a relation ranging over the ones described
in Definition 6. By R(Exec(P�),	), we denote that the rela-
tion R holds between Exec(P�) and 	. The test verdict is
thus determined according to the conclusions that one can
obtain for the considered relation. In essence, a tester can
and must only determine a verdict from a finite test execution
σ ∈ Execf(P�). In Sect. 6, we will also study the conditions
to state weaker verdicts on a single execution sequence.

Definition 7 (Verdicts [25]) Given a relation R between
Exec(P�) and	, and a finite test execution σ ∈ Execf(P�),
the tester produces verdicts as follows:

– pass if σ allows to determine that R holds;
– fail if σ allows to determine that R does not hold;
– unknown9 otherwise.

We note verdict(σ,R(Exec(P�),	)) the verdict that the
observation of σ allows to determine. Let us remark the two
following practical problems:

– In general, the IUT may be a program producing infinite-
length execution sequences. Obviously, these sequences
cannot be evaluated by a tester w.r.t. 	.

– Moreover, finite execution sequences contained in the
r-property cannot be processed easily. For instance:

– if for example for a guarantee or response r-property
	 the test execution exhibits a sequence σ /∈ 	,
deciding to stop the test is a critical issue. Actu-
ally, nothing allows claiming that a future contin-
uation of the test execution would not exhibit a new

9 In [25], this case is associated with the inconclusive verdict. Here, we
choose to state it as an unknown verdict instead. Indeed, in conformance
testing, inconclusive verdicts are produced by a tester when the current
test execution will not allow reaching a pass or fail verdict and is often
used in association with a test purpose. Furthermore, we believe that the
term “unknown” better corresponds to the fact that knowing whether
the relation between Exec(P�) and 	 holds or not is not yet possible.
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(a) (b)

(c)

(d)

(e)

Fig. 7 Some Streett automata for the operating system. a A	
op
1

:
safety automaton s.t. P = {1, 2}, R = ∅, and � = {uncrypt, crypt,
op-uns,op-sec}. b A	

op
3

obligation automaton s.t. P = {1, 2}, R = {4},
and � = {uncrypt,crypt,op-uns,op-sec,maintain}. c A	

op
2

: guarantee
automaton s.t. R = {5}, P = ∅, and � = {auth-req,grant, deny,

logout,maintain}. d A	
op
4

: response automaton s.t. R = {1, 3, 5},
P = ∅, and � = {auth-req,grant,deny,logout,crypt,uncrypt,op-sec}.
e A	

op
5

: persistence automaton s.t. R = ∅, P = {1}, and � =
{grant,deny,logout}

sequence belonging to the r-property, i.e., σ ′ ∈�∞
s.t. 	(σ ·σ ′).

– conversely, for example, for a safety r-property
	, the test might exhibit σ ∈ Execf(P�) s.t.
	(σ), but continuing the test might also exhibit

σ ′ ∈ �∗ s.t. σ · σ ′ ∈ Execf(P�) ∧ ¬	(σ ·
σ ′).

Thus, the test should be stopped only when there is no doubt
regarding the verdict to be established. Following [25], we
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Fig. 8 The SP classification

propose a notion of testability that takes into account the
aforementioned practical limitations, and that is set in the
context of the Safety-Progress classification.

Definition 8 (Testability)An r-property	 is said to be test-
able on P� w.r.t. the relation R if there exists a sequence
σ ∈ �∗ s.t. verdict(σ,R(Exec(P�),	)) ∈ {pass, fail}.

Intuitively, this condition compels the existence of a seque-
nce, which, if played on the IUT, allows determining for sure,
whether the relation holds or not. Let us note that this defi-
nition entails to synthesize a test oracle, which allows deter-
mining R(

Exec(P�),	
)

from the observation of a sequence
σ ∈ Execf(P�).

A test oracle is a Moore automaton parameterized by a test
relation as shown in Definition 6. It reads incrementally an
execution sequence σ ∈ Execf(P�) and produces verdicts
in {pass, fail, unknown}.

Definition 9 (Test Oracle) A test oracle O for an IUT P� ,
a relation R and an r-property 	 is a deterministic Moore
automaton, i.e., a 5-tuple (QO, qO

init, �,−→O, 
O). The
finite set QO denotes the control states and qO

init ∈ QO is the
initial state. The complete function −→O: QO ×� → QO
is the transition function. The output function 
O : QO →
{pass, fail, unknown} produces verdicts in such a way that
any state q emitting a pass or a fail verdict is final, i.e.,
∀q ∈ QO : 
O(q) ∈ {pass, fail} ⇒ q

e−→O q, for any
e ∈ �.

Definition 10 (Soundness and completeness of a test oracle)
The output function 
O of a test oracle O = (QO, qO

init, �,

−→O, 
O) should produce verdicts in the following way:

– soundness: ∀q ∈ QO :
∗ 
O(q) = pass ⇒ (∀σ ∈ Execf (P�) :

qO
init

σ−→O q ⇒ verdict(σ,R(Exec(P�),	))=pass
)

∗ 
O(q) = fail ⇒ (∀σ ∈ Execf (P�) :
qO

init

σ−→O q ⇒ verdict(σ,R(Exec(P�),	))= fail
)
,

– completeness: ∀σ ∈ �∗ :
∗ σ ∈ Execf (P�) ∧ verdict(σ,R(Exec(P�),	)) = pass

⇒ ∃q ∈ QO : qO
init

σ−→O q ∧ 
O(q) = pass
∗ σ ∈ Execf (P�) ∧ verdict(σ,R(Exec(P�),	))= fail

⇒ ∃q ∈ QO : qO
init

σ−→O q ∧ 
O(q)= fail.

Intuitively, a test oracle is sound if the verdicts it produces are
correct regarding the relation between Exec(P�) and	. It is
complete if it produces the appropriate verdict for every finite
sequence permitting so. Note that, implicitly, the unknown
evaluation is never produced after a fail or pass verdict.

6 Testable properties without executable specification

In this section, we shall see that the framework of r-properties
(Sect. 4) allows determining the testability, according to sev-
eral relations between Exec(P�) and 	, of the different
classes of properties using positive and negative determi-
nacy (Definition 1). Moreover, this framework also provides
a computable test oracle. Furthermore, we will be able to
characterize which test sequences allow establishing sought
verdicts. Then, we will determine which verdict has to be
produced in accordance with a given test sequence.

6.1 For the relation Exec(P�) ⊆ 	

6.1.1 Obtainable verdicts and sufficient conditions

For the relation Exec(P�) ⊆ 	, the unique verdicts that may
be produced are fail and unknown. We make these explicit
below.

A pass verdict means that all execution sequences of the
IUT P� belong to 	. The unique case where it is possi-
ble to establish a pass verdict is in the trivial case where
	 = (�∗, �ω), i.e., the r-property 	 is always satisfied.
Obviously, any implementation with alphabet� satisfies this
relation. In other cases, in practice it is impossible to obtain
such a verdict (whatever is the property class under consid-
eration), since the whole set Exec(P�) is usually unknown
from the tester. For instance, one can imagine a guarantee
property	 s.t. first ∃σ ∈ Execf(P�) : 	(σ) (and thus ∀σ ′ ∈
�∞ : 	(σ · σ ′)) and second ∃σ ′′ ∈ Execf(P�) : ¬	(σ ′′)
and ∀σ ′′′ ∈ �∞ : ¬	(σ ′′ · σ ′′′).

Remark 2 In the following, we will also study the conditions
under which it is possible to state weak pass verdicts, when

123



418 Y. Falcone et al.

Table 1 Summary of testability results w.r.t. the relation Exec(P�) ⊆ 	 (for a fail verdict)

Exec(P�) ⊆ 	 Testability condition Testability condition
(language view) (automata view)

Safety

(A f (ψ), A(ψ)) | R = ∅, P � P ψ �= ∅ P �= ∅

Guarantee

(E f (ψ), E(ψ)) | P = ∅, R � R {σ ∈ ψ | pref (σ ) ∪ cont(σ ) ⊆ ψ} �= ∅ R\CoReachA	(R) �= ∅

Obligation
⋂k

i=1(Si (ψi ) ∪ Gi (ψ
′
i ))

⋃k
i=1

(
ψi ∩ {σ ∈ ψ ′

i | pref (σ ) ∪ cont(σ ) ⊆ ψ ′
i }

) �= ∅
⋃k

i=1(Si (ψi ) ∩ Gi (ψ
′
i ))

⋂k
i=1

(
ψi ∪ {σ ∈ ψ ′

i | pref (σ ) ∪ cont(σ ) ⊆ ψ ′
i }

) �= ∅
Pi � Pi , Ri � Ri

⋃k
i=1

(
Pi ∩ Ri \CoReachA	(Ri )

) �= ∅

Response

(R f (ψ), R(ψ)) | P = ∅ {σ ∈ ψ | cont(σ ) ⊆ ψ} �= ∅ R\CoReachA	(R) �= ∅

Persistence

(Pf (ψ), P(ψ)) | R = ∅ {σ ∈ ψ | cont(σ ) ⊆ ψ} �= ∅ P\CoReachA	(P) �= ∅

reasoning on a single execution sequence of the IUT. For
instance, for the previously mentioned guarantee r-property,
we will produce a weak pass verdict for the sequence σ .

A fail verdict means that there exist some sequences of the
program which are not in 	. To produce a fail verdict, it is
sufficient to exhibit an execution sequence of P� s.t. 	 is
negatively determined by this sequence:

Property 1 (Sufficient condition to produce a fail verdict)
Negative determinacy is a sufficient condition for a sequence
to be associated with a fail verdict:

verdict(σ,Exec(P�)⊆	)=
{

fail if �−determined(σ,	)
unknown otherwise

Hence, the aim of the test campaign will be to generate
sequences σ of �∗ that negatively determine 	 and to play
them on the implementation.

6.1.2 Testability of Exec(P�) ⊆ 	 in the Safety-Progress
classification

For each SP class, we state the conditions under which the
properties of this class are testable, i.e., the conditions to
exhibit a fail verdict.

In the language view, the testability conditions of
r-properties are given on the finitary properties (ψ or ψi for
i ∈ [1, n]) over which r-properties are built. In the automate
view, the testability conditions are given through syntactic
criteria on the automata defining r-properties.

Theorem 1 (Testability of Exec(P�) ⊆ 	) Given A	 =
(QA	, qA	

init ,−→A	
, {(R1, P1), . . . , (Rm, Pm)})defining an

r-property 	 built over ψ ⊆ �∗ or ψi ⊆ �∗ for i ∈

[1, n], according to the class of 	, the testability conditions
expressed both in the language-theoretic and automata views
are given in Table 1.10

Proof The complete proof is given in Appendix B.1. The
proof is done according to the Safety-Progress classes.

– In the language view, for each pair of operators X f /X
with X ∈ {A, E, R, P}, one can see that when a
sequence is in one of the mentioned sets, the r-property
(X f (ψ), X (ψ)) is negatively determined: e.g., for a
safety r-property (A f (ψ), A(ψ)) built upon ψ ⊆ �∗,
whenσ ∈ ψ , we have�−determined(σ, (A f (ψ), A(ψ))).
Indeed, every finite (resp. infinite) continuation of σ can-
not belong to A f (ψ) (resp. A(ψ)), because it has at least
one prefix not in ψ .

– In the automata view, according to the syntactic restric-
tions on automata for Safety-Progress classes and the
acceptance conditions, one can see that when a run of a
sequence ends in a state in the mentioned set of states,
the corresponding sequence negatively determines the
underlying r-property.11 This allows us, according to
Property 1, to produce a fail verdict. For instance, for
safety r-properties, when the run of a sequence σ ends
in a P state, σ negatively determines the underlying
r-property. Indeed, according to the acceptance crite-
rion of Streett automata, since there is no transition from

10 Intuitively, the set of sequences exposed in Table 1 represents the
set of sequences allowing, for each class, to negatively determine the
r-properties.
11 One can remark that, for X ⊆ QA	, X\CoReachA	(X) �= ∅ can
be equivalently written {q ∈ X | ReachA	(q) ⊆ X} �= ∅.
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P-states to P-states, every finite and infinite continuation
of σ does not satisfy the underlying property. ��

Example 5 (Testability of some r-properties w.r.t. the rela-
tion Exec(P�) ⊆ 	) We present the testability of some r-
properties introduced in Example 3.

The safety r-property 	1 is testable w.r.t. the relation
Exec(P�1) ⊆ 	1. Indeed in the language view, the property
is built on ψ1 and there are sequences belonging to �∗

1\ψ1

(the corresponding DFA has a non-accepting state). In the
automata view, for A	1 , we have 3 ∈ P (reachable from the
initial state).

The guarantee r-property 	2 is testable w.r.t. the relation
Exec(P�2) ⊆ 	2. Indeed in the language view, the property
is built on ψ2 and there are sequences belonging to �∗

2\ψ2

s.t. all prefixes of theses sequences and all its continuations
are also in �∗

2\ψ2. In the automata view, for A	2 , there is a
(reachable) state in R from which all reachable states are in
R: state 4.

The response r-property 	3 is testable w.r.t. the relation
Exec(P�2) ⊆ 	3. Indeed in the language view, the property
is built on ψ2 and there are sequences belonging to �∗

2\ψ2

s.t. all continuations of these sequences belong to �∗
2\ψ2 as

well. In the automata view, for A	3 , there is a (reachable)
state in R from which all reachable states are in R: state 5.

The response r-property	4, defined by the Streett autom-
aton depicted in Fig. 14b, is not testable w.r.t. the relation
Exec(P�2) ⊆ 	4. Indeed, in the automata view, for A	4 ,
we have R\CoReachA	4

(R) = ∅ since R = {2}, 1 ∈
ReachA	4

(2), and 1 ∈ R. In other words, for every finite
sequence σ , there exist infinite continuations satisfying 	4

(visiting infinitely often state 1 in the automaton) and infinite
continuations not satisfying	4 (staying persistently in state
2 in the automaton).

Example 6 (Testability of the r-properties of the operating
system w.r.t. the relation Exec(P�) ⊆ 	) Similarly, we can
present the testability of the r-properties for the operating
system.

– The r-property 	op is testable w.r.t. the relation Exec
(P�) ⊆ 	op where � is the alphabet used in the defini-
tion of 	op.

– The r-property 	op
i is testable w.r.t. the relation Exec

(P�) ⊆ 	
op
i , for i ∈ [1, 4], where � is the appro-

priate alphabet used in the definition of the considered
r-property.

– The r-property 	op
5 is not testable w.r.t. the relation

Exec(P�) ⊆ 	
op
5 , where � is the alphabet used in the

definition of 	op
5 .

6.1.3 Verdicts to deliver

We now state the verdicts that should be produced by a tester
for the possibly infinite sequences of the IUT. In the language

view, each testability condition is expressed as a composi-
tion of some ψi , where the ψi ⊆ �∗ (i ∈ [1, n]) are used
to build the r-property. When σ belongs to Execf(P�) and
the exhibited sets, the test oracle should deliver fail since the
underlying r-property is negatively determined. Conversely,
when σ ∈ Execf(P�) and σ is not in the exhibited sets, the
test oracle can only deliver unknown.

In practice, those verdicts are determined by a test oracle,
i.e., a computable function reading an interaction sequence.
In our framework, test oracles are obtained from Streett auto-
mata. We defer the computation of the test oracle to Sect. 7,
as we will generate the canonical tester which is a mechanism
encompassing the test oracle.

Remark 3 The test oracle can be also obtained from the
r-properties described in other views (language-theoretic,
logical). Indeed, in [13] we describe how to express an
r-property in the automata view from its expression in the
language or the logical view.

In this part, we have clarified and extended some results
of [25] about the testability of properties w.r.t. the rela-
tion Exec(P�) ⊆ 	. First, we have shown that the safety
r-property (�∗, �ω) always lead to a pass verdict and is vac-
uously testable. Moreover, we exhibited some r-properties
of other classes which are testable, i.e., some obligation,
response, and persistence r-properties. The testability condi-
tions are given in the language and automata views. We shall
now go one step further in the extension of the results in [25]
by introducing a finer notion of verdict.

6.1.4 Refining verdicts

Similarly to the introduction of weak truth values in runtime
verification [2,12], it is possible to introduce weak verdicts in
testing. In this respect, stopping the test and producing a weak
verdict consists in stating that the test execution sequence
produced so far belongs (or not) to the property. The idea
of satisfaction “if the program stops here” in runtime verifi-
cation [2,12] corresponds to the idea of “the test has shown
enough on the implementation” in testing. In this case, testing
would be similar to a kind of “active runtime verification”:
one is interested in the satisfaction of one execution of the
program, which is steered externally by a tester. Basically,
it amounts to not seeing testing as a destructive activity, but
as a way to also enhance confidence in the implementation
compliance w.r.t. a property.

Under some conditions, it is possible to determine weak
verdicts for some classes of properties in the following sense:
the verdict is expressed on one single execution sequence σ ,
and it does not afford any conclusion on the set Exec(P�).

We have seen that, for the relation Exec(P�) ⊆ 	, the
only verdicts that can be produced were fail and unknown.
Clearly, fail verdicts can still be produced. Furthermore,
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Table 2 Conditions to produce a weak pass verdict for the relation Exec(P�) ⊆ 	

Exec(P�) ⊆ 	 Testability condition Testability condition
(language view) (automata view)

Safety

(A f (ψ), A(ψ)) | R = ∅, P � P {σ ∈ ψ | pref (σ ) ∪ cont(σ ) ⊆ ψ} �= ∅ P\CoReachA	(P) �= ∅

Guarantee

(E f (ψ), E(ψ)) | P = ∅, R � R ψ �= ∅ R �= ∅

Obligation
⋂k

i=1(Si (ψi ) ∪ Gi (ψ
′
i ))

⋂m
i=1 ψ

′
i �= ∅

⋃k
i=1(Si (ψi ) ∩ Gi (ψ

′
i ))

⋃m
i=1({σ ∈ ψi | pref (σ ) ∪ cont(σ ) ⊆ ψi } ∩ ψ ′

i ) �= ∅
Pi � Pi , Ri � Ri

⋂m
i=1(Pi \CoReachA	(Pi ) ∪ Ri ) �= ∅

Response

(R f (ψ), R(ψ)) | P = ∅ {σ ∈ ψ | pref (σ ) ∪ cont(σ ) ⊆ ψ} �= ∅ R\CoReachA	(R) �= ∅

Persistence

(Pf (ψ), P(ψ)) | R = ∅ {σ ∈ ψ | pref (σ ) ∪ cont(σ ) ⊆ ψ} �= ∅ P\CoReachA	(P) �= ∅

unknown verdicts can be refined into weak pass verdicts when
the sequence σ positively determines the r-property. In this
case, the test can be stopped, since, whatever is the future
behavior of the IUT, it will exhibit behaviors that will satisfy
the r-property. In this case, it seems reasonable to produce a
weak pass verdict and consider new test executions to gain
in confidence.

The definition of the verdict function, as given in Prop-
erty 1, can be updated:

Property 2 (Sufficient conditions to produce a fail or a
weak pass verdict) Positive determinacy is a sufficient
condition for a sequence to be associated with a weak pass
verdict. Negative determinacy remains a sufficient condition
for a sequence to be associated with a fail verdict. We have,
verdict(σ,Exec(P�) ⊆ 	) =
⎧
⎨

⎩

fail if �−determined(σ,	),
weak pass if ⊕−determined(σ,	),
unknown otherwise.

We revisit, for each Safety-Progress class, the situations when
weak pass verdicts can be produced for this relation.

Theorem 2 (Producing weak pass verdicts for the relation
Exec(P�) ⊆ 	) For each Safety-Progress class, the situa-
tions when weak pass verdicts can be produced are given in
Table 2.

Proof Noticing that the notions of positive and negative
determinacy are dual, the proof can be conducted similarly
to the proof of Theorem 1. ��
Corollary 1 (Testability of Exec(P�) ⊆ 	 with weak ver-
dict) Testability conditions for Exec(P�) ⊆ 	 augmented

with weak verdicts are the disjunction of the conditions
exposed in Tables 1 and 2.

Proof It is a direct consequence of Theorems 1 and 2. ��
Definition 11 (Test Oracle with weak verdict)

The notion of test oracle introduced in Definition 9 can be
easily extended with the notion of weak pass verdict. Indeed,
it suffices to require the following additional constraints rel-
atively to the production of verdicts:

– soundness: ∀q ∈ QO :


O(q) = weak pass

⇒ ∀σ ∈ Execf(P�) : qO
init

σ−→O q ⇒ 	(σ)

∧ ∀σ ′ ∈ �∗ : σ ≺ σ ′
⇒ verdict(σ ′,Exec(P�) ⊆ 	) /∈ {fail, unknown},

– completeness: ∀σ ∈ Execf(P�) ∩	 :
(
	(σ) ∧ ∀σ ′ ∈ �∗ : σ ≺ σ ′
⇒ verdict(σ ′,Exec(P�) ⊆ 	) /∈ {fail, unknown})

⇒ ∃q ∈ QO : qO
init

σ−→O q ∧ 
O(q) = weak pass.

Soundness (resp. completeness) entails a test oracle to pro-
duce a weak pass verdict for a sequence σ only when (resp.
as soon as) 	 is satisfied by σ and no future continuation of
σ can lead to a fail or unknown verdict.

6.2 Testability w.r.t. the relation Exec(P�) = 	

The previous reasoning applies for the testability w.r.t. the
relation Exec(P�) ⊆ 	 apply in a similar fashion. The char-
acterization of testable r-properties is thus the same. Indeed,
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when one finds a sequence σ ∈ Execf(P�) s.t. it is possi-
ble to find a fail verdict for Exec(P�) ⊆ 	, then this same
verdict holds for Exec(P�) = 	, i.e., Exec(P�) �⊆ 	 ⇒
Exec(P�) �= 	. Note that the same reasoning applies for the
weak pass verdict.

6.3 Testability w.r.t. the relation Exec(P�) ∩	 �= ∅

Testability results for this relation can be determined using:

– the results stated for the relation Exec(P�) ⊆ 	,
– the duality within the Safety-Progress classification.

Indeed, for safety and guarantee r-properties (similar duality
holds for response and persistence):

	 = (A f (ψ), A(ψ)) ⇒ 	 = (E f (ψ), E(ψ)).

Furthermore, one has to notice that ¬(Exec(P�) ⊆ 	) ⇔
Exec(P�)∩	 �= ∅. Consequently, testability results can be
obtained in a rather straightforward manner for this relation.
Indeed, the testability conditions to obtain a pass verdict for
the relation Exec(P�) ∩ 	 �= ∅ are the same conditions to
obtain a weak pass verdict for the relation Exec(P�) ⊆ 	

(expressed in Theorem 2). Moreover, we can show that there
exists one guarantee r-property for which it is not possible to
obtain a pass verdict. Indeed, by duality with the non-testabil-
ity of (�∗, �ω) w.r.t. Exec(P�) ⊆ 	, testing the guarantee
r-property (∅,∅) cannot lead to a pass verdict. Furthermore,
we have shown that some r-properties of the other classes
are testable12 as well, i.e., some safety, obligation, response,
and persistence r-properties. Finally, we provided testabil-
ity conditions in the language and automata views. Thus, we
have extended and clarified some results of [25].

Remark 4 (Producing a weak fail verdict for Exec(P�) ∩
	 �= ∅) By duality, and following the reasoning used to
motivate the weak pass verdict for the relation Exec(P�) ⊆
	, it is possible to produce a weak fail verdict for the rela-
tion Exec(P�) ∩ 	 �= ∅. Thus, the conditions to produce
a weak fail verdict are the ones stated in Table 1. Thus the
testability conditions for the relation Exec(P�) ∩ 	 �= ∅
augmented with the weak fail verdict are similarly the dis-
junction of the conditions expressed in Tables 1 and 2.

Example 7 (Testability of some r-properties w.r.t. the rela-
tion Exec(P�) ∩	 �= ∅) We present the testability of three
r-properties introduced in Example 3 w.r.t. Exec(P�)∩	 �=
∅.

The safety r-property 	1 built from ψ1, defined by the
Streett automaton depicted in Fig. 4a, is not testable w.r.t.
the relation Exec(P�1)∩	1 �= ∅. Indeed, it does not satisfy
the testability condition: the automaton defining ψ1 does not

12 In [25], for this relation, only guarantee properties are declared as
testable.

have an accepting state reachable from the initial state s.t. it
is reachable only with accepting states and s.t. all reachable
states are accepting ({σ ∈ ψ1 | pref (σ ) ∪ cont(σ ) ⊆ ψ1} =
∅). However, this property is testable with weak verdicts.
Indeed, because of state 3 in A	1 , it is possible to obtain
weak fail verdicts.

The guarantee r-property 	2 built upon ψ2, defined by
the Streett automaton in Fig. 4b, is testable w.r.t. the rela-
tion Exec(P�2) ∩	2 �= ∅. Indeed, it satisfies the testability
conditions for guarantee properties: the automaton defining
ψ2 has a (reachable) accepting state (ψ2 �= ∅) and R �= ∅
in A	2 . The interesting sequences to be played in order to
obtain a pass verdict are those leading to state 3. Moreover,
it is also possible to produce weak fail verdicts because of
state 4 in A	2 .

The response r-property	3 built upon ψ2, defined by the
Streett automaton in Fig. 4c is not testable w.r.t. the rela-
tion Exec(P�2) ∩	3 �= ∅. Similarly, it does not satisfy the
testability conditions for response properties.

Similarly, following the previous reasoning:

– The r-property	op (resp.	op
2 ) is testable w.r.t. the rela-

tion Exec(P�) ∩	op �= ∅ (resp. Exec(P�) ∩	op
2 �= ∅)

where� is the appropriate alphabet used in the definition
of the considered r-property.

– The r-property 	op
i is not testable w.r.t. the relation

Exec(P�) ∩ 	op
i �= ∅, i ∈ [1, 3, 4, 5], where � is the

appropriate alphabet used in the definition of the consid-
ered r-property.

6.4 Testability w.r.t. the relation 	 ⊆ Exec(P�)

It is not possible to obtain verdicts for this relation in the
general case. We explicit this below.

In order to obtain a pass verdict for this relation, it would
be required to prove that all execution sequences described by
the property are sequences of the program. This is impossible
as soon as the set of sequences described by the r-property
is infinite.

To obtain a fail verdict, it would be required to prove
that at least one sequence described by the r-property can-
not be played on the implementation. Even if one finds an
execution sequence of the implementation not satisfying the
r-property, it does not allow to state that the relation does
not hold. Indeed, since the IUT may be non-deterministic,
another execution of the implementation could exhibit such
a sequence. Producing a fail verdict would require a deter-
minism hypothesis on the implementation.

6.5 Summary

In this section, the conditions for the testability of properties
w.r.t. four relations of interest have been stated. Moreover,
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the use of a weaker notion of verdict has been motivated and
conditions to produce them have been provided.

7 Automatic test generation w.r.t. the relation
Exec(P�) ⊆ �

In this section, we address test generation for the testing
framework introduced in this paper. Here, test generation
is based on r-properties, and the purpose of the test cam-
paign is to determine verdicts for a relation between a testable
r-property and an IUT. Before entering into the details, we
first discuss informally some practical constraints that have
to be taken into account for test generation. Then, we will be
able to compute the canonical tester (i.e., the most general
tester for the relation) (Sect. 7.1) and discuss test selection
(Sect. 7.2). We focus on test generation w.r.t. the relation
Exec(P�) ⊆ 	. Automatic test generation with respect to
the relation Exec(P�) ∩ 	 �= ∅ can be simply derived by
duality.

Which sequences should be played? The sequences of inter-
est to play on the IUT are naturally those leading to a fail
or a weak pass verdict and these sequences can be used to
generate test cases. In the language view (resp. automata
view), these sequences are those belonging to the exhibited
sets (resp. leading to the exhibited set of states) in testability
conditions given in Tables 1 and 2. For instance, for a safety
r-property 	S = (A f (ψ), A(ψ)) built upon ψ , and defined
by a safety automaton A	S , one should play sequences in ψ
or equivalently those leading to P in A	S .

When to stop the test? When the tested program produces
an execution sequence σ ∈ �∗, a raised question is when
to safely stop the test. Obviously, a first answer is when a
fail or weak pass verdict has been issued, since these ver-
dicts are definitive. Although in other cases, when the test
interactions produced some test sequences leading so far to
unknown evaluations, the question prevails. It remains to the
tester appraisal to decide when the test should be stopped
(see Sect. 7.2).

Alphabet and test architecture To address test generation,
we will need to distinguish inputs and outputs and the alpha-
bet of the IUT and the r-property. The alphabet � of the
property is now partitioned into �? (input actions) and �!
(output actions). The alphabet of the IUT becomes� IU T and
is partitioned into � IU T

? (input actions) and � IU T
! (output

actions) with �? = � IU T
? and �! = � IU T

! . As usual, we
also suppose that the behavior of the IUT can be modeled by
an IOLTS I = (QI , qI

init, �
IU T ,−→I). We do not require

the IUT to be input complete. If the IUT refuses an input,
the test execution terminates and the associated verdict is the
last produced one (before trying to emit the input), i.e., an

unknown verdict. We do not assume neither the IUT to be
deterministic.

7.1 Computation of the canonical tester

We propose a methodology to build the canonical tester for
our framework. The canonical tester for a relation R between
an IUT P� and an r-property	 is proposed to detect all ver-
dicts for the relation between the r-property and all possible
test executions that can be produced with P� .

We define canonical testers from Streett automata. To do
so, we will reuse a partition of the set of states of a Streett
automaton that was introduced in [12] for runtime verifica-
tion.

Definition 12 (Good and bad states)For a Streett automaton
A	 = (QA	, qA	

init , �,−→A	
, {(R1, P1), . . . , (Rm, Pm)}),

the sets GA	,GA	
c , BA	

c , BA	 form a partition of QA	

and designate, respectively, the good (resp. currently good,
currently bad, bad) states:

– GA	
def= {q ∈ QA	 ∩ ⋂m

i=1(Ri ∪ Pi )

| ReachA	
(q) ⊆ ⋂m

i=1(Ri ∪ Pi )};
– GA	

c
def= {q ∈ QA	 ∩ ⋂m

i=1(Ri ∪ Pi )

| ReachA	
(q) �⊆ ⋂m

i=1(Ri ∪ Pi )};
– BA	

c
def= {q ∈ QA	 ∩ ⋃m

i=1(Ri ∩ Pi )

| ReachA	
(q) �⊆ ⋃m

i=1(Ri ∩ Pi )};
– BA	

def= {q ∈ QA	 ∩ ⋃m
i=1(Ri ∩ Pi )

| ReachA	
(q) ⊆ ⋃m

i=1(Ri ∩ Pi )}.
Informally, for an r-property 	 defined by A	, a state q ∈
QA	 is:

– in GA	 (good states) if and only if it is an accepting state
and all reachable states are accepting;

– in GA	
c (currently good states) if and only if it is an

accepting state and there is at least one reachable non-
accepting state;

– in BA	
c (currently bad states) if and only if it is a non-

accepting state and there is at least one reachable accept-
ing state;

– in BA	 (bad states) if and only if it is a non-accepting
state and all reachable states are not accepting.

It is possible to show that if a sequence σ reaches a state in
BA	 (resp. GA	 ), then the underlying property 	 is nega-
tively (resp. positively) determined by σ .

Lemma 1 (good and bad states vs determinacy) Given σ ∈
�∗, a Streett automaton A	 defining an r-property 	, and
q ∈ QA	 , we have:

q ∈ GA	 ⇔ ∀σ ∈ �∗ : qA	
init

σ−→A	
q

⇒ ⊕−determined(σ,	);
q ∈ BA	 ⇔ ∀σ ∈ �∗ : qA	

init
σ−→A	

q
⇒ �−determined(σ,	).
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Fig. 9 Schematic illustrations of the canonical tester for basic classes

(a) (b) (c)

Fig. 10 Canonical testers built from the r-properties of Example 3. a Canonical tester for	1. b Canonical tester for	2. c Canonical tester for	3

Proof The lemma has been proved in [13] in a different con-
text; we propose a proof in Appendix B.2 for the sake of
completeness. The proof uses the acceptance conditions of
Streett automata, and the fact that we use complete and deter-
ministic automata. ��
The canonical tester is defined as follows. One can note that
the notion of canonical tester is a generalization of the notion
of test oracle introduced in Definition 9.

Definition 13 (Canonical Tester)Given a Streett m-automa-
ton A	 = (QA	, qA	

init ,−→A	
, {(R1, P1), . . . , (Rm, Pm)})

defining a testable r-property 	, the associated canonical
tester is the Moore automaton T = (QT , qT

init, �,−→T , 

T )

where 
T : QT → {fail,weak pass, unknown} is the output
function producing verdicts and is defined as follows:

– QT = QA	 ;
– qT

init = qA	
init ;

– −→T =−→A	
;

– for q ∈ QT ,


T (q) =
⎧
⎨

⎩

unknown when q ∈ BA	
c ∪ GA	

c ,

fail when q ∈ BA	,

weak pass when q ∈ GA	.

A Streett automaton is simply transformed into a canonical
tester by defining verdicts for its states according to the par-
tition of bad states (in BA	) and good states (in GA	 ). They
are assigned, respectively, the fail and weak pass verdicts,
while all other states are given the unknown verdict. Note
that the test can be stopped when reaching bad or good states.

This construction of canonical testers is illustrated in Fig. 9
for the automata dedicated to basic classes of properties (see
Fig. 6).

Theorem 3 (Soundness and completeness of canonical test-
ers) The canonical tester as defined in Definition 13 is a sound
and complete test oracle augmented with weak verdicts as
proposed in Definition 11.

Proof It is a direct consequence of Lemma 1. ��
Example 8 (Canonical Testers) Canonical testers for
r-properties of Example 3 are represented in Fig. 10. The
alphabet partitioning is s.t. � IU T

? ={?a} and � IU T
! ={!b, !c}.

Assignments to unknown are omitted for readability.
The canonical tester built from A	1 , the Streett safety

automaton defining 	1, is s.t. the state 3 (a bad state) is
assigned the fail verdict.

The canonical tester built from A	2 , the Streett guaran-
tee automaton defining 	2, is s.t. the state 5 (a bad state) is
assigned the fail verdict and state 3 (a good state) is assigned
the weak pass verdict.

The canonical tester built from A	3 , the Streett response
automaton defining 	3 is s.t. the state 5 (a bad state) is
assigned the fail verdict.

Example 9 (Canonical Testers) The canonical tester for the
global specification of the operating system defined by the
Streett automaton in Fig. 5 is depicted in Fig. 11. The alpha-
bet partitioning is � IU T

? = {?maintain,?req-auth,?op-sec,?
op-uns,?logout} and � IU T

! = {!uncrypt,!crypt,!deny,!grant}.
Assignments to unknown are omitted for readability.

Similarly, the canonical testers for the r-properties of the
operating system are depicted in Fig 12.
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Fig. 11 Canonical tester for the global specification of the operating system

7.2 Test selection

For a given r-property, the set of potential test sequences to
be played is potentially infinite. The purpose of test selection
is to produce a (finite) set of test cases s.t. any test case is
controllable [18] (it has no choice between the inputs it pro-
vides to the IUT) and should produce a sound verdict. Note
that a test selection algorithm usually targets a particular ver-
dict that could be either fail or weak pass in our context. In
this case, the Streett automaton describing the property under
scrutiny allows to prune the execution sequences that do not
lead to the targeted verdict.

A generic test selection algorithm can be viewed as a (non-
deterministic) transformation of the canonical tester T =
(QT , qT

init, �,−→T , 

T ) to produce a test case as a control-

lable IOLTS T C = (QT C , qT C
init , �,−→T C , 


T C ) such that
each execution sequence of T C corresponds to a test exe-
cution. States of T C are some states of T . An additional
verdict called inconc (inconclusive) replaces the unknown
verdict in states from which the targeted verdict cannot be
reached anymore. Now, the set of possible verdicts becomes
{fail, pass, inconc, unknown}. This algorithm is informally
described below (assuming that the target verdict is fail, thus
BA	 states):

1. Define Inconc
def= QT \CoReachT (BA	) as the set of

states from which the fail verdict is not reachable.
2. Define the output function of TC such that ∀q ∈

QT \Inconc : 
TC(q) = 
T (q) and ∀q ∈ Inconc :

TC(q) = inconc.

3. Remove in −→TC transitions from −→T labeled by an
input action of the IUT and whose target state is in Inconc:
∀e ∈ � IU T

? ,∀q, q ′ ∈ QTC :

(q
e−→T q ′ ∧ q ′ ∈ Inconc) ⇒ (q, e, q ′) �∈−→TC

(while transitions of −→T labeled by an output action of
the IUT and whose target state is in Inconc are kept in
−→TC).

4. Make TC controllable, i.e., ensure that it satisfies:
∀e1, e2 ∈ � IU T

? ,∀q, q1, q2 ∈ QTC :

(q
e1−→TC q1 ∧ q

e2−→TC q2) ⇒ (q1 = q2 ∧ e1 = e2).

Roughly speaking, based on items 1 and 2, the test selection
allows to stop the test and deliver an inconc verdict whenever
it is no more possible for the tester to produce a sequence that
negatively or positively determines the underlying property.
Item 3 says that Inconc states are reached only after outputs,
because the tester controls inputs it provides and thus may
avoid falling in Inconc with inputs.

Example 10 (Test sequences) Applying the test selection
algorithm to the various examples we proposed is straightfor-
ward. For instance, for A	

op
1

, from the controllable canonical
tester, possible test sequences (that can serve as a basis for
test cases) include the sequences in (?op-uns · !uncrypt)∗ ·
?op-uns · (!crypt + ?op-sec). More generally, it consists in
generating sequences ending in a verdict state on the control-
lable canonical tester.

Test selection plays also a particular role to state weak pass
verdicts. Indeed, when dealing with sequences satisfying
an r-property so far and not positively determining it, test
selection should plan the moment for stopping the test. It
can be, for instance, when the test lasted more than a given
expected duration or when the number of interactions with
the IUT reaches a given bound. However, one should not
forget that there might exist a continuation that can be pro-
duced by letting the test execution continue, not satisfying
the r-property or even negatively determining it. Here, it thus
remains to the tester expertise to state the halting criterion
(possibly using quiescence, see Sect. 8).

123



More testable properties 425

(a) (b)

(c)

(d)

Fig. 12 Canonical tester for some r-properties of the operating system. a Canonical tester for A	
op
1

. b Canonical tester for A	
op
3

. c Canonical
tester for A	

op
2

. d Canonical tester for A	
op
4

Remark 5 (More advanced test selection) In practice, one
may use the underlying Streett automaton to refine the test
selection algorithm by, for instance, further constraining the
states that should be visited during a test.

8 Introducing quiescence

We show in this section how the test generation technique
proposed in Sect. 7 can be improved when some notion of

quiescence (i.e., an explicit lack of response from the IUT)
can be taken into account.

8.1 The notion of quiescence in our framework

Quiescence [18,32] was introduced in conformance testing
to represent IUT’s inactivity. In practice, several kinds of
quiescence may happen (see [18] for instance). Here, we dis-
tinguish two kinds of quiescence. Outputlocks (denoted δo)
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represent the situations where the IUT is waiting for an input
and produces no outputs. Deadlocks (denoted δd ) represent
the situations where the IUT cannot interact anymore, e.g.,
its execution is terminated or it is deadlocked. In practice,
the observation and the distinction of these two kinds of qui-
escence require the following hypothesis on the test archi-
tecture. First, we suppose the existence of a timer indicating,
when not expired, that the IUT may still produce an output.
Second, we suppose that we are able to observe whether or
not the IUT is ready to receive an input. This latter hypothesis
boils down to the observation of this Boolean information on
the IUT. Then, if the timer is expired and the IUT is still able
to receive an input, this means that the IUT is in outputlock.
If the timer is expired and the IUT is not ready to receive an
input, this means that the IUT is in deadlock or has finished
its execution.

Thus, we introduce those two events in the output alphabet
of the IUT. We have now the following additional alphabets:

� IU T
!,δ

def= � IU T
! ∪ {δo, δd}, � IU T

δ

def= � IU T
!,δ ∪� IU T

? .
We also have to distinguish the set of traces of the IUT

from the set of potential interactions with the IUT. This latest
is based on the observable behavior of the IUT and potential
choices of the tester. The set of executions of the IUT is
now Exec(P� IU T ) ⊆ (� IU T

δ )∞. However, the set of possible
interactions of the tester with the IUT is

Inter(P� IU T )
def= (� IU T + δo)

∗ · (δd + ε),

i.e., the interactions of the tester with IUT are s.t. the tester can
observe IUT’s outputlocks and may be ended by the obser-
vation of an outputlock, a deadlock, or program termination.
When considering quiescence, characterizing testable prop-
erties now consists in comparing the set of interactions with
the set of sequences described by the r-property. The intuitive
ideas are the following:

– The tester can observe finished executions of the IUT
with δd . In this case, the IUT has run a finite execution.
In some sense, the played sequence determines nega-
tively or positively the r-property depending on whether
or not it satisfied the r-property.

– The tester can decide to terminate its interaction with
the program when observing an outputlock. When the
tester played a sequence s.t. the underlying r-property
is not satisfied and observes an outputlock, the played
sequence negatively determines the r-property. Indeed,
with no further action of the tester, the IUT is blocked in
a state in which the underlying r-property is not satisfied.

Equivalently, in a more intuitive way, quiescence is forbidden
in currently bad states and allowed in currently good states.
The notion of negative determinacy is now modified in the
context of quiescence as follows.

Table 3 Testability w.r.t. Inter(P� IU T ) ⊆ 	 with quiescence

Inter(P�IUT ) ⊆ 	 Testability condition on the property

Safety

(A f (ψ), A(ψ)) ψ �= ∅

Guarantee

(E f (ψ), E(ψ)) {σ ∈ ψ | pref (σ ) ⊆ ψ}} �= ∅

Obligation
⋂k

i=1(Si (ψi ) ∪ Gi (ψ
′
i ))

⋃k
i=1

(
ψi ∩ {σ ∈ ψ ′

i | pref (σ ) ⊆ ψ ′
i

) �= ∅
⋃k

i=1(Si (ψi ) ∩ Gi (ψ
′
i ))

⋂k
i=1

(
ψi ∪ {σ ∈ ψ ′

i | pref (σ ) ⊆ ψ ′
i } �= ∅

Response

(R f (ψ), R(ψ)) ψ �= ∅

Persistence

(Pf (ψ), P(ψ)) ψ �= ∅

Definition 14 (Determinacy with quiescence)An r-property
	 defined over � is said to be negatively determined
upon quiescence by σ ∈ Inter(P� IU T ) (denoted �−
determined−q(σ,	)) if

�−determined(σ↓	,	)
∨(|σ | > 1 ∧ σ|σ |−1 ∈ {δd , δo} ∧ ¬	(σ↓	))

where σ↓	 is the projection of σ on the vocabulary of	, i.e.,
with δo and δd erased. The definition of positive determinacy
is modified in the same way.

For the proposed approach, the usefulness of quiescence lies
in the fact that the current test sequence does not have any
continuation. Consequently, testability conditions may be
weakened. Indeed, when one has determined that the cur-
rent interaction with the IUT is over, it is not necessary to
evaluate the satisfaction of the r-property anymore. In some
sense, it amounts to considering that the evaluation produced
by the last event before observing quiescence “terminates”
the execution sequence (and there is no continuation). For
instance, if the r-property is not satisfied after the last inter-
action, then the r-property is negatively determined by it.

8.2 Revisiting previous results for the inclusion relation

With quiescence, the purpose of the tester is now to “drive”
the IUT in a state in which the underlying r-property is not
satisfied, and then potentially observe quiescence, i.e., find a
sequence that negatively determines the property upon qui-
escence. Informally, the testability condition relies now on
the existence of a sequence s.t. the r-property is not satisfied.
Testability results, upon the observation of quiescence and
to produce fail verdicts when the tested r-property is not sat-
isfied, are updated using the notion of negative determinacy
with quiescence as shown in Table 3. From these testability

123



More testable properties 427

conditions, and using the definition of negative determinacy
with quiescence, we can deduce the sequences that should be
played to obtain a fail verdict. Two kinds of sequences may
lead to a fail verdict:

– the first ones, when projected on the vocabulary of the
property, negatively determine it (as previously);

– the second ones are such that the prefixes of these
sequences containing all events but the last one do not
satisfy the property and the last event is either an output-
lock or a deadlock.

It is then rather easy to give a characterization of these
sequences in the language view. For instance:

– for safety r-properties: {σ ∈ Inter | σ↓	 ∈ ψ},
– for guarantee r-properties:

{σ ∈ Inter | σ↓	 ∈ ψ ∧ pref (σ↓	) ∪ cont(σ↓	) ⊆ ψ}
∪{σ · (δo + δd) ∈ Inter | σ↓	 ∈ ψ ∧ pref (σ↓	) ⊆ ψ},

– for response and persistence r-properties:

{σ ∈ Inter | σ↓	 ∈ ψ ∧ cont(σ↓	) ⊆ ψ}
∪ {σ · (δo + δd) ∈ Inter | σ↓	 ∈ ψ}.

where Inter(P� IU T ) is denoted Inter for the sake of readabil-
ity. These sequences are characterized in an easier way on
the canonical tester.

Now, it is possible to adapt the construction of the canon-
ical tester so as to take quiescence into consideration:

Definition 15 (Canonical Tester with quiescence) The def-
inition of the canonical tester construction proposed in
Definition 13 is updated as follows:

– Two new states qfail and qwpass are added to QT such
that 
T (qfail) = fail and 
T (qwpass) = weak pass,

– The following transitions are added to −→T :

– ∀q ∈ BA	
c : q

δo−→T qfail ∧ q
δd−→T qfail,

– ∀q ∈ GA	
c : q

δo−→T q ∧ q
δd−→T qwpass,

– ∀e ∈ � IU T : qfail
e−→T qfail ∧ qwpass

e−→T qwpass.

In a currently bad state, the observation of quiescence
produces a fail verdict since the underlying property is nega-
tively determined upon quiescence. In other words, the tester
can legitimately stop the interaction and let the IUT in a state
in which the underlying property is not satisfied. In a cur-
rently good state, the observation of a deadlock (or program
termination) produces a weak pass verdict since the under-
lying property is positively determined upon quiescence: the
current interaction sequence satisfies the underlying property
and there will be no possible continuation of this interaction.
However, in a currently good state, when observing an out-
putlock, the canonical tester stays in the same state. Indeed,
stopping the tester would be a decision of the tester and not
one of the implementation.

Illustrations of the construction of the canonical tester for
basic classes with quiescence are given in Fig. 13, where the
original (resp. modified) transitions from the Streett autom-
aton are in plain (resp. dotted) lines.

Example 11 (Testability with quiescence) We illustrate the
usefulness of quiescence by showing how using quiescence
makes some properties testable, although they were not test-
able initially.

Consider the IUT depicted in Fig. 14a with observable
actions� IU T

? = {?a} and� IU T
! = {!b}. This IUT waits for an

?a, produces a !b, and then non-deterministically terminates

Fig. 13 Schematic illustrations of the canonical tester with quiescence for basic classes

(a) (b) (c)

Fig. 14 Illustrating the usefulness of quiescence. a IUT with explicit quiescence. b 	4 defined by A	4 . c Canonical tester for 	4
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Fig. 15 Execution and
interaction sequences of the IUT
of Fig. 14a

or waits for an ?a, and repeats the behavior consisting in
receiving an ?a and producing a !b. The executions and pos-
sible interactions with the tester are given in Fig. 15 (“?” and
“!” are not represented and x& stands for x + ε).

Now let us consider the r-property	4 defined by the Stre-
ett automaton A	4 depicted in Fig. 14b. Its vocabulary is
{?a, !b}, and it has one recurrent state: R = {1}. The under-
lying r-property states that every input ?a should be acknowl-
edged by an output !b. This property is not testable under the
conditions expressed in Sect. 6, see Example 5. However, this
r-property is testable with quiescence. One can observe that
Inter(P� IU T ) �⊆ 	4 because of the existence of ?a·!b·?a·!δo

in Inter(P� IU T ). Indeed, we have:

�−determined−q(?a·!b·?a·!δo,	4)

since the last event of ?a·!b·?a·!δo) is δo and ¬	4(?a·!b·?a).
The synthesized canonical tester, obtained following Defini-
tion 15, is depicted in Fig. 14c.

Example 12 (Canonical testers with quiescence for the oper-
ating system) The canonical tester for the global specifica-
tion, obtained following Definition 15, is depicted in Fig. 16a.
As we can see, using quiescence allows us to test additional
behaviors of the operating system. Moreover, following the
same reasoning used for 	4, using quiescence makes the
r-property 	op

5 testable. The corresponding canonical tester
is depicted in Fig. 16b.

9 Related work and discussion

In this section, we overview related work or work that may
be leveraged by the results proposed in this paper. Then, we
propose a discussion on the results afforded by this paper.

9.1 Conformance testing

The goal of conformance testing is to check that the behav-
ior of a real software or hardware implementation is correct
w.r.t. its specification. Correctness is checked through the
observable actions of the implementation (its internal behav-
ior is unknown). In formal conformance testing, one general
correctness relation is the so-called ioco relation [31], stat-
ing that the implementation produces outputs as prescribed
in the specification. In the context of ioco, there are several
kinds of outputs: the implementation’s outputs or quiescence.
Quiescence models several sorts of observable inactivity of
the system and is practically observed by timers. Roughly

speaking, a possible approach to classical conformance test-
ing (see e.g., [18]) proceeds as follows. Starting from the I-
OLTS specification S = (QS, q S

init, �,−→S) of the IUT, one
has first to build�(S), the suspended IOLTS corresponding
to S, obtained by adding a new observable output action δ
and making IUT’s inactivity explicit. This automaton is then
determinized into S′ = Det(�(S)), thus representing the
observable behavior of the IUT.

Classical conformance testing falls in the scope of our
framework and can be easily expressed. Indeed, for a spec-
ification S, the conformance of an IUT P� to S amounts to
asserting the ⊆ relation between Exec(P�) and an r-property
built from S. We start from the IOLTS S expressed over
� = �S

? ∪ �S
! and then build �(S) and its determinized

suspension IOLTS S′ = Det(�(S)). Then, we consider the
r-property 	 defined by the Streett safety automaton A	 =
(QA	, qA	

init ,−→A	
, {(∅, P)}) s.t.

– QA	 = QS′ ∪ {sink}, with sink /∈ QS′
,

– −→A	
=−→S′ ∪ {(q, e, sink) | q ∈ QS′ ∧ e ∈ �S

! ∪
{δ} ∧ ¬∃q ′ ∈ QS′ : q

e−→S′ q ′},
– P = QS′

.

Finally, we can build the IOLTS corresponding to the canon-
ical tester following Definition 13. When emitting fail ver-
dicts, this canonical tester exactly detects violations of the
conformance relation.

9.2 Testing oriented by properties for generating test
purposes

One of the limits of conformance testing [31,32] lies in the
size of the generated test suite, which can be infinite or
impracticable. Some testing approaches oriented by proper-
ties were proposed to face off this limitation by focusing on
critical properties. In this case, properties are used comple-
mentary to the specification to generate test purposes, which
will be then be used to conduct and select test cases. The goal
of test purposes is to select a subset of test cases and their
behaviors. Thus, a test purpose allows evaluating specific
features of the IUT. Once the test purposes are generated, a
selection of test cases is possible using classical techniques
defined on transition systems [9,18]. For instance, Fernan-
dez et al. [16] present an approach allowing generation of test
cases using LTL formula as test purposes. For a (non-exhaus-
tive) presentation of some general approaches, the reader is
referred to [21].
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(a)

(b)

Fig. 16 Canonical testers with quiescence for the operating system. a Canonical tester for the global specification	op. b Canonical tester for	op
5

Since these approaches are aimed to generate test purposes
from properties, the testability of properties is deservedly left
aside. One is interested in the satisfaction of a test case exe-
cution w.r.t. the considered property.

9.3 Combining testing and formal verification

In [6], the complementarity between verification techniques
and conformance testing is studied. Notably, the authors
showed that it was possible to detect (using testing) vio-
lations of safety (resp. satisfaction of co-safety) properties
on the implementation and the specification. As co-safety
properties in the Safety-Liveness classification are guaran-
tee properties in the Safety-Progress classification, the frame-

work proposed in [6] addresses only a subset of the properties
stated as testable in this paper. The work proposed in [6] can
then be leveraged by the work proposed in this paper.

9.4 Requirement-based testing

In requirement-based testing, the purpose is to generate a
test suite from a set of informal requirements. For instance,
in [26,28], test cases are generated from LTL formula using
a model checker. Those approaches were interested in defin-
ing a syntactic test coverage for the tested requirements. Test
case generation is driven by some test coverage criterion and
no notion of testability is considered.

123



430 Y. Falcone et al.

9.5 Property testing without a behavioral specification

Some previous approaches tackle the problem of test-
ing properties on systems without behavioral specification.
These approaches used the notion of tiles, which are elemen-
tary test modules testing specific parts of an implementation
and which can be combined to test more complex behaviors.
A description of a tile-based approach was provided in [7] and
formalized using a process algebra dedicated to testing [14].
Later, Falcone et al. [15] have shown that this approach can be
generalized to other formalisms (LTL and extended regular
expressions) and that the test can be executed in a decen-
tralized fashion. Darmaillacq et al. [8] provided a case study
dedicated to testing network security policies.

These approaches focused on deriving concrete test cases,
given a property. No testability notion is associated with the
considered properties. Moreover, in these approaches, the
goal of a test execution is to determine the satisfaction of one
execution w.r.t. the property without considering the whole
set of execution sequences of the IUT.

9.6 Using the Safety-Progress classification in validation
techniques

The Safety-Progress classification of properties is rarely used
in validation techniques. We used (e.g., [12]) the Safety-
Progress classification to characterize the sets of proper-
ties that can be verified and enforced at system runtime. In
some sense, this previous endeavor similarly addressed the
expressiveness question for runtime verification and runtime
enforcement. In the light of the results afforded by [12] and
this paper, we can remark that these three runtime-based val-
idation techniques have different “expressiveness”, i.e., the
kind of properties that can be handled by these techniques
are rather different.

In [3], C̆erná and Pelánek classified linear temporal prop-
erties according to the complexity of their verification. The
motivation was to study the emptiness problem used in
model checking, according to the various classes. For this
purpose, the authors introduced two additional views to
the hierarchy. The first one is an extension of the origi-
nal automata view in which temporal properties are char-
acterized according to new acceptance conditions (Büchi,
co-Büchi, weak, and terminal automata). The second one
is an extension of the original logical view in which the
authors organized temporal logic formula into a hierarchy
according to alternation depth of temporal operators Until
and Release.

9.7 Discussion

Several approaches fall in the scope of the generic one pro-
posed in this paper. For instance, our results apply and extend

the approach where verification is combined to testing as
proposed in [6]. Furthermore, this approach leverages the
use of test purposes [18,19] in testing to guide test selec-
tion. Indeed, the characterization of testable properties gives
assets on the kind of test purposes that can be used in testing.
Moreover, the properties considered in this paper are framed
into the Safety-Progress classification of properties [4,23]
which is equivalently a hierarchy of regular properties. Thus,
the results proposed by this paper concern previous depicted
approaches in which the properties at stake can be formal-
ized by a regular language. Furthermore, as we have seen in
Sect. 9.1, classical conformance testing falls in the scope of
the framework proposed by this paper.

10 Implementation: Java-PT

In this section, we present the prototype tool Java-PT: Prop-
erties and their Testability with Java, an implementation of
the previously described testing framework. It is mainly pur-
posed to address testability issues w.r.t. an r-property under
consideration. In particular, it allows to answer the following
questions:

– To which class (w.r.t. the Safety-Progress classification)
does this property belong?

– Is this property testable w.r.t. a given testability relation?
– What is the canonical tester associated to this property

for this testability relation?

This prototype can be freely downloaded at the following
address:
http://testableprops.forge.imag.fr/.

10.1 Overview

The tool is developed in the Java programming language and
uses XML,13 XSLT,14 XStream15 as underlying supporting
technologies.

An overview of the architecture of Java-PT is given in
Fig. 17. In the remainder of this section, we shall describe its
functioning principle and its architecture.

The first step for a user before using the tool is to design a
r-property that is purposed to be processed by the tool. The
property is defined by a Streett automaton (see Sect. 10.2 for
examples).

A model for automata-based objects The tool Automaton
Models of Java-PT consists of a hierarchy of classes mod-

13 Extensible Markup Language—http://www.w3.org/XML/.
14 The Extensible Stylesheet Language Family—http://www.w3.org/
Style/XSL/.
15 http://xstream.codehaus.org/.
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Fig. 17 Overview of Java-PT

eling several entities (alphabet, states, and their transitions)
related to the kinds of automata we consider (Streett and
DFA). Those classes are used at several levels in Java-PT.

We also have implemented a component that provides
means to make objects persistent in XML, i.e., being able
to save and load automata from their description in an XML
file. This utility consists in configuring and customizing the
XStream library to realize serialization and deserialization.

Some utilities The module Utilities is used by the module
Testability of Properties core when processing properties. It
contains the implementation of a set of useful operations on
automata such as the computation of reachable states and the
computation of the class of the automaton.

The main module Testability of Properties core This mod-
ule leverages the modules Automaton Models and Utilities.
It consists mainly in implementing the previous testability
conditions.

10.2 Examples

In this section, we present some typical use cases of Java-
PT. Examples presented in this paper (and other examples)
can be found in the distribution of Java-PT, together with a
complete user manual.

Let us come back to the r-properties	1 and	2 of Exam-
ple 3. As seen in Sect. 6, these r-properties are testable
w.r.t. the relation Exec(P�) ⊆ 	. Those r-properties are
defined by their Streett automata described by the XML files
in Fig. 18. Processing these properties with Java-PT is rep-
resented in Fig. 19, where:

– option -in P.xml provides an input property 	 to be
processed (in the file P.xml);

– option-dc computes the class of this property (accord-
ing to the Safety-Progress classification);

– option -it R asks if this property is testable according
to relation R (where R is encoded as an integer, e.g., 1
means Exec(P�) ⊆ 	).

11 Conclusion and perspectives

Conclusion In this paper, we study the classes of testable
properties. We use a testability notion depending on a rela-
tion between the set of execution sequences that can be

Fig. 18 Defining 	1 (left) and 	2 (right) in XML
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Fig. 19 Processing 	1 and 	2
with Java-PT

produced by the underlying implementation and the con-
sidered r-property. Leveraging the notions of positive and
negative determinacy of properties, according to the rela-
tion of interest, we identify the testable fragments for each
Safety-Progress class. Moreover, we have seen that the
framework of r-properties in the Safety-Progress classifi-
cation provides a canonical tester able to produce a ver-
dict depending on some finite interaction between the tester
and the IUT. Furthermore, we also propose some conditions
under which it makes sense for a tester to state weak verdicts.
Besides, we address test generation for the general testing
framework leveraged by properties. Finally, we have imple-
mented the results of this paper in an available prototype
tool.

Perspectives A first research direction is to investigate the
set of testable properties for more expressive formalisms.
Indeed, the results afforded in the automata view of the
Safety-Progress classification deal with regular properties.
Classifying testable properties for more expressive specifi-
cation formalisms (e.g., related to context-free properties)
would be of interest. This would require transposing the test-
ability conditions expressed in the automata view to a more
expressive recognition mechanism. Then, decidability con-
ditions of the state reachability problem need to be taken into
account.

An additional perspective is to combine the proposed
approach using weak verdicts with a notion of test cover-
age. Indeed, to bring some confidence to the fact that e.g.,
the implementation satisfies the property, it involves execu-
tion of the test several times to make it relevant. The various
approaches [26,28] for defining test coverage for property-
oriented testing could be used to reinforce a set of weak
verdicts.

Another theoretical perspective would be to relax the
hypothesis on alphabets made in this paper. We supposed
that execution sequences of the IUT are expressed in the same
alphabet as the one used to describe the property, thus avoid-
ing the practical question of the interpretation of the IUT’s
sequences on the property’s sequences. While this hypothesis

is reasonable to study the testability of properties, in prac-
tice there might be a discrepancy between the alphabet of
the property and the alphabet of actions used by the tester to
interact with the IUT. This kind of situation arises for instance
when testing network security policies: the policy is written
at a level of abstraction different from the level of the test
architecture (that may consider implementation details). It
thus seems interesting to combine our results with the results
in [7,15] where the alphabet discrepancy issue is specifically
addressed.

Finally, it is our feeling that several previous testing frame-
works using properties shall be revisited in the light of the
results provided by this paper. For instance, in the secu-
rity domain, testing frameworks dedicated to access-control
policies [24] use rules that can be formalized as safety or
co-safety properties. Thus, it might be interesting to inves-
tigate whether other kinds of more evolved access-control
rules, currently not tested, can be formalized as e.g., testable
obligation or response properties. Consequently, those new
rules could be validated using the revisited testing frame-
works for access control.

Appendix A: Operators in the language-theoretic view
of the Safety-Progress classification [13]

The language-theoretic view of the Safety-Progress classifi-
cation is based on the construction of infinitary properties and
finitary properties from finitary ones. It relies on the use of
four operators A, E, R, P (building infinitary properties) and
four operators A f , E f , R f , Pf (building finitary properties)
applying to finitary properties. In the original classification of
Manna and Pnueli, the operators A, E, R, P, A f , E f were
introduced. In this paper, we add the operators R f and Pf and
give a formal definition of all operators. In these definitions
ψ is a finitary property over �.

Definition 16 (Operators A, E, R, P)

– A(ψ) = {σ ∈ �ω | ∀σ ′ ∈ �∗, σ ′ ≺ σ ⇒ ψ(σ ′)}.
– E(ψ) = {σ ∈ �ω | ∃σ ′ ∈ �∗, σ ′ ≺ σ ∧ ψ(σ ′)}.
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– R(ψ) = {σ ∈ �ω | ∀σ ′ ∈ �∗, σ ′ ≺ σ ⇒ ∃σ ′′ ∈
�∗, σ ′ ≺ σ ′′ ≺ σ ∧ ψ(σ ′′)}.

– P(ψ) = {σ ∈ �ω | ∃σ ′ ∈ �∗,∀σ ′′ ∈ �∗, σ ′ ≺ σ ′′ ≺
σ ⇒ ψ(σ ′′)}.

A(ψ) consists of all infinite words σ s.t. all prefixes of σ
belong to ψ . E(ψ) consists of all infinite words σ s.t. some
prefixes of σ belong toψ . R(ψ) consists of all infinite words
σ s.t. infinitely many prefixes of σ belong to ψ . P(ψ) con-
sists of all infinite words σ s.t. all but finitely many prefixes
of σ belong to ψ .

The operators A f , E f , R f , Pf build finitary properties
from finitary ones.

Definition 17 (Operators A f , E f , R f , Pf )

– A f (ψ) = {σ ∈ �∗ | ∀σ ′ ∈ �∗, σ ′ 
 σ ⇒ ψ(σ ′)}.
– E f (ψ) = {σ ∈ �∗ | ∃σ ′ ∈ �∗, σ ′ 
 σ ∧ ψ(σ ′)}.
– R f (ψ) = {σ ∈ �∗ | ψ(σ) ∧ ∀n ∈ N, ∃σ ′ ∈ �∗, σ ≺

σ ′ ∧ |σ ′| ≥ n ∧ ψ(σ ′)}.
– Pf (ψ) = {σ ∈ �∗ | ψ(σ) ∧ ∃σ ′ ∈ �∗, σ 
 σ ′ ∧ ∀n ∈

N, ∃σ ′′ ∈ �∗, |σ ′′| = n ∧ ψ(σ ′ · σ ′′)}.

A f (ψ) consists of all finite words σ s.t. all prefixes of σ
belong to ψ . One can observe that A f (ψ) is the largest pre-
fix-closed subset of ψ . E f (ψ) consists of all finite words σ
s.t. some prefixes of σ belong to ψ . One can observe that
E f (ψ) = ψ · �∗. R f (ψ) consists of all finite words σ s.t.
ψ(σ) and there exists an infinite number of continuations σ ′
of σ also belonging to ψ . Pf (ψ) consists of all finite words
σ belonging to ψ s.t. there exists a continuation σ ′ of σ s.t.
σ ′ persistently has continuations σ ′′ staying inψ (i.e., σ ′ ·σ ′′
belongs to ψ).

Appendix B: Proofs

Closure of safety and guarantee r-properties
We first state the closure of safety and guarantee r-

properties as a straightforward consequence of their defi-
nitions. Their closure will be used in the subsequent proofs.

Lemma 2 (Closure of safety and guarantee r-properties)
Considering an r-property 	 = (φ, ϕ) defined over an
alphabet � built from a finitary property ψ , the following
facts hold:

1. 	 is a safety r-property if and only if all prefixes of a
sequence belonging to	 also belong to	, i.e.,	 is pre-
fix-closed. That is:

∀σ ∈ �∞,	(σ) ⇒ ∀σ ′ ∈ �∗ : σ ′ ≺ σ ⇒ 	(σ ′).

2. 	 is a guarantee r-property if and only if all continuations
of a finite sequence belonging to	 also belong to	, i.e.,
	 is extension-closed. That is:

∀σ ∈ �∗ : 	(σ) ⇒ ∀σ ′ ∈ �∞ : 	(σ · σ ′).

Proof We prove the two facts successively:

1. We have either φ(σ) or ϕ(σ), i.e.,, all prefixes σ ′ of
σ belong to ψ . Necessarily, all prefixes σ ′′ of σ ′ also
belong to ψ , that is ψ(σ ′′). By definition, that means
σ ′ ∈ A f (ψ), i.e.,, ψ(σ ′) and 	(σ ′).

2. 	(σ) implies that σ has at least one prefix σ0 
 σ

belonging to ψ : σ ∈ E f (ψ). Then, any continuation
of σ built using any finite or infinite sequence σ ′ has at
least the same prefix belonging toψ . If σ ′ ∈ �∗, we have
σ0 
 σ 
 σ · σ ′ and σ · σ ′ ∈ E f (ψ). If σ ′ ∈ �ω we
have σ0 
 σ ≺ σ · σ ′ and σ · σ ′ ∈ E(ψ). ��

B.1 Proof of Theorem 1

The theorem states that, given a Streett m-automaton A	 =
(QA	, qA	

init ,−→A	
, {(R1, P1), . . . , (Rm, Pm)}) defining

an r-property 	, according to the class of 	, the testabil-
ity conditions expressed both in the language-theoretic and
automata views are given in Table 1.

Proof We first prove the testability conditions from the lan-
guage view for each Safety-Progress class as given in Table 1.
We have to prove that when the proposed conditions hold,
the underlying property is negatively determined.

(i) For safety r-properties. Let 	 be a safety r-property,
then there exists ψ ⊆ �∗ s.t. 	 can be expressed
(A f (ψ), A(ψ)). Let us consider σ ∈ ψ . Then, accord-
ing to Lemma 2 on the closure of safety r-properties, we
can deduce that every finite (resp. infinite) continuation
ofσ does not belong to A f (ψ) (resp. A(ψ)). Thus every
finite and infinite continuation of σ does not belong to
(A f (ψ), A(ψ)): 	 is negatively determined by σ .

(ii) For guarantee r-properties. Let 	 be a guarantee
r-property, then there exists ψ ⊆ �∗ s.t. 	 can be
expressed (E f (ψ), E(ψ)). Let σ be a sequence belong-
ing to {σ ∈ ψ | pref (σ ) ∪ cont(σ ) ⊆ ψ}. Then, every
prefix and every continuation of σ do not belong to ψ .
Consequently, these continuations cannot belong either
to E f (ψ) or to E(ψ), and (consequently) or to 	 as
well: 	 is negatively determined by σ .

(iii) For obligation r-properties. Let 	 be an obligation
r-property, then	 can be expressed (for instance) under
conjunctive normal form, i.e., there exists k ∈ N\{0},
s.t.
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	 =
k⋂

i=1

(Si (ψi ) ∪ Gi (ψ
′
i ))

where Si (ψi ) (resp. Gi (ψ
′
i )) is a safety (resp. guarantee)

r-property built upon ψi (resp. ψ ′
i ).

Let σ0 be a finite sequence belonging to ψi ∩ {σ ∈ ψ ′
i |

pref (σ ) ∪ cont(σ ) ⊆ ψ ′
i } for some i ∈ [1, k]. Then,

according to the proofs of (i) and (i i), each (finite or
infinite) continuation σ ′ of σ0 does not satisfy (Si (ψi )∪
Gi (ψ

′
i )). Hence, σ ′ /∈ ⋂k

i=1(Si (ψi ) ∪ Gi (ψ
′
i )), which

means ¬	(σ ′).
(iv) For response and persistence r-properties. The reason-

ing is similar to the one used for guarantee r-properties.
Let 	 be a response (resp. persistence) r-property,
then there exists ψ ⊆ �∗ s.t. 	 can be expressed
(R f (ψ), R(ψ)) (resp. (Pf (ψ), P(ψ))).
This r-property is testable if the set {σ ∈ ψ | cont(σ ) ⊆
ψ} is not empty. The difference with guarantee proper-
ties is that an r-property can be negatively determined
even if it has some prefixes in ψ .

We now prove these testability conditions from the automata
view. Let A	 be the Streett automaton associated with 	,
and let σ be a finite sequence of length n s.t. run(σ,A	) =
q0 · · · qn .

(i) For safety r-properties. Let	 be a safety r-property. If
∀i ∈ [0, n] : qi ∈ P then σ /∈ 	, and, since there is no
transition from P to P in A	, each continuation σ ′ of
σ is s.t. each state of run(σ ′,A	) belongs to P . Hence
σ ′ is not accepted by A	.

(ii) For guarantee r-properties. Let 	 be a guarantee
r-property. Let us assume that qn ∈ R ∧ ReachA	

(qn) ⊆
R. Since there is no transition from R to R, then
σ /∈ A	. Moreover, each continuation σ ′ of σ is s.t.
each state of run(σ ′,A	) belongs to R. Hence, σ ′ is
not accepted by A	.

(iii) For obligation r-properties. Let 	 be an obligation
r-property and assume that qn ∈ (Pi ∩ {q ∈ Ri |
ReachA	

(q) ⊆ Ri } for some given i ∈ [1, k]. Then,
according to the proofs of (i) and (i i), each continua-
tion σ ′ of σ is s.t. each state of run(σ ′,A	) belongs to
Pi ∩ Ri . Thus, σ ′ is not accepted by A	.

(iv) For response r-properties. Let 	 be a response r-
property and assume that qn ∈ {q∈R|ReachA	

(q)⊆R}.

Then, σ �∈ 	 and each continuation σ ′ of σ is s.t.
each state of run(σ ′,A	) belongs to R. Thus, σ ′ is
not accepted by A	.

(v) For persistence r-properties. The proof is similar to the
one proposed for case (iv). ��

B.2 Proof of Lemma 1

Given σ ∈ �∗ a Streett automaton A	 defining a r-property

	, and q ∈ QA	 s.t. qA	
init

σ−→A	
q, we have to prove:

– q ∈ GA	 ⇔ ⊕−determined(σ,	),
– q ∈ BA	 ⇔ �−determined(σ,	).

Proof of q ∈ GA	 ⇔ ⊕−determined(σ,	). We prove the
implication in both ways.

– Let us suppose that q ∈ GA	 . Using the acceptance cri-
terion for finite sequences, we have that σ is accepted
by A	. Furthermore, as A	 specifies	, we have	(σ).
Now, let us considerμ ∈ �+ s.t. |σ |+ |μ| = n′ > n and
run(σ · μ,A	) = q0 · · · qn′ . As q ∈ GA	 , we deduce
∀k ∈ N : n ≤ k ≤ n′ ⇒ qk ∈ ⋂m

i=1 Ri ∪ Pi and con-
sequently 	(σ · μ). Let us consider μ ∈ �ω, one may
remark that ∀i ∈ [1,m] : vinf (σ · μ,A	) ∩ Ri �= ∅ ∨
vinf (σ ·μ,A	) ⊆ Pi , which implies	(σ ·μ). We have
	(σ)∧∀μ ∈ �∞ : 	(σ ·μ), i.e., ⊕−determined(σ,	).

– Conversely, let us suppose that ⊕−determined(σ,	). By
definition, it means ∀μ ∈ �∞ : 	(σ · μ). According to
the acceptance criterion of Streett automata, we deduce
∀k ≥ n,∀μ ∈ �∗ :

run(σ · μ,A	) = q0 · · · q · · · qk ⇒ qk ∈
m⋂

i=1

Ri ∪ Pi .

That is, ReachA	
(q) ⊆ ⋂m

i=1(Ri ∪ Pi ), i.e., q ∈ GA	 .

Proof of q ∈ BA	 ⇔ �−determined(σ,	). The proof
can be obtained following the same principle as the one used
to prove q ∈ GA	 ⇔ ⊕−determined(σ,	). ��

Appendix C: Summary of notations

Table 4 summarizes the notations used throughout the paper.
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Table 4 Summary of the notations used in the article

Notation Place introduced Meaning

(a) Summary of the notations introduced in Sect. 3

N Sect. 3.1, p. 410 The set of non-negative integer (including 0)

� Sect. 3.1, p. 410 The alphabet of actions

�∗ Sect. 3.1, p. 410 The set of finite sequences over �

�+ Sect. 3.1, p. 410 The set of non-empty finite sequences over �

�ω Sect. 3.1, p. 410 The set of infinite sequences over �

�∞ Sect. 3.1, p. 410 The set of both finite and infinite sequences over �

≺,
 Sect. 3.1, p. 410 Strict and non-strict prefix notations

pref (σ ) Sect. 3.1, p. 410 The set of prefixes of σ ∈ �∞

cont(σ ) Sect. 3.1, p. 410 the set of finite continuations of σ ∈ �+

σn Sect. 3.1, p. 410 The (n + 1)th element of σ ∈ �+ with n ∈ [0, |σ | − 1]
σ···n Sect. 3.1, p. 410 The prefix of σ ∈ �∞\{ε} containing the n + 1 first elements

P� Sect. 3.2, p. 410 A program with alphabet �

Exec(P�) Sect. 3.2, p. 410 The set of all execution sequences of P�
Execf (P�) Sect. 3.2, p. 410 The set of finite execution sequences of P�
Execω(P�) Sect. 3.2, p. 410 The set of infinite execution sequences of P�
G = (QG , qG

init, �,−→G) Sect. 3.3, p. 410 IOLTS G defined on �

ReachG(q) Sect. 3.3, p. 410 The set of reachable states from q in an IOLTS G

CoReachG(X) Sect. 3.3, p. 410 The set of co-reachable states from X ⊆ QG in an IOLTS G

run(σ,G) Sect. 3.3, p. 410 The run of σ on the IOLTS G

φ Sect. 3.4, p. 411 A finitary property (φ ⊆ �∗)

ϕ Sect. 3.4, p. 411 An infinitary property (ϕ ⊆ �ω)

	 Sect. 3.5, p. 411 An r-property (	 = (φ, ϕ) ⊆ �∗ ×�ω)

⊕−determined(σ,	) Sect. 3.5, p. 411 	 is positively determined by σ

�−determined(σ,	) Sect. 3.5, p. 411 	 is negatively determined by σ

(b) Summary of the notations introduced in Sect. 4

A f , E f , R f , Pf Sect. 4.2, p. 412 Safety-Progress finitary language operators

A, E, R, P Sect. 4.2, p. 412 Safety-Progress infinitary language operators

(QA, qA
init, �,−→A, Sect. 4.3, Definition 2, p. 413 Streett m-automaton

{(R1, P1), . . . , (Rm , Pm)})
R = ∅, P � P Sect. 4.4, Definition 5, p. 413 Syntactic restriction for Streett safety automata

P = ∅, R � R Sect. 4.4, Definition 5, p. 413 Syntactic restriction for Streett guarantee automata

Pi � Pi , Ri � Ri , i ∈ [1,m] Sect. 4.4, Definition 5, p. 413 Syntactic restriction for Streett m-obligation automata

P = ∅ Sect. 4.4, Definition 5, p. 413 Syntactic restriction for Streett response automata

R = ∅ Sect. 4.4, Definition 5, p. 413 Syntactic restriction for Streett persistence automata

unrestricted Sect. 4.4, Definition 5, p. 413 Syntactic restriction for Streett reactivity automata

(A f (ψ), A(ψ)) Sect. 4.4, Definition 5, p. 413 The safety r-property built from ψ ⊆ �∗ (language view)

(E f (ψ), E(ψ)) Sect. 4.4, Definition 5, p. 413 The guarantee r-property built from ψ ⊆ �∗ (language view)
⋂m

i=1(Si (ψi ) ∪ Gi (ψ
′
i )) Sect. 4.4, Definition 5, p. 413 The obligation r-property built from the ψi ⊆ �∗ and the

or
⋃m

i=1(Si (ψi ) ∩ Gi (ψ
′
i )) ψ ′

i ⊆ �∗, i ∈ [1,m] (language view)

(R f (ψ), R(ψ)) Sect. 4.4, Definition 5, p. 413 The response r-property built from ψ ⊆ �∗ (language view)

(Pf (ψ), P(ψ)) Sect. 4.4, Definition 5, p. 413 The persistence r-property built from ψ ⊆ �∗ (language view)
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Table 4 Continued

Notation Place introduced Meaning

(c) Summary of the notations introduced in Sect. 5

Exec(P�) ⊆ 	 Definition 6, p. 415 Testability relation stating that all behaviors of the IUT

are allowed by the r-property

Exec(P�) = 	 Definition 6, p. 415 Testability relation: “the behaviors of the IUT

are those described by the r-property”

Exec(P�) ∩	 �= ∅ Definition 6, p. 415 Testability relation: “the behaviors of the IUT

and those described by the r-property are not disjoint”

	 ⊆ Exec(P�) Definition 6, p. 415 Testability relation: “the IUT implements the r-property”

verdict(σ,R(Exec(P�),	)) Definition 7, p. 415 The verdict that the observation of σ allows to determine

(QO, qO
init, �,−→O, 
O) Definition 9, p. 417 Test oracle (a Moore automaton: IOLTS with output function)

(d) Summary of the notations introduced in Sect. 7

GA	,GA	
c , BA	

c , BA	 Sect. 7.1, Definition 12, p. 422 The good, currently good, currently bad, and bad states

of a Streett automaton A	

(QT , qT
init, �,−→T , 


T ) Sect. 7.1, Definition 13, p. 423 Canonical tester (a Moore automaton)

(e) Summary of the notations introduced in Sect. 8

Inter(P� IU T ) Sect. 8.1, p. 425 The set of possible interactions of the tester with the IUT

�−determined−q(σ,	) Sect. 8.1, Definition 14, p. 426 	 is negatively determined upon quiescence by σ

⊕−determined−q(σ,	) Sect. 8.1, Definition 14, p. 426 	 is positively determined upon quiescence by σ
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