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Abstract We introduce SubPolyhedra (SubPoly), a new
family of numerical abstract domains to infer and propa-
gate linear inequalities. The key insight is that the reduced
product of linear equalities and intervals produces powerful
yet scalable analyses. Abstract domains in SubPoly are as
expressive as Polyhedra, but they drop some of the deduc-
tive power to achieve scalability. The cost/precision ratio of
abstract domains in the SubPoly family can be fine-tuned
according to the precision one wants to retain at join points,
and the algorithm used to infer the tighter bounds on intervals.
We implemented SubPoly on the top ofClousot, a generic
abstract interpreter for .Net. Clousot with SubPoly
analyzes very large and complex code bases in few minutes.
SubPoly can efficiently capture linear inequalities among
hundreds of variables, a result well beyond the state-of-the-
art implementations of Polyhedra.

Keywords Abstract interpretation · Abstract domains ·
Loop invariants · Numerical abstract domains · Static
analysis

1 Introduction

The goal of an abstract interpretation-based static analyzer
is to statically infer properties of the execution of a program
that can be used to check its specification. The specification
usually includes the absence of runtime exceptions (division
by zero, integer overflow, array index out of bounds, etc.)
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and programmer annotations in the form of preconditions,
postconditions, object invariants and assertions (“contracts”
[28]). Proving that a piece of code satisfies its specification
often requires discovering numerical invariants on program
variables.

The concept of abstract domain is central in the design
and the implementation of a static analyzer [9]. Abstract
domains capture the properties of interest on programs.
In particular, numerical abstract domains are used to infer
numerical relationships among program variables. Cousot
and Halbwachs [13] introduced the Polyhedra numerical
abstract domain (Poly). Poly infers linear inequalities on
the program variables. The application and scalability of
Poly has been severely limited by its performance which
is worst-case exponential (easily attained in practice). To
overcome this shortcoming and to achieve scalability, new
numerical abstract domains have been designed moving in
two orthogonal directions: either only considering inequali-
ties of a particular shape (weakly relational domains) or fix-
ing ahead of the analysis the maximum number of linear
inequalities to be considered (bounded domains). The first
class includes Octagons (which capture properties in the form
±x± y ≤ c) [29], TVPI (a · x+ b · y ≤ c) [36], Pentagons
(x ≤ y∧a ≤ x ≤ b) [27], Stripes (x+a · (y+z) > b) [15]
and Octahedra (±x0 · · · ± xn ≤ c) [7]. The latter includes
constraint template matrices (which capture at most m
linear inequalities) [19,34] and methods to generate poly-
nomial invariants, e.g. [22,31,32].

Although impressive results have been achieved using
weakly relational and bounded abstract domains, we experi-
enced situations where the full expressive power of Poly is
required. As an example, let us consider the code snippet of
Fig. 1, extracted from mscorlib.dll, the main library of
the .Net framework. Checking the precondition at the call
site (∗) involves:
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586 V. Laviron, F. Logozzo

Fig. 1 An example extracted from mscorlib.dll. The function
Contract.Requires(. . . ) expresses method preconditions. Prov-
ing the precondition of CopyChars requires propagating an invariant
involving three variables and non-unary coefficients

(i) propagating the given constraints:

wb ≥ 2 · count
count+ m_ChunkLength>m_ChunkChars.Length

(ii) deducing the precondition for CopyChars:

wb≥2 · (m_ChunkChars.Length−m_ChunkLength)

The aforementioned weakly relational domains cannot be
used to check the precondition: Octahedra do not capture
the first constraint (it involves a constraint with a non-unary
coefficient); TVPI does not propagate the second constraint
(it involves three variables); Pentagons and Octagons can-
not represent any of the constraints; Stripes can propagate
both constraints, but because of the incomplete closure it
cannot deduce the precondition. Bounded domains does the
job, provided we fix before the analysis the template for the
constraints. This is inadequate for our purposes: The analysis
of a single method inmscorlib.dllmay involve hundreds
of constraints, whose shape cannot be fixed ahead of the anal-
ysis, e.g. by a textual inspection. Poly easily propagates the
constraints. However, in the general case, the price to pay for
using Poly is too elevated: the analysis will be limited to few
tens of variables.

1.1 SubPolyhedra

We propose a new family of numerical abstract domains, Sub-
Polyhedra (SubPoly), which has the same expressive power
as Poly, but it drops some inference power to achieve sca-
lability: SubPoly exactly represents and propagates linear
inequalities containing hundreds of variables and constraints.
SubPoly is based on the fundamental insight that the
reduced product of linear equalities, LinEq [20], and inter-
vals, Intv [9], can produce very powerful yet efficient pro-
gram analyses. SubPoly can represent linear inequalities
using slack variables, e.g. wb ≥ 2 · count is represented

in SubPoly by wb − 2 · count = β ∧ β ∈ [0,+∞]. As
a consequence, SubPoly easily proves that the precondition
for CopyChars is satisfied at the call site (∗). In general,
the join of SubPoly is less precise than the one on Poly, so
that it may not infer all the linear inequalities. The reason for
that is that the pairwise join on LinEq and Intv is in general
less precise than the join on Poly. To mitigate this loss of
precision, we introduce a technique called hints [23], which
enable recovering some of the precision. This technique is
not limited to SubPoly, and indeed we show that several
existing refinement techniques can be seen as a particular
case of hints.

The cardinal operation for SubPoly is the join, which
computes a compact yet precise upper approximation of two
incoming abstract states. The join of SubPoly is parameter-
ized by the: (i) the reduction algorithm, which propagates
the information between LinEq and Intv; and (ii) the hints,
which recover information lost at join points. Every instan-
tiation of the (reduction, hints) produces a new abstract
domain in the SubPoly family, allowing the fine tuning of
the cost/precision ratio. The most imprecise yet fast abstract
domain in the SubPoly family is the one in which the reduc-
tion is the simple identity (no interval is refined) and the
no hints are used. The most precise yet expensive abstract
domain is one where the reduction is a complete linear
programming algorithm and the hints are the usual Poly join.

1.2 Reduction

Let us consider the example in Fig. 2, taken from [33].
The program contains operations and predicates that can be
exactly represented with Octagons. Proving that the asser-
tion is not violated requires discovering the loop invariant
x− y = i− j ∧ x ≥ 0. The loop invariant cannot be fully
represented in Octagons: it involves a relation on four vari-
ables. Bounded numerical domains are unlikely to help here
as there is no way to syntactically figure out the required
template. The LinEq component of SubPoly infers the rela-
tion x− y = i− j. The Intv component of SubPoly infers
the loop invariant x ∈ [0,+∞], which in conjunction with
the negation of the guard implies that x ∈ [0, 0]. The sim-
plification of SubPoly propagates the interval, refining the

Fig. 2 An example from [33]. SubPoly infers the loop invariant
x− i = y− j ∧ x ≥ 0, propagates it and prove the assertion
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SubPolyhedra: a family of numerical abstract domains 587

Fig. 3 An example from [17]. SubPoly infers the loop invariant x ≤
y ≤ 100 ·x∧z = 10 ·w, propagates it out of the loop, and proves that
the assertion is unreached

linear constraint to y = j − i. This is enough to prove the
assertion (in conjunction with the if-statement guard). It is
worth noting that unlike [33] SubPoly does not require any
hypothesis on the order of variables to prove the assertion.

1.3 Join and hints

Let us consider the code in Fig. 3, taken from [17]. The loop
invariant required to prove that the assertion is unreached
(and hence that the program is correct) is x ≤ y ≤ 100 ·
x ∧ z = 10 · w. Without hints, SubPoly can only infer
z = 10 · w. Template hints, inspired by [34], are used to
recover linear inequalities that are dropped by the impreci-
sion of the join: In the example, the template is x − y ≤
b, and the analysis automatically figures out that b = 0.
Planar Convex hull hints, inspired by [36], are used to intro-
duce at join points linear inequalities derived by a planar
convex hull: In the example it helps the analysis figure out
that y ≤ 100 · x. It is worth noting that SubPoly does not
need any of the techniques of [17] to infer the loop invariant.

2 Abstract interpretation

2.1 Abstract domains

We assume the concrete domain to be the complete Bool-
ean lattice of environments, C = 〈P(Σ),⊆,∅,Σ,∪,∩〉,
where Σ = [Vars → Z]. An abstract domain A is a tuple
〈D̄, γ, �̄, ⊥̄, �̄, �̄, �̄,�, ρ, σ 〉. The set of abstract elements
D̄ is related to the concrete domain by a monotonic concret-
ization function γ ∈ [D̄ → C̄]. With an abuse of notation,
we will not distinguish between an abstract domain and the
set of its elements. The approximation order is �̄ is a sound
approximation of the concrete order:

∀d̄0, d̄1 ∈ D. d̄0�̄d̄1 �⇒ γ (d̄0) ⊆ γ (d̄1)

The smallest element is ⊥̄, the largest element is �̄. The join
operator �̄ satisfies:

∀d̄0, d̄1 ∈ D̄. d̄0�̄d̄0�̄d̄1 ∧ d̄1�̄d̄0�̄d̄1

The meet operator �̄ satisfies:

∀d̄0, d̄1 ∈ D̄. d̄0�̄d̄1�̄d̄0 ∧ d̄0�̄d̄1�̄d̄1

The widening � ensures the convergence of the fixpoint
iterations, i.e. it satisfies:

(i) ∀d̄0, d̄1 ∈ D̄. d̄0�̄d̄0�d̄1 ∧ d̄1�̄d̄0�d̄1

(ii) for each sequence of abstract elements d̄0, d̄1, . . . , d̄k

the sequence defined by:
d̄�

0 = d̄0, d̄�
1 = d̄�

0 �d̄1, . . . , d̄�
k = d̄�

k−1�d̄k

is ultimately stationary.

In general, we do not require abstract elements to be in some
canonical or closed form, i.e. there may exist d̄0, d̄1 ∈ D,
such that d̄0 �= d̄1, but γ (d̄0) = γ (d̄1). The reduction oper-
ator ρ ∈ [D̄ → D̄] puts an abstract element into a (pseudo-)
canonical form without adding or losing any information:
∀d̄. γ (ρ(d̄)) = γ (d̄) ∧ ρ(d̄)�̄d̄. We do not require ρ to
be idempotent. The simplification operator σ ∈ [D̄ → D̄]
removes redundancies in an abstract state. It may introduce
some loss of precision: ∀d̄. γ (d̄) ⊆ γ (σ (d̄)).

In most of the literature, reduction and simplification are
not given the status of lattice operation. However, several
domains use internally some specific operations that give
a more adapted representation of the abstract state, for a
given operation. For instance, there is an operation on Octa-
gons that is called closure, and which has the properties of a
reduction operator. We believe that this is general enough
to warrant adding two operators to the standard abstract
domain definition. Of course, the identity is always a reduc-
tion operator and a simplification operator, so it can be
defined even for domains which have no corresponding spe-
cific operation. Those operators are particularly important
when the abstract elements considered are representations of
mathematical objects, such that some objects have multiple
equivalent representations.

New abstract domains can be systematically derived by
cartesian composition or functional lifting [10]. Following [8],
we use the dot-notation to denote point-wise or functional
extensions.

2.2 Transfer functions

It is common practice for the implementation of an abstract
domain A to provide three abstract transfer functions: one
for the assignment, one for the handling of tests, and one to
perform abstract checking. The abstract transfer function for
assignment, A.assign, is an over-approximation of the states
reached after the concrete assignment (E [[E]] (σ ) denotes the
evaluation of the expression E in the state σ ):
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∀x,E.∀ē ∈ A.
{σ [x �→ v] | σ ∈γ (ē),E [[E]] (σ ) = v}

⊆ γ (A.assign(ē,x,E))

The test abstract transfer function, A.test, filters the input
states (B [[B]] (σ ) denotes the evaluation of a Boolean
expression B in the state σ ):

∀B.∀ē ∈ A. {σ ∈ γ (ē) | B [[B]] (σ ) = true} ⊆ γ (A.test(ē,B)).

The abstract checking A.check verifies if an assertion A
holds in an abstract state ē. It has four possible out-
comes: true, meaning that A holds in all the concrete states
γ (ē); false, meaning that !A holds in all the concrete states
γ (ē); bottom, meaning that the assertion is unreached; top,
meaning that the validity of A cannot be decided in γ (ē).
Formally, A.check satisfies ∀A. ∀ē ∈ A:

A.check(A, ē) = v ⇒ ∀σ ∈γ (ē).
B [[A]] (σ ) = v, v∈{true, false}

A.check(A, ē) = bot ⇒ γ (ē) = ∅
A.check(A, ē) = top ⇒ ∃σ0, σ1 ∈ γ (ē).

B [[A]] (σ0) �= B [[A]] (σ1)

2.3 Intervals

The abstract domain of interval environments is 〈Intv,
γIntv,

˙̄ �Intv,
˙̄⊥Intv,

˙̄�Intv,
˙̄�Intv,

˙̄�Intv, �̇Intv〉. The abstract
elements are maps from program variables to open intervals.
The concretization of an interval environment ī is

γIntv(ī) = {s ∈ Σ | ∀x ∈ dom(ī).

ī(x) = [a, b] ∧ a ≤ s(x) ≤ b}.
The lattice operations are the functional extension of those
in Fig. 4. The reduction and the simplification for intervals
are the identity function. All the domain operations can be
implemented in linear time.

2.4 Linear equalities

The abstract domain of linear equalities is 〈LinEq, γLinEq,

�̄LinEq, ⊥̄LinEq, �̄LinEq, �̄LinEq, �̄LinEq〉. The elements are

Fig. 4 Lattice operations over single intervals

sets of linear equalities, their meaning is given by the set
of concrete states which satisfy the constraints, i.e.

γLinEq = λl̄.
{

s ∈ Σ |∀
(∑

ai · xi = b
)

∈ l̄.
∑

ai · s(xi ) = b
}
.

The order is sub-space inclusion, the bottom is the empty
space, the top is the whole space, the join is the smallest
space which contains the two arguments, the meet is space
intersection. LinEq satisfies the ascending chain condition,
so that the join suffices to ensure analysis termination. The
reduction and the simplification are just Gaussian elimina-
tion. The complexity of the domain operations is subsumed
by the complexity of Gaussian elimination, which is cubic.

2.5 Polyhedra

The abstract domain of linear inequalities is 〈Poly, γPoly,

�̄Poly, ⊥̄Poly, �̄Poly, �̄Poly, �̄Poly,�Poly〉. The elements are
sets of linear inequalities, the concretization is the set of
concrete states which satisfy the constraints, i.e.

γPoly = λp̄.
{

s ∈ Σ | ∀
(∑

ai · xi ≤ b
)
∈ p̄.

∑
ai · s(xi ) ≤ b

}
.

The order is the polyhedron inclusion, the bottom is the empty
polyhedron, the top is the whole space, the join is the convex
hull, the meet is just the union of the set of constraints, and the
widening preserves the inequalities stable among two succes-
sive iterations. The reduction and the simplification, respec-
tively, infer the set of generators and remove the redundant
inequalities. The cost of the Poly operations is subsumed
by the cost of the conversion between the algebraic repre-
sentation (set of inequalities) and the geometric represen-
tation (set of generators) used in the implementation [1].
In fact, some operations require the algebraic representa-
tion (e.g. �̄Poly), some require the geometrical representation
(e.g. �̄Poly), and some others require both (e.g. �̄Poly). The
conversion between the two representations is exponential in
the number of variables, and it cannot be done better [21].

3 SubPolyhedra

We introduce the numerical abstract domain of SubPolyhe-
dra, SubPoly. The main idea of SubPoly is to combine Intv
and LinEq to capture complex linear inequalities. Slack vari-
ables are introduced to replace inequality constraints with
equalities.
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SubPolyhedra: a family of numerical abstract domains 589

3.1 Variables

A variable v ∈ Vars can either be a program variable (x ∈
VarP) or a slack variable (β ∈ VarS). A slack variable β
has an associated information, denoted by info(β), which
is a linear form a1 · v1 + · · · + ak · vk .

Letκ ≡ ∑
ai ·xi+∑

b j ·β j = c be a linear equality:sκ =∑
xi∈VarP ai · xi denotes the partial sum of the monomials

involving just program variables; VarP(κ) = {xi | ai · xi ∈
κ, ai �= 0} and VarS(κ)={β j | b j · β j ∈κ, b j �= 0} denote,
respectively, the program variables and the slack variables
in κ . The generalization to inequalities and sets of equalities
and inequalities is straightforward.

3.2 Domain structure

The elements of SubPoly belong to the reduced product
LinEq× Intv [10]. Inequalities are represented in SubPoly
with slack variables:

∑
ai · xi ≤ c ⇐⇒

∑
ai · xi − c = β ∧ β ∈ [−∞, 0]

(β is a fresh slack variable with the associated information
info(β) = ∑

ai · xi ).

3.3 Concretization

An element of SubPoly can be interpreted as a polyhedron
by projecting out the slack variables: γ Poly

S ∈ [SubPoly →
Poly] is

γ
Poly
S = λ〈̄l; ī〉. πVarS(l̄ ∪ {a ≤ v ≤ b | ī(v) = [a, b]}),

where π denotes the projection of variables in Poly. The
concretization γS ∈ [SubPoly → P(Σ)] is then γS =
γPoly ◦ γ Poly

S .

3.4 Approximation order

The order on SubPoly may be defined in terms of order over
Poly. Given two SubPolyhedra s̄0, s̄1, the most precise order
relation �̄∗

S is

s̄0�̄∗
S s̄1 ⇐⇒ γ

Poly
S (s̄0)�̄Polyγ

Poly
S (s̄1).

However, �̄∗
S may be too expensive to compute: it involves

mapping SubPolyhedra in the dual representation of Poly.
This can easily cause an exponential blow up. We define a
weaker approximation order relation which first tries to find
a renaming θ for the slack variables, and then checks the

pairwise order. Formally:

〈̄l0; ī0〉�̄S 〈̄l1; ī1〉 ⇐⇒
∃θ. VarS(〈̄l0; ī0〉)

inj−→ VarS(〈̄l1; ī1〉).
∀β ∈ VarS(〈̄l0; ī0〉). info(β) = info(θ(β))

∧θ(〈̄l0; ī0〉) ˙̄� 〈̄l1; ī1〉.
In general, �̄S � �̄∗

S . In practice, �̄S is used to check if
a fixpoint has been reached. A weaker order relation means
that the analysis may perform some extra widening steps,
which may introduce precision loss. However, we found the
definition of �̄S satisfactory in our experience.

One other important consequence of using a weak approx-
imation order is that we are not always able to tell whether
two abstract elements are actually equivalent representations
of the same geometric shape. This is why, unlike some other
domains like Poly, in SubPoly the elements do not corre-
spond to a geometrical shape, even up to equivalence; there
are some elements that correspond to the same polyhedron,
but are not comparable with our weak ordering.

3.5 Bottom

An element of SubPoly is equivalent to bottom if after a
reduction one of the two components is bottom:

s̄ = ⊥S ⇐⇒ ρ(s̄) = 〈̄l, ī〉 ∧ (ī = ⊥̇Intv ∨ l̄ = ⊥LinEq).

3.6 Top

An element of SubPoly is top if after the simplification both
components are top:

s̄ = �S ⇐⇒ σ(s̄) = 〈̄l, ī〉 ∧ ī = �̇Intv ∧ l̄ = �LinEq.

3.7 Linear form evaluation

Lets be a linear form: [[s]] ∈ [SubPoly → Intv] denotes the
evaluation ofs in an element of SubPoly after that the reduc-
tion has inferred the tightest bounds:

[[∑
ai · vi

]] 〈̄l; ī〉 =
let 〈̄l∗; ī∗〉 = ρ(〈̄l; ī〉) in

∑
ai · ī∗(vi ).

3.8 Join

As with the order, one could define a most precise join
operation by concretizing on Poly, doing the convex hull,
then abstracting again to SubPoly. However, this is a very
expensive operation, and the aim of SubPoly is to give faster,
but potentially less precise, operations. So we define instead
a specific join algorithm �S in three steps. First, inject the
information of the slack variables into the abstract elements.
Second, perform the pairwise join on the saturated argu-
ments. Third, add the constraints that are implied by the two
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Algorithm 1 The join �S on SubPolyhedra

input 〈̄li ; īi 〉 ∈ SubPoly, i ∈ {0, 1}

let 〈̄l′i ; ī
′
i 〉 = 〈̄li ; īi 〉

{Step 1. Propagate the information of the slack variables}
for all β ∈ VarS(l̄i ) \ VarS(l̄i ) do
〈̄l′i ; ī

′
i 〉 := 〈̄l′i �LinEq {β = info(β)}; ī′i 〉

{Step 2. Perform the point-wise join on the saturated operands}
let 〈̄l�; ī�〉 = ρ(〈̄l′0; ī

′
0〉)�̇ρ(〈̄l

′
1; ī

′
1〉)

{Step 3. Hints: Recover the lost information }
let Di be the linear equalities dropped from l̄′i at the previous step
for all κ ∈ Di do

if κ contains no slack variable then
let īsκ = [[sκ ]] 〈̄l′i ; ī

′
i 〉

if īsκ �= �Intv then
let β be a fresh slack variable
〈̄l�; ī�〉 := 〈̄l� �LinEq {β = κ}; ī��̇Intv{β = īsκ �Intv [0, 0]}〉

else if κ contains exactly one slack variable β then
let īsκ = [[sκ ]] 〈̄l′i ; ī

′
i 〉

if īsκ �= �Intv then
〈̄l�; ī�〉 := 〈̄l� �LinEq {κ}; ī��̇Intv{β = īsκ �Intv īi (β)}〉

else {κ contains strictly more than one slack variable}
continue

return 〈̄l�; ī�〉

operands of the join, but that were not preserved by the
previous step. The join is defined by the Algorithm 1 (We
let 0 = 1, 1 = 0). We illustrate it with examples.

Example 1 (Steps 1 & 2) Let us consider the code in Fig. 5a.
After the assumption, the abstract states on the left branch
and the right branch are, respectively, s̄0 = 〈x − y =
β0; β0 ∈ [−∞, 0]〉 and s̄1 = 〈x − y = β1; β1 ∈
[−∞, 5]〉. The information associated with the slack vari-
ables is info(β0) = info(β1) = x− y. At the join point
we apply Algorithm 1. Step 1 refines the abstract states by
introducing the information associated with the slack vari-
ables: s̄′0 = 〈x − y = β0 = β1; β0 ∈ [−∞, 0]〉 and
s̄′1 = 〈x − y = β1 = β0; β1 ∈ [−∞, 5]〉. Step 2 requires
the reduction of the operands. The interval for β1 (resp., β0)
in s̄′0 (resp., s̄′1) is refined: ρ(s̄′0) = 〈x−y = β0 = β1; β0 ∈
[−∞, 0], β1 ∈ [−∞, 0]〉 and ρ(s̄′1) = 〈x − y = β1 =
β0; β0 ∈ [−∞, 5], β1 ∈ [−∞, 5]〉. The pairwise join gets
the expected invariant: s̄� = ρ(s̄′0)�̇ρ(s̄′1) = 〈x−y = β0 =
β1; β0 ∈ [−∞, 5], β1 ∈ [−∞, 5]〉. ��

Example 2 (Non-trivial information for slack variables) Let
us consider the code snippet in Fig. 5b. The abstract states
to be joined are 〈x − y = 0,y − z = β0;β0 ∈ [−∞, 0]〉
and 〈y − z = 0,x − y = β1;β1 ∈ [−∞, 0]〉. The associ-
ated information are info(β0) = y − z and info(β1) =
x − y. Step 1 allows to refine the abstract states with the
slack variable information, and hence to infer that after the
join x ≤ y and y ≤ z. ��

(a)

(b)

Fig. 5 Examples illustrating the need for Step 1 in the join algorithm

(a)

(b)

Fig. 6 Examples illustrating the need for the Step 3 in the join and the
widening

The two examples above show the importance of
introducing the information associated with slack variables
in Step 1 and the reduction in Step 2. Without those, the rela-
tion between the slack variables and the program point where
they were introduced would have been lost.

The join of LinEq is precise in that if a linear equal-
ity is implied by both operands, then it is implied by the
result too. The same for the join of Intv. The pairwise join
in LinEq × Intv may drop some inequalities. Some of those
can be recovered by the refinement step. The next example
illustrates it.

Example 3 (Step 3) Let us consider the code in Fig. 6a. The
analysis of the two branches of the conditional produces the
abstract states: s̄0 = 〈x− 3 · y = 0; �̇Intv〉 and s̄1 = 〈x =
0,y = 1; x ∈ [0, 0],y ∈ [1, 1]〉. The reduction ρ does
not refine the states (we already have the tightest bounds).
The point-wise join produces the abstract state �S . Step 3
identifies the dropped constraints: D0 = {x − 3 · y = 0}
and D1 = {x = 0,y = 1}. The algorithm inspects them to
check if the corresponding linear form can be bounded by the
“other” branch. The linear form in D0 is also bounded in the
right branch: [[x− 3 · y]] (s̄1) = [−3,−3] ( �= �̇Intv). There-
fore, it is meaningful to add a slack variable β corresponding
to this linear form to the result. The linear forms of D1 can-
not be bounded on the left branch, so they are discarded. The
abstract state after the join is then s̄� = 〈x − y = β; β ∈
[−3, 0]〉. ��
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Algorithm 2 The widening �S on SubPolyhedra

input 〈̄li ; īi 〉 ∈ SubPoly, i ∈ {0, 1}

let 〈̄l′i ; ī
′
i 〉 = 〈̄li ; īi 〉

{Step 1. Propagate the information of the slack variables}
for all β ∈ VarS(l̄0) \ VarS(l̄1) do
〈̄l′0; ī

′
0〉 := 〈̄l′0 �LinEq {β = info(β)}; ī′0〉

{Step 2. Perform the point-wise widening}
let 〈̄l�; ī�〉 = 〈̄l′0; ī

′
0〉�̇ρ(〈̄l

′
1; ī

′
1〉)

{Step 3. Recover the lost information }
let D0 be the linear equalities dropped from l̄′0 at the previous step
for all κ ∈ D0 do

if κ contains no slack variables then
let īsκ = [[sκ ]] 〈̄l′1; ī

′
1〉

if īsκ �= �Intv then
let β be a fresh slack variable
〈̄l�; ī�〉 := 〈̄l� �LinEq {β = κ}; ī��̇Intv{β = [0, 0]�īsκ }〉

else if κ contains exactly one slack variable β then
let īsκ = [[sκ ]] 〈̄l′1; ī

′
1〉

if īsκ �= �Intv then
〈̄l�; ī�〉 := 〈̄l� �LinEq {κ}; ī��̇Intv{β = ī0(v)�īsκ }〉

else {κ contains strictly more than one slack variable}
continue

return 〈̄l�; ī�〉

3.9 Meet

The meet �S is simply the pairwise meet on LinEq × Intv.

3.10 Widening

The algorithm for the widening is similar to the join, with
the main differences that: (i) the information associated to
slack variables is propagated only in one direction; (ii) only
the right argument is saturated; and (iii) the recovery step is
applied only to one of the operands. Those hypotheses avoid
the well-known problems of interaction between reduction,
refinement and convergence of the iterations [30,35].

Example 4 (Refinement step for the widening) Let us con-
sider the code snippet in Fig. 6b. The entry state to the loop
is s̄0 = 〈i − k = 0; �̇Intv〉. The state after one iteration is
s̄1 = 〈i − k = 1; �̇Intv〉. We apply the widening operator.
Step 1 does not refine the states as there are no slack variables.
The pairwise widening of Step 2 lose all the information. Step
3 recovers the constraint k ≤ i: D0 = {i − k = 0} con-
tains no slack variables and [[i− k]] (s̄1) = [1, 1] so that
s̄� = 〈i− k = β; β ∈ [0,+∞]〉. ��
Theorem 1 (Fixpoint convergence) The operator defined in
Algorithm 2 is a widening. Moreover, �̄S can be used to check
that the fixpoint iterations eventually stabilize.

Proof sketch Algorithm 2 ensures that the number of linear
equalities at any step is at most the number of equalities in
the first step. So there exists a point from which no more

slack variables will be added. Existing slack variables may
be renamed to fresh ones to avoid conflicts. In the definition
of �̄S the renaming θ takes care of those. Up to the renaming,
the widening is the pairwise widening, which is convergent
and whose stability can be checked by the pairwise partial
order. ��

4 Reduction for SubPolyhedra

The reduction in SubPoly infers tighter bounds on linear
forms and hence on program variables. Reduction is cardinal
to fine tuning the precision/cost ratio. We propose two reduc-
tion algorithms, one based on linear programming, ρLP, and
the other on basis exploration, ρBE. Both of them have been
implemented in Clousot, our abstract interpretation-based
static analyzer for .Net [2].

4.1 Linear programming-based reduction

A linear programming problem is the problem of maximizing
(or minimizing) a linear function subject to a finite number of
linear constraints. We consider upper bounding linear prob-
lems (UBLP) [6], i.e. problems in the form (n is the number
of variables, m is the number of equations):

maximize c · vk, k ∈ 1, . . . , n, c ∈ {−1,+1}
subject to

n∑
j=1

ai j · v j = b j (i = 1, . . . ,m)

and l j ≤ v j ≤ u j ( j = 1, . . . , n).

The linear programming-based reduction ρLP is trivially
an instance of UBLP: To infer the tightest upper bound (resp.,
lower bound) on a variablevk in an element of SubPoly 〈̄l; ī〉
instantiate UBLP with c = 1 (resp., c = −1) subject to the
linear equalities l̄ and the numerical bounds ī.

UBLP can be solved in polynomial time [6]. However,
polynomial time algorithms for UBLP do not perform well in
practice. The Simplex method [14], exponential in the worst-
case, in practice performs a lot better than other known linear
programming algorithms [37]. The Simplex algorithm works
by visiting the feasible bases (informally, the vertices) of the
polyhedron associated with the constraints. At each step, the
algorithm visits the adjacent basis (vertex) that maximizes
the current value of the objective by the largest amount. The
iteration strategy of the Simplex guarantees the convergence
to a basis which exhibits the optimal value for the objective.

The advantages of using Simplex for ρLP are that: (i) it is
well-studied and optimized; (ii) it is complete in R, i.e. it finds
the best solution over real numbers; and (iii) it guarantees that
all the information is propagated at once: ρLP ◦ ρLP = ρLP.

The drawbacks of using Simplex are that (i) the
computation over machine floating point may introduce
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Algorithm 3 The reduction algorithm ρBE, parametrized by
the oracle δ

input 〈̄l; ī〉 ∈ SubPoly, δ ∈ P({ζ | ζ is a basis change})

Put l̄ into row echelon form. Call the result l̄′
let 〈̄l∗, ī∗〉 = 〈̄l′, ī〉
for all ζ ∈ δ do

l̄∗ := ζ(l̄∗)
for all vk + ak+1 · vk+1 + · · · + an · vn = b ∈ l̄∗ do

ī∗ := ī∗[vk �→ ī∗(vk)�Intv
[[

b−ak+1 ·vk+1 +· · ·+an ·vn
]]
(ī∗)]

return 〈̄l∗, ī∗〉

imprecision or unsoundness in the result; and (ii) the reduc-
tion ρLP requires to solve 2 · n UBLP problems to find the
lower bound and the upper bound for each of the n variables
in an abstract state. We have observed (i) in our experiences
(cf. Sect. 7). There exists methods to circumvent the problem
at the price of extra computational cost, e.g. using arbitrary
precision rationals, or a combination of machine floating
arithmetic and precise arithmetic. Even if (i) is solved, we
observed that (ii) dominates the cost of the reduction, in par-
ticular in the presence of abstract states with a large number
of variables: the 2 · n UBLP problems are disjoints and there
is no easy way to share the sequence of bases visited by the
Simplex algorithm over the different runs of the algorithm
for the same abstract state.

4.2 Basis exploration-based reduction

We have developed a new reduction ρBE, less subject to the
drawbacks from floating point computation than ρLP, which
enables a better tuning of the precision/cost ratio than the
Simplex. The basic ideas are: (i) to fix ahead of time
the bases we want to explore; and (ii) to refine at each step
the variable bounds. The reduction ρBE, parametrized by a
set of changes of basis δ, is formalized by Algorithm 3. First,
we put the initial set of linear constraints into triangular form
(row echelon form). Then, we apply the basis changes in δ
and we refine all the variables in the basis. With respect to
ρLP, ρBE is faster: (i) the number of bases to explore is stat-
ically bounded; (ii) at each step, k variables may be refined
at once.

In theory, ρBE is an abstraction of ρLP, in that it may
not infer the optimal bounds on variables (it depends on the
choice of δ). In practice, we found that ρBE is much more
numerically stable and it can infer better bounds than ρLP.
The reason is in the handling of numerical errors in the com-
putation. Suppose we are seeking a (lower or upper) bound
for a variable using the Simplex. If we detect a numerical
error (i.e. a loss of precision in floating point computations
or a huge coefficient in the exact arithmetic computation),
the only sound solution is to stop the iterations, and return
the current value of the objective function as the result. On

the other hand, when we detect a numerical error in ρBE, we
can just skip the current basis (abstraction), and move to the
next one in δ.

4.2.1 Linear explorer (δL)

The linear bases explorer is based on the empirical obser-
vation that in most cases, to infer the tightest bounds for
some variable v0, you need to have it in the basis while
some other variable v1 is out of the basis. Following this,
the linear explorer generates a sequence of bases δL with the
property that for each unordered pair of distinct variables
〈v0,v1〉, there exists ζ ∈ δL such that v0 is in the basis and
v1 is not. The sequence δL is defined as δL = {ζi | i ∈
[0, n], vi , . . . ,v(i+m−1)mod n are in basis for ζi }.

Example 5 (Reduction with the linear explorer) Let the
initial state be s̄ = 〈v0 + v2 + v3 = 1,v1 + v2 −
v3 = 0; v0 ∈ [0, 2],v1 ∈ [0, 3]〉, so that δL =
{{v0,v1}, {v1,v2}, {v2,v3}, {v3,v0}}. The reductionρBE(s̄)
contains the tightest bounds forv2,v3: 〈v2+ 1

2 ·v0+ 1
2 ·v1 =

0,v3 + 1
2 · v0 − 1

2 · v1 = 0;v0 ∈ [0, 2],v1 ∈ [0, 3],v2 ∈
[− 5

2 , 0],v3 ∈ [−1, 3
2 ]〉. ��

Properties of δL are that: (i) each variable appears exactly m
times in the basis; (ii) it can be implemented efficiently as
the basis change from ζi to ζi+1, i ∈ [0, n − 1] requires just
one variable swap; (iii) in general it is not idempotent: it may
be the case that ρL ◦ ρL �= ρL; (iv) the result may depend on
the initial order of variables, as shown by the next example.

Example 6 (Incompleteness of the linear explorer) Let us
consider an initial state s̄ = 〈v0 + v1 + v2 = 0,v3 +
v1 = 0; v2 ∈ [0, 1],v3 ∈ [0, 1]〉. The reduced state
ρBE(s̄) = 〈v3 + v1 = 0,v2 + v0 − v1 = 0;v1 ∈
[−1, 0],v2 ∈ [0, 1],v3 ∈ [0, 1]〉 does not contain the bound
v0 ∈ [−1, 1]. ��

4.2.2 Combinatorial explorer (δC)

The combinatorial explorer δC systematically visits all the
bases. It generates all possible combinations of m variables
trying to minimize the number of swaps at each basis change.
It is very costly, but it finds the best bounds for each vari-
able: it visits all the bases, in particular the one where the
optimum is reached. The main advantage with respect to the
Simplex is a better tolerance to numerical errors. However it
is largely impractical because of (i) the huge cost; and (ii) the
negligible gain of precision w.r.t. the use of δL that it showed
in our benchmark examples.
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5 Hints

The relative loss of precision of the join operator incited us
to search some ways to recover precision on imprecise oper-
ators. We discovered several of those, and they share some
properties that led us to define a new concept called hints,
which generalizes all of them as well as several known refin-
ing techniques.

Hints are precision improving operators which can be used
to systematically refine and improve the precision of domain
operations in abstract interpretation. Domain operations are
either basic domain operations (e.g. � or �) or their compo-
sitions (e.g. λ(ē0, ē1, ē2). (ē0 � ē1)� (ē0 � ē2)).

Definition 1 (Hint, h) Let  ∈ [Cn → C] be a concrete
domain operation defined over a concrete domain 〈C,�
,�,�〉. Let  ̄ ∈ [An → A] be the abstract counterpart
for  defined over the abstract domain 〈A,",�,�〉. A hint
h ̄ ∈ [An → A] is such that:

h ̄(ē0, . . . , ēn−1) "  ̄(ē0, . . . , ēn−1)(Refinement)
 (γ (ē0), . . . , γ (ēn−1)) � γ (h ̄(ē0, . . . , ēn−1))(Soundness).

The first condition states that h ̄ is a more precise opera-
tions than  ̄. The second condition requires h ̄ to be a sound
approximation of  . An important property of hints is that
they can be designed separately and the combined to obtain
a more precise hint.

Lemma 1 (Hints combination) If h1
 ̄ and h2

 ̄ are hints, then

h�
 ̄ (ē0, . . . , ēn−1) = h1

 ̄(ē0, . . . , ēn−1)� h2
 ̄(ē0, . . . , ēn−1)

is a hint.

Proof sketch (Refinement) follows from the definition of
�. (Soundness) is because  (γ (ē0), . . . , γ (ēn−1)) � γ (h1

 ̄
(ē0, . . . , ēn−1)) � γ (h2

 ̄(ē0, . . . , ēn−1)) � γ (h1
 ̄(ē0, . . . ,

ēn−1)� h2
 ̄(ē0, . . . , ēn−1)). ��

The next theorem states that hints improve the precision
of static analyses without introducing unsoundness and pre-
serving termination:

Theorem 2 (Refinement of the abstract semantics) Let h�
and h� be two hints refining, respectively, the widening
and the abstract union, and let h� be a widening opera-
tor. Let s̄∗ [[·]] be the abstract semantics obtained from s̄ [[·]]
by replacing �with h� and � with h�. Let P be a program.
Then, ∀e ∈ P(Σ).∀ē ∈ A.

s̄∗ [[P]] (ē) " s̄ [[P]] (ē) (Refinement)

e ⊆ γ (ē) �⇒ [[P]] (e) ⊆ γ (s̄∗ [[P]] (ē)) (Soundness).

Proof sketch The cases to consider are those for the con-
ditional and the while loop. The conditional can be proven
by structural induction. The while loop by instantiating the
abstract fixpoint transfer theorem of [11]. ��

5.1 Syntactic hints

Syntactic hints use some part of the program text to refine the
operations of the abstract domain. They exploit user annota-
tions to preserve as much information as possible in gathering
operations (user-provided hints), and systematically improve
the widening heuristics to find tighter loop invariants (thresh-
olds hints).

5.1.1 User-provided hints

They are the easiest, and probably cheapest form of hints.
First, we collect all the predicates appearing as assertions
or as guards. Then, the gathering operations are refined by
explicitly checking for each collected predicate B, if it holds
for all the operands. If this is the case, B is added to the
result. The predicate seeker pred ∈ [Stm → P(BExp)] is
defined in Fig. 7. User provided hints do not affect the ter-
mination of the widening as we can only add finitely many
new predicates.

Lemma 2 (User-provided hints) Let  ∈ {�,�}, and let P

be a program. Then: (i) hpred
 defined below is a hint; and

(ii) hpred
� is a widening operator.

h
pred
 (ē0, ē1) = let S

= {B∈pred(P) | A.check(B, ē0) = true
∧ A.check(B, ē1) = true}

in A.test(
∧

B∈S B, (ē0, ē1)).

Proof sketch Note that (1) implies that A.test(b1∧b2, ē) "
A.test(b1, ē), which is enough to prove (Refinement). The
soundness condition (1) of check guarantees that no incon-
sistent predicate is added to the result, implying (Soundness).

��
Example 7 (Refined SubPoly operations) In example of
Fig. 8, pred(DomOp) = {x ≤ y, 4 ≤ x,y ≤ 100 · x}.
The refined domain operations keep the predicate x ≤ y,
which is stable among loop iterations, and hence is a loop
invariant. ��

Fig. 7 The functions pred and atomize collect the atomic predicates
in statements and Boolean expressions
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We found user-provided hints very useful in Clousot,
our abstract interpretation based static analyzer for .Net.
Clousot analyzes methods in isolation, and supports
assume/guarantee reasoning (“contracts” [28]) via execut-
able annotations [2]. Precision in propagating and checking
program annotations is crucial to provide a satisfactory user
experience. User-provided hints help to reach this goal as the
analyzer makes sure that at each joint point no user annota-
tion is lost, if it is implied by the incoming abstract states.
They make the analyzer more robust w.r.t. incompleteness of
� or a buggy implementation which may cause � to return a
more abstract element than the one predicted by the theory.
The downside is that user-provided hints are syntactically
based:

Example 8 (Fragility of user-provided hints) Let us con-
sider again the code in Fig. 8. If we replace the asser-
tion at (∗) with if 10 <= x then assert 5 <= y, then
pred(DomOp) = {10 ≤ x, 5 ≤ y}, so that hpred

�Poly
cannot

figure out that x ≤ y, and hence the analyzer cannot prove
that the assertion is valid. Semantic hints (Sect. 5.2.3) will
fix it. ��

5.1.2 Thresholds hints

Widening with threshold has been introduced in [4] to
improve the precision of standard widenings over non-
relational or weakly relational domains. Roughly, the idea
of a widening with thresholds is to stage the extrapolation
process, so that before projecting a bound to the infinity, val-
ues from a set T are considered as candidate bounds. The set
T can be either provided by the user or it can be extracted
from the program text. The widening with thresholds is just
another form of hint. Let ē0 and ē1 be abstract states belong-
ing to some numerical abstract domain. Without loss of gen-
erality we can assume that the basic facts in ē0, ē1 are in
the form p ≤ k, where p is some polynomial. For instance
x ∈ [−2, 4] is equivalent to {−x ≤ 2,x ≤ 4}. The stan-
dard widening preserves the linear forms with stable upper
bounds: �(ē0, ē1) = {p ≤ k | p ≤ k0 ∈ ē0,p ≤ k1 ∈
ē1, k = if k1 > k0 then +∞ else k0}. Given a finite set of

Fig. 8 Example requiring user-provided hints

(a) (b)

Fig. 9 Two programs to be analyzed with intervals. The iterations with
widening infer the loop invariant x ∈ [0,+∞]. In the first case, the nar-
rowing step refines the loop invariant to x ∈ [0, 1000]. In the second
case, the narrowing fails to refine it

values T, threshold hints refine the standard widening by:

hT
�(ē0, ē1) = {p ≤ k | p ≤ k0 ∈ ē0,p ≤ k1 ∈ ē1,

k = if k1 > k0 then

min{t ∈ T ∪ {+∞} | k1 ≤ t}
else k0}.

Lemma 3 hT� is: (i) a hint; and (ii) a widening.

Proof sketch Refinement and Soundness are a direct conse-
quence of definition of hT�. Termination follows from the
fact that T is finite. ��
Example 9 (Widening with thresholds) Let us consider the
code snippets in Fig. 9 to be analyzed with Intervals. In
the both cases, the (post-)fixpoint is reached after the first
iteration �([0, 0], [1, 1]) = [0,+∞]. In the first case,
the invariant can be improved by a narrowing step to
� ([0,+∞], [−∞, 1,000]) = [0, 1,000] (see [9] for a
definition of narrowing of Intv). In the second case, the
narrowing is of no help as � ([0,+∞],�([−∞, 1,000],
[1, 002,+∞])) = [0,+∞]. A widening with Thresholds
T = {1,000} helps discovering the tightest loop invari-
ant for both examples in one step as hT�([0, 0], [1, 1]) =
[0, 1,000]. ��

Please note that user-provided hints are of no help in the
previous example, as pred(NotEq) = {x �= 1,000} does
not hold for all the operands of the widening.

We are left with problem of generating the set T of
thresholds. A common practice in static analyzers is to have
T = {−1, 0, 1}. A better solution is to have the user provide
T , left as parameter of the analyzer. This is the approach
of [4]. In Clousot we chose a slightly different solution,
which consists in populating T with the constants appearing
in the program text. Constants are fetched from the source
using a function const ∈ [Stm → P(int)] defined as
one may expect. We found hconst� very satisfactory. The hint
hconst� : (i) helps inferring precise numerical loop invariants
without requiring the extra iteration steps required for apply-
ing the narrowing; and (ii) improves the precision of the
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analysis of code involving disequalities, e.g. Fig. 9b. A
drawback of threshold hints is that the set T may grow too
large, slowing down the convergence of the fixpoint itera-
tions. In Clousot, we infer thresholds on a per-method
basis, which helps maintaining the cardinality of T quite
small.

5.2 Semantic hints

Semantic hints provide a more refined yet more expensive
form of operator refinement. For instance, they exploit infor-
mation in the abstract states to materialize constraints that
were implied by the operands (saturation hints, die-hard hints
and template hints) or they iterate the application of operators
to get a more precise abstract state (reductive hints).

5.2.1 Saturation hints

A common way to design abstract interpreters is to build the
abstract domain as a composition of basic abstract domains,
which interact through a well-defined interface [5,12,18].
Formally, given two abstract domains A0,A1, the Cartesian
product A× = A0 × A1 is still an abstract domain, whose
operations are defined as the point-wise extension of those
over A0 and A1. Let  ̄i ∈ [An

i → Ai ], i ∈ {0, 1}, then

 ̄×((ē0
0, ē

0
1),. . . ,(ē

n−1
0 , ēn−1

1 ))

= ( ̄0(ē0
0,. . . ,ē

n−1
0 ),  ̄1(ē0

1,. . . ,ē
n−1
1 ))

The Cartesian product enables the modular design (and
refinement) of static analyses. However, a naive design
which does not consider the flow of information between the
abstract elements may lead to imprecise analyses, as illus-
trated by the following example.

Example 10 (Cartesian join) Let us consider the abstract
domain Z = Intv×LT, where LT = [Var→ P(Var)] is an
abstract domain capturing the “less than” relation between
variables. For instance,x < y∧x < z is represented in LT by
[x �→ {y,z}]. The domain operations are defined as one may
expect [27]. Let z̄0 = ([x �→ [−∞, 0],y �→ [1,+∞]], [·])
and z̄1 = ([·], [x �→ {y}]) be two elements of Z ([·] denotes
the empty map). Then the Cartesian join loses all the infor-
mation: �×(z̄0, z̄1) = ([·], [·]). ��

A common solution is: (i) saturate the operands; and (ii)
apply the operation pairwise. The saturation materializes all
the constraints implicitly expressed by the product abstract
state. Let ρ ∈ [A× → A×] be a saturation (a.k.a. closure)
procedure. Then the next lemma provides a systematic way
to refine an operator  ̄×.

Lemma 4 The operator hρ × below is a hint.

h
ρ

 ̄×((ē
0
0, ē

0
1), . . . , (ē

n−1
0 , ēn−1

1 ))

= let r̄i =ρ(ēi
0, ē

i
1) for i ∈ 0, . . . , n − 1 in  ̄×(r̄0, . . . , r̄n−1).

Example 11 (Cartesian join, continued) The saturation of
z̄0 materializes the constraint x < y : r̄0 = ([x �→
[−∞, 0],y �→ [1,+∞], [x �→ {y}]), and it leaves z̄1

unchanged. The constraint x < y is now present in both
the operands, and it is retained by the pairwise join. ��

It is worth noting that in general hρ� does not guarantee
the convergence of the iterations, as the saturation procedure
may re-introduce constraints which were abstracted away
from the widening (e.g. Fig. 10 of [29]).

Saturation hints can provide very precise operations for
Cartesian abstract interpretations: They allow the analysis to
get additional precision by combining the information pres-
ent in different abstract domains. The quality of the result
depends on the quality of the saturation procedure. The main
drawbacks of saturation hints are that: (i) the iteration con-
vergence is not ensured, so that extra care should be put in the
design of the widening; (ii) the systematic application of satu-
ration may cause a dramatic slow-down of the analysis. In our
experience with the combination of domains implemented
in Clousot, we found that the slow-down introduced by
saturation hints was too high to be practical. Die-hard hints,
introduced in the next section, are a better solution to achieve
precision without giving up scalability.

5.2.2 Die-hard hints

These hints are based on the observation that often the con-
straints that one wants to keep at a gathering point often
appears explicitly in one of the operands. For instance in
Example 10 the constraintx < y is explicit in z̄1, and implicit
in z̄0 (as x ≤ 0 ∧ 1 ≤ y �⇒ x < y). Therefore, x < y
holds for all the operands of the join so it is sound to add it
to its result. Die-hard hints generalize and formalize it. They
work in three steps: (i) apply the gathering operation, call the
result r̄; (ii) collect the constraints C that are explicit in one
of the operands, but are neither present nor implied by r̄; and
(iii) add to r̄ all the constraints in C which are implied by all
the operands. Formally:

hd
( ̄,I )(ē0, ē1) = let r̄ =  ̄(ē0, ē1),

C = ∪i∈I {κ ∈ ēi | A.check(κ, r̄) = top}
let S = {κ ∈ C | A.check(κ, ē0) =

A.check(κ, ē1) = true}
in A.test

(∧κ∈Sκ, r̄
)
.

In defining the die-hard hint for �, one should pay atten-
tion to avoid loops which re-introduce a constraint that as
been dropped by the widening. One way to do it is to have an
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asymmetric hint, which restricts C only to the first operand
(e.g. the candidate invariant):

Lemma 5 hd
(�,{0,1}) and hd

(�,{0}) are hints and hd
(�,{0}) is a

widening.

5.2.3 Computed hints

Hints can be inferred from the abstract states themselves. By
looking at some properties of the elements involved in the
operation, one can try to guess useful hints.

Lemma 6 (Computed hints) Let ē0, ē1 ∈ A, � ∈ [A ×
A → A] a function which returns a set of likely bounds of
ē0 � ē1. Then h�� below is a hint.

h��(ē0, ē1) = let S = {B ∈ �(ē0, ē1) | A.check(B, ē0) = true
∧ A.check(B, ē1) = true}

in A.test(
∧

B∈S B, ē0 � ē1).

Computed hints are useful when the abstract join � is
not optimal. Otherwise, h�� is no more precise than �̄. For
instance, in a Galois connections-based abstract interpreta-
tion, �̄ is optimal, in that it returns the most precise abstract
element overapproximating the concrete union. As a con-
sequence, no further information can be extracted from the
operands. It is worth noting that in generalh�� is not a widen-
ing. However, one can extend the arguments of the previous
section to define an asymmetric hint h��.

The next two kinds of hints (template hints and 2D-convex
hull hints) are examples of computed hints.

5.2.4 Template hints

Let A.range ∈ [Exp×A → Intv] be a function that returns
the range for an expression in some abstract state, e.g. it
satisfies: ∀E. ∀ē ∈ A. A.range(E, ē) = [l, u] �⇒ ∀σ ∈
γ (ē). l ≤ E [[E]] (σ ) ≤ u. If A.range(E, ēi ) = [li , ui ] for
i ∈ {0, 1}, then γ (�Intv([l0, u0], [l1, u1])) is an upper bound
for E in ∪(γ (ē0), γ (ē1)). As a consequence given a set P of
polynomial forms, one can design the guessing function�P :

�P (ē0, ē1) = {l ≤ p ≤ u | p ∈ P ∧ [l, u]
= �Intv(A.range(p, ē0),A.range(p, ē1)}.

The main difference between h�
P

� and syntactic hints is
that the bounds for the polynomials in P are semantic, as
they are inferred from the abstract states and not from the
program text. For instance, computed hints infer the right
invariant in Example 8 using the set of templates Oct ≡
{x0 − x1 | x0,x1 areprogram variables}. In general, tem-
plate hints with Oct refine SubPoly so to make it as precise
as Oct.

Fig. 10 Example requiring the use of 2D-convex hull hints to infer the
right invariant, expressed by the assertion

5.2.5 2D-convex hull hints

New linear inequalities can be discovered at join points using
the convex hull algorithm. For instance, the standard join on
Poly is defined in that way [13]. However the convex hull
algorithm requires an expensive conversion from a tableau
of linear constraints to a set of vertices and generators, which
causes the analysis time to blow up. A possible solution is
to consider a planar convex hull, which computes possible
linear relations between pairs of variables by: (i) projecting
the Intvpart of the abstract states on all the two-dimensional
planes; and (ii) computing the planar convex hull (of two
rectangles, a particularly simple case) on those planes. Pla-
nar convex hull, combined with a smart representation of the
abstract elements allows us to automatically discover com-
plex invariants without giving up performances.

Example 12 (2D-convex hull) Let us consider the code in
Fig. 10 taken from [13]. At a price of exponential complex-
ity, Poly can infer the correct loop invariant, and prove the
assertion correct. SubPoly refined with 2D-convex hull hints
can prove the assertion, yet keeping a worst-case polynomial
complexity [24]. ��

5.2.6 Reductive hints

Intuitively, one way to improve the precision of a unary oper-
ator is to iterate its application [16]. However, an uncondi-
tional iteration may be source of unsoundness, as shown by
the following example.

Example 13 (Unsoundness of unconditional iterations) Let
− ∈ [Intv → Intv] be the operator which applies the unary
minus to an interval. In general, ∀n ∈ N. ē = −2n(ē) �=
−2n+1(ē) so that the iterations are unstable. ��
We say that a function f is reductive if ∀x . f (x) � x ; and
closing if it is reductive and ∀x . f ( f (x)) = f (x).

Lemma 7 (Reductive hints) Let  ∈ [C → C] be a unary
operator and  ̄ ∈ [A → A] its abstract counterpart. Let  
be closing,  ̄ be reductive, and n ≥ 0. Then h ̄(ē) =  ̄n(ē)
is a hint.

Proof sketch (Refinement) follows from the definition. To
prove (Soundness), it is enough to prove that  (γ (ē)) ⊆

123



SubPolyhedra: a family of numerical abstract domains 597

γ ( ̄2(ē)). It holds as  (γ (ē)) =  2(γ (ē)) ⊆  (γ ( ̄(ē))) ⊆
γ ( ̄2(ē)). ��

The main application of reductive hints is to improve the
precision in handling the guards in non-relational abstract
domains. Given a Boolean guard B and an abstract domain
A, ψ ≡ λē. A.test(B, ē) is an abstract operator which sat-
isfies the hypotheses of Lemma 7. Abstract compilation can
be used to express ψ in terms of domain operations, their
compositions and state update. Lemma 7 justifies the use of
local fixpoint iterations to refine the result of the analysis.

Example 14 Let us consider the following Boolean expression:

b1 == b2 ∧ b2 == b3

Its abstract compilation in an abstract domain [Var →
{true, false,�,⊥}] is :

ψ ≡ λb.(b[b1,b2 �→ b(b1) ∧ b(b2)])
∧̇(b[b2,b3 �→ b(b2) ∧ b(b3)])

where ∧̇ denotes the point-wise extension of ∧. In an initial
abstract state b0 = [b1,b2 �→ �;b3 �→ true], ψ(b0) =
[b1 �→ �;b2,b3 �→ true], andψ2(b0) = [b1,b2,b3 �→
true] = ψn(b0), n ≥ 2. ��

6 Refinements for SubPolyhedra

6.1 Precision improvement: hints

Many of the hints presented above can be used to improve the
precision of SubPoly. User-provided hints provide a simple
but efficient way to deal with programs that are not too com-
plicated, and the intervals part of SubPoly can of course use
the threshold hints.

Saturation hints are impractical for SubPoly, but die-hard
hints are very useful; indeed, step 3 of the join algorithm (1)
can be seen as a particular case of die-hard hints, with the
difference that the constraints marked as deleted in the join
of the linear equalities domain might not have been actually
present in the initial states, but have been introduced in place
of an equivalent one by Karr’s algorithm.

Both kinds of computed hints are useful, but in a differ-
ent way : they can be used for tricky programs that require
some complex reasoning, but in most cases the algorithm
already returns a good enough result, and use of those hints
only slows down the analysis. As an example, template hints
can be used to manually set the invariants to infer on a com-
plicated program. They can also be used to guarantee some
minimal precision (e.g., at least the precision of octagons) if
one can afford the extra time it costs. 2D-convex hull hints are
useful in the case of pointer access validation, to infer bounds
with non-unary coefficients between pairs of variables.

Reductive hints can also be used on cases involving reduc-
tion, because our reduction is not idempotent; however,
reduction is rather expensive and there is no guarantee of
an actual gain of precision in this case, so we do not use it in
practice. Instead, when precision matters, we use reduction
with the combinatorial explorer, which does have guarantees
on the precision of the result.

6.2 Speed improvement: simplification

The simplification operator σ removes redundant informa-
tion from an abstract element. It is required neither for sound-
ness nor completeness nor to improve the precision of the
analysis (unlike ρ), but it is cardinal to the implementation
of scalable analyses. The simplification σ of an element of
SubPoly 〈̄l; ī〉 reduces the number of variables in l̄, which
is the more expensive domain, without losing any precision.
It consists in the application of the following three rules:

(Const) If an equality v = b is detected,
v is projected from l̄ and added to ī;

(Slack) If a slack variable β does not appear in 〈̄l; ī〉,
then it should be removed;

(Dep) If 〈̄l; ī〉 implies β0 + a · β1 = b,
then one between β0 and β1 can be removed.

The rationale behind (Const) is that constants are very expen-
sive when represented in LinEq but very cheap if represented
with Intv; (Slack) performs a kind of garbage collection, by
removing slack variables β which are in the domain of 〈̄l; ī〉,
but such that β does not appear in any of the constraints of l̄
and ī(β) = �Intv; (Dep) is justified by the fact that after refin-
ing the intervals for both variables, removing one of the slack
variables does not change the concretization of the abstract
element. (Const) is useful when we introduce a new slack
variable; (Slack) helps reducing the number of slack vari-
ables after joins; and (Dep) is applied as a pre-step of the
reduction, to reduce the number of variables and hence make
it faster.

7 Experience

We have implemented SubPoly on the top of Clousot,
our modular abstract interpretation-based static analyzer for
.Net. Clousot directly analyzes MSIL, a bytecode target
for more than seventy compilers (including C#, Managed
C++, VB.NET, F#, …). Prior to the numerical analysis
Clousot performs a heap analysis and an expression
recovery analysis [26]. Clousot performs intra-proce-
dural analysis and it supports assume-guarantee reasoning
via Foxtrot annotations [2,15]. Contracts are expressed
directly in the language as method calls and are persisted to
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Table 1 The experimental results of checking array creation and accesses

Assembly Bounds Simplex ρLP Linear explorer ρBE Max

Methods Checked Valid % Time Valid % Time Vars

mscorlib.dll 18,084 17,181 14,432 84.00 73:48 (3) 14,466 84.20 23:19 (0) 373

System.dll 13,776 11,891 10,225 85.99 58:15 (2) 10,427 87.69 14:45 (0) 140

System.Web.dll 22,076 14,165 13,068 92.26 24:41 (0) 13,078 92.33 6:33 (0) 182

System.Design.dll 11,419 10,519 10,119 96.20 26:07 (0) 10,148 96.47 5:18 (0) 73

Average 89.00 89.51

SubPoly is instantiated with two reductions ρLP and ρBE. Time is expressed in minutes, the time-out per method is set to 2 min (in parentheses).
The last column reports the maximum number of variables related by an element of SubPoly

Table 2 The experimental results analyzing mscorlib with SubPoly and different semantic hints and no-reduction

SubPoly SubPoly∗ SubPoly∗ + h�
Oct

� SubPoly∗ + h�
2DCH

�

Valid Time Valid Time Slow down Valid Time Slow down Valid Time Slow down

14,230 4:29 (0) 14,432 20:22 (0) 4.5x 13,948 81:24 (20) 18.2x 14,396 36:33 (7) 8.1x

SubPoly∗ denotes SubPoly refined with h
pred
 and hd

�,� . Computed hints significantly slow-down the analysis, but they are needed to reach a
very low false alarm ratio

MSIL using the normal compilation process of the source
language (cf. Appendix A). Classes and methods are anno-
tated with class invariants, preconditions and postconditions.
Preconditions are asserted at call sites and assumed at the
method entry point. Postconditions are assumed at call sites
and asserted at the method exit point. Clousot also checks
the absence of specific errors, e.g. out of bounds array acces-
ses, null dereferences, buffer overruns, and divisions by zero.

Table 1 summarizes our experience in analyzing array
creations and accesses in four libraries shipped with .Net.
The test machine is an ordinary 2.4Ghz dual core machine,
running Windows Vista. The assemblies are directly taken
from the standard .NET directory of our PC. The shipped
versions of the assemblies do not contain contracts (We are
actively working to annotate the .Net libraries). On average,
we were able to validate almost 89.5% of the proof obliga-
tions. We manually inspected some of the warnings issued for
mscorlib.dll. Most of them are due to lack of contracts,
e.g. an array is accessed using a method parameter or the
return value of some helper method. However, we also found
real bugs (dead code and off-by-one). That is remarkable con-
sidering thatmscorlib.dll has been tested in extenso. We
also tried SubPoly on the examples of [13,17,33], proving
all of them.

7.1 Reduction algorithms

We run the tests using the Simplex-based and the Linear
explorer-based reduction algorithms. We used the Simplex
implementation shipped with the Microsoft Automatic Graph
Layout tool, widely tested and optimized. The results in

Table 1 show that ρLP is significantly slower than ρBE,
and in particular the analysis of five methods was aborted
as it reached the 2- min time-out. Larger time-outs did not
help.

SubPoly with the reduction ρLP validates less accesses
than ρBE. Two reasons for that. First, it is slower, so that the
analysis of some methods is aborted and hence some proof
obligations cannot be validated. Second, our implementation
of the Simplex uses floating point arithmetic which induces
some loss of precision. In particular we need to read back
the result (a float) into an interval of ints containing
it. In general this may cause a loss of precision and even
worse unsoundness. We experienced both of them in our
tests. For instance the 39 “missing” proof obligations in
System.Web.dll and System.Design.dll (validated
using ρBE, but not with ρLP) are due to floating point impreci-
sion in the Simplex. We have considered replacing a floating
point-based Simplex with one using exact rationals. How-
ever, the Simplex has the tendency to generate coefficients
with large denominators. The code we analyze contains many
large constants which cause the Simplex to produce enor-
mous denominators.

SubPoly with ρBE instantiated with the linear bases
explorer perform very well in practice: it is extremely fast
and precise. However, the result may depend on the vari-
ables order. A “bad” variable order may causeρBE not to infer
bounds tight enough. Possible solutions are: (i) to reduce the
number of variables using σ (less bases to explore); (ii) to
mark variables which can be safely kept in the basis at all
times: In the best case, only one basis needs to be explored.
In the general case, it still makes the reduction more precise
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because the bases explored are more likely to give bounds on
the variables.

7.2 Max variables

It is worth noting, that even if Clousot performs an intra-
procedural analysis, the methods we analyze may be very
complex, and they may require tracking linear inequalities
among many abstract locations. Abstract locations are pro-
duced by the heap analysis [25], and they abstract stack
locations and heap locations. Table 1 shows that it is not
uncommon to have methods which requires the abstract state
to track more than 100 variables. One single method of
mscorlib.dll required to track relations among 373 dis-
tinct variables. SubPoly handles it: the analysis with ρBE

took a little bit more than a minute. To the best of our knowl-
edge those performances in the presence of so many variables
are largely beyond state-of-the-art Poly implementations.

7.3 Hints

Table 2 focuses on the analysis ofmscorlibusing SubPoly
refined with hints and no-reduction. The first column in the
table shows the results of the analysis with no hints. This
is roughly equivalent to precisely propagating arbitrary lin-
ear equalities and intervals, with limited inference and no
propagation of information between linear equalities and
intervals. User-provided hints and die-hard hints add more
inference power, at the price of a still acceptable slow-down.
Computed hints (with Octagons and 2D-convex hull) further
slow-down of the analysis, causing the analysis of various
methods to time out. We manually inspected the analysis
logs to investigate the differences. Ignoring the methods that
timed-out, with respect to SubPoly∗, 〈SubPoly∗,h�Oct

� 〉
and 〈SubPoly∗,h�2DCH

� 〉 report respectively 125 and 124 less
false positives. Out of those, only 13 overlap.

One may wonder if computed hints are needed at all. We
observed that, when considering annotated code (unfortu-
nately, just a small fraction of the overall code base at the
moment of writing), one needs to refine the operations of the
abstract domains with hints in order to get a very low (and
hence acceptable) false alarms ratio (around 0.5%). In fact,
even if (relatively) rare, assertions as in Figs. 10 and 11b are
present in real code. Thanks to the incremental structure of
Clousot, we do not need to run SubPoly with all the hints
on all the analyzed methods, but we can focus the highest
precision only on the few methods which require it.

(b)(a)

Fig. 11 Examples of orthogonal losses of precision in abstract inter-
pretations: a a convex domain cannot represent x �= 0 and b a compo-
sitional transfer function does not infer the tightest lower bound for z

8 Conclusion

We introduced SubPoly, a new numerical abstract domain
based on the combination of linear equalities and intervals.
SubPoly can track linear inequalities involving hundred of
variables. We defined the operations of the abstract domain
(order, join, meet, widening); the simplification operator (to
speed up the analysis); and two reduction operators (one
based on linear programming and another based on basis
exploration). We found Simplex-based reduction quite unsat-
isfactory for program analysis purposes: because of float-
ing point errors the result may be too imprecise, or worse
unsound. We introduced then the basis exploration-based
reduction, in practice more precise and faster.

SubPoly precisely propagates linear inequalities, but it
may fail to infer some of them at join points. Precision can
be recovered using hints either provided by the programmer
in the form of program annotations; or automatically gener-
ated (at some extra cost). SubPoly worked fine on some well
known examples in literature that required the use of Poly.
We tried SubPoly on shipped code, and we showed that it
scales to several hundreds of variables, a result far beyond
existing Poly implementations.

Acknowledgments Thanks to Lev Nachmanson for providing us the
Simplex implementation. Thanks to Manuel Fähndrich, Jérôme Feret,
Corneliu Popeea for the useful discussions.

Appendix A: Foxtrot

Foxtrot is a language independent solution for contract
specifications in .Net. It does not require any source lan-
guage support or compiler modification. Preconditions and
postconditions are expressed by invocations of static meth-
ods (Contract.Requires and Contract.Ensures)
at the start of methods. Class invariants are contained in
a method with an opportune name (ObjectInvariant)
or tagged by a special attribute ([ObjectInvariant]).
Dummy static methods are used to express meta-variables
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such as e.g.Contract.Old(x) for the value in the pre-state
of x or Contract.WritableBytes(p) for the length of
the memory region associated with p. These contracts are
persisted to MSIL using the standard source language com-
piler.

Contracts in the Foxtrot notation (using static method
calls) can express arbitrary boolean expressions as precon-
ditions and postconditions. We expect the expressions to
be side effect free (and only call side-effect free methods).
We use a separate purity checker to optionally enforce
this [3].

A binary rewriter tool enables dynamic checking. It
extracts the specifications and instruments the binary with the
appropriate runtime checks at the applicable program points,
taking contract inheritance into account. Most Foxtrot
contracts can be enforced at runtime.

For static checking, Foxtrot contracts are presented to
Clousot as simple assert or assume statements. E.g.,
a precondition of a method appears as an assumption at the
method entry, whereas it appears as an assertion at every
call-site.

Appendix B: Simplex algorithm

We recall some basic facts about the Simplex algorithm, and
in particular the notion of basis. The Simplex algorithm finds
the best solution to the problem:

maximize cTv
subject to A v = b

There may be also interval constraints (li ≤ vi ≤ ui ), but
they are not important for the notion of basis. The problem
above can be rewritten in matricial form as

(
A b

) (
v
−1

)
= 0.

We let S = (A|b). There are infinitely many matrices S with
the same space of solutions as S v = 0, so we can make
a few assumptions on S. First, we can use Gaussian elim-
ination get an upper triangular matrix (row echelon form).
Gaussian elimination updates the matrix by adding to a row
a linear combination of the other rows of the matrix, which
does not change the space of solutions; after several of such
updates, the result is triangular. We can then remove all zero
rows and divide each row by its leading coefficient (which
is the left-most non-zero coefficient). These operations do
not change the space of solutions. As Gaussian elimination
guarantees that the leading coefficient of each row is strictly
right of the leading coefficients of the rows above it, there
is at most one leading coefficient in each column. The vari-
ables whose columns contain a leading coefficient are called
basic variables, the ones whose columns do not contain a

leading coefficient are called non-basic variables. The set
of basic variables is the basis. It is also convenient to have
the columns corresponding to basic variables containing only
zeros except for a single one (the leading coefficient). This
can be achieved from the previous matrix by a way similar
to Gaussian elimination.

The Simplex algorithm starts with a matrix in this form,
and at each iteration changes the basis. Changing the basis
consists in choosing a basic variable, vb, with the associated
row r (the row whose leading coefficient is in the column
for vb), then choosing a non-basic variable vn whose coef-
ficient c in the row r is non-zero, then divide the row r by c,
and use row operations to make all the other coefficients in
the column for vn zeros. The basis is now the previous basis
plus vn minus vb (and so vb is now non-basic and vn is now
basic). Note that the matrix may not be triangular anymore;
this is not required for the simplex algorithm. The simplex
algorithm uses the cost function c and the bounds li and ui

on variables to change the basis. Furthermore the simplex
chooses the variables to ensures that c will not be zero; if
this is not the case, a zero coefficient means that a particular
exchange is not possible.
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