
Int J Softw Tools Technol Transfer (2012) 14:327–347
DOI 10.1007/s10009-010-0184-4

RUNTIME VERIFICATION

Software monitoring with controllable overhead

Xiaowan Huang · Justin Seyster · Sean Callanan ·
Ketan Dixit · Radu Grosu · Scott A. Smolka ·
Scott D. Stoller · Erez Zadok

Published online: 29 December 2010
© Springer-Verlag 2010

Abstract We introduce the technique of software monitor-
ing with controllable overhead (SMCO), which is based on a
novel combination of supervisory control theory of discrete
event systems and PID-control theory of discrete time sys-
tems. SMCO controls monitoring overhead by temporarily
disabling monitoring of selected events for as short a time as
possible under the constraint of a user-supplied target over-
head ot . This strategy is optimal in the sense that it allows
SMCO to monitor as many events as possible, within the con-
fines of ot . SMCO is a general monitoring technique that can
be applied to any system interface or API. We have applied
SMCO to a variety of monitoring problems, including two
highlighted in this paper: integer range analysis, which deter-
mines upper and lower bounds on integer variable values; and
non-accessed period detection, which detects stale or under-
utilized memory allocations. We benchmarked SMCO exten-
sively, using both CPU- and I/O-intensive workloads, which
often exhibited highly bursty behavior. We demonstrate that
SMCO successfully controls overhead across a wide range of
target overhead levels; its accuracy monotonically increases
with the target overhead; and it can be configured to distribute
monitoring overhead fairly across multiple instrumentation
points.

Keywords Software instrumentation · Supervisory control

1 Introduction

Ensuring the correctness and guaranteeing the performance
of complex software systems, ranging from operating

X. Huang · J. Seyster (B) · S. Callanan · K. Dixit · R. Grosu ·
S. A. Smolka · S. D. Stoller · E. Zadok
Stony Brook University, Stony Brook, USA
e-mail: jseyster@cs.stonybrook.edu

systems and Web servers to embedded control software,
presents unique problems for developers. Errors occur in
rarely called functions and inefficiencies hurt performance
over the long term. Moreover, it is difficult to replicate all
of the environments in which the software may be exe-
cuted, so many such problems arise only after the software is
deployed. Consequently, testing and debugging tools, which
tend to operate strictly within the developer’s environment,
are unable to detect and diagnose all undesirable behaviors
that the system may eventually exhibit. Model checkers and
other verification tools can test a wider range of behaviors
but require difficult to develop models of execution environ-
ments and are limited in the complexity of programs they can
check.

This situation has led to research in techniques to moni-
tor deployed and under-development software systems. Such
techniques include the DTrace [6] and DProbes [14] dynamic
tracing facilities for Solaris and Linux, respectively. These
frameworks allow users to build debugging and profiling
tools that insert probes into a production system to obtain
information about the system’s state at certain execution
points.

DTrace-like techniques have two limitations. First, they
are always on. Hence, frequently occurring events can cause
significant monitoring overhead. This raises the fundamen-
tal question: is it possible to control the overhead due to
software monitoring while achieving high accuracy in the
monitoring results? Second, these tools are code oriented:
they interpose on execution of specified instructions in the
code; events such as accesses to specific memory regions are
difficult to track with these tools, because of their interrupt-
driven nature. Tools such as Valgrind allow one to instrument
memory accesses, but benchmarks have shown a fourfold
increase in runtimes even without any instrumentation [17].
This raises a related question: is it possible to control the

123

328 X. Huang et al.

Fig. 1 Structure of a typical
SMCO application

Controller observed
overhead o

target
overhead ot

Plant
Monitorenable/disable

monitoring

Instrumented
Program

overhead due to monitoring accesses to specific memory
regions?

To answer the first question, we introduce the new
technique of software monitoring with controllable overhead
(SMCO). To answer the second question, we instrument the
application program, such that SMCO can exploit the virtual
memory hardware, to selectively monitor memory accesses.

As the name suggests, SMCO is formally grounded
in control theory, in particular, a novel combination of
supervisory control of discrete event systems [1,15] and
proportional-integral-derivative (PID) control of discrete
time systems [18]. Overhead control is realized by tempo-
rarily disabling interrupts generated by monitored events,
thus avoiding the overhead from processing these inter-
rupts. Moreover, such interrupts are disabled for as short a
time as possible so that the number of events monitored,
under the constraint of a user-supplied target overhead ot , is
maximized.

Our main motivation for using control theory is to avoid an
ad hoc approach to overhead control, in favor of a much more
rigorous one based on the extensive available literature [9].
We also hope to show that significant benefits can be gained
by bringing control theory to bear on software systems and,
in particular, runtime monitoring of software systems.

The structure of a typical SMCO application is illustrated
in Fig. 1. The main idea is that given the target overhead ot , an
SMCO controller periodically sends enable/disable monitor-
ing commands to an instrumented program and its associated
monitor in such a way that the monitoring overhead never
exceeds ot . Note that the SMCO controller is a feedback con-
troller, as the current observed overhead level is continually
fed back to it. This allows the controller to carefully monitor
the observed overhead and, in turn, disable monitoring when
the overhead is close to ot and, conversely, enable monitor-
ing when the likelihood of the observed overhead exceeding
ot is small. Also, note that the instrumented program sends
events of interest to the monitor as they occur, e.g., memory
accesses and assignments to variables.

More formally, SMCO can be viewed as the problem of
designing an optimal controller for a class of nonlinear sys-
tems that can be modeled as the parallel composition of
a set of extended timed automata (see Sect. 2). Further-
more, we are interested in proportional-integral-derivative
(PID) controllers. We consider two fundamental types of
PID controllers: (1) a single, integral-like global controller

for all monitored objects in the application software; and (2)
a cascade controller, consisting of an integral-like primary
controller which is composed of a number of proportional-
like secondary controllers, one for each monitored object in
the application. The main function of the primary controller
is to control the set point of the secondary controllers.

We use the suffix “-like” because our PID controllers are
event driven, as in the setting of discrete-event supervisory
control, and not time-driven, as in the traditional PID con-
trol of continuous or discrete time systems. The primary
controller and the global controller are integral-like because
the control action is based on the sum of recent errors (i.e.,
differences between target and observed values). The second-
ary controllers are proportional-like because the controller’s
output is directly proportional to the error signal.

We use both types of controllers because of the follow-
ing trade-offs between them. The global controller features
relatively simple control logic and hence is very efficient. It
may, however, undersample infrequent events. The cascade
controller, on the other hand, is designed to provide fair mon-
itoring coverage of all events, regardless of their frequency.

SMCO is a general runtime-monitoring technique that can
be applied to any system interface or API. To substantiate
this claim, we have applied SMCO to a number of mon-
itoring problems, including two highlighted in this paper:
integer range analysis, which determines upper and lower
bounds on the values of integer variables; and non-accessed
period (NAP) detection, which detects stale or underutilized
memory allocations. Integer range analysis is code-oriented,
because it instruments instructions that update integer vari-
ables, whereas NAP detection is memory oriented, because
it intercepts accesses to specific memory regions.

The source-code instrumentation used in our integer range
analysis is facilitated by a technique we recently developed
called compiler-assisted instrumentation (CAI). CAI is based
on a plug-in architecture for GCC [5]. Using CAI, instru-
mentation plug-ins can be separately compiled as shared
objects, which are then dynamically loaded into GCC. Plug-
ins have read/write access to various GCC internals, includ-
ing abstract syntax trees (ASTs), control flow graphs (CFGs)
and static single-assignment (SSA) representations.

The instrumentation in our NAP detector makes novel use
of virtual memory hardware (MMU) by using the mprotect
system call to guard each memory area suspected of being
under-utilized. When a protected area is accessed, the MMU

123

Software monitoring with controllable overhead 329

generates a segmentation fault, informing the monitor that the
area is being used. If a protected area remains unaccessed for
a period of time longer than a user-specified threshold (the
NAP length), then the area is considered stale. SMCO con-
trols the total overhead of NAP detection by enabling and
disabling the monitoring of each memory area appropriately.

To demonstrate SMCO’s ability to control overhead while
retaining accuracy in the monitoring results, we performed
a variety of benchmarking experiments involving real appli-
cations. Our experimental evaluation considers virtually all
aspects of SMCO’s design space: cascade versus global con-
troller, code-oriented versus memory-oriented instrumenta-
tion, CPU-intensive versus I/O-intensive workloads (some
of which were highly bursty). Our results demonstrate that
SMCO successfully controls overhead across a wide range of
target overhead levels; its accuracy monotonically increases
with the target overhead and it can be configured, using
the cascade controller, to fairly distribute monitoring over-
head across multiple instrumentation points. Additionally,
SMCO’s base overhead, the overhead observed at ot = 0, is
a mere 1–4%.

The rest of the paper is organized as follows. Section 2
explains SMCO’s control-theoretic foundations. Section 3
describes our architectural framework and the applications
we developed. Section 4 presents our benchmarking results.
Section 5 discusses related work. We conclude in Sect. 6 and
discuss future work.

2 Control-theoretic monitoring

The controller design problem is the problem of devising a
controller Q that regulates the input v to a process P (hence-
forth referred to as the plant) in such a way that P’s output y
adheres to a reference input x with good dynamic response
and small error; see the architecture shown in Fig. 2.

Runtime monitoring with controllable overhead can
beneficially be stated as a controller design problem. The
controller is a feedback controller that observes the monitor-
ing overhead; the plant comprises the runtime monitor and
the application software, and the reference input x to the con-
troller is given by the user-specified target overhead ot . This
structure is depicted in Fig. 1. To ensure that the plant is con-
trollable, one typically instruments the application and the
monitor so that they emit events of interest to the controller.
The controller catches these events and controls the plant by

reference
input x

Controller Plant
P

control

input v
plant

output y

Fig. 2 Plant (P) and controller (Q) architecture

enabling or disabling monitoring and event signaling. Hence,
the plant can be regarded as a discrete event process.

In runtime monitoring, overhead is the measure of how
much longer a program takes to execute because of monitor-
ing. If an unmodified and unmonitored program executes in
time R and executes in total time R + M with monitoring,
we say that the monitoring has overhead M/R.

Instead of controlling overhead directly, it is more conve-
nient to write the SMCO control laws in terms of monitoring
percentage: the percentage of execution time spent monitor-
ing events, which is equal to M/(R + M). Monitoring per-
centage m is related to the traditional definition of overhead
o by the equation m = o / (1 + o). The user-specified target
monitoring percentage (UTMP) mt is derived from ot in a
similar manner; i.e., mt = ot / (1 + ot).

The classical theory of digital control [9] assumes that
the plant and the controller are linear systems. This assump-
tion allows one to semi-automatically design the controller
by applying a rich set of design and optimization tech-
niques, such as the Z-transform, fast Fourier transform,
root-locus analysis, frequency response analysis, propor-
tional-integrative-derivative (PID) control, and state–space
optimal design. For nonlinear systems, however, these tech-
niques are not directly applicable, and various linearization
and adaptation techniques must be applied as pre- and post-
processing, respectively.

The problem we are considering is nonlinear, because
of the enabling and disabling of interrupts. Intuitively, the
interrupt signal is multiplied by a control signal, which is 1
when interrupts are enabled and 0 otherwise. Although line-
arization is one possible approach for this kind of nonlinear
system, automata theory suggests a better approach, recasting
the controller design (synthesis) problem as one of supervi-
sory controller design [1,15].

The main idea of supervisory control we exploit to enable
and disable interrupts is the synchronization inherent in
the parallel composition of state machines. In this setting,
the plant P is a state machine, the desired outcome (track-
ing the reference input) is a language L , and the controller
design problem is that of designing a controller Q, which is
also a state machine, such that the language L(Q‖P) of the
composition of Q and P is included in L . This problem is
decidable for finite state machines [1,15].

Monitoring percentage depends on the timing (frequency)
of events and the monitor’s per-event processing time. The
specification language L therefore consists of timed words
a1, t1, . . . , al , tl where each ai is an (access) event that occurs
at time ti . Consequently, the state machines used to model
P and Q must also include a notion of time. Previous work
has shown that supervisory control is decidable for timed
automata [2,19] and for timed transition models [16].

Modeling overhead control requires, however, the use of
more expressive, extended timed automata (see Sect. 2.2),

123

330 X. Huang et al.

and for such automata decidability is lost. The lack of
decidability means that a controller cannot be automati-
cally synthesized. This, however, does not diminish the
usefulness of control theory. On the contrary, this the-
ory becomes an indispensable guide in the design of a
controller that satisfies a set of constraints. In particu-
lar, we use control theory to develop a novel combina-
tion of supervisory and PID control. As in classical PID
control, the error from a given set point (and the inte-
gral and derivative of the error) is employed to control the
plant. In contrast to classical PID control, the computa-
tion of the error and its associated control happens in our
framework on an event basis, instead of a fixed, time-step
basis.

To develop this approach, we must reconcile the seemingly
incompatible worlds of event- and time-based systems. In
the time-based world of discrete time-invariant systems,
the input and the output signals are assumed to be known
and available at every multiple of a fixed sampling inter-
val �t . Proportional control (P) continually sets the cur-
rent control input v(n) as proportional to the current error
e(n) according to the equation v(n)= ke(n), where n stands
for n�t and e(n)= y(n)−x(n) (recall that v, x , and y
are depicted in Fig. 2). Integrative control (I) sums the
previous and current error and sets the control input to
v(n)= k

∑n
i=0 e(n).

In contrast, in the event-based world, time information is
usually abstracted away, and the relation to the time-based
world, where controller design is typically done, is lost. How-
ever, in our setting the automata are timed, that is, they con-
tain clocks, ticking at a fixed clock interval �t . Thus, events
can be assumed to occur at multiples of �t , too. Of course,
communication is event based, but all the necessary infor-
mation to compute the proper control value v(t) is avail-
able, whenever an event is thrown at a given time t by the
plant.

We present two controller designs with different trade-
offs and correspondingly different architectures. Our global
controller is a single controller responsible for all objects
of interest in the monitored software; for example, these
objects may be functions or memory allocations, depend-
ing on the type of monitoring being performed. The global
controller features relatively simple control logic and hence
is very efficient: its calculations add little to the observed
overhead. It does not, however, attempt to be fair in
terms of monitoring infrequently occurring events. Our
cascade controller, in contrast, is designed with fairness
in mind, as the composition of a primary controller and
a set of secondary controllers, one for each monitored
plant.

Both of the controller architectures temporarily disable
interrupts to control overhead. One must therefore consider
the impact of events missed during periods of non-monitoring

on the monitoring results. The two applications of SMCO we
consider are integer range analysis and the detection of under-
utilized memory. For under-utilized memory detection, when
an event is thrown, we are certain that the corresponding
object is not stale. We can therefore ignore interrupts for a
definite interval of time, without compromising soundness
and at the same time lowering the monitoring percentage.

Similarly, for integer range analysis, two updates to an
integer variable that are close to each other in time (e.g.,
consecutive increments to a loop variable) are often near
each other in value as well. Hence, processing the interrupt
for the first update and ignoring the second are often suffi-
cient to accurately determine the variable’s range, while also
lowering monitoring percentage. For example, in the bench-
marking experiments described in Sect. 4, we achieve high
accuracy (typically 90% or better) in our integer range anal-
ysis with a target overhead of just 10%.

2.1 Target specification

The target specification for a single controlled plant is given
as a timed language L , containing timed words of the form
a1, t1, . . . , al , tl , where ai is an event and ti is the time at
which ai has occurred. Each plant has a local target moni-
toring percentage mlt , which is effectively that plant’s por-
tion of the UTMP mt . Specifically, L contains timed words
a1, t1, . . . , al , tl that satisfy the following conditions:

1. The average monitoring percentage m = (l pa) / (tl−t1)
is such that m ≤ mlt , where pa is the average time taken
by the monitor and controller to process an event.

2. If the strict inequality m < mlt holds, then the
monitoring-percentage undershoot is due to time inter-
vals with low activity during which all events are
monitored.

The first condition bounds only the mean monitoring per-
centage m within a timed word w ∈ L . Hence, various poli-
cies for handling monitoring percentage, and thus enabling
and disabling interrupts, are allowed. The second condition
is a best-effort condition, which guarantees that if the target
monitoring percentage is not reached, this is only because the
plant does not throw enough interrupts. As our benchmarking
results of Sect. 4 demonstrate, we designed the SMCO global
and cascade controllers (described in Sect. 2.3) to satisfy
these conditions.

When considering the target specification language L and
the associated mean monitoring percentage m, it is impor-
tant to distinguish plants in which all interrupts can be
disabled (as in Fig. 3) from the other (as in Fig. 4). Hardware-
based execution platforms (e.g., CPU and MMU) and virtual
machines such as the JVM belong to the former category.

123

Software monitoring with controllable overhead 331

Fig. 3 Automaton for the hardware plant P of one monitored object

Fig. 4 Automaton for the software plant P of all monitored objects

(The JVM supports disabling of software-based interrupts
through just-in-time compilation.)

Software plants written in C, however, typically belong to
the latter category, because code inserted during instrumen-
tation is not removed at runtime. In particular, as discussed in
Sect. 2.2.2, when function calls are instrumented, the instru-
mented program always throws function-call interrupts af c.
Consequently, for such plants, in addition to m, there is
also an unavoidable base monitoring percentage mb = k pf c,
where k is the number of function calls.

2.2 The plant models

This section specifies the behavior of the above plant types
in terms of extended timed automata (introduced below). For
illustration purpose, each hardware plant is controlled by a
secondary controller, and the unique software plant is con-
trolled by the global controller.

2.2.1 The hardware plant

Timed automata (TA) [2] are finite-state automata extended
with a set of clocks, the values of which are positive reals.
Clock predicates on transitions are used to model timing
behavior, while clock predicates appearing within locations

(states) are used to enforce progress properties. Clocks may
be reset by transitions. Extended TA are TA with local
variables and a more expressive clock predicate/assignment
language.

The hardware plant P is modeled by the extended TA in
Fig. 3. Its alphabet consists of input and output events. The
clock predicates labeling its locations and transitions are of
the form k ∼ c, where k is a clock, c is a natural number or
variable, and ∼ is one of <, ≤, =, ≥ and >. For example,
the predicate k1 ≤ MT labeling P’s state running is a clock
constraint, where k1 is a clock and MT is the maximum-
monitoring time parameter discussed below.

Transition labels are of the form [guard] In / Cmd, where
guard is a predicate over P’s variables; In is a sequence of
input events of the form v?e denoting the receipt of value e
(written as a pattern) on channel v; and Cmd is a sequence
of output and assignment events. An output event is of the
form y!a denoting the sending of value a on channel y; an
assignment event is simply an assignment of a value to a local
variable of the automaton. All fields in a transition label are
optional. The use of ? and ! to denote input and output events
is standard and first appeared in Hoare’s paper on CSP [12].

A transition is enabled when its guard is true and the spec-
ified input events (if any) have arrived. A transition is not
forced to be taken, unless letting time flow would violate the
condition (invariant) labeling the current location. For exam-
ple, the transition out of the state monitor access in Fig. 3
is enabled as soon as k2 ≥ pm , but not forced until k2 ≥ pM .
The choice is nondeterministic and allows to succinctly cap-
ture any transition in the interval [pm, pM]. This is a classic
way of avoiding overspecification.

P has an input channel v where it may receive enable and
disable commands, denoted en and di , respectively, and an
output channel y f where it may send messages for the begin-
ning and ending of an access, denoted ac and ac, respectively.
Upon receipt of di , interrupt bit i is set to 0, which prevents
the plant from sending further messages. Upon receipt of
en, i is set to 1, which allows the plant to send an access
message ac at arbitrary moments in time. Once an access
message is sent, P resets the clock variable k2 and transi-
tions to a new state. At any time in the interval [pm, pM], P
can leave this state and send an end of access message y f !ac
to the controller.

P terminates when the maximum monitoring time MT ,
a parameter of the model, is reached, i.e., when clock k1

reaches value MT . Initially, i = 1 and k1 = 0.
A running program can have multiple hardware plants,

with each plant a source of monitored events. For example,
a program running under our NAP detection tool for find-
ing under-utilized memory has one hardware plant for each
monitored memory region. The NAP detector’s controller can
individually enable or disable interrupts for each hardware
plant.

123

332 X. Huang et al.

Fig. 5 Automaton for global
controller

2.2.2 The software plant

In a software plant P , the application program is instrumented
to handle, together with the monitor, the interrupt logic read-
ily available to hardware plants (see Fig. 4).

A software plant represents a single function that can run
with interrupts enabled or disabled. In practice, the function
toggles interrupts by choosing between two copies of the
function body each time it is called: one copy that is instru-
mented to send event interrupts and one that is left unmodi-
fied.

Whenever a function call happens at the top level state
of P , the instrumented program resets the clock variable k1,
sends the message fc on y f to the controller and waits for its
response. If the response on v f is di, indicating that interrupts
are disabled, then the unmonitored version of the function
body is called. This is captured in P by returning to the top

level state at any time in the interval [p f c
m , p f c

M]. This interval
represents the time required to implement the call logic.

If the response on v f is ei, indicating that interrupts are
enabled, then the monitored version of the function body is
called. This is captured in P by transitioning to the state
execute function within the same interval [p f c

m , p f c
M].

Within the monitored function body, the monitor may send
on y f the beginning of access event ac to the controller,
whenever a variable is accessed, and transition to the state
monitor access. The time spent by monitoring this access
is expressed with a transition back to execute function that
happens at any time in the interval [pm, pM]. This transition
sends an end of access message ac on y f to the controller.

P terminates processing function f when the maximum
monitoring time F, a parameter of the model, is reached; that
is, when clock k1 ≥ F .

2.3 The controllers

2.3.1 The global controller

Integrative control uses previous behavior of the plant to con-
trol feedback. Integrative control has the advantage that it
has good overall statistical performance for plants with con-
sistent behavior and is relatively immune to hysteresis, in
which periodicity in the output of the plant produces peri-

odic, out-of-phase responses in the controller. Conversely,
proportional control is highly responsive to changes in the
plant’s behavior, which makes it appropriate for long-running
plants that exhibit change in behavior over time.

We have implemented an integral-like global controller for
plants with consistent behavior. Architecturally, the global
controller is in a feedback loop with a single plant represent-
ing all objects of interest to the runtime monitor.

The architecture of the global controller is thus exactly that
of Fig. 1, which is identical to the classical plant-controller
architecture of Fig. 2, except that in Fig. 1, the plant is decom-
posed into the runtime monitor and the software it is moni-
toring.

In presenting the extended TA for the global controller,
we assume it is in a feedback loop with a software-oriented
plant, the behavior of which is given by the extended TA of
Fig. 4. This is done without loss of generality, as the global
controller’s state machine is simpler in the case of a hard-
ware-oriented plant. The global controller thus assumes that
the plant emits events of two types: function-call events and
access events, where the former corresponds to the plant hav-
ing entered a C function, and the latter corresponds to updates
to integer variables, in the case of integer range analysis.

The global controller’s automaton is given in Fig. 5 and
consists of three locations: top level, the function-call pro-
cessing location and the variable-access processing loca-
tion. Besides the UTMP mt , the automaton for the global
controller makes use of the following variables: clock vari-
able k, a running total τ of the program’s execution time and a
running total p of the instrumented program’s observed pro-
cessing time p. Variable τ keeps the time the controller spent
in total (over repeated visits) in its top-level location, whereas
variable p keeps the time the controller spent in total in its
function-call and access-event processing locations. Hence,
at every moment of time, the observed overhead is o = p / τ

and the observed monitoring percentage is m = p / (τ + p).
In the top-level location, the controller can receive the

UTMP on channel x . The controller transitions from the
top-level to the function-call processing location whenever
a function-call event occurs. In particular, when function f
is called, the plant emits an fc signal to the controller along
y f (regardless of whether access event interrupts are enabled
for f), transitioning the controller to the function-call pro-
cessing location along one of two edges. If the observed

123

Software monitoring with controllable overhead 333

x PQ

Q1

x1

u1

Q2

x2

u2

Qn

xn

un

...

P1

v1

y1

P2

v2

y2

Pn

vn

yn

y1

y2

yn

Fig. 6 Overall cascade control architecture

monitoring percentage for the entire program execution is
above the UTMP mt , the edge taken sends the di signal along
v f to disable monitoring of interrupts for that function call.
Otherwise, the edge taken enables these interrupts. Thus,
the global controller decides to enable/disable monitoring
on a per-function call basis. Moreover, since the enable/dis-
able decision depends on the sign of the cumulative error
e = m − mt , the controller is integrative.

The time taken in the function-call processing location,
which the controller determines by reading clock k’s value
upon receipt of an fc signal from the plant is considered mon-
itoring time; the transition back to the initial state thus adds
this time to the total monitoring time p.

The controller transitions from the top-level to the
variable- access processing location whenever a function f
sends the controller an access event ac and interrupts are
enabled for f . Upon receipt of an ac event signaling the
completion of event processing in the plant, the controller
measures the time it spent in its variable-access location and
adds this quantity to p. To keep track of the plant’s total
execution time τ , each of the global controller’s transitions
exiting the initial location updates τ with the time spent in
the top-level location.

Note that all of the global controller’s transitions are event
triggered, as opposed to time triggered, as it interacts asyn-

chronously with the plant. This aspect of the controller model
reflects the discrete event-based nature of our PID controllers.

2.3.2 The cascade controller

As per the discussion of monitoring percentage undershoot in
Sect. 2.1, some plants (functions or objects in a C program)
might not generate interrupts at a high rate, and therefore
might not make use of the target monitoring percentage avail-
able to them. In such situations, it is desirable to redistribute
such unused UTMP to more active plants, which are more
likely to make use of this monitoring percentage. Moreover,
this redistribution of the unused UTMP should be performed
fairly, so that less active plants are not ignored.

This is the rationale for the SMCO cascade controller (see
Fig. 6), which consists of a set of secondary controllers Qi ,
each of which directly control a single plant Pi , and a primary
controller PQ that controls the reference inputs xi to the sec-
ondary controllers. Thus, in the case of cascade control, each
monitored plant has its own secondary controller that enables
and disables its interrupts. The primary controller adjusts
the local target monitoring percentage (LTMP) mlt for the
secondary controllers.

The secondary controllers

Each monitored plant P has a secondary controller Q, the
state machine for which is given in Fig. 7. Within each itera-
tion of its main control loop, Q disables interrupts by send-
ing message di along v upon receiving an access event ac
along y, and subsequently enables interrupts by sending en
along v. Consider the i-th execution of Q’s control loop,
and let τi be the time monitoring is on within this cycle;
i.e., the time between events v!en and y?ac. Let pi be the
time required to process event y?ac, and let di be the delay
time until monitoring is restarted, i.e., until event v!en is sent
again. See Fig. 8 for a graphical depiction of these intervals.

Fig. 7 Automaton for
secondary controller Q

Fig. 8 Timeline for secondary
controller

τ1
p1

Start
Monitoring

Event

d1
τ2

Controller gets
τ1 and p1 sets d1

Start
Monitoring

Stop
Monitoring

Time

Legend Monitoring
Not Monitoring

p2

Event

Stop
Monitoring

d2

Controller gets
τ2 and p2 sets d2

123

334 X. Huang et al.

Fig. 9 Automaton for the
primary controller

Then the overhead in the i-th cycle is oi = pi / (τi + di) and,
accordingly, the monitoring percentage of the i-th cycle is
mi = pi / (pi + τi + di).

To ensure that mi = mlt whenever the plant is throw-
ing access events at a high rate, Q computes di as the least
positive integer greater than or equal to pi/mlt − (τi + pi).
Choosing di this way lets the controller extend the total time
spent in the i-th cycle so that its mi is exactly the target mlt .

To see how the secondary controller is like a proportional
controller, regard pi as a constant (pi does not vary much
in practice), so that pi/mlt —the desired value for the cycle
time—is also a constant. The equation for di becomes now the
difference between the desired cycle time (which we take to
be the controller’s reference value) and the actual cycle time
measured when event i has completed processing. The value
di is then equal to the proportional error for the i-th cycle,
making the secondary controller behave like a proportional
controller with proportional constant 1.

If plant P throws events at a low rate, then all events are
monitored and di = 0. When processing of ac is completed,
which is assumed to occur within the interval [pm, pM], Q
sends the processing time k to the primary controller along
channel u.

The primary controller

Secondary controller Q achieves its LTMP mlt only if plant P
throws events at a sufficiently high rate. Otherwise, its mean
monitoring percentage m is less than mlt . When monitoring
a large number of plants Pi simultaneously, it is possible to
take advantage of this under-utilization of mlt by increas-
ing the LTMP of those controllers Qi associated with plants
that throw interrupts at a high rate. In fact, we can adjust the
mlt of all secondary controllers Qi by the same amount, as
the controllers Q j of plants Pj with low interrupt rates will
not take advantage of this increase. Furthermore, we do this
every T seconds, a period of time we call the adjustment
interval. The periodic adjustment of the LTMP is the task of
the primary controller P Q.

Its extended TA is given in Fig. 9. After first inputting
the UTMP mt on x , P Q computes the initial LTMP to be
mt/n, thereby partitioning the global target monitoring per-
centage evenly among the n secondary controllers. It assigns
this initial LTMP to the local variable mlt and outputs it to
the secondary controllers. It also assigns mt to local variable
mgt , the global target monitoring percentage (GTMP). P Q
also maintains an array p of total processing time, initially
zero, such that p[i] is the processing time used by second-

ary controller Qi within the last adjustment interval of T
seconds. Array entry p[i] is updated whenever Qi sends the
processing time p j of the most recent event a j ; i.e., p[i]
is the sum of the p j that Qi generates during the current
adjustment interval.

When the time bound of T seconds is reached, P Q com-
putes the error e = mgt − ∑n

i=1 p[i]/T as the difference
between the GTMP and the observed monitoring percentage
during the current adjustment interval. P Q also updates a
cumulative error ec, which is initially 0, such that ec = ec + e,
making it the sum of the error over all adjustment intervals.
To correct for the cumulative error, P Q computes an offset
K I ec that it uses to adjust mlt down to compensate for over-
utilization, and up to compensate for under-utilization. The
new LTMP is set to mlt = mgt/n + K I ec and sent to all sec-
ondary controllers, after which array p and clock k are reset.

Because the adjustment P Q makes to the LTMP mlt over a
given adjustment interval is a function of a cumulative error
term ec, primary controller P Q behaves as an integrative
controller. In contrast, each secondary controller Qi alone
maintains no state beyond pi and τi . They are therefore a
form of proportional controller, which respond directly as the
plant output changes. The controller parameter K I in P Q’s
adjustment term K I ec is known in control theory as the inte-
grative gain. It is essentially a weight factor that determines
to what extent the cumulative error ec affects the local moni-
toring percentage mlt . The larger the K I value, the larger the
changes P Q will make to mlt during the current adjustment
interval to correct for the observed overhead.

The target specification language L P is defined in a fash-
ion similar to the one for the secondary controllers, except
that the events of the plant P are replaced by the events of
the parallel composition P1 ‖ P2 ‖ . . . ‖ Pn of all plants.

3 Design and implementation

This section presents two applications that we have imple-
mented for SMCO. Section 3.1 describes our integer range
analysis tool. Section 3.2 introduces our novel memory
under-utilization monitor. Section 3.3 summarizes the devel-
opment effort for these monitoring tools and their controllers.

3.1 Integer range analysis

Integer range analysis [7] determines the range (minimum
and maximum value) of each integer variable in the moni-
tored execution. These ranges are useful for finding program

123

Software monitoring with controllable overhead 335

Instrumented Program

f g

Range Checker

Controller

activations events

ih

Fig. 10 SMCO architecture for range-solver

errors. For example, analyzing ranges on array subscripts
may reveal bounds violations.

Figure 10 is an overview of range-solver, our integer
range-analysis tool. range-solver uses compiler-assisted
instrumentation (CAI), an instrumentation framework based
on a plug-in architecture for GCC [5]. Our range-solver
plug-in adds range-update operations after assignments
to global, function-level static, and stack-scoped integer
variables. The Range Checker module (shown in Fig. 10)
consumes these updates and computes ranges for all tracked
variables. Range updates are enabled or disabled on a per-
function basis. In Fig. 10, monitoring is enabled for func-
tions f and g; this is reflected by the instrumented versions
of their function bodies, labeled f ′ and g′, appearing in the
foreground.

To allow efficient enabling and disabling of monitoring,
the plug-in creates a copy of the body of every function to
be instrumented, and adds instrumentation only to the copy.
A distributor block at the beginning of the function calls the
SMCO controller to determine whether monitoring for the
function is currently enabled. If so, the distributor jumps to
the instrumented version of the function body; otherwise,
control passes to the original, unmodified version. Fig. 11
shows a function modified by the range-solver plug-in to
have a distributor block and a duplicate instrumented func-
tion body. Functions without integer updates are not dupli-
cated and always run with monitoring off.

Because monitoring is enabled or disabled at the function
level, the instrumentation notifies the controller of function-
call events. As shown in Fig. 10, the controller responds by
activating or deactivating monitoring for instrumented func-
tions. With the global controller, there is a single “on–off”
switch that affects all functions: when monitoring is off, the
uninstrumented versions of all function bodies are executed.
The cascade controller maintains a secondary controller for
each instrumented function and can switch monitoring on
and off for individual functions.

Timekeeping

As our controller logic relies on measurements of monitor-
ing time, range-solver queries the system time whenever it

L2:
while (i < len) {
 total += values[i];
 update_range("func:total", total);
 i++;
 update_range("func:i", i);
}
return total;

if (controller("func")) goto L2; else goto L1;

L1:
while (i < len) {
 total += values[i];
 i++;
}
return total;

Fig. 11 range-solver adds a distributor with a call to the SMCO
controller. The distributed passes control to either the original, unin-
strumented function body shown on the left, or the instrumented copy
shown on the right

makes a control decision. The RDTSC instruction is the fastest
and most precise timekeeping mechanism on the x86 plat-
form. It returns the CPU’s timestamp counter (TSC), which
stores a processor cycle timestamp (with sub-nanosecond
resolution), without an expensive system call.

However, we found that even RDTSC can be too slow for our
purposes. On our testbed, we measured the RDTSC instruction
to take 45 cycles on average, more than 20 times longer than
an arithmetic instruction. With time measurements necessary
on every function call for our range-solver, this was too
expensive. Our first range-solver implementation called
RDTSC inline for every time measurement, resulting in a 23%
overhead even with all monitoring turned off.

To reduce the high cost of timekeeping, we modified
the range-solver to spawn a separate “clock thread” to
handle its timekeeping. The clock thread periodically calls
RDTSC and stores the result in a memory location that
range-solver uses as its clock. range-solver can read
this clock with a simple memory access. This is not as pre-
cise as calling RDTSC directly, but it is much more efficient.

3.2 Memory under-utilization

Our memory under-utilization detector is designed to identify
allocated memory areas (“allocations” for short) that are not
accessed during time periods, the duration of which equals or
exceeds a user-specified threshold. We refer to such a time
period as a non-accessed period, or NAP, and to the user-
specified threshold as the NAP threshold. Figure 12 depicts
accesses to an allocation and the resulting NAPs. For exam-
ple, the time from access b to access c exceeds the NAP
threshold, so it is a NAP. Note that we are not detecting allo-
cations that are never touched (i.e., leaks), but rather allo-
cations that are not touched for a sufficiently long period of
time to raise concerns about memory usage efficiency.

123

336 X. Huang et al.

time

access

nap threshold

panpan
a b c d e

Fig. 12 Accesses to an allocation, and the resulting NAPs. NAPs
can vary in length, and multiple NAPs can be reported for the same
allocation

Sampling by enabling and disabling monitoring at the
function level would be ineffective for finding NAPs. An
allocated region could appear to be in a NAP if some func-
tions that access it are not monitored, resulting in false posi-
tives. Ideally, we want to enable and disable monitoring per
allocation, so that we do not unintentionally miss accesses to
monitored allocations. To achieve per-allocation control over
monitoring, we introduce a novel memory-access interposi-
tion mechanism that takes advantage of memory-protection
hardware. Figure 13 shows the architecture of our NAP detec-
tor. To enable monitoring for an allocation, the controller
calls mprotect to turn on read and write protections for the
memory page containing the allocation.

In Fig. 13, memory regions m and o are protected: any
access to them will cause a page fault. The NAP detector
intercepts the page fault first to record the access; informa-
tion about each allocation is stored in a splay tree. Then, the
controller interprets the fault as an event and turns monitor-
ing off for the faulting allocation by removing its read and
write access protections. Because the NAP detector restores
read and write access after a fault, the faulting instruction can
execute normally once the page fault handler returns. It is not
necessary to emulate the effects of a faulting instruction.

Within the cascade controller, each allocation has a sec-
ondary controller that computes a delay d, after which time
monitoring should be re-enabled for the allocation. After pro-
cessing an event, the controller checks for allocations that are
due for re-enabling. If no events occur for a period of time,
a background thread performs this check instead. The back-
ground thread is also responsible for periodically checking
for memory regions that have been protected for longer than
the NAP threshold and reporting them as NAPs.

We did not integrate the NAP detector with the global
controller because its means of overhead control does not
allow for this kind of per-allocation control. When a moni-
tored event e occurs and the accumulated overhead exceeds
ot , a global controller should establish a period of global
zero overhead by disabling all monitoring. Globally disabling
monitoring has the same problem as disabling monitoring at
the function level: allocations that are unlucky enough to
be accessed only during these zero-overhead periods will be
erroneously classified as NAPs.

We also implemented a shared library that replaces the
standard memory-management functions, including malloc

and free, with versions that store information about the cre-
ation and deletion of allocations in splay trees.

To control access protections for individual allocations,
each such allocation must reside on a separate hardware page,
because mprotect has page-level granularity. To reduce the
memory overhead, the user can set a size cutoff: allocations
smaller than the cutoff are not monitored, so they do not need
to take up an entire page (under-utilized small allocations are
of less interest than under-utilized large allocations anyway).
In our experiments, we chose double the page size (equal to
8 KB on our test machine) as the cutoff, limiting the maxi-
mum memory overhead to 50%. Though this cutoff would
be high for many applications, in our experiments, 75% of
all allocations were monitored.

3.3 Implementation effort

To implement and test the range-solver tool described in
Sect. 3.1, we developed two libraries, totaling 821 lines of
code, which manage the logic for the cascade and global
controllers and perform the integer range analysis. We also
developed a 1,708-line GCC plug-in that transforms func-
tions to report integer updates to our integer range-analysis
library.

The NAP detector described in Sect. 3.2 consists of a
2, 235-line library that wraps the standard memory-allocation
functions, implements the cascade controller logic and trans-
parently handles page faults in the instrumented program.

Fig. 13 SMCO architecture for
NAP detector Instrumented Program

f hg i

Memory m n o p

MMU / Allocator

NAP detector

m

n

p

oSplay
tree

faults, allocs, frees

Controller

faultsactivations

123

Software monitoring with controllable overhead 337

4 Evaluation

This section describes a series of benchmarks that together
show that SMCO fulfills its goals: it closely adheres to the
specified target overhead, allowing the user to specify a pre-
cise trade-off between overhead and monitoring effective-
ness. In addition, our cascade controller apportions the target
overhead to all sources of events, ensuring that each source
gets its fair share of monitoring time.

Our results highlight the difficulty inherent in achieving
these goals. The test workloads vary in behavior consider-
ably over the course of an execution, making it impractical
to predict sources of overhead. Even under these conditions,
SMCO is able to control the observed overhead fairly well.

To evaluate SMCO’s versatility, we tested it on two work-
loads, one CPU-intensive and one I/O-intensive, and with
our two different runtime monitors. Section 4.1 discusses
our experimental testbed. Section 4.2 describes the work-
loads and profiles them in order to examine the challenges
involved in controlling monitoring overhead. In Sect. 4.3,
we benchmark SMCO’s ability to control the overhead of
our integer range analysis monitor using both of our control
strategies. Section 4.4 benchmarks SMCO overhead control
with our NAP detector. Section 4.5 explains how we opti-
mized certain controller parameters.

4.1 Testbed

Since controlling overhead is most important for long-
running server applications, we chose a server-class machine
for our testbed. Our benchmarks ran on a Dell PowerEdge
1950 with two quad-core 2.5 GHz Intel Xeon processors,
each with a 12 MB L2 cache and 32 GB of memory. It was
equipped with a pair of Seagate Savvio 15K RPM SAS 73 GB
disks in a mirrored RAID. We configured the server with
64-bit CentOS Linux 5.3, using a CentOS-patched 2.6.18
Linux kernel.

For our observed overhead benchmark figures, we aver-
aged the results of ten runs and computed 95% confidence
intervals using Student’s t-distribution. Error bars represent
the width of a measurement’s confidence interval.

We used the /proc/sys/vm/drop_caches facility pro-
vided by the Linux kernel to drop page, inode and den-
try caches before each run of our I/O-intensive workload
to ensure cold caches and to prevent consecutive runs from
influencing each other.

4.2 Workloads

We tested our SMCO approach on two applications: the CPU-
intensive bzip2 and an I/O-intensive grep workload. The
bzip2 benchmark is a data compression workload from the
SPEC CPU2006 benchmark suite, which is designed to max-

 0
 5

 10
 15
 20
 25
 30
 35

 0 10 20 30 40 50 60 70 80#
of

 e
ve

nt
s

(m
ill

io
ns

)

time (seconds)

(a)

 0
 1
 2
 3
 4
 5
 6
 7

 0 10 20 30 40 50 60#
of

 e
ve

nt
s

(m
ill

io
ns

)

time (seconds)

(b)

Fig. 14 Event distribution histogram for the most updated variable
(a) and 99th most updated variable (b) in bzip2. Execution time
(x-axis) is split into 0.4-s buckets. The y-axis shows the number of
events in each time bucket

imize CPU utilization [11]. This benchmark uses the bzip2

utility to compress and then decompress a 53 MB file con-
sisting of text, JPEG image data and random data.

Our range-solvermonitor, described in Sect. 3.1, found
80 functions in bzip2, of which 61 contained integer assign-
ments and 445 integer variables, 242 of which were modi-
fied during execution. Integer update events were spread very
unevenly among these variables. The least updated variables
were assigned only one or two times during a run, while the
most updated variable was assigned 2.5 billion times.

Figure 14 shows the frequency of accesses to two differ-
ent variables, the most updated variable and the 99th most
updated variable, over time. The data were obtained by in-
strumenting bzip2 to monitor a single specified variable with
unbounded overhead. The monitoring runs for these two vari-
ables took 76.4 and 55.6 s, respectively. The two histograms
show different extremes: the most updated variable is con-
stantly active, while accesses to the 99th most updated vari-
able are concentrated in short periods of high activity. Both
variables, however, experience heavy bursts of activity that
make it difficult to predict monitoring overhead.

Our I/O-intensive workload uses GNU grep 2.5, the pop-
ular Linux regular expression search utility. In our bench-
marks, grep searches the entire GCC 4.5 source tree (about
543 MB in size) for an uncommon pattern. When we tested
the workload with the Unix time utility, it reported that these
runs typically used only 10–20% CPU time. Most of each run
was spent waiting for read requests, making this an I/O-heavy
workload. Because the grepworkload repeats the same short

123

338 X. Huang et al.

tasks, we found that its variable accesses were distributed
more uniformly than in bzip2. Our range-solver reported
489 variables, with 128 actually updated in each run, and 149
functions, 87 of which contained integer assignments. The
most updated variable was assigned 370 million times.

4.3 Range solver

We benchmarked the range-solver monitor discussed in
Sect. 3.1 on both workloads using both of the controllers
in Sect. 2. Sections 4.3.1 and 4.3.2 present our results for
the global controller and cascade controller, respectively.
Section 4.3.3 compares the results from the two controllers.
Section 4.3.4 discusses range-solver’s memory overhead.

4.3.1 Global controller

Figure 15 shows how the global controller performs on our
workloads for a range of target overheads (on the x-axis),
with the observed overhead on the y-axis and the total number
of events monitored on the y2-axis for each target overhead
setting. With target overhead set to 0%, both workloads ran
with an actual overhead of 4%, which is the controller’s base
overhead. The base overhead is due to the controller logic
and the added complexity from unused instrumentation.

The dotted line in each plot shows the ideal result:
observed overhead equals target overhead up to an ideal max-
imum. We computed the ideal maximum to be the observed
overhead from monitoring all events in the program with all
control turned off. Any observed overhead above the ideal
maximum is the result of overhead incurred by the controller.

At target overheads of 10% and higher, Fig. 15a shows that
the global controller tracked the specified target overhead all
the way up to 140% in the bzip2 workload. The grep work-
load (Fig. 15b) showed a general upward trend for increasing
target overheads, but never exceeded 9% observed overhead.
In fact, at 9% overhead, range-solver is already at nearly
full coverage, with 99.7% of all program events being mon-
itored. The grep workload’s low CPU usage imposes a hard
limit on range-solver’s ability to use overhead. The con-
troller has no way to exceed this limit. Confidence intervals
for the grep workload were generally wider than for bzip2,
because I/O operations are noisier than CPU operations, mak-
ing runtimes less consistent.

4.3.2 Cascade controller

Figure 16 shows results from experiments that are the same as
those for Fig. 15 except using the cascade controller instead
of the global controller. The results were similar. On the
bzip2 workload, the controller tracked the target overhead
well from 10% to 100%. With targets higher than 100%, the
observed overhead continued to increase, but the controller

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140
 0

 5

 10

 15

 20

 25

 30

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

E
ve

nt
s

(b
ill

io
ns

)

Target Overhead (%)

overhead
events

ideal

(a) bzip2

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

E
ve

nt
s

(b
ill

io
ns

)

Target Overhead (%)

overhead
events

ideal

(b) grep

Fig. 15 Global controller with range-solver observed overhead
(y-axis) for a range of target overhead settings (x-axis) and two work-
loads

was not able to adjust the overhead high enough to reach
the target, because the observed overhead was already close
to the 120% maximum. On the grep workload, we saw the
same upward trend and eventual saturation with 9% observed
overhead monitoring 99.5% of events.

4.3.3 Controller comparison

The global and cascade controllers differ in the distribution
of overhead across different event sources. To compare them,
we developed an accuracy metric for the results of a bounded-
overhead range-solver run. We measured the accuracy of a
bounded-overhead run of the range-solver against a reference
run with full coverage of all variables (allowing unbounded
overhead). The reference run determined the actual range for
every variable.

In a bounded-overhead run, the accuracy of a range com-
puted for a single variable is the ratio of the computed range
size to the range’s actual size (which is known from the ref-
erence run). Missed updates in a bounded-overhead run can

123

Software monitoring with controllable overhead 339

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140
 0

 5

 10

 15

 20

 25
O

bs
er

ve
d

O
ve

rh
ea

d
(%

)

E
ve

nt
s

(b
ill

io
ns

)

Target Overhead (%)

overhead
events

ideal

(a) bzip2

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

E
ve

nt
s

(b
ill

io
ns

)

Target Overhead (%)

overhead
events

ideal

(b) grep

Fig. 16 Cascade controller with range-solver observed overhead
(y-axis) for a range of target overhead settings (x-axis) and two work-
loads

cause range-solver to report smaller ranges, so this ratio
is always in the interval [0, 1]. For a set of variables, the
accuracy is the average accuracy for all variables in the set.

Figure 17 shows a breakdown of range-solver’s accu-
racy on how frequently variables are updated. We grouped
variables into sets with geometrically increasing bounds: the
first set containing variables with 1–10 updates, the sec-
ond group containing variables with 10–100 updates, etc.
Figure 17a shows the accuracy for each of these sets, and
Fig. 17b shows the cumulative accuracy, with each set con-
taining the variables from the previous set.

We used 10% target overhead for these examples, because
we believe that low target overheads represent the most likely
used cases. However, we found similar results for all other
target overhead values that we tested.

The cascade controller’s notion of fairness results in bet-
ter coverage, and thus better accuracy, for rarely updated
variables. In this example, the cascade controller had better
accuracy than the global controller for variables with fewer
than 100 updates. As the global controller does not seek to
fairly distribute overhead to these variables, it monitored

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

R
an

ge
 S

ol
ve

r
A

cc
ur

ac
y

(%
)

of accesses (log)

Global - 100Hz
Cascaded - KI=0.1

(a) Non-cumulative

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

R
an

ge
 S

ol
ve

r
A

cc
ur

ac
y

(%
)

of accesses (log)

Global - 100Hz
Cascaded - KI=0.1

(b) Cumulative

Fig. 17 Comparison of range-solver accuracy for both controllers
with bzip2 workload. Variables are grouped by total number of
updates

a smaller percentage of their updates. Most dramatically,
Fig. 17a shows that the global controller had 0 accuracy for
all variables in the 10–100 updates range, meaning it did not
monitor more than one event for any variable in that set. The
three variables in the workload with 10–100 updates were
used while there was heavy activity, causing their updates
to get lost in the periods when the global controller had to
disable monitoring to reduce overhead.

However, with the same overhead, the global controller
was able to monitor many more events than the cascade
controller, because it did not spend time executing the cas-
cade controller’s more expensive secondary controller logic.
These extra events gave the global controller much better
coverage for frequently updated variables. Specifically, it had
better accuracy for variables with more than 106 updates.

Between these two extremes, i.e., for variables with
100–106 updates, both approaches had similar accuracy. The
cumulative accuracy in Fig. 17b shows that overall, consider-
ing all variables in the program, the two controllers achieved
similar accuracy. The difference is primarily in where the
accuracy was distributed.

123

340 X. Huang et al.

Table 1 range-solver memory usage, including executable size,
virtual memory usage (VSZ) and physical memory usage (RSS)

Exe size (KB) VSZ RSS (KB)

bzip2 (unmodified) 68.6 213 KB 207

bzip2 (global) 262 227 KB 203

bzip2 (cascade) 262 225 KB 201

grep (unmodified) 89.2 61.4 MB 1,260

grep (global) 314 77.1 MB 1,460

grep (cascade) 314 78.2 MB 1,470

4.3.4 Memory overhead

Although range-solver does not use SMCO to control its
memory overhead, we measured memory use of our control-
lers for both workloads. Table 1 shows our memory over-
head results. Here Exe Size is the size of the compiled binary
after stripping debugging symbols (as is common in produc-
tion environments). This size includes the cost of the SMCO
library, which contains the compiled controller and monitor
code. VSZ is the total amount of memory mapped by the pro-
cess, and RSS (resident set size) is the total amount of that
virtual memory stored in RAM. We obtained the peak VSZ
and RSS for each run using the Unix ps utility.

Both binaries increased in size by three to four times. Most
of this increase is the result of function duplication, which at
least doubles the size of each instrumented function. Dupli-
cated functions also contain a distributor block and instru-
mentation code. The 17 KB SMCO library adds a negligible
amount to the instrumented binary’s size. As few binaries are
more than several megabytes in size, we believe that even a
4× increase in executable size is acceptable for most environ-
ments; this is more true these days, with increasing amounts
of RAM in popular 64-bit systems.

The worst case increase in virtual memory use was only
27.4%, for the grep workload with the cascade controller.
The additional virtual memory is allocated statically to store
integer variable ranges and per-function overhead measure-
ments (when the cascade controller is used). This extra mem-
ory scales linearly with the number of integer variables and
functions in the monitored program, and not with runtime
memory usage. The bzip2workload uses more memory than
grep, so we measured in this case a much lower 6.6% virtual
memory overhead.

4.4 NAP detector

Figure 18 shows the results of our NAP detector, described
in Sect. 3.2, on bzip2 using the cascade controller. The NAP
detector’s instrumentation incurs no overhead while ignor-
ing events, so it has a very low base overhead of only 1.1%.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140
 0

 0.5

 1

 1.5

 2

 2.5

 3

O
bs

er
ve

d
ov

er
he

ad
 (

%
)

E
ve

nt
s

(m
ill

io
ns

)

Target overhead (%)

Observed overhead
Ideal

Access events

Fig. 18 Cascade controller with NAP detector observed overhead
(y-axis) and number of monitored memory access events (y2-axis) for a
range of target overhead settings (x-axis) running on the bzip2 work-
load

Table 2 NAP detector memory usage, including executable size, virtual
memory usage (VSZ), and physical memory usage (RSS)

Exe size (KB) VSZ (KB) RSS (KB)

bzip2 (unmodified) 68.6 213 207

bzip2 (cascade) 89.4 225 209

The NAP detector also tracks the user-specified target over-
head well from 10–140%. The results also show that the
NAP detector takes advantage of extra overhead that the
user allows it. As target overhead increased, the number of
monitored events scaled smoothly from only 300,000 to over
4 million.

Because the global controller is not designed to use per-
allocation sampling (as explained in Sect. 3.2), we used only
cascade control for our NAP detector experiments.

Table 2 shows memory overhead for the NAP detector. Exe
Size, VSZ and RSZ are the same as in Sect. 4.3.4. Although it
is possible for the NAP detector to increase memory usage by
as much as 50% (see Sect. 3.2), the bzip2 benchmark expe-
rienced only a 5.3% increase in virtual memory usage (VSZ).
All of the allocations monitored in the benchmark were
10–800 times larger than the page size; so, forcing these allo-
cations to be in separate pages resulted in very little wasted
space. The 20.8 KB increase in Exe size is from the statically
linked SMCO library.

4.5 Controller optimization

This section describes how we chose values for several of our
control parameters to get the best performance from our con-
trollers. Section 4.5.1 discusses our choice of clock precision
for time measurements. Section 4.5.2 explains how we chose
the integrative gain and adjustment interval for the primary

123

Software monitoring with controllable overhead 341

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

Target Overhead (%)

10 Hz
100 Hz

1000 Hz
2500 Hz

ideal

(a) bzip2

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

Target Overhead (%)

10 Hz
100 Hz

1000 Hz
2500 Hz

ideal

(b) grep

Fig. 19 Observed overhead for global controller clock frequencies
with four different clock frequencies and two workloads using
range-solver instrumentation

controller. Section 4.5.3 discusses optimizing the adjustment
interval for an alternate primary controller.

4.5.1 Clock frequency

The control logic for our range-solver implementation
uses a clock thread, as described in Sect. 3.1, which trades off
precision for efficiency. This thread can keep more precise
time by updating its clock more frequently, but more fre-
quent updates result in higher timekeeping overhead. Recall
that the RDTSC instruction is relatively expensive, taking 45
cycles on our testbed.

We performed experiments to determine how much preci-
sion was necessary to control overhead accurately. Figure 19
shows the range-solver benchmark in Fig. 15 repeated for
four different clock frequencies. The clock frequency is how
often the clock thread wakes up to read the TSC.

At only 10 Hz, the controller’s time measurements were
not accurate enough to keep the overhead below the tar-
get. With infrequent updates, most monitoring operations
occurred without an intervening clock tick and therefore

appeared to take 0 seconds. The controller ended up with
an underestimate of the actual monitoring overhead and thus
overshot its goal.

At 100 Hz, however, controller performance was good and
the clock thread’s impact on the system was still negligible,
incurring the 45-cycle RDTSC cost only 100 times for every
2.5 billion processor cycles on our test system. More frequent
updates did not perform any better and wasted resources, so
we chose 100 Hz for our clock update frequency.

In choosing the clock frequency, we wanted to ensure that
we also preserved SMCO’s effectiveness. Figure 20 shows
the accuracy of the range-solver at 10% target overhead
using the four clock frequencies we tested. We used the same
accuracy metric as in Sect. 4.3.3 and plotted the results as
in Fig. 17. The range-solver accuracy is similar for 100,
1,000 and 2,500 Hz clocks. These three values resulted in
similar observed overheads in Fig. 19. It therefore makes
sense that they achieve similar accuracy, since SMCO is
designed to support trade-offs between effectiveness and
overhead. The 10 Hz run has the best accuracy, but this result
is misleading because it attains that accuracy at the cost of
higher overhead than the user-requested 10%. Testing these
clock frequencies at higher target overheads showed similar
behavior. Note that the 100 Hz curves in Fig. 20 are the same
as the global controller curves from the controller compari-
son in Fig. 17.

4.5.2 Integrative gain

The primary controller component of the cascade control-
ler discussed in Sect. 2 has two parameters: the integrative
gain K I and the adjustment interval T . The integrative gain
is a weight factor that determines how much the cumulative
error ec (the deviation of the observed monitoring percent-
age from the target monitoring percentage) changes the local
target monitoring percentage mlt (the maximum percent of
execution time that each monitored plant is allowed to use for
monitoring). When K I is high, the primary controller makes
larger changes to mlt to correct for observed deviations.

The adjustment interval is the period of time between pri-
mary controller updates. With a low T value, the controller
adjusts mlt more frequently.

There are processes for choosing good control parame-
ters for most applications of control theory, but our system
is tolerant enough that good values for K I and T can be
determined experimentally.

We tuned the controller by running range-solver on an
extended bzip2 workload with a range of values for K I and
T and then recording how the primary controller’s output var-
iable, mlt , stabilized over time. Figure 21 shows our results
for four K I values and three T values with target overhead
set to 20% for all runs. These results revealed trends in the
effects of adjusting the controller parameters.

123

342 X. Huang et al.

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

R
an

ge
 S

ol
ve

r
A

cc
ur

ac
y

(%
)

of accesses (log)

10Hz
100Hz

1000Hz
2500Hz

(a) Non-cumulative

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

R
an

ge
 S

ol
ve

r
A

cc
ur

ac
y

(%
)

of accesses (log)

10Hz
100Hz

1000Hz
2500Hz

(b) Cumulative

Fig. 20 Accuracy of global controller clock frequencies with four
different clock frequencies using range-solver instrumentation.
Variables are grouped by total number of updates

In general, we found that higher values of K I increased
controller responsiveness, allowing mlt to more quickly com-
pensate for under-utilization of monitoring time, but at a cost
of driving higher-amplitude oscillations in mlt . This effect is
most evident with T = 0.4 s (see Fig. 21a). All the values
we tested from K I = 0.1 to K I = 2.0 successfully met our
overhead goals, but values greater than 0.1 oscillated wildly
enough that the controller had to sometimes turn monitoring
off completely (by setting mlt to almost 0) to compensate for
previous spikes in mlt . With K I = 0.1, however, mlt oscil-
lated stably for the duration of the run after a 50-s warm-up
period.

When we changed T to 2 s (see Fig. 21b), we observed
that 0.1 was no longer the optimal value for K I . But with
K I = 0.5, we were able to obtain performance as good as the
optimal performance with T =0.4 s: the controller met its
target overhead goal and had the same 50-s warm-up time.
We do see the consequences of choosing too small a K I ;
however, with K I = 0.1, the controller was not able to finish
warming up before the benchmark finished, and the system
failed to achieve its monitoring goal.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 50 100 150 200 250

m
lt

time (second)

KI=0.1
KI=0.5
KI=1.0
KI=2.0

(a) = 0.4s

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 50 100 150 200 250

m
lt

time (second)

KI=0.1
KI=0.5
KI=1.0
KI=2.0

(b) = 2s

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 50 100 150 200 250

m
lt

time (second)

KI=0.1
KI=0.5
KI=1.0
KI=2.0

(c) = 10s

Fig. 21 Local target monitoring percentage (mlt) over time during
bzip2 workload for range-solver with cascade control. Results
shown with target overhead set to 20% for four different values of K I
and three values of T

The same problem occurred when T = 10 s (see Fig. 21c):
the controller updated so infrequently that it only completed
its warm-up for the highest K I value we tried. Even with
the highest K I , the controller still undershot its monitoring
percentage goal.

Because of its stability, we chose K I = 0.1 (with
T = 0.4 s) for all of our cascade-controlled range-solver

123

Software monitoring with controllable overhead 343

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

Target Overhead (%)

KI=0.1
KI=0.5
KI=1.0
KI=2.0

ideal

Fig. 22 Observed overhead for primary controller K I values using
range-solver with T = 400 ms and four different K I values

experiments with low target overhead. Figure 22 shows how
the controller tracked target overhead for all the K I values
we tried. Although K I = 0.1 worked well for low overheads,
we again observed warm-up periods that were too long when
target overhead was very high. The warm-up period took
longer with very high overhead because of the larger gap
between target overhead and the initial observed overhead.
To deal with this discrepancy, we actually use two K I values,
K I = 0.1 for normal cases, and a special high-overhead K H

I
for cases with target overhead greater than 70%. We chose
K H

I = 0.5 using the same experimental procedure we used
for K I .

4.5.3 Adjustment interval

Before settling on the integrative control approach that we use
for our primary controller, we attempted an ad hoc control
approach that yielded good results for the range-solver,
but was not stable enough to control the NAP detector. We
also found the ad hoc primary controller to be more difficult
to adjust than the integrative controller. Though we no longer
use the ad hoc approach, the discussion of how we tuned it
illustrates some of the properties of our system.

Rather than computing error as a difference, the ad hoc
controller computes error e f fractionally as the global target
monitoring percentage (GTMP, as in Sect. 2.3.2) divided by
the observed global monitoring percentage for the entire pro-
gram run so far. The value of e f is greater than one when the
program is under-utilizing its monitoring time and less than
one when the program is using too much monitoring time.
After computing the fractional error, the controller computes
a new value for mlt by multiplying it by e f .

The ad hoc primary controller has only one parameter to
adjust. Like the integrative controller, it has an interval time
T between updates to mlt .

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

Target Overhead (%)

400 msec
2 sec

10 sec
20 sec

ideal

(a) bzip2

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14

O
bs

er
ve

d
O

ve
rh

ea
d

(%
)

Target Overhead (%)

400 msec
2 sec

10 sec
20 sec

ideal

(b) grep

Fig. 23 Observed overhead for an ad hoc cascade controller’s T values
with four different values of T and two range-solver workloads

Figure 23 shows the range-solver benchmark in Fig. 16
repeated for four values of T . For the bzip2 workload
(Fig. 16a), the best results were obtained with a T interval
of 10 s. Smaller T values led to an unstable primary control-
ler: the observed overhead varied from the target and results
became more random, as shown by the wider confidence
intervals for these measurements.

This result contradicts the intuition that a smaller T should
stabilize the primary controller by allowing it to react faster.
In fact, the larger T gives the controller more time to correctly
observe the trend in utilization among monitoring sources.
For example, with a short T , the first adjustment interval of
bzip2’s execution used only a small fraction of all the vari-
ables in the program. The controller quickly adjusted mlt very
high to compensate for the monitoring time that the unac-
cessed variables were failing to use. In subsequent intervals,
the controller needed to adjust mlt down sharply to offset the
overhead from many monitoring sources becoming active at
once. The controller spent the rest of its run oscillating to
correct its early error, never reaching equilibrium during the
entire run.

123

344 X. Huang et al.

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400

O
bs

. M
on

ito
rin

g
%

 w
ith

in
 In

te
rv

al
s

(%
)

Time (seconds)

400 ms
10s

Fig. 24 Observed monitoring percentage over bzip2 range-
solver execution. The percent of each adjustment interval spent mon-
itoring for two values of T . The target monitoring percentage is shown
as a dotted horizontal line

Figure 24 shows how the observed monitoring percentage
for each adjustment interval fluctuates during an extended
range-solver run of the bzip2 workload as a result of
the primary controller’s mlt adjustments. With T = 0.4 s,
the observed monitoring percentage spikes early on, so the
observed overhead is actually very high at the beginning of
the program. Near 140 s, the controller overreacts to a change
in program activity, causing another sharp spike in observed
monitoring percentage. As execution continues, the observed
monitoring percentage sawtooths violently, and there are
repeated bursts of time when the observed percentage is much
higher than the target percentage (meaning observed over-
head is much higher than the user’s target overhead).

With T = 10 s, the observed monitoring percentage still
fluctuates, but the extremes do not vary as far from the tar-
get. As execution continues, the oscillations dampen, and the
system reaches stability.

In our bzip2 workload, the first few primary controller
intervals were the most critical: bad values at the beginning
of execution were difficult to correct later on. The more rea-
sonable 10-s T made its first adjustment after a larger sample
of program activity, so it did not overcompensate. Overall,
we expect that a primary controller with a longer T is less
likely to be misled by short bursts or lulls in activity.

There is a practical limit to the length of T , however. In
Fig. 23a, a controller with T = 20 s overshot its target over-
head. Because the benchmark runs for only about 1 min, the
slower primary controller was not able to adjust mlt often
enough to converge on a stable value before the benchmark
ended.

As in Sect. 4.5.1, we also tested how the choice of T
affects the range-solver’s accuracy, using the same accu-
racy metric as in Sect. 4.3.3. Figure 25 shows the accuracy
for the bzip2 workload using four different values for T
with a 10% target overhead. The accuracy results confirm

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

R
an

ge
 S

ol
ve

r
A

cc
ur

ac
y

(%
)

of accesses (log)

400 msec
2 sec

10 sec
20 sec

(a) Non-cumulative

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

R
an

ge
 S

ol
ve

r
A

cc
ur

ac
y

(%
)

of accesses (log)

400 msec
2 sec

10 sec
20 sec

(b) Cumulative

Fig. 25 Accuracy of cascade controller T values with four values of
T on the bzip2 workload using range-solver instrumentation.
Variables are grouped by total number of updates

our choice of 10 s. Only the 20-s value for T yields better
accuracy, but it does so because it consumes more overhead
than the primary controller with T = 10 s. Tests with higher
target overheads gave similar results.

Evaluation summary

Our results show that in all the cases we tested, SMCO was
able to track the user-specified target overhead for a wide
range of target overhead values. Even when there were too
few events during an execution to meet the target overhead
goal, as was the case for the grep workload with target
overheads greater than 10%, SMCO’s controller was able to
achieve the maximum possible observed overhead by mon-
itoring nearly all events. We also showed that the overhead
trade-off is a useful one: higher overheads allowed for more
effective monitoring. These results are for challenging work-
loads with unpredictable bursts in activity.

Although our results relied on choices for several parame-
ters, we found that it was practical to find good values for all
of these parameters empirically. As future work, we plan to
explore procedures for automating the selection of optimal

123

Software monitoring with controllable overhead 345

controller parameters, which can vary with different types of
monitoring.

5 Related work

Chilimbi and Hauswirth [10] propose an overhead con-
trol mechanism for memory under-utilization detection that
approximates memory-access sampling by monitoring a pro-
gram’s basic blocks for memory accesses. Low overhead is
achieved by reducing the sampling rate of blocks that gener-
ate a high rate of memory accesses. The aim of their sampling
policy is, however, to reduce overhead over time; once mon-
itoring is reduced for a particular piece of code, it is never
increased again, regardless of that code’s future memory-
access behavior. As a non-accessed period (NAP) is most
commonly associated with a memory allocation and not a
basic block, there is no clear association between the sam-
pling rate for blocks and confidence that some memory region
is under-utilized. In contrast, SMCO’s NAP detector uses vir-
tual memory hardware to directly monitor areas of allocated
memory, and overhead control is realized by enabling and
disabling the monitoring of memory areas appropriately.

Artemis [8] reduces CPU overhead due to runtime moni-
toring by enabling monitoring for only certain function exe-
cutions. By default, Artemis monitors a function execution
only if the function is called in a context that it has not seen
before. In theory, a function’s context consists of the values
of all memory locations it accesses. Storing and comparing
such contexts would be too expensive, so Artemis actually
uses weaker definitions of “context” and “context matching,”
which may cause it to miss some interesting behaviors [8].
Artemis’ context-awareness is orthogonal to SMCO’s feed-
back control approach. SMCO could be augmented to prefer
new contexts, as Artemis does, in order to monitor more con-
texts within an overhead bound. The main difference between
Artemis and SMCO is in the goals they set for overhead
management. Artemis uses context awareness to reduce—
but not bound—the overhead. The overhead from monitoring
a function in every context varies during program execution
and can be arbitrarily high, especially early in the execution,
when most contexts have not yet been seen. The user does
not know in advance whether the overhead will be accept-
able. In contrast, SMCO is designed to always keep overhead
within a user-specified bound. As a result of this different
goal, SMCO uses very different techniques than Artemis. In
summary, overhead reduction techniques like those in Arte-
mis are useful but, unlike SMCO, they do not directly address
the problem of unpredictable and unacceptably high over-
heads.

Liblit et al.’s [13] statistical debugging technique seeks
to reduce per-process monitoring overhead by partitioning

a monitoring task across many processes running the same
program.

This approach is attractive when applicable, but has sev-
eral limitations: it is less effective when an application is
being tested and debugged by a small number of developers;
privacy concerns may preclude sharing of monitoring results
from deployed applications; and for some monitoring tasks, it
may be difficult to partition the task evenly or correlate moni-
toring data from different processes. Furthermore, in contrast
to SMCO, statistical debugging does not provide the ability
to control overhead based on a user-specified target level.

We first introduced the concept of a user-specified target
overhead, along with the idea of using feedback control to
enforce that target, in an NSF-sponsored workshop [4]. The
controller we implemented in that workshop is the basis for
our cascade controller.

The Quality Virtual Machine (QVM) [3] also supports
runtime monitoring with a user-specified target overhead. Its
overhead-management technique is similar to our cascade
controller in that it splits control into global and local over-
head targets and prioritizes infrequently executed probes to
increase coverage. The QVM overhead manager assigns a
sampling frequency to each overhead source, and it adjusts
the sampling frequency to control overhead. Unlike SMCO,
which uses an integral controller to adjust local target moni-
toring percentages, these adjustments are made by an ad hoc
controller that lacks theoretical foundations. The section on
the overhead manager in QVM does not describe (or justify)
the computations used to adjust sampling frequency.

In its benchmarks, QVM did not track overhead goals as
accurately as SMCO. For example, configured for 20% tar-
get overhead, two of QVM’s benchmarks, eclipse and fop,
showed an actual overhead of about 26% [3]. Though we can-
not test Java programs, our bzip workload is a comparable
CPU-bound benchmark. SMCO’s worst case for bzip was a
22.7% overhead with NAP detector instrumentation, shown
in Fig. 18. This suggests that controllers, like SMCOs, which
are based on established control theory principle can provide
more accurate control. This is not surprising, since meeting
an overhead goal is inherently a feedback control problem.

SMCO achieves accurate overhead control even when
monitored events happen very frequently. Our range-

solver attempts to track every integer assignment in a pro-
gram, handling many more events than QVM’s monitors,
which track calls to specified methods. We measured the rate
of total events per second in benchmarks from both systems:
the rate of integer assignment events in our bzip2 work-
load and the rate of potentially monitored method calls in
the DaCapo benchmarks that QVM uses. The bzip2 event
rate was more than 50 times the DaCapo rate. Our technique
of toggling monitoring at the function level, using function
duplication, makes it possible to cope with high event rates
by reducing the number of controller decisions. Even with

123

346 X. Huang et al.

this technique, we found that direct calls to RDTSC by the con-
troller—an approach that is practical for the low event rates
in QVM’s benchmarks—are too expensive at high event rates
like those in range-solver. We overcame this problem by
introducing a separate clock thread, as described in Sect. 3.1.

QVM and SMCO make sampling decisions at different
granularities, reflecting their orientation toward monitoring
different kinds of properties. QVM makes monitoring deci-
sions at the granularity of objects. In theory, for each object,
QVM monitors all relevant operations (method invocations)
or none of them. In practice, this is problematic, because the
target overhead may be exceeded if QVM decides to track
an object that turns out to have a high event rate. QVM deals
with this by using emergency shutdown to abort monitoring
of such objects. In contrast, SMCO is designed for moni-
tors that do not need to observe every operation on an object
to produce useful results. For example, even if monitoring
is temporarily disabled for a memory allocation, our NAP
detector can resume monitoring the allocation and identify
subsequent NAPs.

QVM and SMCO are designed for very different execu-
tion environments. QVM operates in a modified Java Vir-
tual Machine (JVM). This makes implementation of efficient
monitoring considerably easier, because the JVM sits conve-
niently between the Java program and the hardware. SMCO,
on the other hand, monitors C programs, for which there is no
easy intermediate layer in which to implement interception
and monitoring. Monitoring of C programs is complicated
by the fact that C is weakly typed, pointers and data can
be manipulated interchangeably, and all memory accesses
are effectively global: any piece of code in C can poten-
tially access any memory address via any pointer. Low-level
instrumentation techniques allow SMCO to control overhead
in spite of these complications: function duplication reduces
overhead from instrumentation that is toggled off, and our
novel use of memory management hardware allows efficient
tracking of accesses to heap objects.

6 Conclusions and future work

We have presented software monitoring with controllable
overhead (SMCO), an approach to overhead control for the
runtime monitoring of software. SMCO is optimal in the
sense that it monitors as many events as possible without
exceeding the target overhead level. This is distinct from
other approaches to software monitoring that promise low
or adaptive overhead, but where overhead, in fact, varies per
application and under changing usage conditions. The key to
SMCO’s performance is the use of underlying control strat-
egies for a nonlinear control problem represented in terms of
the composition of timed automata.

Using SMCO as a foundation, we developed two sophis-
ticated monitoring tools: an integer range analyzer, which

uses code-oriented instrumentation, and a NAP detector,
which uses memory-oriented instrumentation. Both the per-
function checks in the integer range analyzer and the
per-memory-area checks in the NAP detector are acti-
vated and deactivated by the same generic controller, which
achieves a user-specified target overhead with either of these
systems running.

Our extensive benchmarking results demonstrate that it is
possible to perform runtime monitoring of large software sys-
tems with fixed target overhead guarantees. As such, SMCO
is promising both for developers, who desire maximal moni-
toring coverage, and system administrators, who need a way
to effectively manage the impact of runtime monitoring on
system performance. Moreover, SMCO is fully responsive
to both increases and decreases in system load, even highly
bursty workloads, for both CPU- and I/O-intensive applica-
tions. As such, administrators need not worry about unusual
effects in instrumented software caused by load spikes.

Future work

There are many potential uses for SMCO, including such var-
ied techniques as lockset profiling and checking, runtime type
checking, feedback-directed algorithm selection and intru-
sion detection. SMCO could be used to manage disk or net-
work time instead of CPU time. For example, a background
file-system consistency checker could use SMCO to ensure
that it gets only a specific fraction of disk time, and a back-
ground downloader could use SMCO to ensure that it con-
sumes only a fixed proportion of network time.

Though our cascade controller adheres to its target over-
head goals very well, it is dependent on somewhat careful
adjustment of the K I control parameter. Changes to the mon-
itor can alter the system enough to require retuning K I . It
would be useful to automate the process for optimizing K I

for low and high overheads so that developing new monitors
does not require tedious experimentation. An automated pro-
cedure could model the response time and level of oscillation
as a function of K I in order to find a good trade-off.

We also believe that SMCO as a technique can be
improved. One improvement would be to handle dependen-
cies between monitored events in cases where correctly mon-
itoring an event requires information from previous events.
For example, if a runtime type checker fails to monitor the
event that initializes an object’s type, it would be useless to
monitor type-checking events for that object; the controller
should therefore be able to ignore such events.

Acknowledgments The authors would like to thank the anonymous
reviewers for their invaluable comments and suggestions. They would
also like to thank Michael Gorbovitski for insightful discussions and
help with the benchmarking results. Research was supported in part by
AFOSR Grant FA9550-09-1-0481, NSF Grants CNS-0509230, CCF-
0926190, and CNS-0831298 and ONR Grant N00014-07-1-0928.

123

Software monitoring with controllable overhead 347

References

1. Aziz, A., Balarin, F., Brayton, R.K., Dibenedetto, M.D., Sladanha,
A., Sangiovanni-Vincentelli, A.L.: Supervisory control of finite
state machines. In: Wolper, P. (ed.) 7th International Conference
On Computer Aided Verification, vol. 939, pp. 279–292. Springer,
Liege, Belgium (1995)

2. Alur, R., Dill, D. L.: A theory of timed automata. Theoret. Comput.
Sci. 126(2), 183–235 (1994)

3. Arnold, M., Vechev, M., Yahav, E.: QVM: An efficient runtime for
detecting defects in deployed systems. In: Proceedings of the ACM
SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA). ACM,
Nashville, TN (2008)

4. Callanan, S., Dean, D.J., Gorbovitski, M., Grosu, R., Seyster, J.,
Smolka, S.A., Stoller, S.D., Zadok, E.: Software monitoring with
bounded overhead. In: Proceedings of the 2008 NSF Next Gen-
eration Software Workshop, in conjunction with the 2008 Inter-
national Parallel and Distributed Processing Symposium (IPDPS
2008), Miami (2008)

5. Callanan, S., Dean, D.J., Zadok, E.: Extending GCC with modular
GIMPLE optimizations. In: Proceedings of the 2007 GCC Devel-
opers’ Summit, Ottawa (2007)

6. Cantrill, B., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumen-
tation of production systems. In: Proceedings of the Annual USE-
NIX Technical Conference, pp. 15–28 (2004)

7. Fei, L., Midkiff, S.P.: Artemis: Practical runtime monitoring of
applications for errors. Technical report TR-ECE-05-02. Electri-
cal and Computer Engineering, Purdue University. http://docs.lib.
purdue.edu/ecetr/4/ (2005)

8. Fei, L., Midkiff, S.P.: Artemis: Practical runtime monitoring of
applications for execution anomalies. In: Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’06), Ottawa, Canada (2006)

9. Franklin, G.F., Powell, J.D., Workman, M.: Digital Control of
Dynamic Systems, Third Edition. Addison Wesley Longman,
Inc, Boston (1998)

10. Hauswirth, M., Chilimbi, T.M.: Low-overhead memory leak detec-
tion using adaptive statistical profiling. In: Proceedings of the 11th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS 2004), pp. 156–
164 (2004)

11. Henning, J.L.: SPEC CPU2006 benchmark descriptions. Comput.
Archit. News 34(4), 1–17 (2006)

12. Hoare, C.A.R.: Communicating sequential processes. Commun.
ACM 21, 666–677 (1978)

13. Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug isolation via
remote program sampling. In: Proceedings of the 2003 ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’03), San Diego (2003)

14. Moore, R.: A universal dynamic trace for Linux and other operating
systems. In: Proceedings of the 2001 USENIX Annual Technical
Conference (2001)

15. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class
of discrete event systems. SIAM J. Control Optim. 25(1), 206–
230 (1987)

16. Ramadge, P.J., Wonham, W.M.: Supervisory control of timed dis-
crete-event systems. IEEE Trans. Autom. Control 38(2), 329–
342 (1994)

17. Seward, J., Nethercote, N., Fitzhardinge, J.: Valgrind. http://
valgrind.kde.org (2004)

18. Wang, Q.-G., Ye, Z., Cai, W.-J., Hang, C.-C.: PID control for mul-
tivariable processes. Lecture Notes in Control and Information
Sciences. Springer, Berlin (2008)

19. Wong-Toi, H., Hoffmann, G.: The control of dense real-time dis-
crete event systems. In: Proceeedings of 30th Conference on Deci-
sion and Control, pp. 1527–1528, Brighton (1991)

123

http://docs.lib.purdue.edu/ecetr/4/
http://docs.lib.purdue.edu/ecetr/4/
http://valgrind.kde.org
http://valgrind.kde.org

	Software monitoring with controllable overhead
	Abstract
	1 Introduction
	2 Control-theoretic monitoring
	2.1 Target specification
	2.2 The plant models
	2.2.1 The hardware plant
	2.2.2 The software plant

	2.3 The controllers
	2.3.1 The global controller
	2.3.2 The cascade controller

	3 Design and implementation
	3.1 Integer range analysis
	3.2 Memory under-utilization
	3.3 Implementation effort

	4 Evaluation
	4.1 Testbed
	4.2 Workloads
	4.3 Range solver
	4.3.1 Global controller
	4.3.2 Cascade controller
	4.3.3 Controller comparison
	4.3.4 Memory overhead

	4.4 NAP detector
	4.5 Controller optimization
	4.5.1 Clock frequency
	4.5.2 Integrative gain
	4.5.3 Adjustment interval

	5 Related work
	6 Conclusions and future work
	Acknowledgments
	References

