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Abstract We present algorithms for parallel probabilistic
model checking on general purpose graphic processing units
(GPGPUs). Our improvements target the numerical compo-
nents of the traditional sequential algorithms. In particular,
we capitalize on the fact that in most of them operations like
matrix—vector multiplication and solving systems of linear
equations are the main complexity bottlenecks. Since linear
algebraic operations can be implemented very efficiently on
GPGPUs, the new parallel algorithms show considerable run-
time improvements compared to their counterparts on stan-
dard architectures. We implemented our parallel algorithms
on top of the probabilistic model checker PRISM. The pro-
totype implementation was evaluated on several case studies
in which we observed significant speedup over the standard
CPU implementation of the tool.

Keywords Parallel model checking - General purpose
graphics processing units

1 Introduction
1.1 Parallel model checking

Model checking is one of the most successful formal tech-
niques for the verification of software and hardware systems.
Developed at the beginning of the 1980s, nowadays it is used
by major companies like Microsoft and Intel to improve the
quality of their products. Although originally introduced as
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a fully automated technique for the verification of highly
parallel and distributed systems, ironically enough, in the
past model checking has mostly relied on sequential
algorithms.

Indeed, parallel model checking algorithms for clusters
of CPUs (e.g., [10,36,41]) or shared memory architec-
tures [32,33] have been designed before. However, paral-
lel implementations of model checking tools started having
impact only recently. A notable example is the study on a
big cluster (DAS-3) [4]. Other examples of cluster-oriented
tools are the CADP toolbox and the LTSmin toolset. The
construction and analysis of distributed processes (CADP)
toolbox [24], used to design communication protocols and
distributed systems also includes tools for distributed veri-
fication, e.g., the Distributor tool, which uses an algorithm
based on [25] to perform exhaustive reachability analysis on a
cluster of computers. LTSmin [13] is a toolset for manipulat-
ing labeled transition systems. The main tool LTSmin-mpi is
adistributed implementation of signature-based bisimulation
reduction for strong bisimulation and branching bisimula-
tion. Lpo2lts-mpi is another tool from this toolset for dis-
tributed state space generation of mCRL2 models on cluster
computers. The distributed and parallel verification environ-
ment provides also a parallel distributed-memory enumera-
tive model-checking tool called DiVinE-Cluster [7] for the
verification of concurrent systems. DiVinE Cluster can be
used to prove correctness of verification models.

According to [37] less than two years ago a clear major-
ity of the 500 most powerful computers in the world (http://
www.top500.org) were characterized as clusters of comput-
ers/processors that work in parallel. Unfortunately, this has
not had a major impact on the popularity of parallel comput-
ing both in industry and academia. With the emergence of
the new parallel hardware technologies, like multi-core pro-
cessors and general purpose graphics processing units, this
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situation is changing drastically, which also reflects in the
parallel algorithms for model checking.

In [30,31] the concept of multi-core model checking was
introduced, followed by [6]. Several research groups either
implemented multi-core parallelization into existing tools or
developed a new checking software based on multi-core algo-
rithms. Probably the most visible examples are the multi-core
versions of SPIN [31] and DiVinE [9].

1.2 GPGPU programming

In recent years (general purpose) graphics processor units
[(GP)GPUs] have become powerful massively parallel
systems and they have outgrown their initial application
niches in accelerating computer graphics. This has been
facilitated by the introduction of new application program-
ming interfaces (APIs) for general computation on GPUs,
like the Compute Unified Device Architecture (CUDA) SDK
form NVIDIA [18], Stream SDK from AMD [43], and
Open CL [38]. Applications that exploit GPUs in different
domains, like fluid dynamics, protein folding prediction in
bioinformatics, Fast Fourier Transforms, and many others,
have been developed in the last several years [39]. In model
checking, however, GPUs were not used. To the best of our
knowledge the first attempts to do model checking on GPUs
were by the authors of this paper [14,20]. These efforts were
followed by Barnat et al. [5]. Edelkamp et al. improved large-
scale disk-based model checking by shifting complex numer-
ical operations to the graphic card. As delayed elimination
of duplicates is the performance bottleneck, the authors per-
formed parallel processing on the GPU to improve the sorting
speed significantly. Since existing GPU sorting solutions like
Bitonic Sort and Quicksort do not obey any speedup on state
vectors, they propose a refined GPU-based Bucket Sort algo-
rithm. Additionally, they study sorting a compressed state
vector and obtain speedups for delayed duplicate detection
of up to one order of magnitude with a 8800-GTX GPU.
Barnat et al. redesigned the maximal accepting predeces-
sors algorithm for LTL model checking in term of matrix—
vector product in order to accelerate LTL model checking on
many-core GPU platforms. The drawback of this approach is
the large amount of memory necessary on the graphics card.
Since the whole state space is represented as a matrix only
small problems can be analyzed.

1.3 Probabilistic model checking

Development of the probabilistic! model checking was insti-
gated by the fact that probabilities are often an unavoidable
ingredient of both natural and man-made systems. Therefore,

! In the literature probabilistic and stochastic model checking often are
used interchangeably. Usually a more clear distinction is made by relat-
ing the adjectives probabilistic and stochastic to the underlying model:
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in probabilistic model checking the satisfaction of properties
is quantified with some probability. This is in contrast to tra-
ditional model checking which, at least in theory, tries to
establish an absolute correctness or failure of the property.
Probabilistic model checking has been proven to be a pow-
erful framework for modeling various systems ranging from
randomized algorithms via performance analysis to biologi-
cal networks.

There is a significant overlap between the algorithms used
in probabilistic model checking and their counterparts in tra-
ditional model checking. In both cases one the reachability
of the underlying transition systems is computed. Still, there
are also important differences because numerical methods
are used to compute the transition probabilities. It is those
numerical components that we are targeting in this paper
and show how they can be sped up by employing the power
of the new graphic processors technology.

1.4 Contribution

Traditionally the main bottleneck in practical applications
of model checking has been the infamous state space explo-
sion [44] and, as a direct consequence, large requirements
in time and space. With the emergence of the new 64-
bit processors there is no practical limit to the amount of
shared memory that could be addressed. As a result the goals
shift towards improving the runtime of the model check-
ing algorithms [31]. In this paper we show that signifi-
cant runtime gains can be achieved exploiting the power of
GPUs in probabilistic model checking. This is because basic
algorithms for probabilistic model checking are based on
operations like solving linear equation systems and matrix—
vector multiplication. These operations lend themselves to
very efficient implementation on GPUs. Because of the
massive parallelism—a standard commercial video card
comprises hundreds of fragment processors—impressive
speedups with regard to the sequential counterparts of the
algorithms are quite common.

We present two algorithms that are parallel adaptations
of the method of Jacobi for solving linear equations. Jacobi
was chosen over other methods that usually outperform it on
sequential platforms because of its lower memory require-
ments and potential to be parallelized because of fewer data
dependencies. The algorithms feature sparse matrix—vector
multiplication. It requires a minimal number of copy oper-
ations from RAM to GPU and back. We implemented the

Footnote 1 continued

discrete- and continuous-time Markov chain, respectively. For the sake
of simplicity in this paper our focus is on discrete-time Markov chains,
so we opted for consistently using the qualification “probabilistic”. Nev-
ertheless, as we also emphasize in the paper, the concepts and algorithms
that we present here can be applied as well to continuous-time Markov
chains.
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algorithms on top of the probabilistic model checker
PRISM [34]. The prototype implementations were evaluated
on several case studies.

1.5 Related work

This paper extends a precursor work that was presented at
SPIN ’09 [14]. Besides editorial changes, e.g., clarity of the
text, relevant related work, we implemented a 64-bit version
of the GPU-based PRISM model checker and ran new experi-
ments on one and on two graphics cards. For the latter setting,
a synchronization mechanism for the communication had to
be added. Besides this, to allow comparisons, we also imple-
mented an alternative GPU-based Jacobi iteration method,
using a backward, inclusive segmented scan provided by the
CUDPP library [17].

In [12] a distributed model checking algorithm of Markov
chains is presented. The approach in the paper focuses on
continuous-time Markov chain models and Computational
Stochastic Logic. They too use a parallel version of Jacobi’s
method, which is different from the one presented in this
paper. This is reflected in the different memory management
(GPUs hierarchical shared memory model versus the distrib-
uted memory model) and in the fact that their algorithm stores
part of the state space on external memory (disks). Also, [12]
is much more oriented towards increasing the state spaces of
the stochastic models, than improving algorithm runtimes,
which is our main goal. Maximizing the state space sizes
of stochastic models by joining the storages of individual
workstations of a cluster is the goal pursuit also in [16]. A
significant part of the paper is on implicit representations of
the state spaces with a conclusion that, although they can
further increase the state space sizes, the runtime remains a
bottleneck because of the lack of efficient solutions for the
numerical operations.

In[1] a shared memory algorithm is introduced for CTMC
construction and numerical steady-state solution construct-
ing the CTMCs from generalized stochastic Petri nets. The
algorithm for computing steady state probability distribution
is an iterative one. Compared to this work, our algorithm is
more general as it can be used in CTMCs also to compute
transient probabilities.

Another shared memory approach is described in [8]. It
targets Markov decision processes, which we do not consider
in this paper. As such it differs from our work significantly
since the quantitative numerical component of the algorithm
reduces to solving systems of linear inequalities, i.e., using
linear program solvers. In contrast, large-scale solutions sup-
port multiple scans over the search space on disks [19,21].

Enumerating state spaces in model checking shares sim-
ilarities with solving AI search problems. In single-agent
search challenges (e.g., sliding-tile puzzle, and instances to
Peg-Solitaire, Frogs-and-Toads, Top-Spin, and Pancake) on

the GPU Edelkamp et al. [22] established maximal speedups
of up to factor 27 with regard to the single-core CPU com-
putation. In all domains we arrive at one order of magnitude
speedup. Based on the two-bit approach by Cooperman and
Finkelstein [12] the authors proposed a general one-bit reach-
ability and a specified one-bit BFS algorithm and showed
how to speed up the search by parallelizing the algorithms
and computing reversible minimal perfect hash functions on
the GPU. Several perfect hash functions are studied, rang-
ing from permutations to binomial coefficients. In strongly
solving Nine-Men-Morris (for the first time) [23] the authors
arrived at an overall speedup factor of over 12. For all three
phases in the game, multinomial hashing for ranking and
unranking states on the GPU, and a parallel retrograde anal-
ysis on the GPU were applied.

1.6 Layout

The rest of the paper is structured as follows. Section 2 briefly
introduces probabilistic model checking. Section 3 describes
the architecture, execution model and some challenges of
GPU programming. Section 4 presents the algorithm for
matrix—vector multiplication as used in each Jacobi iteration
and its ports to the GPU. Section 5 evaluates our approach
verifying examples shipped with the PRISM source showing
significant speedups compared to the current CPU solution.
The last section concludes the paper and discusses the results.

2 Probabilistic model checking

In this section we briefly recall the basics of probabilis-
tic model checking along the lines of [35]. For simplicity
reasons, we mainly focus on discrete-time Markov chains
(DTMCs) and the logic PCTL, and only briefly discuss
continuous-time Markov chains. The main point of this over-
view is to show that matrix vector multiplication and solving
systems of linear equations are corner-stones of most of the
algorithms for probabilistic model checking. More details
can be found in, e.g., [2,35].

2.1 Discrete time Markov chains

Given a fixed finite set of atomic propositions A P we define
a DTMC as follows:

Definition 1 A (labeled) DTMC D is a tuple (S, s, P, L)
where

— S is a finite set of states;

— § € Sis the initial state;

— P : S x 8§ — [0, 1] is the transition probability matrix
where Xy csP(s,s’) = 1 forall s € S;
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— L : S — 2%P s a labeling function which assigns to
each state s € S the set L(s) of atomic propositions that
are valid in the state.

Intuitively, real numbers P(s, s’) in the interval [0, 1] give
the probability of a transition from s to s’. The definition
implies that for each state the sum of the probabilities of the
outgoing transitions must be 1. Consequently, end states, i.e.,
states which will normally not have outgoing transitions are
modeled by adding self-loops with probability 1.

2.2 Probabilistic computational tree logic

Properties of DTMCs can be specified using probabilistic
computation tree logic (PCTL) [26], which is a probabilistic
extension of CTL.

Definition 2 PCTL has the following syntax:

bi=truelal| P |DPAD| P yle]
p=xX0|dUFD

wherea € AP, ~e {<,<,>,>},p e [0,1],and k € NU
{o0}.

The above definition features both state formulae ¢ and
path formulae ¢, which are interpreted on states and paths,
respectively, of a given DTMC D. However, the properties are
specified exclusively as state formulae. Path formulae have
only an auxiliary role and they occur as a parameter in state
formulae of the form P~ ,[¢]. Intuitively, P~ ,[¢]is satisfied
in some state s of D, if the probability of choosing a path that
begins in s and satisfies ¢ is within the range given by ~p.
To formally define the satisfaction of the path formulae one
defines a probability measure, which is beyond the scope of
this paper. (For example, see [35] for more detailed infor-
mation.) Informally, this measure captures the probability of
taking a given finite path in the DTMC, which is calculated
as the product of the probabilities of individual transitions of
this path.

The path operators have intuitive meaning which is anal-
ogous to the one in standard temporal logics. The formula
X @ is true if @ is satisfied in the next state of the path. The
bounded until formula ® U =FW is satisfied if W is satisfied
in one of the next k steps and ® holds until this happens.
For k = oo one obtains the unbounded until. In this case we
omit the superscript and write ® U W. The interpretation of
unbounded until is the standard strong until.

2.3 Algorithms for model checking PCTL
Given a labeled DTMC D = (S, §, P, L) and a PCTL for-

mula @, usually we are interested whether the initial state
of D, s, satisfies ®. Nevertheless, the algorithm works by
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checking the satisfaction of @ for each state in S. The output
of the algorithm is Sat(®), the set of all states that satisfy .

The algorithm starts by first constructing the parse tree of
the PCTL formula ®. The root of the tree is labeled with ®
and each other node is labeled by a sub-formula of ®. The
leaves are labeled with t rue or an atomic proposition. Start-
ing with the leaves, in a recursive bottom-up manner for each
node n of the tree the set of states is computed that satisfies
the sub-formula that labels n. When we arrive at the root we
can determine Sat(®).

The model checking algorithms for the state PCTL for-
mulae are analogous with their counterparts in CTL and as
such quite straightforward to implement. The only exceptions
are the path formulae whose algorithms contain an extensive
numerical component that is used to compute the transition
probabilities. They are the most computationally demanding
part of the model checking algorithm and as such a logical
target of our improvement via parallel algorithms for GPUs.

To get a general picture above these claims we consider the
algorithm for the formulae of the form P[® Ufk\I/], where
k = oo. The numerical component of this case reduces to
finding the least solution of the linear equation system:

W(s, ®UW)
1 if s € Sar(V)
=1lo if s € Sat(=® A =)

YyesP(s,s") - W(s', PUW) otherwise

where W(® U W) is the resulting vector of probabilities
indexed by the states in S. Only the states in which the for-
mula is satisfied with probabilities 1 and 0 have a special
treatment. For each other state the probabilities are com-
puted in a recurrent fashion using the corresponding proba-
bilities of the neighboring states. Before solving the system,
the algorithm employs some optimizations by precomputing
the states that satisfy the formula with probability O or 1. The
(simplified) system linear equations can be solved using iter-
ative methods that comprise matrix—vector multiplication.
One such method is presented by Jacobi, which is also one
of the methods that PRISM uses and which we describe in
more detail in Sect. 4. We choose Jacobi’s method over meth-
ods that on sequential architectures usually perform better.
This is because Jacobi has certain advantages in the paral-
lel programming context. For instance, it has lower memory
consumption compared to the Krylov subspace methods and
less data dependencies than the Gauss—Seidel method, which
makes it easier to parallelize [12]. The algorithms for the next
operator and bounded until boil down to a single matrix—
vector product and a sequence of such products, respectively.

PCTL can be extended with various rewards (costs) opera-
tors that we do not give here. The algorithms for those opera-
tors can also be reduced to matrix—vector multiplication [35].
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Thus, the main runtime bottleneck of the probabilistic
model checking algorithms is the computational part, and
in particular the linear algebraic operations. Their share of
the total runtime of the algorithms increases with the size
of the model |S|. Model checking of a PCTL formula ® on
DTMC D is linear in |®|, the size of the formula, and poly-
nomial in | S|, the number of states of the DTMC. The most
expensive are the operators for unbounded until and also the
rewards operators which too boil down to solving system lin-
ear equations of size at most |S|. The complexity is linear in
kimax, the maximal value of the bounds & in the bounded until
formulae (which also occurs in some of the costs operators).
However, usually this value is much smaller than |S|. So, for
real world problems, that tend to have large state spaces, the
dependence on the size | S| is even more critical. In the sequel
we show how by using parallel versions of the algorithms
on GPU, one can obtain substantial speedups of more than
one order of magnitude compared to the original sequential
algorithms.

2.4 Beyond discrete time Markov chains

Matrix—vector product is also in the core of model checking
continuous-time Markov chains, i.e., the corresponding com-
putational stochastic logic (CSL) [3, 12,35]. For instance, the
next operator of CSL can be checked in the same way like
its PCTL counterpart. Both algorithms for steady state and
transient probabilities boil down to matrix—vector multiplica-
tion. On this operation hinge also various extensions of CSL
with costs. Thus, the parallel version of the Jacobi algorithm
that we present in the sequel, can be used also for stochastic
models, i.e., models based on CTMCs.

3 GPU programming

The application of the modern GPUs goes far beyond the
realm of graphics applications. They can be seen as general
purpose multi-threaded data parallel co-processors. How-
ever, there are substantial architectural differences between
GPUs and CPUs, including the new generations of multi-core
processors. This imposes restrictions on the programs that
can run on GPUs. Consequently, one has to cope with sev-
eral new challenges when developing model checking algo-
rithms for GPUs. The latter can significantly differ not only
compared to their sequential counterparts, but also to the
multi-core and distributed (cluster-based) analogues.
Harnessing the power of GPUs is facilitated by the new
APIs for general computation on GPUs. CUDA is an inter-
face from NVIDIA where programs are basically extended C
programs. To this end CUDA features extensions like: spe-
cial declarations to explicitly place variables in some of the
memories (e.g., shared, global, local), predefined keywords

(variables) containing the block and thread IDs, synchroni-
zation statements for cooperation between threads, runtime
API for memory management (allocation, deallocation), and
statements to launch functions on GPU.

In view of the above remarks, before describing our
approach in more detail, we give an overview of the GPU
architecture and the CUDA programming model [11].

3.1 CUDA programming model

CUDA enforces a program architecture which provides flex-
ibility and minimizes the dependence of the software from
the concrete GPU. A CUDA program consists of a host pro-
gram which runs on the CPU and a set of CUDA kernels.
The kernels, which are the parallel parts of the program, are
launched on the GPU device from the host program, which
comprises the sequential parts. The CUDA kernel is a paral-
lel program that is executed as a set of threads. Each thread
of the kernel executes the same code. Threads of a kernel are
grouped in blocks that form a grid. Each thread block of the
grid is uniquely identified by its block ID and analogously
each thread is uniquely identified by its thread ID within its
block. The dimensions of the thread and the thread block are
specified at the time of launching the kernel. Blocks of a grid
are ordered as a one- or two-dimensional array dividing the
block ID in x, and y axis component, while the threads of a
block are ordered in up to three dimensions. A thread is then
identified uniquely by the x, y and z axis component of the
thread ID.

3.2 CUDA memory model

In the CUDA memory model there are different kinds of
memories that differ substantially in access speed (laten-
cies). This has important implications for the efficiency of
the CUDA programs.

The memory hierarchy loosely maps to the program
thread-block-kernel hierarchy. Each thread has its own
on-chip registers which are fast and off-chip local memory,
which is quite slow. Per block there is a shared memory.
Threads within a block cooperate via this memory which is
on-chip and very fast. If more than one block is executed
in parallel then the shared memory is equally split between
them. The whole grid—all blocks and threads within them—
have access to the off-chip global memory. The latter is large
(up to 4 GB), but slow. The host has read and write access
to the global memory (Video RAM, or VRAM), but cannot
access the other memories (registers, local, shared). Thus, as
such, global memory is used for communication between the
host and the kernel. Threads within a block can communicate
also via light-weight synchronization barriers.
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3.3 GPU architecture and CUDA execution model

GPU architecture consists of a set of multiprocessors units
called streaming multiprocessors (SMs). Each SM contains
a set of processor cores called streaming processors (SPs).
The NVIDIA GeForce GTX280, which we are using for the
experiments in this paper, has 30 SMs each consisting of 8
SPs, which gives a total of 240 SPs.

Analogously with the memory model, there is a similar
correspondence between the CUDA logical (programming)
hierarchy and the physical (hardware) hierarchy of the GPU.
Each thread is assigned to one processor (SP), whereas sev-
eral threads can be executed on the same SP. Similarly, each
block is mapped to one multiprocessor (SM), whereas each
multiprocessor can execute several blocks. The logical ker-
nel architecture allows flexibility: the GPU can schedule the
blocks of the kernel depending on the concrete hardware
architecture in an optimal way which is completely transpar-
ent for the user. Each multiprocessor performs computations
in single instruction multiple threads (SIMT) manner, which
means that each thread is executed independently with its
own instruction address and local state (registers and local
memory).

As already mentioned, threads are executed by the SPs
and thread blocks are executed on the SMs. Each block is
assigned to the same processor throughout the execution,
i.e., it does not migrate. The number of blocks that can be
physically executed in parallel on the same multiprocessor is
limited by the number of registers and the amount of shared
memory. Only one kernel at a time is executed per GPU.

3.4 GPU programming specifics

Due to the above described specific logical and physi-
cal architectures, GPU programs often require optimization
techniques which are quite different compared to the multi-
core and distributed parallel programming contexts. These
idiosyncrasies of the GPU programming are mainly visible
in the optimization of memory latencies, synchronization,
thread mapping, the data layout in the memory, and data
reuse.

Communication with the off-chip device memory is rel-
atively slow compared to the enormous peak computational
power. This is usually the main performance bottleneck. To
fully exploit the capacity of the GPU parallelism this mem-
ory latency must be minimized. Another issue that can lead
to a performance degradation is unnecessary synchroniza-
tion between thread blocks. The inter-thread communication
within a block is cheap via the fast shared memory, but the
accesses to the global and local memories are more than hun-
dred times slower.

Unlike the CPU threads, the GPU threads are very light-
weight with negligible overhead of creation and switching.
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This allows GPUs to use thousands of threads whereas
multi-core CPUs use only a few. Usually more threads and
blocks are created than the number of SPs and SMs, respec-
tively, which allows GPU to maximally use the capacity via
smart scheduling—while some threads/blocks are waiting for
data, the others which have their data ready are assigned for
execution. Thus, another way to maximize the parallelism
is by optimizing the thread mapping. This is often tightly
coupled with the optimization of the memory access. One
should strive towards an alignment of the data in the memory
such that threads of the same block access memory locations
which are as close as possible. In this case we have so-called
coalesced accesses. Thus, threads that access physically close
memory locations should be grouped together such that they
can be provided data with the same memory access. Finally,
in order to minimize the access to the slow global memory,
one should exploit data reuse. The parts of the computa-
tion are localized to thread blocks which are synchronized as
loosely as possible. These threads use local data as much as
possible and the global results are written only at the end of
the computation.

4 Matrix—vector multiplication and solving systems
of linear equations on GPU

To speed up the algorithms we replace the sequential matrix—
vector multiplication algorithm with a parallel one, which is
adapted to run on GPU. In this section we describe our par-
allel algorithms which are derived from the Jacobi algorithm
for solving linear equations. These algorithms were used for
both bounded and unbounded until, i.e., also for solving sys-
tems of linear equations.

4.1 Jacobi iterations

As mentioned in Sect. 2 for model checking DTMCs, Jacobi
iteration method is one option to solve the set of linear equa-
tions we have derived for until (U). Each iteration in the Jacobi
algorithm involves a matrix—vector multiplication. Let n be
the size of the state space, which determines the dimension
n x n of the matrix to be iterated.

The formula of Jacobi for solving Ax = b iteratively for
an n X n matrix A = (a;;)o<i,j<n—1 and a current vector

x* is

X =1/ai - [ bi =D ayxk ), forief0,....n—1).
J#

For better readability (and faster implementation), we may
extract the diagonal elements and invert them prior to apply-
ing the formula. Setting D; = 1/a;;,i € {0, ..., n — 1} then
yields
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=,

b; —Za,-,-x.’; , forie{0,....,n—1}.
J#i

The sufficient condition for Jacobi iteration to converge is
that the magnitude of the largest eigenvalue (spectral radius)
of matrix D~'(A — D) is bounded by value 1. Fortunately,
the Perron—Frobenius theorem asserts that the largest eigen-
value of a (strictly positive) stochastic matrix is equal to 1 and
all other eigenvalues are smaller than 1, so that limy_, » Ak
exists. In the worst case, the number of iterations can be expo-
nential in the size of the state space but in practice the number
of iterations k until conversion to some sufficiently small €
according to a termination criteria, like max; |x lk —xf +1 | <e,
is often moderate [42].

4.2 Sparse matrix representation

The size of the matrix is © (n2), but for sparse models that
usually appear in practice it can be compressed. Such matrix
compaction is a standard technique used for probabilistic
model checking and to this end special structures are used.
In the algorithms that we present in the sequel we assume
the so called modified compressed sparse row/column for-
mat [15]. We illustrate this format on the sparse transition
probability matrix P given below:

row 0 0 1 1 2 2 2 3 4
col 2 4 2 3 0 3 4 0 0
non-zero 0.7 0.1 0.01 0.99 0.3 0.58  0.12 1 0.5

The above matrix contains only the non-zero elements of P.
The arrays labeled row, col, and non-zero contain the row
and column indices, and the values of the non-zero elements,
respectively. More formally, for all 7 of the index range of the
arrays, non-zero, = P(row,, col,). Obviously, this is already
an optimized format compared to the standard full matrix
representation. Still, one can save even more space as shown
in the table below, which is, in fact, the above mentioned
modified compressed sparse row/column format:

rsize 2 2 3 1 1
col 2 4 2 3 0 3 4 0 0
non-zero 0.7 0.1 0.01 0.99 0.3 0.58  0.12 1 0.5

The difference with the previous representation is only in the
top array rsize. Instead of the row indices, this array contains
the row sizes, i.e., rsize; contains the number of non-zero
elements in row i of P. To extract row i of the original matrix
P, we take the elements

non'zer()rs[arti Yoo ey non-Zerorstarti+rsizei_l

where rstart; = Z;(;}) rsizeg.

4.3 Algorithm implementation

The pseudo code of the sequential Jacobi algorithm that
implements the aforementioned recurrent formula and which
uses the compression given above is shown in Algorithm 1.

Algorithm 1 Jacobi iteration with row compression, as
implemented in PRISM.

1: k=0

2: Terminate := false

3: while (not Terminate and k < maxy) do

4: h:=0;

5. foralli:=0...ndo
6: d := b;;

7: l:=h;

8: h =1+ rsize; — 1;
9: forall j =/...hdo

10: d=d — (nan—zemj ~x§01j);
11: d:=d- D

12: xf“ =d,

13:  Terminate := true

14: foralli :=0...ndo

15: if [x*T! — x| > € then
16: Terminate = false
17: k:=k+1;

The iterations are repeated until a satisfactory precision is
achieved or the maximal number of iterations maxy is over-
stepped. In lines 6-8 (an element of) vector b is copied into
the auxiliary variable d and the lower and upper bounds for
the indices of the elements in array non-zero that correspond
to row i are computed. In the for loop the product of row i and
the result of the previous iteration, vector xk, s computed.
The new result is recorded in variable x**1.

Note that, since we are not interested in the intermediate
results, only two vectors are needed: one, x, to store x*, and
another, x’, that corresponds to x**1 the result of the current
iteration. After each iteration the contents of x and x’ are
swapped, to reflect the status of x’, which becomes the result
of the previous iteration. We will use this observation to save
space in the parallel implementation of the algorithm given
below.

In lines 13—16 the termination condition is computed, i.e.,
it is checked if sufficient precision is achieved. We assume
that vector x is initialized appropriately before the algorithm
is started.

Due to the fact that the iterations have to be performed
sequentially the matrix—vector multiplication is the part to
be distributed. As a feature of the algorithm (that contributed
most to the speedup) the comparison of the two solution vec-
tors, x and x’ in this case, is done in parallel. The GPU version
of the Jacobi algorithm is given in Algorithms 2 and 3.

Algorithm 2, running on the CPU, copies vectors non-zero
and col from the matrix representation, together with vectors

@ Springer



28

D. Bosnacki et al.

Algorithm 2 JacobiCPU: CPU part of the Jacobi iteration.

Require: Devices = number of GPUs;

1: allocate memory for x’

. allocate memory for col, non-zero, b, x, €, n and copy

. allocate memory for TerminateGPU to be shared

: rstarty = 0;

cfori =1...|rsize| + 1 do

rstart; = rstart;_1 + rsize;_1;

. allocate memory for rstartGPU, copy rstart to rstartGPU
k:=0

:ford =0...Devices — 1 do

10:  Terminate, := false

L1: blocks = (n/Devices)/BlockSize + 1;

12: while (not /\QIEOD CVICES Terminatey and k < maxy) do
13: foralld =0...Devices — 1 do in parallel

14: if Devices > 1 then

15: copy x to VRAM

16: peg = d * (n/Devices);

17: Tend = (d + 1) % (n/Devices);

C PN A WL

18: < << blocks,BlockSize>>>JacobiKernel(rpeq, rena));
19: copy TerminateGPU to Terminate;

20: if Devices > 1 then

21: copy x’ to RAM

22:  Swap(x,x’)

23: k=k+1;

24: copy x’ to RAM;;

x and b, and constants € and r, to the global memory (VRAM)
and allocates space for the vector x”. Having done this, space
for the Terminate variable is allocated in the VRAM. Vari-
able rstart defines the starting point of a row in the matrix
array. The conversion from rsize to rstart is needed to let each
thread find the starting point of a row immediately. (In fact,
implicitly we use a new matrix representation where rsize
is replaced with rstart.) Array rstart is copied to the global
memory variable rstartGPU. To specify the number of blocks
and the size of a block CUDA supports additional parame-
ters in front of the kernel (<< < number of blocks, block
size >>>). Here the grid is defined with n/BlockSize + 1
blocks,? and a fixed BlockSize. After the multiplication and
comparison step on the GPU the Terminate variable is copied
back and checked. This copy statement serves also as a syn-
chronization barrier, since the CPU program waits until all
the threads of the GPU kernel have terminated before copy-
ing the variable from the GPU global memory. If another
iteration is needed x and x’ are swapped.> After all iterations
the result is copied back from global memory to RAM.
JacobiKernel shown in Algorithm 3 is the so-called kernel
that operates on the GPU. Local variables d, [, h, i and j are
located in the local registers and they are not shared between
threads. The other variables reside in the global memory.
The result is first computed in d (locally in each thread) and
then written to the global memory (line 11). This approach

2 If BlockSize is a divisor of n threads in the last block execute only
the first line of the kernel.

3 Since C operates on pointers, only these are swapped in this step.
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Algorithm 3 JacobiKernel: Jacobi iteration with row
compression on the GPU.

Require: rp,¢ beginning row for this kernel;
Require: r,,, ending row for this kernel;

1: i := Blockld - BlockSize + Threadld,;
2: if (i = 0) then

3:  TerminateGPU := true;

40 =1+ Tpeg;

5:if (i < reng) then

6: d:=b;;

7. | :=rstartGPU;;

8  h:=rstartGPU;4+| — 1;

9: forallj=1/...hdo

10: d:=d— "(’”'Zemj—rstartGPU,beg 'xcol,;
11: d:=d- Dy,
12:  x[:=d;

13:if |x; — x]| > € then
14: TerminateGPU .= false

minimizes the access to the global memory from threads. At
invocation time each thread computes the row i of the matrix
that it will handle. This is feasible because each thread knows
its Threadld, and the Blockld of its block. Note that the size of
the block (BlockSize) is also available to each thread. Based
on value i only one thread (the first one in the first block)
sets the variable TerminateGPU to true. Recall, this variable
is located in the global memory, and it is shared between all
threads in all blocks. Now, each thread reads three values
from the global memory (line 5 to 7), here we profit from
coalescing done by the GPU memory controller. It is able
to detect neighboring VRAM access and combine it. This
means, if thread i accesses 2 bytes at b; and thread i + 1
accesses 2 bytes at b; 41 the controller fetches 4 bytes at b;
and divides the data to serve each thread its chunk. In each
iteration of the for loop an elementary multiplication is done.
Due to the compressed matrix representation a double indi-
rect access is needed here. As in the original algorithm the
result is multiplied with the diagonal value D; and stored
in the new solution vector x’. Finally, each thread checks if
another iteration is needed and consequently sets the variable
TerminateGPU to FALSE. Concurrent writes are resolved by
the GPU memory controller.

4.4 Algorithm using backward segmented scan

An alternative to the approach given in Sect. 4.3 for paral-
lelizing the Jacobi iterations, is by using a so-called seg-
mented scan algorithm, as e.g. provided by CUDPP, the
CUDA Data Parallel Primitives Library [17]. In that case,
each iteration includes several steps performed on the GPU.
First, the product matrix is calculated, which is obtained by
simply multiplying each element in the original matrix with
the corresponding element in the vector. Second, a parallel
segmented scan is performed, in which for each row, the sum
of all the entries in the product matrix is determined. Finally,
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in a third parallel step, the entries representing the sums are
extracted from the matrix, subtracted from the corresponding
entries in the vector b, and multiplied with the corresponding
entries in the inverted diagonal. The benefit of using such an
approach is that many aspects of the calculation are highly
parallelizable, both the multiplications and the additions. In
contrast to algorithms proposed in e.g. [40], we integrate the
parallel matrix—vector multiplication in an iterative method
to solve linear equations. In that setting, the third parallel step
needs to be different from the one used in the multiplication
function provided by CUDPP; on top of extracting the right
entries, our function completes the calculation of a Jacobi
iteration.

We developed a parallel Jacobi algorithm for the GPU
using the backward segmented scan function provided by
CUDPP. This function computes the sums of all indicated
parts of a given array in parallel, and places the results at
the start of these parts. Hence, when providing the array rep-
resenting a matrix, and indicating where each row starts by
using a flags array, which can be derived in a parallel algo-
rithm from the rstart array, the function computes all row
sums.

Algorithm 4 describes the CPU part of the algorithm; first,
anarray f is constructed based on rstart as computed in Algo-
rithm 2, the only difference being that forarow i, f; = —1if
the row only consists of zero entries. Another notable differ-
ence from Algorithm 2 is the level of parallelism; the product
matrix is computed in the MultKernel function (Algorithm 5),
which can be performed on at most |[non-zero| threads instead
of n threads. In Algorithm 5, furthermore, we allow each
thread to compute the products for at most EltsPerThread
different matrix entries.* The intuition behind this restric-
tion is that we try to achieve that as much as possible SPs
receive their data with one memory access. Once the product
matrix is calculated, the row sums are computed in a back-
ward, inclusive segmented scan. Technical details concerning
this step can be found in e.g. [40]. We illustrate the function
with an example. Consider the prod array displayed in the
following table, and an accompanying flags array indicating
the starting points of the rows with “T”, i.e. the borders of
the segments. In a backward, inclusive segmented scan, all
elements in a segment are added, and the result is written at
the segment starting point. In contrast to this, in an exclusive
segmented scan, the final entry in a segment is not considered,
and in a forward segmented scan, the result is written at the
final position of a segment. A suitable flags array can be com-
puted in a parallel algorithm, and in our case only needs to be
computed once before the iterations are performed. In Algo-
rithm 4, this is done in the function setFlags; all positions
indicated by rstart are marked with “T” in the flags array.

4 The CUDPP developers suggest EltsPerThread = 8, denoting the
number of SPs in one MP.

prod 4 1 6 3 8 6 1 2 5
faggr T F F T F T F F F
result 11 7 6 11 8 14 8 7 5

Having obtained the result of the segmented scan, we com-
plete the iteration with the Gather function (Algorithm 6),
which is run on at most n threads; for each row i, the right
entry from prod is extracted, if available, using the index pro-
vided by f;. Of course, the sum equals O if row i only contains
zero entries. We subtract the result from b;, and multiply this
with D;. Also here, we allow each thread to process at most
EltsPerThread entries, and TerminateGPU is updated after
each entry computation to reflect the termination status.

Algorithm 4 JacobiCPU_SScan: The CPU part of the Jacobi
iteration with backward segmented scan, for unbounded until
computation.

. allocate memory for x'
. allocate memory for col, non-zero, b, x, €, n, prod, flags,
: and copy
. allocate memory for TerminateGPU to be shared
cfori=0...n—1do
if rstart; = rstart; 4 then
fi=-L
else
fi = rstart;;
. allocate memory for fGPU, copy fto fGPU
k=0
: Terminate := false
: blocks Rows = n/(BlockSize x EltsPerThread) + 1;
: blocks Elts=|non-zero|/(BlockSize x Elts PerThread) + 1;
. << < blocksRows,BlockSize >>> set Flags(rstart, flags);
: while (not Terminate and k < maxy) do
prod = <<< blocksElts, BlockSize >>>MultKernel();
prod = <<< blocks Rows, BlockSize >>>
cudppSegmentedScan(prod);
<<< blocks Rows, BlockSize>>>Gather(prod);
copy TerminateGPU to Terminate;
Swap(x,x")
k=k+1;
: copy x' to RAM,

So®XRoUEwN S
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Algorithm 5 MultKernel: Computation of product matrix

on the GPU.

1: i := Blockld - BlockSize + Threadld,
2: forall j =0...EltsPerThread — 1 do

3: if (i < |non-zero|) then

4 prod; := non-zero; “Xeol;s

5 i :=1i+4 BlockSize;

4.5 Multi-card exploration

In SLI or Tesla technologies more than one graphics card
can be used for computation. We explain an extension of the
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Algorithm 6 Gather: Extracting the final results for a Jacobi
iteration on the GPU.

1: i := Blockld - BlockSize + Threadld,

2: TerminateGPU := true;

3: forall j =0...EltsPerThread — 1 do

4: if (i < n) then

5: d := b;;

6: if fGPU; # —1 then

7 d:=d—prodg;

8: d:=d- Dj,

9: Xl i=d;

10: if |x; — x/| > € then

11: TerminateGPU = false;

12:  i:=1i+ BlockSize;

above setting to such a multi-card scenario. The core idea
exemplified in a two-card setting is to split the matrix, in
an upper and lower half. Here we gain global memory on
the graphics card, as only half of the matrix has to be stored
on one card. Then we multiply each part with the vector on
a separate GPU. Each GPU has its own copy of the vec-
tor. Thus, each GPU computes one half of the vector—the
first one the elements in the range O, ..., N/2 and the sec-
ond one within the range N/2, ..., N. In each iteration of
the outer loop (done by the CPU), i.e, after GPUs are done,
we join the two halves together, update and copy the vector
back to the GPU. The main difference between a single-card
run and a multi-card scenario is the copying of the solution
vector. While in a single-card scenario only the pointers to
x and x" are swapped, in a multi-card scenario both cards
have to be synchronized and each card have to receive the
half of the solution computed by the other one. The termi-
nation condition remains a conjunct of the two termination
conditions.

We may expect a slowdown that an extra copying of the
vector could cause, but due to the increase of memory we
expect larger problem instances to be validated. One addi-
tionally nice feature of the above scheme is that it scales
seamlessly for an arbitrary number of GPUs.

5 Experiments

We conducted two sets of experiments, running on differ-
ent machines to measure the impact of an additional graph-
ics card. The cards are not identical but have the similar
technical specifications. On each machine three protocols
of different complexities were verified. In the second sys-
tem an additional graphics card is available, so an empir-
ical study of the multi-GPU algorithm is conducted. In
the following three subsections we will describe the used
hardware, the verified protocols and the achieved results in
detail.
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5.1 Used hardware

The experiments for the 32-bit version of our model checker
were executed on (one core of) a personal computer with an
AMD Athlon(tm) 64 X2 Dual-Core Processor 3800+ run-
ning at 2 GHz with 4 GB of RAM. This system includes a
MSI N280GTX T20G graphic card with 1 GB global mem-
ory and 240 cores running at 0.6 GHz plugged into an PCI
Express slot. The experiments for the 64-bit version of our
model checker were executed on (one core of) a personal
computer with Intel Core i7 CPU 920 running at 2.67 GHz
providing 8 CPU cores. Here we used two NVIDIA geForce
285 GTX (MSI) graphics card with 1 GB VRAM and 240
streaming processors each running at 0.6 GHz. In this system
RAM amounts to 12 GB.

The operating system in use on the 32 bit system was
SUSE 11 with CUDA 2.1 SDK and the NVIDIA driver ver-
sion 177.13. On the 64 bit system we use Ubuntu 9.04 with
CUDA 2.2 SDK and the NVIDIA driver version 195.36.24.

The GTX200 chip on all cards contains 10 texture-pro-
cessing clusters (TPCs). Each TPC consists of 3 streaming
multiprocessors (SMs) and each SM includes 8 streaming
processors (SPs) and 1 double-precision unit. In total, it has
240 SPs executing the threads in parallel. Maximum block
size for this GPU is 512. Given a grid, the TPCs divide
the blocks on its SMs, and each SM controls at most 1024
threads, which are run on the 8 SPs.

In all tables of this section n denotes the number of rows
(columns) of the matrix, “iterations” denotes the number of
iterations of the Jacobi method, “seq. time” and “par. time”
denote the runtimes of the standard (sequential) version of
PRISM and our parallel implementation extension of the tool,
respectively. All times are given in seconds. The speedup is
computed as the quotient between the sequential and parallel
runtimes. Due to the different clock rates of the systems the
theoretical speedup factor is 240 % 0.6 GHz/2 GHz = 72
and 240 x 0.6 GHz/2.67 GHz = 54 however due to mem-
ory latency on both sides such a factor is not to be expected
in complex algorithms. All tables are partitioned into two
parts, the first one showing the results for the 32-bit system,
the second one for the 64-bit system. The first half does not
contain the results for the multi-GPU implementation since
a second GPU was not available in this system.

5.2 Verified protocols

We verified three protocols, herman, cluster, and
tandem, shipped with the source of PRISM. The protocols
were chosen due to their scalability and the possibility to
verify properties whose checking boils down to linear alge-
braic operations. Different protocols show different speedups
achieved by the GPU, because the Jacobi iterations are only
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Table 1 Detailed information on the protocol properties

Table 2 Results for the herman protocol

Protocol  Instance n Iterations GPU mem (MB) Inst. Seq. time Par. time Factor 2 GPUs Factor
herman 15 32,768 245 55 15 22.430 21.495 1.04

herman 17 131,072 308 495 17 304.108 206.174 1.48

cluster 122 542,676 1,077 21 15 10.544 12.837 0.82 12.135 0.87
cluster 230 1,917,300 2,724 76 17 121.766 140.248 0.87 93.350 1.30
cluster 320 3,704,340 5,107 146

cluster 410 6,074,580 11,488 240

cluster 446 7,185,972 18,907 284 The third case study tandem is based on a simple tan-
cluster 464 7,776,660 23,932 308 dem queueing network [29]. The model is represented as
cluster 500 9,028,020 28,123 694 a CTMC which consists of a M/Cox(2)/1-queue sequen-
cluster 572 11,810,676 28,437 908 tially composed with a M/M/1-queue. We use ¢ to denote
tandem 255 130,816 4212 4 the capacity of the queues. We verified property 1 from the
tandem S 523,776 8,498 7 corresponding CSL property file (R=2 [ S ). For this
tandem 1,023 2,096,128 16,326 71 protocol Table 1 denotes the largest sparsity allowing a matrix
tandem 2,047 8,386,560 24,141 287 with 25,758,253 lines to occupy 884 MB of graphics card
tandem 3,070 18,859,011 31,209 647 memory. Constant 7" was set to 1 for all experiments and
tandem 3,588 25,758,253 34,638 884 parameter ¢ was scaled as shown in Table 1.

tandem 4,095 33,550,336 37,931 1,535

a part of the model checking algorithms, while the results
show the time for the complete run.

The first protocol called herman is the Herman’s
self-stabilizing algorithm [28]. The protocol operates syn-
chronously on an oriented ring topology, i.e., the communi-
cation is unidirectional. The instance number denotes the
number of processes in the ring, which must be odd.
The underlying model is a DTMC. We verified the PCTL
property 3 from the property file herman.pctl
(R=? [F ‘‘stable’’{'‘k_tokens’’} {max}]).
Table 1 identifies this protocol as the one with the fewest
lines and iterations, but also reveals the matrix of being of the
largest density showing that 131,072 lines take up 495 MB
of the GPU memory.

The second case study is cluster [27] which models
communication within a cluster of workstations. The system
comprises two sub-clusters with N workstations in each of
them, connected in a star topology. The switches connecting
each sub-cluster are joined by a central backbone. All com-
ponents can break down and there is a single repair unit to
service all components. The underlying model is CTMC and
the checked CSL property is property 1 from the correspond-
ing property file (S=? [ ‘‘premium’’ ]).In this case
study a sparser matrix was generated, which in turn needed
more iterations to converge then the herman protocol. In
the largest instance (N = 572) checked by the GPU, PRISM
generates a matrix with 11,810,676 lines and iterates this
matrix 28,437 times. It was even necessary to increase the
maximum number of iterations, set by default to 10,000, to
obtain a solution.

5.3 Empirical results

Table 2 shows the results of the verification using our imple-
mentation of the algorithm described in Sect. 4.3. Even
though the number of iterations is rather small compared
to the other models, the GPU achieves a speedup factor of
approx. 1.5, and 0.9 on the 64-bit system. Since everything
beyond multiplication of the matrix and vector is done on the
CPU, we have not expected a larger speedup. Unfortunately,
it is not possible to scale up this model, due to the mem-
ory consumption being too high. The next possible instance
(herman19 .pm)consumes more then 2 GB. This table also
reveals the differences between the used systems, while the
clock time of the CPU differs only by about 30% the 64-
bit system is more then twice as fast as the 32 bit one in
the sequential mode. Here the GPU even slows down the
verification process giving a factor of only 0.9. Due to the
large density of the matrix adding a second GPU to the com-
putation achieves a speedup in the larger instance, here the
copying process, dominating the experiment, can be done in
parallel to both GPUs, giving more time for the computation.

Figure 1 shows that GPU performs significantly better,
Table 3 contains some exact numbers for chosen instances
of the cluster protocol. The largest speedup reaches a
factor of more then 9 on the 32-bit system and 6.6 on the
other. Even for smaller instances, the GPU exceeds factor 2.
In this protocol, as well as in the next one, for large matrices
we observed a slight deterioration of the performance of the
GPU implementation for which, for the time being, we could
not find a clear explanation. One plausible hypothesis would
be that after some threshold number of threads GPU cannot
profit any more from smart scheduling to hide the memory
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Fig. 1 Verification times for several instances of the cluster proto-
col on the 32-bit system. The x-axis shows the value of the parameter
N. Speedup is computed as described in the text as a quotient between
the runtime of standard PRISM and the runtime of our GPU extension
of the tool

Table 4 Results from the verification of the tandem protocol

c Seq. time Par. time Factor 2 GPUs Factor
255 26.99 3.63 7.4

511 190.26 17.80 10.7

1,023 1,360.58 103.15 13.2

2,047 9,672.19 516.33 18.7

3,070  25,960.39 1,502.85 17.3

3,588  33,820.21 2,435.41 13.9

4,095  76,311.59 0.0.m .

255 14.96 3.56 4.20 6.79 2.20
511 98.81 11.42 8.65 27.89 3.54
1,023 658.78 65.51 10.06 166.27 3.97
2,047 3,642.62 384.68 9.47 946.76 3.85
3,070  10,049.93 866.27 11.60 2,510.67 4.00
3,588  15,114.93 1,319.13 11.46 3,794.79 3.98
4,095  22,174.01 0.0.m 5,386.44 4.12

Table 3 Results for the cluster protocol. Parameter N is used to
scale the protocol

N Seq. time Par. time Factor 2 GPUs Factor
122 31.469 8.855 3.55

230 260.440 54.817 4.75

320 931.515 165.179 5.63

410 3,339.307 445.297 7.49

446 6,440.959 767.835 8.38

464 8,739.750 952.817 9.17

500  11,516.716  1,458.609 7.89

572 15,576.977  1,976.576 7.88 .

122 16.400 6.906 2.37 8.620 1.90
230 135.269 34.732 3.89 46.685 2.90
320 469.827 101.664 4.62 141.456 332
410 1,649.663 286.014 5.77 429.626 3.84
446 3,143.487 512.708 6.13 785.629 4.00
464 4,270.262 643.850 6.63 1,024.335 4.17
500 4,865.687  1,027.095 4.73 1,470.256 3.30

572 6,630.097  1,386.101 4.78 1,964.418 3.38

The global memory usage (denoted as GPU mem) is in MB

latencies. This experiment shows the costs of synchronizing
the graphics cards by the host. The speedup converges to
about 4 and slows down the computation compared to the
usage of one GPU.

In the tandem protocol the best speedup was recorded.
For the best instance (¢ = 2047) PRISM generates a matrix
with 8,386,560 rows, which is iterated 24,141 times. For this
operation standard PRISM needs 9,672 s while our parallel
implementation only needs 516 seconds, scoring a maximal
speedup of a factor 18.7 on the 32 bit system. Even on the
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The constant ¢ is used to scale the protocol. Global memory usage,
shown as GPU mem, is given in MB (0.0.m denotes out of global
memory)

faster 64 bit system the speedup is over one order of magni-
tude for all larger instances. Here the effect of synchronizing
is even more obvious. Using both GPUs a speedup of a fac-
tor larger than four seems not achievable despite the fact that
larger instances can be checked (Table 4).

As mentioned above, 8 SPs share one double precision
unit, but each SP has its own single precision unit. Hence,
our hypothesis was that reducing the precision from double
to single should bring a significant speedup. The code of
PRISM was modified to support single precision floats for
examining the effect. As can be seen in Fig. 2 the hypothesis
was wrong. The time per iteration in double precision mode
is nearly the same as the single precision mode. The graph
clearly shows that the GPU is able to hide the latency which
occurs when a thread is waiting for the double precision unit
by letting the SPs work on other threads. Nevertheless, it is
important to note that the GPU with single precision arithme-
tic was able to verify larger instances of the protocol, given
that the floating point numbers consumed less memory.

It should be noted that in all case studies we also tried the
MTBDD and hybrid representations of the models, which
are an option in PRISM, but in all cases the runtimes were
consistently slower than the ones with the sparse matrix
representation, which are shown in the tables.

Table 5 presents the results obtained by verifying the pro-
tocols with an implementation of the GPU-based Jacobi algo-
rithm with backward inclusive segmented scan, as described
in Sect. 4.4. For this set of experiments the 64-bit system
was used. We observe that speedups up to 15.1 are realized,
and that it works faster than our other GPU-based Jacobi
algorithm for the herman and tandem protocols. How-
ever, the algorithm tends to require more GPU memory.
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Fig. 2 Time per iteration on the 32-bit system in the tandem proto-
col. The CPU is significantly slower then the GPU operating in single
or double precision. Reducing the precision has nearly no effect on the
speed

Table 5 Results from the verification of the herman, cluster, and
tandem protocol, respectively, using the GPU-based Jacobi algorithm
with backward inclusive segmented scan

Protocol Instance Par. time Factor GPU mem. (MB)
herman 15 3.99 2.6 164
cluster 122 5.32 3.1 39
cluster 230 34.40 3.9 140
cluster 320 110.59 4.2 270
cluster 410 339.33 4.9 443
cluster 446 606.68 5.2 525
cluster 464 807.42 5.3 568
tandem 255 1.71 8.7 7
tandem 511 7.42 13.3 29
tandem 1,023 43.61 15.1 119
tandem 2,047 279.65 13.0 479

Global memory usage, shown as GPU mem, is given in MB, sequential
times for factor computation given in tables above

The reason for this is that the segmented scan algorithm
of CUDPP needs, in addition to the array of non-zero ele-
ments, a second array of equal size, filled with flags indicat-
ing whether a given position represents the start of a matrix
row or not. In practice, this means that |non-zero| unsigned
integers need to be stored, in addition to the requirements
shared with the other GPU algorithm. The biggest gain in
speed, compared to the other GPU algorithm, is obtained by
the more rigorously parallelized construction of the product
matrix, plus the employment of the segmented scan. How-
ever, for the cluster protocol, this does not pay off. The
reason for this seems to be related to the absence of zeros
in the intermediate vector results. In the herman 15 cases
there are always some zeros present. In the tandem protocol
cases, where the biggest gains can be observed, more than
half the elements in the vectors are zeros. Finally, the inter-

mediate results for the cluster protocol cases contain no
zeros at all. Besides this, we could e.g. detect no fundamen-
tal differences (size, sparsity etc.) between the matrices of
the different protocols, hence these cannot be the source of
the different speedup results.

We believe that the presence (or absence) of zeros in the
intermediate vectors has this effect on the computation time
due to the way the segmented scan works. It seems that the
scan algorithm can efficiently avoid computation when zeros
are involved, while in the more naive approach of our other
GPU algorithm, this can only be done to a lesser extent. On
the other hand, if there are no zeros present, the scan turns
out to be slower than simply adding up all the elements in a
single row in the product matrix.

For immediate future work, we plan to investigate this
more rigorously, and consider possibilities of reducing the
memory requirements of the segmented scan method in the
context of an iterative method such as Jacobi. For this, one
possibility is to develop and implement a new segmented
scan algorithm, based on existing ones.

6 Conclusions

In this paper we introduced GPU probabilistic/stochastic
model checking as a novel concept. To this end we described
two parallel versions of Jacobi’s method for solving linear
equations, which is the main core of the algorithms for model
checking discrete- and continuous-time Markov chains, i.e.,
the corresponding logics PCTL and CSL. The algorithms
were implemented on top of the probabilistic model checker
PRISM. Their efficiency and the advantages of the GPU prob-
abilistic model checking in general were illustrated on sev-
eral case studies. Speedups of up to 18 times compared to
the sequential implementation of PRISM were achieved. On
a recent system the speedup still reaches a factor of 15.

We believe that our work opens a very promising research
avenue on GPU model checking in general. To stay relevant
for the industry, the area has to keep pace with the new tech-
nological trends. “Model checking for masses” gets tremen-
dous opportunities because of the “parallelism for masses”.
To this end model checking algorithms that are designed for
the verification of parallel systems and exploit the full power
of the new parallel hardware will be needed.

In the future we intend to experiment with other matrix—
vector algorithms, like:

— The Concurrent Number Cruncher library (CN C).> This
provides a Jacobi-preconditioned Conjugate Gradient

algorithm for matrix—vector multiplication.

3 http://alice.loria.fr/index php/software/4-library/34-concurrent-
number-cruncher.html.
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— Optimized sparse-matrix—vector multiplication for the
GPU as proposed by IBM.°
—  Adaption of the Gauss—Seidel algorithm.”

The Jacobi method does not converge for all linear equa-
tion systems. This can be resolved by introducing an under-
relaxation parameter in the standard Jacobi. Furthermore, it
may also be possible to accelerate the convergence of the
standard Jacobi method by using an over-relaxation parame-
ter. (The resulting method is known as Jacobi over-relaxation
or JOR method).

Finally, a fine grained theoretical model of the GPU
devices would be of very helpful in the development and
analysis of GPU algorithms.
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