
Int J Softw Tools Technol Transfer (2010) 12:211–230
DOI 10.1007/s10009-010-0149-7

GRABATS 2008

Experimental assessment of combining pattern matching
strategies with VIATRA2

Ákos Horváth · Gábor Bergmann · István Ráth ·
Dániel Varró

Published online: 11 April 2010
© Springer-Verlag 2010

Abstract As recent tool contests demonstrated graph
transformation tools scale up to handle very large models for
model transformations, thanks to recent advances in graph
pattern matching techniques. In this paper, we assess the per-
formance and capabilities of the Viatra2 model transforma-
tion framework by implementing the AntWorld case study of
the GraBats 2008 graph transformation tool contest. First,
we extend initial measurements carried out in Bergmann
et al. (Proceedings of ICMT ’09, 2nd International Confer-
ence on Model Transformation, Springer, Berlin, 2009) to
assess the effects of combining local search-based and incre-
mental pattern matching strategies. Moreover, we also assess
the performance characteristics of various language features
of Viatra2 as well as the cost of certain model manipula-
tion operations. We observe by experimentation how
Viatra2 can scale up to large iteratively growing model sizes
and focus on execution time and memory consumption. We
believe that the results obtained from the benchmark example
can set the course for further performance enhancement of
Viatra2 and other future model transformation frameworks.

Keywords Graph pattern matching ·
Graph transformation · Performance analysis ·
Model simulation

This work was partially supported by EU projects SENSORIA
(IST-3-016004) and SecureChange (ICT-FET-231101).

Á. Horváth (B) · G. Bergmann · I. Ráth · D. Varró
Department of Measurement and Information Systems,
Budapest University of Technology and Economics,
Magyar tudósok krt. 2, Budapest 1117, Hungary
e-mail: ahorvath@mit.bme.hu

1 Introduction

Automated model transformations play an important role in
modern model-driven system engineering in order to query,
derive and manipulate large, industrial models. Since
such transformations are frequently integrated into design
environments, they need to provide short reaction time to
support software engineers.

Graph transformation (GT) [2] based tools have been fre-
quently used for specifying and executing complex model
transformations. In GT tools, graph patterns capture struc-
tural conditions and type constraints in a compact visual way.
At execution time, these conditions need to be evaluated by
graph pattern matching, which aims to retrieve one or all
matches of a given pattern to execute a transformation rule.

Benchmark measurements conducted at recent tool
contests [3,4] demonstrated that GT tools scale up for trans-
forming very large models, thanks to sophisticated, local
search-based graph pattern matching algorithms proposed in
transformation tools such as GrGEN.NET [5], FUJABA [6],
or Viatra2 [7]. As a commonality in all these approaches,
pattern matching is driven by a search plan, which provides
an optimal (or sufficiently good) ordering for traversing and
matching the nodes and edges of a graph pattern.

As an alternative, incremental pattern matching app-
roaches (INC) [8–12] have recently become a hot research
topic in the model transformation community. The basic idea
is to improve the execution time of the time-consuming pat-
tern matching phase by imposing additional memory con-
sumption. Essentially, the (partial or full) matches of graph
patterns are stored explicitly, and these match sets are updated
incrementally upon elementary model changes. While model
manipulation becomes slightly more complex, all matches of
a graph pattern can be retrieved in constant time, thus elimi-
nating the need for recomputing existing matches.

123

212 Á. Horváth et al.

The Viatra2 model transformation framework [7] sup-
ports both pattern matching strategies, which can be selected
separately for each graph pattern/transformation rule. While
initial measurements [13] implied that, in many scenarios,
the incremental pattern matching approach (of Viatra2)
significantly outperforms the local search-based approach
(of Viatra2), recent applications [14] revealed that avail-
able memory can be insufficient for caching match sets for
the incremental approach, especially, on an average desktop
computer.

A primary goal for the current paper is to investigate if
there are benefits in combining incremental and local
search-based pattern matching strategies using the AntWorld
benchmark [15]. This extends our initial investigations for the
problem [1] by carrying out a more systematic evaluation and
fine tuning for selecting the right strategy for the AntWorld
case study.

In addition, we also investigate the efficiency of (the imple-
mentation of) certain features of the Viatra2 language [16]
to support the transformation designer in using the appropri-
ate language constructs and to trigger further development
efforts. Then, we reason about the performance of core model
manipulation operations of the Viatra2 model space, and
apply these results to further optimization. Finally, we also
give some estimations on the complexity class of the case
study itself and suggest some improvements for future cases
for tool comparison.

The rest of the paper is structured as follows. Section 2
briefly introduces graph patterns, graph transformation rules,
and control structures as available in the Viatra2 transfor-
mation language. Then Sect. 3 introduces our solution to
the case study, while Sect. 4 focuses on the different pat-
tern matcher strategies provided by the Viatra2 framework.
We present our comparative benchmark results and analysis
along with our suggestions for improvement of Viatra2 and
the case study in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Background

In order to understand the concepts of Viatra2 graph trans-
formation environment, we give a brief overview of the meta-
modeling foundations and transformation language of this
framework.

2.1 Metamodeling foundations

The Viatra2 framework is based on the Visual and Precise
Metamodeling (VPM) [17] metamodeling approach, which
can support different metamodeling paradigms by supporting
(i) multi-level metamodeling with explicit and generalized
instance-of relations and (ii) dynamic typing of elements.

The VPM language consists of two basic elements: the
entity (a generalization of MOF package, class, or object)

Fig. 1 The AntWorld metamodel

and the relation (a generalization of MOF association end,
attribute, link end, slot). Entities represent basic concepts
of a (modeling) domain, while relations represent the rela-
tionships between other model elements. Furthermore, enti-
ties may also have an associated value which is a string that
contains application-specific data and generalization is sup-
ported by the use of explicit supertypeOf relations (similar
to the concept of UML).

In traditional graph transformation terms, entities can be
interpreted as nodes while relations are edges. Entities in
a metamodel define node types while entities in models are
simply referred to as nodes. In the paper, we use the Viatra2
terminology for models to avoid the overloading of terms
“node” and “edge”.

A simplified metamodel of the AntWorld case study used
in our experiments, represented in Viatra2, is shown in
Fig. 1. The entityField represents a field of AntWorld (grid
node in the original specification, but we use the term field
to avoid confusion); CornerField entities are fields that
are located on the axis, and the AntHill is the central field.
Fields are connected by paths. Each circular path formed by
circlePath relations connects the set of fields that were
created in a single round. Except for the anthill, each field has
a single outgoing returnPath relation pointing towards a
field in the previous circle; most fields have a single incom-
ing returnPath as well, but corner fields have three, and
the anthill has four.

Fields may be associated with an integer number of food
items or pheromones associated with them. Finally, a field
may contain two kinds of ants: SearcherAnt entities rep-
resent ants that do not carry food but are in search of a food
bundle, whileCarrierAnt entities represent ants that carry
a food item and are on their way to return to the anthill.

2.2 Graph patterns

The transformation language of Viatra2 (Viatra Textual
Command Language—VTCL [16]) consists of several

123

Combining pattern matching strategies with VIATRA2 213

Fig. 2 The AnyNeighborButHome graph pattern

constructs that together form an expressive language for
developing both model to model transformations and code
generators. Graph patterns (GP) define constraints and
conditions on models, graph transformation (GT) [2] rules
support the definition of elementary model manipulations,
while abstract state machine (ASM) [18] rules can be used
for the description of control structures.

Graph patterns are the atomic units of model transforma-
tions. They represent conditions (or constraints) that have to
be fulfilled by a part of the model space in order to execute
some manipulation steps on the model. The basic pattern
body contains model element and relationship definitions.

In VTCL, patterns may call other patterns using the find
keyword. This feature enables the reuse of existing patterns
as a part of a new (more complex) one. The semantics of
this reference is similar to that of Prolog clauses: the caller
pattern can be fulfilled only if their local constructs can be
matched, and if the called (or referenced) pattern is also ful-
filled. For more complex pattern specification, the VTCL
language also allows to define alternate (OR) pattern bodies
for a pattern, with a meaning that the pattern is fulfilled if
at least one of its bodies is fulfilled. A negative application
condition (NAC, defined by a negative subpattern following
the neg keyword) prescribes contextual conditions for the
original pattern which are forbidden in order to find a suc-
cessful match. Negative conditions can be embedded into
each other in an arbitrary depth (e.g. negations of negations),
where the expressiveness of such patterns converges to first
order logic [19].

As an example, the ants that are searching for food, but are
not attracted by a pheromone trace, use theanyNeighbor-
ButHome graph pattern to determine which field to move
to. This pattern, used to match neighboring fields (excluding
the AntHill) is shown in Fig. 2.

This pattern uses alternate pattern bodies to represent mov-
ing in the forward or reverse direction of a path relation
between Field1 and Field2. It also reuses the home pat-

Listing 1 Viatra2 source code for the anyNeighborButHome pattern

Fig. 3 Graph transformation rule for ants returning towards the hill

tern as its NAC to put the not AntHill type constraint on
Field2.

2.3 Graph transformation rules

Graph transformation (GT) [2] provides a high-level rule and
pattern-based manipulation language for graph models. In
VTCL, graph transformation rules may be specified by using
a precondition (or left-hand side—LHS) pattern determin-
ing the applicability of the rule, and a postcondition pattern
(or right-hand side—RHS) which declaratively specifies the
result model after rule application. Elements that are present
only in (the image of) the LHS are deleted, elements that are
present only in the RHS are created, and other model ele-
ments remain unchanged. Further actions can be initiated by
calling any ASM instructions within the action part of a
GT rule, e.g. to report debug information or to generate code.

For instance, the GT rule return defines how the ants
that are carrying food take a step towards the hill, as shown
in Fig. 3. The mechanism of leaving pheromones is omitted
here for the sake of brevity.

2.4 Model manipulation

The ASM language of Viatra2 also includes constructs to
directly manipulate models from ASM rules. It is important
to point out that in our solution to the case study, we have
opted to perform the model simulation entirely programmati-
cally, using ASM sequences (instead of declarative GT rules,

123

214 Á. Horváth et al.

Listing 2 VIATRA source code for graph transformation rules

Listing 3 Viatra2 source code for food grabbing

as shown above), but still relying on graph patterns for pre-
conditions.

The example code shown in Listing 3 demonstrates how
the sequence of grabbing a food item is defined using ASM
model manipulation constructs. First, the remaining amount
of food is calculated. If this is positive, the new value of the
food bundle is set accordingly; otherwise, the food bundle is
exhausted and must be deleted (also deleting implicitly all
edges pointing to-or-from the deleted element which in this
case is the hasFood edge connecting it to the field). Then
instead of deleting (and recreating) the ant it is dynamically
retyped from a searcherAnt to a carrierAnt; instan-
tiation relationships can be manipulated much the same way
as ordinary model elements. Please note that the location
edge needs retyping too, since we opted to use different types
of location relations for the two ant types, instead of lifting
this Relation to the common supertype ant.

2.5 Control structure

To control the execution order and mode of transformations,
abstract state machines [18] are used. ASMs provide com-
plex model transformations with all the necessary control
structures including the sequencing operator (seq), ASM
rule invocation (call), variable declarations and updates
(let andupdate constructs),if-then-else structures,
non-deterministically selecting (random) constructs, itera-
tive execution (applying a rule as long as possible (ALAP)
iterate), the simultaneous rule application at all possible

Listing 4 Example control structure combinations

matches (locations) (forall) and single rule application on
a single match (choose).

The example code shown in Listing 4 demonstrates how
typical control structure combinations are used in Viatra2.

The first choose rule tries to find a single match for
the Ant, LocationField, Food and Field variables
(defined in its head), which satisfy the canGrab graph pat-
tern, and then executes the grab ASM rule. If more vari-
able substitutions satisfy the pattern, then one is chosen non-
deterministically and if there are no such substitutions then
the choose rule fails.

Using the iterate rule in the example allows to apply
its choose rule as-long-as-possible (ALAP), i.e. as long
as a match for the canGrab pattern can be found. In
other terms, the choose rule is applied on a single non-
deterministically selected match followed by its grabASM
rule invocation and repeated as long as the canGrab pattern
can be matched.

As for the following forall rule, it finds all substitu-
tions (matches) for variables defined in its head (Ant,Loca-
tionField), which satisfy thehasCarrierAnt pattern,
and then executes the depositASM rule for each substitu-
tion separately. If no variable substitutions satisfy the pattern,
then the forall rule is still successful and does not fail. In
contrast to the iterate rule, it first collects all available
matches and then applies its ASM rule for each in a single
step. Note that theHill variable will have to be defined prior
to the execution of the forall rule as it is assumed as an
input parameter for the hasCarrierAnt pattern and is not
defined in its head along with the Ant and LocationEdge
variables.

3 Description of the solution

The AntWorld case study [15] is a model transformation
benchmark featured at GraBaTs 2008 [4]. AntWorld, proba-
bly inspired by Ant Colony Optimization [20], simulates the
life of a simple ant colony searching for food to spawn more
ants on a dynamically growing rectangular world. The ant
collective forms a swarm intelligence, as ants discovering
food sources leave a pheromone trail on their way back so
that the food will be easily found again by other ants.

The sequence shown in Listing 5 defines how one iteration
of the AntWorld case study is managed in our implementa-
tion. An iteration is divided into seven different phases; four
for the ant simulation and three for the world management.

123

Combining pattern matching strategies with VIATRA2 215

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Patterns used in the doRound rule. a canGrab pattern, b boun-
daryBreached-BySearcher pattern, c alongReturnPath pattern, d has-
CarrierAnt pattern, e pheromone pattern, f searcher pattern

All phases are captured by a combination of forall and
choose structures guarded by graph patterns (see in Fig. 4)
filtering the input model parameters of their invoked ASM
rule. How each phase manages its task is described in the
following Sects. 3.1 and 3.2 for the ant and world simulation
phases, respectively.

3.1 Ant simulation

Grab phase First, the food gathering is managed by an
ALAP execution of the grab rule guarded by the canGrab
(see in Fig. 4a) pattern that iterates over all searcher ants
standing on a food bundle. This way for each ant standing
on a food pile the grab ASM rule calculates the remain-
ing amount of food. If it is positive, the new value of the
food bundle is set accordingly otherwise, the food bundle
is exhausted and deleted from the model. The actual model
manipulation operations are detailed in Sect. 2.4.

Deposit phase ThehasCarrierAntpattern (depicted
in Fig. 4d) with the Field parameter bound to the anthill in
a forall construct identifies all carrier ants that have suc-
cessfully delivered a food bundle to the hill. The deposit
rule increases the integer value of the hill representing the
actual number of food bundles on the hill and dynamically

Listing 5 Viatra2 source code for an iteration

changes the type of its Ant input parameter from Carri-
erAnt to SearcherAnt along with its LocationEdge
parameter in the inverse way as it is done in the grab rule.

Return phase In this phase all carrier ants that did not
reach the hill yet, will step one field closer to home along the
returnPath relation. Their next position NewField is
determined by the alongReturnPath pattern (depicted
in Fig. 4c) used with a choose structure while all the car-
rier ants are iterated over by the outer forall with the
hasCarrierAnt (see in Fig. 4d pattern). The concrete
model manipulations are carried out by the moveAnt and
the leavePheromone rule. The moveAnt rule is only a
single operation that sets the target of the OldLocation
edge to its NewField input parameter. While the leave-
Pheromone leaves a pheromone on itsField input param-
eter. To do so, it first checks that the input Field already
has a Pheromone using a try-else control structure com-
bined with a choose invoking the hasPheromone pat-
tern. If it has, then simply add 1,024 to its integer value,
otherwise the else branch executes attaching a newly cre-
ated Pheromone with 1,024 as its value to the Field. Note
that, because the deposit phase was already executed in the
current iteration there are no carrier ants standing on the
anthill for which the hasCarrierAnt pattern could be
reused.

Search phase Finally, searcher ants looking for a food
source are actuated by the search rule (handling both the
unguided and pheromone-guided cases) executed in a for-
all construct using the searcher (see in Fig. 4f) pat-
tern. The search rule retrieves the Field1 field on which

123

216 Á. Horváth et al.

the input Ant is standing. In addition, it checks if there is
any pheromone infested field neighboringField1 using the
attractingOuterNeighbor pattern in a try-else
construct invoked by a choose rule. If there is, then it steps
to that, otherwise to one of the neighboring fields (except
the anthill) selected by the anyNeighborButHome pat-
tern (detailed in Sect. 2.2). Both patterns are matched in a
true pseudo-random fashion defined by the @Random
annotations.

3.2 World management

Evaporate pheromone phase To volatilize the Phero-
mones in the model the simple pheromone pattern (see
in Fig. 4e) in a forall construct invoking the evapo-
rate rule is used. In the evaporate rule first the remain-
ing amount of pheromone is calculated. If this is positive, the
new value of the pheromone is set accordingly; otherwise the
pheromone is exhausted and deleted from the model. The cal-
culation is kept in the integer domain using the JAVA built in
rounding mechanism on the division operator.

Create ants As the number of food bundles on the anthill
is managed by the integer value of the hill itself, the creation
of the ants does not involve pattern matching. It is handled
using an iterate construct which executes the consume
rule as-long-as the integer value of the hill is higher than zero
and terminates the loop with the exit command. At every
invocation of the consume rule it decrements the integer
value of the hill by one and creates a new SearcherAnt
with its location pointing to the anthill.

Boundary breached phase Finally, in order to check that
a searcher ant has reached the boundary of the actual world an
if construct is used to check that theboundrayBreached
BySearcher (see in Fig. 4b) pattern matches to the actual
model. If it matches the growGrid rule is invoked to handle
the expansion of the world. The algorithm used is a circular-
based traversal of the boundary fields along thecircular-
Path starting from a randomly selected border field. During
the traversal for each Boundary field a new outer neighbor
is created connected to its neighboring fields along with the
update of the boundary relation from the hill. The only
exemption from this rule are the CornerFields where
three new (a CornerField and two simple Field fields
along with their relations between them and the bound-
ary relation to the hill) fields are generated to create the
new corner of the actually constructed boundary. This way
the distribution of the newly created food bundles are also
arranged during the traversal and on every tenth newly cre-
ated boundary field an additional Food bundle is added.

The complete source code of the case study is available in
Appendix.

4 Pattern matching strategies in VIATRA2

4.1 Pattern matching strategies in the VIATRA2 framework

Pattern matching plays a key role in the efficient execution
of all model transformation engines. In case of graph trans-
formation-based approaches, the goal is to find the occur-
rences of a graph pattern, which contains structural as well
as type constraints on model elements. During pattern match-
ing, each variable of a graph pattern is bound to a node
in the model such that this matching (binding) is consis-
tent with edge labels, and source and target nodes of the
model.

Most graph transformation approaches (e.g. [5,6,21,22]
and many more) usually rely on a local search-based pattern
matching (LS) that starts the matching process from a single
node and extends it step-by-step by neighboring nodes and
edges.

As an alternatative approach, incremental pattern match-
ing (INC) [8,9,11,12] relies on a cache in which the matches
of a pattern are stored explicitly. Its match set is readily avail-
able from the cache at any time without searching, and the
cache is incrementally updated whenever changes are made
to the model.

As an important language feature, the ASM machine defin-
ing the entire transformation, as well as individual patterns,
can be annotated with special information on how they should
be treated. For example, patterns marked with @Randomwill
select a match in a true pseudo-random fashion when used
in a choose rule, as required by the AntWorld specifica-
tion. Furthermore, our solution relies on explicitly specify-
ing the desired pattern matching strategies (see Sect. 5.1.1),
which is selected by annotating the machine with @local-
search or @incremental; the decision can be locally
overridden on a per-pattern basis with the same annota-
tions.

How these two fundamentally different approaches are
implemented in the Viatra2 framework is briefly intro-
duced in Sects. 4.2 and 4.3, respectively. However, there
are cases where the use of neither the incremental nor the
local search-based pattern matching approach is significantly
more efficient than the other. We argue that many trans-
formations could benefit even more from combining these
two approaches, by using different pattern matcher engines
for different graph patterns. How the combination of these
different pattern matching strategies (referred to as hybrid
pattern matching) within a transformation is possible in
Viatra2 is briefly introduced through the AntWorld case
study in Sect. 4.4.

123

Combining pattern matching strategies with VIATRA2 217

Fig. 5 The Overview of the VIATRA2 LS pattern matcher

4.2 Local search-based pattern matching in VIATRA2

The generation of search plans [23,24] is a frequently used
and efficient strategy to drive the execution of LS pattern
matching algorithms. Informally, a search plan defines the
order in which pattern nodes are bound to objects of the
instance model during pattern matching. In addition to sim-
ply specifying the binding order of pattern nodes, it often
also includes an order of elementary operations that have to
be executed to drive pattern matching.

The LS graph pattern matcher of Viatra2 follows the
same approach. Without going into technical details, our
approach consists of the following steps (see in Fig. 5):

First, we separate compile time parts from run-time parts,
where each part consists of the following steps:

Compile time At compile time, each step is calculated
once for each pattern description.

– First, for each pattern description a call tree is generated
capturing how patterns call other patterns. A call tree is
a directed bipartite tree describing the structural depen-
dencies of a given pattern by encapsulating the alternative
pattern bodies and pattern invocations.

– Then for each call tree a corresponding search graph
is generated. A search graph is a joint representation
of pattern graph elements and operation constraints that
drives the pattern matching process. In our interpreta-
tion a search graph is a hypergraph [24] representing a
constraint net, where graph nodes reflect variables, and
hyperedges express constraints (predicates) between the
variables. In order to yield better search plans, the oper-
ation scope of the optimizer module is increased by flat-
tening the call tree and by merging pattern bodies and
pattern invocations into a common search graph. This
allows the use of our optimization techniques on a global
scale rather than on isolated pattern bodies.

Run time After initializing the data structures at compile
time, run time steps have to be calculated for each separate
pattern invocation.

(a) (b)

Fig. 6 Search graph and plan for the first pattern body of the any-
NeighborButHome pattern. a Search Graph, b Search Plan for bound
Field2

– A search plan is generated from the search graph-based
on the input parameter binding and the cost of search oper-
ations to drive the pattern matching process. A search plan
is a totally ordered list of search operations (one possible
traversal of the search graph), where search operations
represent the atomic units of pattern matching (a single
step in the matching process). It is either an extend oper-
ation which extends the matching by a new element (e.g
match the target node along an edge), or a check operation
used for checking constraints between pattern elements
(e.g., whether an edge runs between two nodes).

– Finally, after executing the search plan matches relevant
to the input parameter binding are passed out.

As an illustration, Fig. 6a shows the search graph built
for the first pattern body of the anyNeighborButHome
pattern depicted in Fig. 2. It is a very simple search graph con-
taining only two nodes Field1 and Field2 connected by
the P relation with the home NAC invocation with Field2
as its input parameter. Figure 6b shows a possible search
plan generated from the search graph with Field1 con-
sidered as an input parameter. The search plan extends the
already bound Field1 to Field2 through the P relation
and checks that all newly matched element has their appro-
priate type and finally invokes the home pattern as a NAC.
A more detailed description how the LS pattern matcher of
the Viatra2 framework works is given in [24].

Overall, the Viatra2 LS strategy can produce reason-
able performance with a relatively small memory footprint,
although adaptive graph pattern matching using run-time
model sensitive search optimization [25] are not yet sup-
ported.

4.3 RETE-based incremental graph pattern matching
in VIATRA2

Incremental pattern matching [9] offers an entirely different
execution model compared to local search-based implemen-
tations. The match sets for all patterns involved in the graph
transformation are computed in an initialization phase prior

123

218 Á. Horváth et al.

Fig. 7 Simple RETE matcher

to execution (e.g. when the model itself is loaded into mem-
ory), and as the transformation progresses, this match set
cache is incrementally updated as the model graph changes
(update phases). Thus, model search phases are reduced to
fast read-from-cache operations, in exchange for the over-
head imposed by cache update phases which occur synchro-
nously with model manipulation operations. Benchmarking
[13] has shown that in certain scenarios, this approach leads
to several orders-of-magnitude increases in speed.

The incremental graph pattern matcher of the Viatra2
framework adapts [9] the RETE algorithm [26], which is a
well-known technique in the field of rule-based systems.

RETE net for graph pattern matching. RETE-based pat-
tern matching relies on a network of nodes storing partial
matches of a graph pattern. A partial match enumerates those
tuples of model elements which satisfy a subset of the
constraints described by the graph pattern. In a relational
database analogy, each node stores a view. Matches of a
pattern are readily available at any time, and they will be
incrementally updated whenever model changes occur.

Input nodes serve as the underlying knowledge base repre-
senting a model. There is a separate input node for each entity
type (class), containing a view representing all the instances
that conform to the type. Similarly, there is an input node
for each relation type, containing a view consisting of tuples
with source and target in addition to the identifier of the edge
instance.

At each intermediate node, set operations (e.g. filtering,
projection, join, etc.) can be executed on the match sets stored
at input nodes to compute the match set which is stored at the
intermediate node. The match set for the entire pattern can be
retrieved from the final production node. One kind of inter-
mediate node is the join node, which performs a natural join
on its parent nodes in terms of relational algebra; whereas an
anti-join node contains the set of tuples stored at the primary
input which do not match any tuple from the secondary input
(which corresponds to anti-joins in relational databases).

As an illustration, Fig. 7 shows a RETE network matcher
built for the anyNeighborButHome (see Fig. 2) pattern
illustrating the use of anti-join nodes for NAC. By anti-
joining two input nodes (the topmost nodes on Fig. 7), this

sample RETE net enforces a relation type constraint (path
relation type connecting two fields, see left input node) and
the non-satisfiability of an entity constraint (anthill type, see
right input node). To ensure that the directed path edges can
be traversed in both directions, two opposite directions of the
path edge are checked in two separate pattern bodies; the
final production node contains a union of the two cases.

Updates after model changes. Input nodes receive noti-
fications about each elementary model change (e.g. when
a new model element is created or deleted) and release an
update token on each of their outgoing edges. Such an update
token represents changes in the partial matches stored by
the RETE node. Positive update tokens reflect newly added
tuples, and negative updates indicate tuples being removed
from the set. Upon receiving an update token, a RETE node
determines how the set of stored tuples will change, and
release update tokens of its own to signal these changes to
its child nodes. This way, the effects of an update will prop-
agate through the network, eventually influencing the result
sets stored in production nodes.

The match set can be retrieved from the network instantly
without re-computation, which makes pattern matching very
efficient. As a trade-off, there is increased memory consump-
tion, and update operations become more complex.

4.4 Hybrid pattern matching strategy

Recent benchmarks evaluations [13] and tool contests [4] in
the graph transformation community have shown that INC
can be order(s) of magnitude faster than LS approaches for
certain problem classes. There are also other cases where the
use of local search-based pattern matching approach is sig-
nificantly more efficient on memory consumption than any
other. We believe that many transformations could benefit
even more from combining these two approaches to use the
most suiting pattern matcher engine for each graph patterns.

In the Viatra2 framework, a transformation designer can
fine-tune the performance or memory consumption of graph
pattern matching by prefixing it with @localsearch or
@incremental annotations to select the designated
pattern matching strategy. This way the interpreter automat-
ically uses the defined pattern matcher during the transfor-
mation execution. This feature also holds for composite
patterns which allows the definition of different matching
strategies for certain parts of the pattern. This way the search
plan generated for these composite patterns are optimized
to favor (already) incrementally matched patterns traversal
in the early steps of the matching process to bind elements
for the later LS matched part. The same algorithm as for
LS is used to generate these search plans. It differs only in
two parts: (i) the flattening process is not invoked on the
incrementally matched patterns and (ii) during execution the
incrementally matched pattern invocations are transformed

123

Combining pattern matching strategies with VIATRA2 219

Fig. 8 Selecting pattern matching strategies

Fig. 9 Search plan of the attractingOuterNeighbor pattern

into one search operation that bound its interface symbolic
parameters from its cache. The high-level workflow of this
technique is illustrated in Fig. 8.

To illustrate how hybrid pattern matching is performed
in Viatra2, Listing 6 shows the attractingOuter-
Neighbor pattern composed of the attractingField
and alongReturnPath patterns defined to be matched
by INC and LS, respectively. The pattern is used to match
any attracting (has pheromone) neighboring field of Field1
that is leading to a food source (away from the hill). The idea
behind using hybrid approach in this case comes from fol-
lowing considerations: (i) the alongReturnPath pattern
matches to all neighboring fields that consume a large amount
of memory if incrementally cached, (ii) a pure LS approach
would have to go through all neighboring fields and check
if they hold pheromone leading to a relatively low perfor-
mance and (iii) as Field1 is normally an input parameter of
the attractingOuterNeighbor pattern and Field2
is already incrementally cached the alongReturnPath
pattern needs only to check if there is a returnPath edge
between its input parameters. The search plan generated for
the attractingOuterNeighbor with Field1 con-
sidered as an input parameter is depicted in Fig. 9.

Based on our previous experience [13,14], we identified
the following factors to be important in general for transfor-
mation designers to choose between LS and INC strategies:

Static attributes of graph patterns One of the most
important factor, in the sense of memory consumption, is
the number of graph patterns in a transformation program.
The cache size of a pattern increases overall memory con-
sumption when matched by INC strategy. However, in practi-

Listing 6 Viatra2 source code for the attractingOuterNeighbor com-
posite pattern

cal applications, we experienced that the number of matches
gradually decrease as the pattern to be matched becomes
more and more complex (having more and more elements).
This contradicts the intuition that larger patterns will have
more matches due to more combinatorial possibilities.
Although this combinatorial increase may hold for smaller
patterns, it is overwhelmed by the scarcity due to restric-
tiveness of larger patterns in many practical scenarios. As a
result, large patterns should be preferably matched by INC
and in case of large number of patterns smaller ones should
be by LS.

Control structure How patterns are used and invoked in a
transformation program has a huge impact on overall perfor-
mance and can greatly influence the cost of pattern matching.
Usage frequency of patterns is relevant, since the more often
a pattern is used, the more advantage INC has. Frequently
used patterns can be identified by static analysis of the trans-
formation code, e.g. by marking patterns that are used from
within a loop. Another significant factor can be parameter
passing, i.e. to reuse the result of other rules or patterns as
an input. This technique increases efficiency in LS as search
operations are much more efficient if one or more pattern
variables are bound, i.e. their values are known at time of the
query. INC performance is not affected.

Model-specific graph characteristics Ultimately, the
underlying model determines all performance characteris-
tics. In order to indicate its effect on each pattern, we defined
a simple scalar metric called node type complexity. It is a
rough upper bound on the number of potential matches can
be obtained as the product of the cardinalities (number of
model instances) of the types of each node in the graph pat-
tern. This estimate is, of course, accurate as there are also
edges in the pattern to constrain the possible combinations
of nodes. However, high complexity may result in high mem-
ory consumption for INC, and long search operations for LS.

123

220 Á. Horváth et al.

A more detailed investigation how relevant factors influ-
ence pattern matcher selection is available in [1]. How we
specified our hybrid implementation is discussed in Sect. 5.1.

In overall, a well-defined hybrid approach can usually
largely reduce memory consumption within reasonable run-
time performance degradation.

5 Benchmarking

In this section, we present our experiments to assess Via-
tra2’s performance on the AntWorld case study. Our main
goal with benchmarking is twofold: (i) to demonstrate how
the performance of Viatra2 evolved with the incremental
pattern matching approach (Sect. 4.3), and (ii) to present
some useful design-time optimizations and fine-tune options
in Sect. 5.1 which can have significant impact on perfor-
mance.

5.1 Fine-tuning

Based on the involved segment of Viatra2 we categorized
our optimizations into three categories: (i) pattern match-
ing strategy selection (see Sect. 5.1.1), (ii) advanced model
management application(see Sect. 5.1.2) and (iii) language
specific consideration (see Sect. 5.1.3).

5.1.1 Pattern matching strategy

We designed our implementation to effectively support a
hybrid pattern matching approach (see Sect. 4.1) that trades
runtime performance for memory consumption compared to
the pure incremental solution. This hybrid solution was based
on the following considerations:

– Considerable memory can be saved by ensuring that the
map (fields and path relations) is not contained in the
RETE net, as these are the types with the highest num-
ber of instances. Patterns concerning these model features
should be assigned to the local search-based matcher, to
keep the RETE net small. As these patterns happen to
establish simple local relationships of low-complexity,
they are efficiently matched using the local search-based
engine.

– To achieve high performance through avoiding expensive
repeated searching, the incremental pattern matcher was
selected to deal with the hasFood, location, ha-
sPheromone, boundary relations. This allowed use-
ful collections such as ants stumbling upon food, ants
reaching the boundary, or pheromones that are still strong
enough to attract ants to be incrementally maintained.

– Some patterns contain model features of both kinds. On
certain occasions, a subpattern was extracted for the incre-

Listing 7 Identifying boundary fields without relying on an explicit
marking

mental pattern matcher, and the local search-based
matcher utilized this cache in a true hybrid fashion. See
Listing 6 as an example.

– The design of patterns and the metamodel had to support
efficient division of pattern matching tasks between the
two matching strategies. Figure 1 shows that the Viatra2
solution uses a relation type boundary connecting the
anthill to exactly those fields that are on the boundary of
the currently explored grid. This relation identifies bound-
ary fields, which is useful when determining whether the
grid needs to be expanded by another circle, and also
during said expansion. The motivation for introducing it
into the solution was to enable these parts of the transfor-
mation to be efficiently executed using the local search-
based pattern matcher, effectively reducing the size of the
incremental pattern matcher, making the hybrid solution a
viable compromise. It is important to point out that had we
relied entirely on the incremental pattern matcher, using
these boundary relations would have become unnec-
essary, as path relations would have been admissible in
the RETE net, and boundary fields would have been effi-
ciently expressible as a pattern with a NAC (see Listing 7).

5.1.2 Model management issues

Viatra2 is an interpreted model transformation engine, and
has a generic reflective model representation. Among many
other features, model elements are allowed to have multiple
types at once, instantiation is expressed as an explicit rela-
tionship between type and instance model elements, and this
type information can be manipulated at runtime. In order to
facilitate multi-level metamodeling, every model element is
allowed to act as a type. Moreover, both relations and attri-
butes are first-class model elements that can be the sources
and targets of relations and have fully qualified names in the
hierarchical namespace scheme of Viatra2.

Although providing great flexibility, these features of the
model representation make model elements relatively heavy-
weight. Therefore, this approach has a negative effect on
performance, that should be taken into consideration when
designing the transformation. As a simple example, model
elements of special significance (e.g. the anthill) can be

123

Combining pattern matching strategies with VIATRA2 221

looked up at the beginning of the transformation, and later
retrieved from a cache whenever needed. This avoids the cost
associated with accessing a specific model element identified
by its fully qualified name.

Moving an ant involves pointing its location relation
to its new position. Instead of deleting and recreating loca-
tion relations (which involves the deletion and creation of
instanceOf relationships and other administrative data,
described in Sect. 2.4), we merely change the target end of
the relation. This simplification helps to reduce the amount
of model manipulation. When growing the grid and expand-
ing its boundary, boundary relations are reused in a similar
fashion.

As seen in Fig. 1, the type of ant (searcher/carrier) is not
represented by graph elements or attributes, but by using two
disjoint entity types. This choice was made to reduce the
number of model elements, as no further attributes or con-
nected model elements are required to express the type of
an ant, which is an entity with a high number of instances.
Changing ants from one type to another is achieved by
dynamic retyping (see Listing 3).

5.1.3 Language-specific considerations

As described in Sect. 2.3, transformation semantics can be
specified using the well-known graph transformation formal-
ism. Our solution takes a slightly different approach: the pre-
condition (LHS) patterns of the GT rules are kept intact,
but instead of specifying the action declaratively by a RHS,
model manipulation is given as an imperative sequence, using
the ASM language of Viatra2. The foremost benefit of this
choice is that the transformation is able to take advantage of
some more advanced model manipulation operations, such
as the ones needed by the methods described in Sect. 5.1.2.
In addition, we expected that this imperative language usage
itself has a noticeable performance advantage, because the
declarative GT rule specification may imply some expen-
sively checked type constraints that may be unnecessary and
can be omitted in an imperative rule definition.

5.2 Measurements

We conducted benchmark measurements on our test system
with a quad-core Intel Xeon CPU clocked at 2.00 GHz and
12 GBs of system memory. We used the OpenJDK 64-bit
Server VM (IcedTea6 1.3.1 build 12) on Linux 2.6.18 with
10GBs of memory allocated to the JVM.

5.2.1 Variants

We divided our experiments into two groups: the first group
was performed to demonstrate the difference between vari-
ous pattern matching strategies (Sect. 5.1.1), while the second

was aimed at illustrating the effects of fine tuning described
in Sects. 5.1.2 and 5.1.3.

For the first group, we configured the transformation pro-
gram (available in Appendix) with annotations to create the
following run configurations:

1. the local search solution made exclusive use of the tra-
ditional, local search-based pattern matcher implemen-
tation described in Sect. 4.2.

2. in contrast, the incremental solution relied solely on the
RETE-based pattern matcher described in Sect. 4.3.

3. finally, we combined the pattern matching strategies with
techniques described in Sects. 4.4 and 5.1.1 to create a
hybrid solution.

For the second group, the following run configurations
were created:

1. in order to illustrate the attainable performance gain by
avoiding expensive model management operations, we
compared an unoptimized variant (which did not make
use of dynamic typing and relation retargeting as
described in Sect. 5.1.2) to the optimized variant which
incorporated both.

2. finally, we designed two variations to determine the per-
formance impact of a language-specific optimization
which involves using imperative model manipulation
rules instead of purely declarative graph transformation
rules (Sect. 5.1.3).

5.2.2 Telemetry

To obtain numeric results, we designed the simulation trans-
formation to generate XML output containing execution time
and memory usage telemetry data.1 Every 25 rounds, telem-
etry data was written to an output buffer, which was flushed
to a file after the transformation has terminated.

Overall, we executed five 500-round simulation runs for
each variant, with the exception of the local search solution
where only 150 rounds were executed (since it is significantly
slower than the other two variants). Memory consumption
measurements were performed in separate execution runs to
avoid a potential negative performance impact.

5.3 Analysis of the results

Results were analyzed by transforming the XML output to
CSV spreadsheets which were processed in OpenOffice.Org

1 Execution time was measured by the System.currentTime-
Millis() Java call, while heap usage was estimated by performing
garbage collection calls (System.gc()) and recording the result of
Runtime.totalMemory() - Runtime.freeMemory().

123

222 Á. Horváth et al.

Fig. 10 Execution time per iteration

3.0. We combined the results from each of the five sepa-
rate execution runs to create a data series consisting of 100
records for INC and HYB (30 records for LS).

5.3.1 Complexity class analysis

By looking at the data, we found that there is a very high
correlation (correlation coefficient R2 >0.995) between the
time needed to execute a round and the number of ants
(Fig. 10). There is also a fairly high correlation (R2 > 0.97)
between the number of fields in the grid and the measured
memory consumption (Fig. 14). The number of rounds, how-
ever, has a significantly weaker correlation (R2 < 0.9 for
some solutions) with both the round time and the memory
footprint size. Thus, we generated charts which show cumu-
lative and per-round execution times against the number of
ants, and heap usage compared to the number of fields.

The cumulative execution time chart with linear scales
is shown in Fig. 11. While the local search variant exhib-
its a high-order polynomial increase as the ant population is
growing, both the pure incremental and hybrid variants per-
form significantly better, following a low-order polynomial
characteristic.

In order to determine the polynomial order more precisely,
we conducted the following analysis. In the followings, we
follow the Landau notation [27] to describe asymptotical lim-
iting behaviour of characteristic functions.

First, we split cumulative execution time into the cumula-
tive time required to simulate the behaviour of the ants, the
cumulative time required to grow the grid, and the cumula-
tive time consumed by dropping and evaporating pheromone
traces. The dropping of pheromone is included in the phero-
mone time, not in the ant management time. Formally,

Time = TimeAnts + TimeArea + TimePheromones (1)

where the cumulative time spent on building the grid,
TimeArea, should be intuitively proportional to the grid size

Fig. 11 Cumulative execution time

Fig. 12 New ants per round

with any efficient implementation:

TimeArea ∼ Area (2)

The lower bound of the time consumed by pheromone
management is approximated by the total number of times
pheromones were dropped. This is also an upper bound of
the total pheromone management time with an appropriate
constant coefficient, because if pheromone is left on a new
field, its evaporation will have to be simulated once each
round, and there will be a constant number of rounds before
it vanishes. Even if pheromone is dropped on the same field
multiple times,2 this evaporation cost will be sub-additive, as
the pheromone trace containing the combined amount will
still evaporate only once per round, and the exponential decay
lends it a sub-additive lifespan. Consequently,

TimePheromone ∈ �(PheromoneDroppings) (3)

2 This phenomenon is actually very common, as several thousand ants
may retrieve food along the same path; our experiments suggest that
the number of individual fields with pheromone traces tends to stay
relatively low.

123

Combining pattern matching strategies with VIATRA2 223

In our experiments, we plotted the ant population increase
against the size of the population in Fig. 12. The plot shows an
approximately square root-type upper bound for the increase,
in harmony with the following theoretical considerations. In
order to give birth to the nth ant (excluding the initial 8), the
colony needed to gather n food units. As food is distributed
proportionally to the grid area, it follows that the discovered
area defines an upper bound to the number of ants:

Ants ∈ O(Area) (4)

The area is a quadratic function of the radius of the map,
therefore the nth food unit, giving birth to the nth ant, needs
to be delivered from a distance of at least

√
n with some

constant multiplier (let us neglect the fact that the order of
food units may actually vary). Pheromones are dropped on
each step, therefore the spawning the nth ant involves at least√

n pheromone droppings; formally, this can be expressed as
follows:
δPheromoneDroppings

δAnts
∈ �(Ants0.5) (5)

By integrating with respect to δAnts, we obtain the following:

PheromoneDroppings ∈ �(Ants1.5) (6)

As previously established, the birth of the nth ant requires
retrieving food along a path having a length of at least

√
n;

since at most n ants are distributed along this retrieval path,
and each ant can make one step each round, the birth rate
per round can be approximated by an upper bound of

√
n

(Fig. 12). This observation can be formalized as follows:

δAnts

δRounds
∈ O(Ants0.5) (7)

Thus, we are looking for the expression for the cumulative
time spent for ant management as the function of the size of
the ant population. Its rate of change is expressed as follows:

δTimeAnts

δAnts
= δRounds

δAnts
× δTimeAnts

δRounds
(8)

As moving each ant in a round takes a constant-bounded
time with an efficient implementation (and potentially more
with an inefficient implementation),

δTimeAnts

δRounds
∈ �(Ants) (9)

holds and by substituting (7) into (8), we get (10):

δTimeAnts

δAnts
∈ �(Ants−0.5 × Ants) = �(Ants0.5) (10)

By integrating with respect to δAnts, we obtain (11):

TimeAnts ∈ �(Ants1.5) (11)

The area management component of the total time can be
approximated by combining (2) and (4):

TimeArea ∈ �(Ants) (12)

Fig. 13 Cumulative execution time (double logarithmic scale)

The following lower-bound approximation holds for the
cumulative pheromone management time, as implied by (3)
and (6):

TimePheromone ∈ �(Ants1.5) (13)

Finally, from (1), (11), (12) and (13), we have an esti-
mation of the time complexity of AntWorld simulation with
respect to the number of ants:

Time ∈ �(Ants1.5 + Ants + Ants1.5) = �(Ants1.5) (14)

In reality, the ants do not follow an optimal strategy for
exhaustively retrieving all food available within the discov-
ered radius, but rather they are diverted by pheromones
towards the direction of previously found food bundles, dis-
torting the circularity of explored area, and needlessly
expanding the grid. In addition, a number of ant steps are
wasted during the search for new food sources. Consequently,
the boundary expressed in (4) turns out to be weak; according
to regression calculations performed on our measurements,
the number of ants seem to be proportional to the area to the
power of approximately 0.66. This also means that ants have
a smaller birthrate than allowed in (7), and therefore, (10)
will not give a close approximation of the time spent on ant
management. Finally, as even (12) gives a weak boundary,
the total time may have a complexity higher than Ants1.5.
Our experiments confirm this assumption: for rounds 100–
500, regression gave the approximation of Time ∼ Ants1.68

with a correlation over 99% for our solution (the first 100
rounds appeared more random and less characteristic). Nev-
ertheless, this is still a low-order polynomial behaviour, see
Fig. 11 for the results; the complexity is visually confirmed
by using logarithmic scales for both axes (Fig. 13).

5.3.2 Effects of optimizations

Hybrid pattern matching Figure 14 shows memory con-
sumption data comparing pure incremental pattern matching
with our hybrid approach. In both cases, the overall heap

123

224 Á. Horváth et al.

Fig. 14 Memory delta

Fig. 15 Cumulative execution time (double logarithmic scale) and
model management optimizations

consumption of the Viatra2 engine grows linearly with the
number of grid fields, however, the gradient for the hybrid
run is lower (for a given number of fields, the pure incremen-
tal variant consumes approximately 1.5 times more memory
than the hybrid variant). Since the execution time per itera-
tion values are also linear for the hybrid variant (Fig. 10), it
can be concluded that the hybrid pattern matching approach
performs in the same complexity class as the pure incremen-
tal version. In other words, for a linear decrease in memory
consumption, a linear decrease in execution speed can be
expected (as supported by the constant difference in the log-
arithmic plot in Fig. 13).

Model management-specific optimizations Figure 15
shows the performance gain attained by avoiding expensive
model management operations. We compared an unoptim-
ized variant (which did not make use of dynamic typing and
relation retargeting as described in Sect. 5.1.2) to the opti-
mized variant which incorporated both. As the plots follow
the same low-order polynomial characteristic, the difference
is only a constant multiplier, yielding a performance gain of
approximately 30%.

Fig. 16 Cumulative execution time (double logarithmic scale) and
language-specific optimizations

Language-specific optimizations The results for the final
trial, which was designed to determine the performance
impact of a language-specific optimization which involves
using imperative model manipulation rules instead of purely
declarative graph transformation rules (Sect. 5.1.3), are
shown in Fig. 16. Similarly to the other case, we measured a
constant-multiplier difference of about the same magnitude
(30%).

5.3.3 Optimization summary

The summary of the results obtained from various optimiza-
tion strategies is shown in Table 1.

To see how far Viatra2 can go with the most optimized
implementation on our test hardware, we conducted a final
test run which ran until the 10GB JVM heap space was
exhausted. The results are shown in Table 2.

5.4 Suggestions for improvement

5.4.1 Viatra2-related issues

During the analysis and profiling of our various implementa-
tions, we have discovered that the performance bottleneck in
our system is mainly related to how we manage our models.
In almost all cases we have observed that core model manage-
ment functions (e.g.deleteEntity,getAllElement-
sOfType, etc.) are consuming most of the time. Most of our
optimization techniques described in Sects. 5.1.2 and 5.1.3
are aiming to decrease the use of (inefficient) model manage-
ment functions either (i) by reducing their usage frequency
through reducing model size, or (ii) by replacing them with
less intrusive manipulation operations. Based on this con-
sideration, we believe that future optimization work should
focus on the following aspects:

– The core model management component should be
streamlined to support much faster operations (at least

123

Combining pattern matching strategies with VIATRA2 225

Table 1 Optimization strategies
Optimization strategy Performance Memory footprint

LS High-order polynomial Constant
Switch to INC Polynomial order reduction Linear increase with model size
Switch to Hybrid Linear 50% loss 50% reduction
Dynamic typing, relation retargeting Linear 30% gain None
Imperative rules Linear 30% gain None

Table 2 Statistics for the maximum possible iteration count

Variant Iterations Model elements Total time (s)

INC 1,200 ∼1.5M 4,969
Hybrid 1,400 ∼2.0M 11,907

queries) and a more compact representation. Faster query
operations would also significantly boost the speed of
local search-based pattern matching. A straightforward
approach is to use the incremental pattern matching tech-
nology at the core level for the administration of type-
instance relationships.

– The generation of model manipulation operations from
the RHS of a GT rule has significant impact on overall
performance. We plan to investigate ways that allow the
interpreter to semi-automatically map declarative RHS
specifications into model manipulation operations incor-
porating the efficient techniques discussed in Sect. 5.1.2.

– Furthermore, type constraints associated with a declara-
tively specified GT rule should be enforced through
static type analysis instead of costly rule application-time
checking.

5.4.2 Case study-related issues

By analyzing the data, we have observed several factors,
which, in our opinion, may negatively impact the useful-
ness of the AntWorld example as a basis of performance
comparison.

Non-determinism. A random generator is used at crit-
ical phases of the transformation, which makes it difficult
to validate the implementation. Moreover, randomness may
severely impact the overall performance since (i) it is a dom-
inant factor in ant behaviour (determines the length of food
searching phases) and (ii) by using a well-crafted fake ran-
domizer, one may force the ants not to find food, thus falsify-
ing the results easily (a few number of ants in a large number
of rounds on a small field is a lot cheaper than many ants
in a small number of rounds on a large field). In addition,
the high degree of impact by non-determinism necessitates
the recording of a large number of data which, in our case,
slowed down the measurement process considerably. Finally,
non-determinism prevented the establishment of sample test
cases (pairs of inputs and outputs) which would have been
useful for solution authors to verify the soundness of imple-

mentation and validate the correct interpretation of the spec-
ification.

Ambiguous specification. The placement of food is
under-specified, and may impact the overall performance.
According to the specification, a food bundle should be cre-
ated on every tenth field, but there is no unambiguous defini-
tion of the order in which fields of a new grid circle are created
when the grid is expanded. We believe that the intention of the
benchmark authors was to have the new nodes created in the
natural circular order (either clockwise or anti-clockwise),
and our implementation conforms to this assumption, plac-
ing food packets evenly along the circular paths. An alternate
interpretation of the specification would permit the creation
of new fields in an arbitrary order (which is in harmony with
conventional graph transformation practice), which would
possibly result in uneven distribution of food; finding areas
with very dense food would result in higher ant birth rates,
while missing these concentrated areas would constrain the
growth of the population. As Sect. 5.3 shows, the number of
ants has a principal effect on performance.

Comparison difficulties. There is no specified way of
obtaining measurement results (no guidelines as to measure-
ment metrics, output formats, etc.), which makes it difficult
to compare the performance of the various tools (especially
in light of our observations regarding the correlation of exe-
cution time versus number of rounds and number of ants in
Sect. 5.3).

In order to overcome these weaknesses we believe that
two simple modifications in the specification could erase the
random behaviour of the case study:

Random generator specification. What kind of random
generator is used has the largest impact on the overall perfor-
mance, thus a specific pseudo random generator like the lin-
ear congruential or Lagged Fibonacci generator [28] would
ease reproducibility of measurement results, especially with
a concrete definition how to use the randomly received val-
ues for the selection of possible actions in all situations (e.g.,
ant movement).

Ant processing order. In order to obtain deterministically
reproducible results, the order in which the ants are pro-
cessed during iterations has to be specified precisely. This
feature could easily be added using a single integer attribute
for each ant representing its place in the processing sequence.

123

226 Á. Horváth et al.

Combining these two modifications would grant determinis-
tic ant behavior on the same map leading back to the
question of food distribution that only needs some extra
clarifications—as already mentioned—to obtain a similar
map for each rundown.

Overall, based on our considerations about the effective-
ness of the case study as a basis of evaluation, we decided to
avoid investigating any detailed tool-to-tool comparison. For
instance, in our benchmarking paper [13], we have included
some comparisons with GrGEN.NET, but with previous
acknowledgement of the GrGEN.NET team to avoid misun-
derstandings and false claims due to the facts that: (i) we are
not experts of the transformation language of other tools, thus
it is difficult to make judgements about non-Viatra2 code;
(ii) most transformation tools have radically different tech-
nological approaches for model persistence, which makes it
difficult to do a “fair” comparison (since, for instance, “com-
piled” transformation engines are typically directed towards
different use cases than “interpreted” tools).

6 Conclusion

In this paper, we focused on a detailed performance evalu-
ation of the Viatra2 model transformation engine with the
AntWorld case study. We found the case study very useful
to compare various incarnations of Viatra2 to each other.
In addition to highlighting the high-level differences between
the local search-based and incremental pattern matcher
implementations, we also demonstrated that their combina-
tion can form an effective hybrid approach capable of exploit-
ing their advantages without sacrificing additional resources.
In addition, the transformation proved to be powerful enough
to also demonstrate language-specific and model manage-
ment-related fine-tuning possibilities.

However, it is important to mention that as our LS engine
does not yet support model sensitive search plan optimiza-
tion [25,29], the actual assessment of the complexity class
does not necessarily hold for other advanced LS-based
approaches (like GrGEN.Net).

As a main direction for future work, we plan to inte-
grate the AntWorld example as a basis of functional and
non-functional test case set into the standard Viatra2 test-
ing environment. In addition, we intend to investigate
further optimization possibilities related to multi-threaded
pattern matching and parallel transformation execution. We
also feel that a more in-depth analysis of how model per-
sistence and low-level queries affect the performance of LS
and INC pattern matchers is also needed, to provide effective
model management queries supporting both current LS and
INC and future parallel pattern matching strategies. Finally,
additional assessment of different transformation scenarios
is required to come up with efficient general transformation
design patterns.

Appendix: Complete VTCL source of the Antworld case
study

The following source code listing corresponds to our hybrid
solution. The pure incremental or local search-based solu-
tions differ only in annotations, namely they only have a
single pattern matcher selecting annotation, situated at the
machine declaration.

We included it in the reviewers’ version of the paper for the
sake of completeness (and easy access), it will be relocated
to the Eclipse site of VIATRA2.

The ASM machine expects 3 input parameters: the num-
ber of rounds to execute, a name identifying this experiment
(will be used in the output tab name), and whether to enable
memory usage measurement (0 for no, 1 for yes; the latter
impacts runtime performance heavily).

123

Combining pattern matching strategies with VIATRA2 227

123

228 Á. Horváth et al.

123

Combining pattern matching strategies with VIATRA2 229

Listing 8 Complete source code of the Viatra2 solution

References

1. Bergmann, G., Horváth, A., Ráth, I., Varró, D.: Efficient model
transformations by combining pattern matching strategies. In: Pro-
ceedings of ICMT ’09 , 2nd International Conference on Model
Transformation, Springer, Berlin (2009)

2. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., (eds.): Hand-
book on Graph Grammars and Computing by Graph Transforma-
tion. Applications, Languages and Tools, vol. 2. World Scientific
(1999)

3. The AGTIVE Tool Contest: official website (2007) http://www.
informatik.uni-marburg.de/~swt/agtive-contest

4. GraBaTs—Graph-Based Tools: The Contest: official website
(2008) http://www.fots.ua.ac.be/events/grabats2008/

5. Geiss, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.M.:
GrGen: a fast SPO-based graph rewriting tool. In: Corradini, A.,
Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) Graph
Transformations—ICGT 2006. Lecture Notes in Computer Sci-
ence, pp 383–397. Springer, Natal (2006)

6. Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: the FUJ-
ABA environment. In: The 22nd International Conference on
Software Engineering (ICSE), Limerick, Ireland. ACM Press,
New York (2000)

7. VIATRA—VIsual Automated model TRAnsformations: The Via-
tra2 Homepage http://www.eclipse.org/gmt/VIATRA2/

8. Varró, G., Varró, D., Schürr, A.: Incremental graph pattern match-
ing: data structures and initial experiments. In: Karsai, G., Taentzer,
G. (eds) Graph and Model Transformation (GraMoT 2006). Elec-
tronic Communications of the EASST, vol. 4. EASST (2006)

9. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incre-
mental pattern matching in the VIATRA transformation system.
In: GRaMoT’08, 3rd International Workshop on Graph and Model
Transformation, 30th International Conference on Software Engi-
neering (2008)

10. Matzner, A., Minas M., Schulte, A.: Efficient graph matching
with application to cognitive automation. In: Schürr, A., Nagl,
M., Zündorf, A. (eds.) Applications of Graph Transformations
with Industrial Relevance (AGTIVE 2007), Springer, Berlin
(2007)

11. Hearnden, D., Lawley, M., Raymond, K.: Incremental model trans-
formation for the evolution of model-driven systems. In: Nierstrasz,
O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS. Lecture
Notes in Computer Science, vol. 4199, pp. 321–335. Springer,
Berlin (2006)

12. Mészáros, T., Madari, I., Mezei, G.: VMTS AntWorld submission.
GraBaTs—4th International Workshop on Graph-Based Tools: The
Contest (2008)

13. Bergmann, G., Horváth, A., Ráth, I., VarrÃ, D.: A benchmark eval-
uation of incremental pattern matching in graph transformation. In:
ICGT2008, The 4th International Conference on Graph Transfor-
mation (2008)

14. Kovács, M., Lollini, P., Majzik, I., Bondavalli, A.: An integrated
framework for the dependability evaluation of distributed mobile
applications. In: Proceedings of International Workshop on Soft-
ware Engineering for Resilient Systems (SERENE 2008), Newcas-
tle upon Tyne, UK, November 17–19, pp. 29–38 (2008)

15. Zündorf, A.: Antworld benchmark specification, grabats 2008
(2008) http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/
grabats2008performancecase.pdf

16. Varró, D., Balogh, A.: The model transformation language of
the VIATRA2 framework. Sci. Comput. Program. 68(3), 214–
234 (2007)

17. Varró, D., Pataricza, A.: VPM: A visual, precise and multilevel
metamodeling framework for describing mathematical domains
and UML. J. Softw. Syst. Model. 2(3), 187–210 (2003)

18. Börger, E., Stärk, R.: Abstract State Machines. A method for High-
Level System Design and Analysis. Springer, Berlin (2003)

19. Rensink, A.: Representing first-order logic using graphs. In:
Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) Pro-
ceedings of 2nd International Conference on Graph Transformation
(ICGT 2004), Rome, Italy. Lecture Notes on Computer Science,
vol. 3256, pp. 319–335. Springer, Berlin (2004)

123

http://www.informatik.uni-marburg.de/~swt/agtive-contest
http://www.informatik.uni-marburg.de/~swt/agtive-contest
http://www.fots.ua.ac.be/events/grabats2008/
http://www.eclipse.org/gmt/VIATRA2/
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2008performancecase.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2008performancecase.pdf

230 Á. Horváth et al.

20. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimi-
zation by a colony of cooperating agents. IEEE Trans. Syst. Man
Cybern. B 26, 29–41 (1996)

21. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES approach:
language and environment. In: [2, pp. 487–550]. World Scientific
(1999)

22. ATLAS Group: The ATLAS Transformation Language. Available
from http://www.eclipse.org/gmt

23. Zündorf, A.: Graph Pattern Matching in PROGRES. In: Selected
papers from the 5th International Workshop on Graph Gramars and
Their Application to Computer Science, London, UK, pp. 454–468.
Springer, Berlin (1996)

24. Horváth, A., Varró, G., Varró, D.: Generic search plans for matching
advanced graph patterns. In: Proceedings of the Sixth International
Workshop on Graph Transformation and Visual Modeling Tech-
niques (GT-VMT 2007), Braga, Portugal (March 31–April 1), pp.
57–68. Electornic Communications of the EASST (2007)

25. Varró, G., Varró, D., Friedl, K.: Adaptive graph pattern matching
for model transformations using model-sensitive search plans. In:

Karsai, G., Taentzer, G. (eds.) Proceedings of International Work-
shop on Graph and Model Transformation (GraMoT’05). ENT-
CS. Tallinn, Estonia, vol. 152, pp. 191–205. Elsevier, Amsterdam
(2005)

26. Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object
pattern match problem. Artif. Intell. 19(1), 17–37 (1982)

27. Knuth, D.: The Art of Computer Programming, 3rd edn, vol. 1, Sec-
tion 1.2.11: Asymptotic Representations. Addison-Wesley, Read-
ing (1997)

28. Luby, M.G.: Pseudorandomness and Cryptographic Applica-
tions. Princeton University Press, Princeton (1994)

29. Batz, G.V., Kroll, M., Geiss, R.: A first experimental evaluation of
search plan driven graph pattern matching. In: Schürr, A., Nagl, M.,
Zündorf, A. (eds.) Proceedings of 3rd International Workshop on
Applications of Graph Transformation with Industrial Relevance
(AGTIVE ’07). LNCS, vol. 5088. Springer, Berlin (2008)

123

http://www.eclipse.org/gmt

	Experimental assessment of combining pattern matching strategies with VIATRA2
	Abstract
	1 Introduction
	2 Background
	2.1 Metamodeling foundations
	2.2 Graph patterns
	2.3 Graph transformation rules
	2.4 Model manipulation
	2.5 Control structure

	3 Description of the solution
	3.1 Ant simulation
	3.2 World management

	4 Pattern matching strategies in VIATRA2
	4.1 Pattern matching strategies in the VIATRA2 framework
	4.2 Local search-based pattern matching in VIATRA2
	4.3 RETE-based incremental graph pattern matching in VIATRA2
	4.4 Hybrid pattern matching strategy

	5 Benchmarking
	5.1 Fine-tuning
	5.1.1 Pattern matching strategy
	5.1.2 Model management issues
	5.1.3 Language-specific considerations

	5.2 Measurements
	5.2.1 Variants
	5.2.2 Telemetry

	5.3 Analysis of the results
	5.3.1 Complexity class analysis
	5.3.2 Effects of optimizations
	5.3.3 Optimization summary

	5.4 Suggestions for improvement
	5.4.1 Viatra2-related issues
	5.4.2 Case study-related issues

	6 Conclusion
	Appendix: Complete VTCL source of the Antworld case study
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

