
Int J Softw Tools Technol Transfer (2010) 12:467–481
DOI 10.1007/s10009-010-0138-x

VSTTE 2008

Improved usability and performance of SMT solvers
for debugging specifications

David R. Cok

Published online: 19 February 2010
© Springer-Verlag 2010

Abstract It is now common to construct an extended static
checker or software verification system using an SMT
theorem prover as the underlying logical verifier. SMT prov-
ers have improved significantly in performance over the last
several years. However, their usability as a component of
software checking and verification systems still has gaps.
This paper describes investigations in two areas: the report-
ing of counterexample information and the testing of vacuity,
both of which are important to realistic use of such tools for
typical software development. The use of solvers in verifica-
tion is more effective if the solvers support minimal unsat-
isfiable cores and incremental construction, evolution and
querying of satisfying assignments; current solvers only par-
tially support these capabilities.

Keywords Specification · Verification · Static checking ·
Vacuity checking · JML · ESC/Java · ESC/Java2 · Spec#

1 Introduction

The goal of a static program checker is to assure, without exe-
cuting a program, that the program will behave as expected,
where the expectations are measured by explicit and implicit
specifications. Implicit specifications are provided by lan-
guage rules, e.g., that forbid numerical divide-by-zero opera-
tions. Explicit specifications are provided by humans and are
a statement of the constraints on input, output, and resource
requirements, such as that the output of a subroutine will be a
sorted array or that the screen display will accurately reflect
the content of a database. Human-readable documentation

D. R. Cok (B)
Eastman Kodak Company, Rochester, NY, USA
e-mail: cok@frontiernet.net

is a form of specification, but one that is inaccessible to the
computer. Specifications that are also computer readable can
be checked automatically. There are other aspects of a pro-
gramming and operating environment that also need to be
correct, but in this paper we will only consider the match
between a program and its specifications.

The design of verification systems for practical software
has improved significantly in the past several years, encour-
aged by improvements in logical encoding [1,2], competi-
tions on prover performance [3,4], and increasing coverage
of programming and specification features. An additional
important dimension is the way in which such tools provide
information to the user. The logical information available
to the user comes indirectly from a back-end prover, so the
capabilities of the prover can restrict the potential of any
user interface. Since most of a user’s time may well be spent
in correcting programs and their specifications, the amount,
kind, and presentation of helpful information are important
to a usable tool.

This paper describes two kinds of information that are
needed to diagnose problematic programs and specifications:
counterexample information and vacuity checking. Good
counterexample information is needed in the case that a pro-
gram does not satisfy its specifications; vacuity checking
determines when a program satisfies its specifications
because the specifications are trivially true. In both cases,
having appropriate capabilities that are currently missing
from available provers enhances both speed and quality of
the information available to programmers.

The paper makes the following contributions. Section 2
provides background on the use of SMT solvers in soft-
ware verification. Section 3 assesses the currently available
counterexample information, describes how to translate this
information such that it is more helpful to debugging speci-
fications, and identifies changes in SMT solvers that would

123

468 D. R. Cok

Fig. 1 The steps of software verification

further aid counterexample presentation. Section 4 presents
six methods of checking for vacuous assumptions, exper-
imentally measures their relative performance using three
different SMT solvers, and presents conclusions regarding
useful improvements in SMT solver functionality. Section 5
summarizes the paper’s observations and describes future
work.

2 Background: the design of static program checkers

2.1 Static analysis systems

Although static analyzers for program checking and soft-
ware verification can be designed in many ways, a common
architecture consists of the following pieces, as illustrated in
Fig. 1.

• A specification language corresponding to the target pro-
gramming language. Some specification languages are
independent of programming language, such as Z [5].
However, it is now more common to have a specification
language closely related to the programming language.
Then, the concepts of the specification language are sim-
ilar to those of the programming language, aiding learning
and reducing errors. Thus, e.g., Eiffel [6] has its own built-
in specification language, JML [7–9] is used for Java, the
Spec# [10,11] language for C#, Anna [12] for Ada, and
ACSL [13] for C. Specification languages provide syntax
to express invariants (what must always be true of classes
and data structure), preconditions (stating what must be
true before calling a method), frame conditions (stating
what may be changed by a method), and postconditions
(stating what will be true on exiting a method).

• A programming-language-dependent front-end that is
responsible for parsing source code files and retrieving
library contents to build a type-checked AST that repre-
sents the program and its specifications. This is equivalent
to the front-end that is used by a compiler and requires the
same capabilities: scanning and parsing of source files,

reading of binary files, name resolution, symbol table
management, and type attribution.

• (Optional) A program transformer that converts the AST
into a language-independent intermediate representation.
Though some tools use a tool-specific representation or
translate directly from an AST to verification conditions
(VCs), it is increasingly convenient to use a language- and
tool-independent intermediate representation. Such a rep-
resentation enables reusing software components such as
VC generators in multiple tools or for multiple languages.
Two intermediate languages that are used for multiple
programming languages are BoogiePL [14] and the Why
language [15].

• A VC generator that creates the logical statements that
must be proved to assure that the program matches its
specifications. Ideally, VC generation is independent of
the theorem prover to which the VCs are presented. In
practice, theorem provers have different capabilities and
different underlying logical systems, so that the form of
the logical statements must, to some extent, be tailored
to their destination. One common logical language sup-
ported by many provers is the SMT-LIB [16] language.
However, this language is more suited to writing bench-
marks than to interactive use during software develop-
ment.

• A theorem prover that can pronounce given logical state-
ments as true or false. There are by now many such prov-
ers. Some are meant as hidden batch back-end tools, e.g.,
Simplify [17], Yices [18,19], CVC3 [20], and Z3 [21];
others, such as PVS [18,22] and Isabelle [23], are inter-
active proof development environments.

Typically, these architectural components are bundled into a
unified system. Some currently supported systems are Spec#
for C# programs, ESC/Java2 [24] for Java, Why [15] for C
or Java, and KeY [25,26] for Java.

However, the linear flow outlined above does not reflect
an important requirement: a system must be effective at both
identifying and explaining problems. Program or specifica-
tion issues identified by the back-end prover must be com-
municated with as much relevant information, expressed in
the programmer’s terms, as possible. But the translation to
intermediate language, to VC, to the prover’s logic, and then
to the results of the prover can lose the information needed in
order to provide useful feedback in the source code context.

2.2 The structure of VCs

In order to see how the back-end theorem prover can aid in
the program and specification debugging process, we need to
understand the way in which VCs are generated. We use the
basic block formulation proposed by Barnett and Leino [27].

123

Improved usability of SMT solvers 469

In this procedure, a program method is transformed into an
equivalent set of basic blocks. The basic blocks comprise the
nodes of a directed acyclic graph. That is, control flows from
a start block, through the graph, with branching and joining,
until an end block is reached. Each block itself corresponds
to a non-branching sequence of program statements. A par-
ticular execution of the program, with specific input values,
will correspond to a particular path through the graph.

A basic block contains a translation of its bit of program
code into a series of assumptions and assertions. The assump-
tions encode the various conditions that may be assumed in
that block. For example, the preconditions of the method
will be assumptions at the beginning of the starting block;
a branch condition (or its negation) will be an assumption
at the beginning of a block representing an alternative of a
branch. The assertions encode conditions that must be true
if the program is correct, namely, the requirements derived
from the specifications.

The details of translating a program into basic blocks are
described elsewhere [27] and are not repeated here. However,
the next subsection contains two examples that illustrate the
process. The translation includes applying program transfor-
mations to remove cycles (from loops and goto statements)
and applying dynamic single assignment and passification to
convert program variables into logical ones and imperative
program assignments into logical conditions.

In the end, the VC for a method can be expressed as

(∧k Qk) ⇒ B0 (1)

where each Qk is an equality of the form

Bk = ((∧ j Ak j) ⇒ ((∧m Tkm) ∧ (∧i∈Fk Bi))). (2)

The indices k and i range over all blocks; the Qk are called
block equations, the Bk are boolean block variables, the Akj

are assumptions, the Tkm are assertions, Fk is the set of indi-
ces of blocks that follow block k, and index 0 corresponds
to the program start block (which does not follow any other
block).1 The block equations encode the logic of the program:
given the block equations, the variable for the start block (B0)
is true if and only if the program matches its specifications.

2.3 Examples

Although basic blocks and block equations are described in
detail by Barnett and Leino [27], this subsection presents two
examples that will assist readers in visualizing basic blocks
and the resulting VCs.

1 This actually differs slightly from the original basic block formula-
tion in order to simplify the presentation; here, basic blocks are divided
into subblocks such that assertions only occur at the end of subblocks.

Fig. 2 Java code demonstrating a simple conditional statement

Fig. 3 Basic blocks for the code in Fig. 2

Fig. 4 Block equations corresponding to Figs. 2 and 3

The first example, Figs. 2, 3 and 4, shows the blocks and
block equations resulting from a simple conditional state-
ment. There are some things to note.

• Program variables (e.g., i) are converted to logical vari-
ables (i@0, i@1, i@2). In single-assignment form, a new
logical variable is used each time the program variable is
assigned a new value.

• When control flows join, such as at the end of an
if-statement, a new logical variable is used to hold the
value of a program variable that may have different
assignments in the different branches of the program.
(In some cases, such as here, an existing logical variable
could be reused for this purpose.)

• A special variable is used for the return value.
• Assignments become assumptions about the value of a

new logical variable; the postcondition is represented as
an assertion.

123

470 D. R. Cok

Fig. 5 Java code demonstrating a loop, with a bug

Fig. 6 Basic blocks for the code in Fig. 5

The VC, here, is (Q0 ∧ Q1 ∧ Q2 ∧ Q3) ⇒ B0. The reader
may enjoy proving that this is true (even though the postcon-
dition uses > instead of ≥). Note that many assignments of
values to the logical variables, such as i@0 = 10, i@1 =
11, i@2 = 12, satisfy the VC because the assumptions are
false. It is only assignments that make all the relevant assump-
tions true that are critical—they may or may not satisfy the
assertions as well.

A second example, in Figs. 5, 6 and 7, shows how pro-
grams with loops become acyclic. At the point where the
control flow from the end of the loop joins the control flow
from statements preceding the loop, the loop variable and
variables that are changed in the loop body may have a vari-
ety of values. In fact, the basic block transformation allows
them to have arbitrary values, constrained only by the loop
invariant. This is implemented by introducing new logical
variables (i@1 and sum@1) for those program variables.
The only assumption about the values of these new logical
variables is the loop invariant. The loop invariant is checked
prior to entering the loop, and the logical translation of the

Fig. 7 Block equations corresponding to Figs. 5 and 6

loop body checks that if the loop invariant holds at the begin-
ning of a loop, it also holds at the end. No blocks follow the
loop body in the basic block formulation. It is incumbent on
the loop invariant to accurately state the consequences of the
loop body and to constrain the values of the loop index, so
that appropriate conclusions can be drawn about the effect
of the loop as a whole. (For brevity, we omit discussion of a
loop variant assertion that is used to verify termination.)

This example has a bug. The postcondition incorrectly
states that the result should be 0. This is in fact correct for
j <= 1. But the assignment

j@0 = 2, sum@0 = 0, i@0 = 0,

i@1 = 2, sum@1 = 1, $resultV alue = 1

is a counterexample for the VC. Block variables B4, B2, and
B0 are false.

Alternately, if the sum within the loop invariant is
(\sumintk; 0 <= k&&k <= i; k), the loop invariant
is initially true, but would not hold after the first iteration
through the loop; a counterexample would then be

j@0 = 2, sum@0 = 0, i@0 = 0, i@1 = 0,

sum@1 = 0, i@2 = 1, sum@2 = 0.

Block variables B3, B2, and B0 are false.

123

Improved usability of SMT solvers 471

3 Counterexample information

3.1 The anatomy of a failed verification

If a program does not meet its stated specifications, then the
VC for the program will not be true. The implication in (1)
is false only when the block equations hold and B0 is false
for some assignment of values to the logical variables. Any
block variable is false only when all of the assumptions of
the block (the Akj for that Bk) are true, but either the Bz for
some succeeding block is false or some assertion Tkm for that
block is false. By induction, we can see that the VC will be
false only when there is an assignment of values to variables
that makes a sequence (beginning with B0) of assumptions
true but the following assertion false.

It is the task of the back-end prover, given a VC (and
associated supporting axioms), to pronounce the VC valid or
invalid. This is typically performed by seeking a satisfying
assignment for the negation of the VC. If such an assignment
is found, the VC is invalid, and the assignment serves as a
counterexample to the validity of the program.

3.2 Presenting counterexample information

To be helpful to the user in correcting the program or the spec-
ifications, the counterexample information should be avail-
able in some appropriate form. Current systems, however,
present this information in the context of the back-end prover,
generally as a partial dump of the logical context of the
prover. For example, the ESC/Java [28] and ESC/Java2 [24]
tools use Simplify [17] as the back-end prover. Counterex-
ample information is presented as a list of internal logical
variables and their values; Fig. 8 shows a sample Java pro-
gram with JML annotations and the resulting counterexample
output; Figs. 9 and 10 show parts of the corresponding out-
put from the Yices and CVC3 tools. In each tool, there is an
attempt to limit the information to “relevant” variables by
some heuristic. Also, logical variables are added to the VC
to encode the control flow within the satisfying assignment.
Thus, some tools are able to state the branch taken at each
branch point, given the satisfying assignment. Nevertheless,
the variables are simply listed with their values and the var-
iable names are the encoded names of the logical variables
used in the prover, including many that relate to the inter-
nal logical encoding. It takes knowledge of how the prover
functions, how the VC is structured, and how the logical var-
iable names are formed from the program variables in order
to interpret the counterexample. Even then, the process of
understanding the counterexample sufficiently to be able to
begin debugging the specification is tedious and difficult.

The Spec# system builds on this same philosophy, but
embeds the user interaction in an IDE, an improvement in

Fig. 8 Java example with JML specifications and counterexample
information from ESC/Java2

user-friendliness. The trace information is shown overlaid on
the program itself within the source code editor, and the few

123

472 D. R. Cok

Fig. 9 Sample counterexample information from Yices

Fig. 10 Sample counterexample information from CVC3

variables whose values are selected to be shown are translated
back into program variable names. However, an insufficient
set of values is selected from the counterexample, and the
user is not able to explore the counterexample in any way.

Other systems (e.g., Why or KeY) provide a view of the
proof process from the point of view of a formal logic expert.
There is an explicit view into the VCs generated by a pro-
gram; there are means to attempt a variety of provers on
specific subgoals, and means to inspect which subgoals are
proved, which are not, and so on. These tools target a user
familiar with the details of the formation and proof of VCs.

None of these systems provide means to query the coun-
terexample in the context with which the programmer is most
familiar—the software code itself and its control flow. A typ-
ical bug is subtle and requires investigating program values
and their ramifications at various points in the program. The
counterexample information is crucially valuable, but it can
be used effectively only if presented more accessibly.

3.3 Improved presentation of counterexample information

We can improve the understanding of the counterexample
information by presenting it in the context of a program’s
source code and control flow. In particular, we can trace
through the program, statement by statement, according to
the values of variables in the counterexample, reaching the
false assertion. The counterexample provides enough infor-
mation to retrace the control flow and to give the values of
variables and subexpressions along the way. Specific prov-
ers return differing amounts of information, but appropriate
queries to the prover, if supported, can supply the values of
any desired program variables and subexpressions. Present-
ing this information in association with the source code and
with the details obtained by this pseudo-execution provides
the user with a clear picture of the erroneous state of the
program, rather than the flat view of a subset of the logical
variables provided currently.

A control-flow-oriented presentation is used in other con-
texts. Tools that use symbolic execution have natural access
to the control path that leads to a problematic state, and pre-
sentations of that control path are used even in commercial
tools [29]. Similarly, tools (e.g., the JACK tool [30]) that
give the user visibility to the proof obligations that the user
may need to interactively prove can show the statements of
a program that contribute to the proof obligation. Here, the
contribution is to provide a similar capability for counter-
example information.

First, we note that the basic block formulation contains
within it the needed control flow information. A satisfying
assignment that serves as a counterexample will have B0 false
and will correspond to a path through the acyclic graph that
ends with the assertion that is false under this assignment.
The block variable Bk for each block on this path will be
false. The relevant execution path can be found by tracing
through the directed acyclic graph of blocks, either forward
from the start block or in reverse from the block containing
the false assertion, to find the appropriate sequence of blocks
with false block variables in the satisfying assignment. Note
that the values of logical and block variables that are not
part of this chain of blocks may have arbitrary assignments.
Hence, it is not sufficient to search for any block with a false
block variable—only those that form a path from start to false
assertion are relevant.

A small, constructed example of this procedure is shown
in Fig. 11. The assignment i@0 = 0, j@0 = 0 is a counter-
example for the VC (a satisfying assignment for the negation
of the VC); in particular, it sets B0, B1, and B3 false, and
B2, B4, and B5 true. Both assertions are false, but the rele-
vant control flow path is from block B0 to B1 to the assertion
in block B1. Since block B3 follows from block B2 and the
block variable B2 is true, it is irrelevant to the counterexam-
ple that B3 is false. Sometimes a false block such as B3 is

123

Improved usability of SMT solvers 473

Fig. 11 Java code demonstrating a simple conditional statement

infeasible (never executed), in which case the fact that it is
false is misleading; other times (such as in this case) there
may be other counterexamples (e.g., i@0 = 1, j@0 = 0)
in which B3 is feasible and that identify other program or
specification errors.

Second, we need to retrieve the values of expressions and
assignments for each program variable at arbitrary points
along the control flow path. Those values are readily avail-
able for program variables corresponding to specific logical
variables that are included in the counterexample informa-
tion. However, sometimes one wants to query the value of a
subexpression, such as the index of an array element assign-
ment or the return value of a function call for which no spe-
cific logical variable is defined or returned by the prover. For
these subexpressions, we can proceed as follows:

• To obtain the value of a desired expression expr, assert to
the prover the negated VC and the additional equation X
= expr, where X is a new variable name. Multiple expres-
sions can be queried using an appropriate conjunction.

• If the original negated VC was satisfiable, the logical con-
text will still be satisfiable and the value of X will be the
desired value of the subexpression.

However, resending to the prover the entire negated VC
each time we wish to query the value of a subexpression is
inefficient. We prefer to query the existing state of the prover
after it has generated a satisfying assignment. Most current
provers do allow incremental addition of new constraints to
an existing logical context. In such an incremental mode,
one would assert the negated VC to the prover and check
for satisfiability; then one would assert the new equations,
recheck for satisfiability and inspect the new counterexam-
ple for the values of the desired expressions. However, there
is no guarantee that the recheck will find the same satisfying
assignment, even though the original assignment will still
be satisfying. We can simulate the situation that the satis-
fying assignment stays the same (augmented with the new
variables) by asserting the entire counterexample back to the
prover, along with the new queries. This still gives a satisfy-
ing assignment but results in one that has the same values on
all variables that have already been reported.

With this ability to query a counterexample for the values
of arbitrary subexpressions, a text-based interface or a GUI
can provide the user the ability to explore the implications of
a counterexample, in the context of the program text, rather
than the user simply receiving a list of the values of mostly
irrelevant variables.

This capability allows reverse debugging as well. A static,
logic-based approach as described above naturally retains
a record of state changes and provides symbolic informa-
tion about any previous state. Within generally available run-
time debuggers, one can usually set breakpoints and inspect
the current state of a stopped program. However, one typ-
ically cannot look back to previous program states. (There
are research debuggers that have provided reverse stepping
by taking snapshots of the state or logging state changes; e.g.,
GDB intends to add support for reverse debugging in 2009,
and Cook [31] and later ODB [32] implement this feature for
Java.)

In order to efficiently execute the above procedure, a back-
end solver needs to have the following capabilities:

• the ability to add additional constraints to a current logical
context, checking for satisfiability as new groups of asser-
tions are added, extending the current satisfying assign-
ment incrementally, if possible;

• the ability to query a satisfying assignment for the implied
value of variables or expressions, without the current
assignment changing (although it may perhaps be aug-
mented).

The first item above is fairly standard in SMT solvers,
though rechecking for satisfiability may cause a completely

123

474 D. R. Cok

Fig. 12 An example of
improved counterexample
information from OpenJML.
The @L notation indicates a line
number. A remaining confusing
aspect is Yices mapping of
user-defined types (e.g., object
references) to integers

new check to be performed, rather than building on the results
of the previous check. The second item is less common. The
SMT-LIB API, currently under development, is also a place
where such functionality should (and is beginning to) be pres-
ent, though that standard would then need to be supported by
functionality in actual tools.

A few other aspects should be mentioned that are quite
straightforward to provide (although they are not in current
tools).

• The assumptions and assertions that make up a basic
block program are generated by a variety of source code
constructs. By recording the source of specific assump-
tions and assertions, information returned by the prover
about them can be portrayed in the context of the source
code. For example, both assignments and branch con-
ditions generate assumptions about variables, but, as in
Fig. 12, with the right internal information, the presenta-
tion can be appropriately different.

• Similarly, the logical variables used by the prover are typ-
ically a cryptic encoding of various pieces of information:
the variable name, its declaration location, and the loca-
tion of its most recent update (as you can see in Fig. 8).
Without detailed knowledge, these names are inscrutable
to the programmer. Translating them back into the context
of the program’s source code and succinctly displaying
the relevant information are essential for easy understand-
ing. (SMT-LIB [33] allows for annotations of this sort in
its concrete syntax, but this capability has not yet been
integrated into verification systems.)

• In this paper, counterexample information is shown in tex-
tual form. Within a visual source-code editor, the appro-
priate parts of the control flow can be suitably highlighted.

• Finally, though not discussed here, a tool can perform
additional analysis (e.g., dependency analysis) of the
counterexample information and the content of the pro-
gram’s assumptions and assertions in order to identify
more precisely the aspects of a program that lead to the
counterexample.

These techniques were implemented for experimentation
in the OpenJML tool, a JML and ESC implementation built
with OpenJDK [34] and Yices as the prover. Figure 12 shows
the generated counterexample information for the same code
as in Fig. 8. Subexpression information is shown for just a
few expressions for space reasons; also, column information
is omitted. With this presentation, it is more evident that the
problem with the code occurs when the argument of m(int
k) has the same value as the length of the array a.

4 Vacuity checking

Vacuity checking is a second area in which improved prover
capability is needed in order to support a better user experi-
ence. Vacuity checking verifies that if a prover pronounces
that a program meets its specifications, it is not because the
specifications are trivially satisfied. If the preconditions of
a method are inconsistent (equivalent to false), then any
subsequent assertion will be deemed valid by the theorem

123

Improved usability of SMT solvers 475

prover, i.e., will be vacuously true. Similarly, if an inadver-
tently false assumption is included in the text of a program,
any subsequent assertions will be deemed valid.

Vacuous assumptions are, of course, human errors. But
without additional checks, a program with vacuous assump-
tions is reported to be just as valid as one that correctly meets
its specifications. This is a well-known problem in model
checking, e.g. [35,36]; there is also some initial work in the
context of static analysis [37]. In requirements modeling, this
task is also known as consistency or satisfiability checking,
e.g. [38,39]. In the case of a formal requirements model, one
can check for global consistency by finding an instance that
satisfies all the constraints of the model. The fundamental
logical task is similar to that needed for software verifica-
tion, but the formulation of the satisfiability task is different
in the two applications.

Note first that if a VC for a module is invalid, there is
no need to do vacuity checking. Rather, vacuity checking is
called for when the VC is reported as valid. Second, a mod-
ule may have many assumptions. Most methods of check-
ing for vacuous assumptions require that each assumption be
checked individually (or at least each assumption sequence
must be tested individually). Hence, multiple vacuity check-
ing tests would be run for a given program module and
the performance of the checker is important. The follow-
ing sections describe a number of ways to check for vacuous
assumptions and compare their performance.

4.1 Methods of vacuity checking

4.1.1 A-InsertAssert. The assert false technique

The traditional test that is performed in program checking
systems is to insert an appropriately placed assert false state-
ment within the program and then recheck the program. The
inserted assertion is placed after the assumption in
question, or perhaps after a sequence of assumptions within
a basic block. If the assert false triggers an assertion viola-
tion, then any assumptions prior to that assertion are at least
not vacuous; however, if no assertion violation occurs despite
the explicit assert false, then that assertion is never logically
reached, and there is likely a problem.

Though testing each assumption individually gives the
most precision, one can begin by testing each basic block
individually. In this case, one inserts an assert false state-
ment at the end of each block in turn. If the assertion causes
the VC to be invalid, then the assumptions in that block are
not vacuous; if the VC is still valid, then the assumptions in
the block need to be tested individually.

This method of inserting test assertions has been a manual
idiom in ESC/Java2 and is applied automatically by some
tools, e.g. [37]. It requires a separate reformulation of the

VC and a separate test of satisfiability for each assumption
or block being checked.

4.1.2 B-TruncAssert. The truncated assert false technique

Method A-InsertAssert of the previous subsection can be
improved by noting the following: none of the statements
following a false assertion are needed. If the assertion is exe-
cuted, execution will stop because it is false, and nothing after
it is ever executed. If the assertion is not executed (and the
VC is reported as still valid), then nothing after it is executed
either. Hence, we can shorten the program by eliminating any
statements within the basic block after the point of inserting
the false assertion; we can also ignore any other basic blocks
that follow only the block containing the inserted assertion.
This is the technique used by Janota et al. [37] in their reach-
ability analysis.

In this way, the VC generated from the module augmented
with the inserted assertion is simpler than the original VC and
may be more quickly tested. In particular, the preconditions
of a method are translated as assumptions that begin a VC.
Those preconditions must also be tested for vacuity; when
a false assertion is placed after them, the entire body of the
method can then be ignored.

4.1.3 C-PushPop. The push-pop technique

Techniques A-InsertAssert and B-TruncAssert require
repeated testing of similar VCs. For example, each VC will
contain a large background predicate that states many defi-
nitions and theorems about the logical behavior of the oper-
ations and constructs of the programming language. Logical
statements encoding the properties of classes referenced by
the module under test also need to be generated and presented
to the theorem prover. It seems inefficient to repeatedly gen-
erate and test VCs with largely the same content.

Most SMT solvers have a checkpointing capability. That
is, the state of the logical context can be saved (“pushed”),
further operations performed, and then the saved state can be
restored (“popped”). This can be used for vacuity testing as
follows:

• Choose a new logical variable name, e.g., assumption-
Number.

• Assign a unique positive integer to each assumption to be
tested.

• Insert after each assumption to be tested the assertion
assert assumptionNumber != M, where M is the number
of that assumption.

• Generate the resulting VC; present it to the solver.
• Then repeatedly, for N equal to 0 and for N equal to each

of the integers assigned to assumptions, do the following:

123

476 D. R. Cok

◦ save the state
◦ add the assumption assumptionNumber = N to the

solver’s logical state
◦ test the resulting VC for validity
◦ restore the state.

Now,

(a) When the equality assert assumptionNumber = 0 is
added to the logical state and tested, the VC is equivalent
to the VC of the original program. With this assignment
of 0 to the variable assumptionNumber, all the inserted
assertions are true, and the truth of the original VC is
unchanged.

(b) When the equality assumptionNumber = M is added to
the logical state and tested, the VC is equivalent to the
original VC with a single assert false after the assump-
tion numbered M.

Consequently, this procedure performs the same tests as
Technique A-InsertAssert, but without needing to restart the
SMT solver for each test. Note that the optimization of testing
each basic block rather than each assumption can be applied
here, but the optimization of Technique B-TruncAssert can-
not.

4.1.4 D-Retract. The retraction technique

Another capability of some solvers is to be able to retract
specific logical statements presented to the solver. With this
technique, we do not need to repeatedly save and restore the
entire logical state. Rather, we proceed as follows:

• Choose a new logical variable name, e.g., assumption-
Number.

• Assign a unique positive integer to each assumption to be
tested.

• Insert after each assumption to be tested the assertion
assert assumptionNumber != M, where M is the number
of that assumption.

• Generate the resulting VC; present it to the solver.
• Then repeatedly, for N equal to 0 and for N equal to each

of the integers assigned to assumptions, do the following:

◦ add the logical statement assumptionNumber = N to
the solver’s logical state

◦ test the resulting VC for validity
◦ retract the statement just made.

This also replicates all of the tests of individual assump-
tions performed in Technique A-InsertAssert. As for Tech-
nique C-PushPop, the optimization of testing each basic block

rather than each assumption can be applied here, but the
B-TruncAssert optimization cannot.

4.1.5 E-Search. The search technique

The techniques so far described test each assumption by
inserting a false assertion, one at a time. It is possible to
combine some of these tests and have the solver decide which
ones might be false. Consider the following technique:

• Choose a new logical variable name, e.g., assumption-
Number.

• Assign a unique positive integer to each assumption to be
tested.

• Insert after each assumption to be tested the assertion
assert assumptionNumber != M, where M is the number
of that assumption.

• Generate the resulting VC; present it to the solver.
• Then repeatedly, do the following:

◦ test to see if the VC is valid
◦ if the VC is valid, then all remaining assumptions are

vacuous (and the iteration ends)
◦ if the VC is invalid, the counterexample demonstrat-

ing invalidity will have an assignment for the variable
assumptionNumber. The value of assumptionNumber
will correspond to one of the assumptions. Since the
assertion corresponding to that assumption is false,
that assumption is not vacuous.

◦ add the logical statement assumptionNumber != N to
the logical context and repeat.

This procedure allows the solver to choose which of the
inserted assertions is false. The most common case is that
all of the assumptions under test are non-vacuous; in that
case, the total number of prover invocations is the same as in
any of the previous techniques. If there are multiple vacuous
assumptions, the total number of tests will be reduced.

4.1.6 F-UnsatCore. The unsatisfiable core technique

When a negated VC is unsatisfiable, some provers (e.g.,
Yices) can also report a subset of given assertions that, by
themselves, are unsatisfiable. This set is called an unsatis-
fiable core. If an assertion to the prover is not part of the
unsatisfiable core, then it is irrelevant to the proof of validity.
So suppose we add, after an assumption to be checked, the
program assertion assert X; in addition, we separately
assert to the prover a statement equivalent to X = true (X
being a previously unused variable name). Since X is true, the
VC is logically equivalent to the original VC, so we can build
in this assertion when the VC is first constructed. However,
if the assertion X = true turns out to be irrelevant (i.e., it

123

Improved usability of SMT solvers 477

is not part of the unsatisfiable core), then it does not matter
whether X is true or false, and there must be something vac-
uous prior to the assertion. This allows a test for vacuity with
only the overhead of generating the unsatisfiable core and
without needing to do additional checks for satisfiability.

There is a hitch, however: the core may not be minimal.
If the core is not minimal, then there may still be irrelevant
assertions in the given core. Consequently, anything left in
the core, including any non-vacuous assumption (which, one
hopes, is all of them), still needs to be tested individually.
Accordingly, it would be particularly advantageous to know
that the reported core is minimal.

Thus, the quality of information available (efficiently) to
the user can be enhanced if SMT solvers have these capabil-
ities:

• When reporting that a logical context is unsatisfiable, a
prover also reports an unsatisfiable core;

• The prover also reports that the core is minimal, when it
can do so efficiently.

4.2 Performance of vacuity testing techniques

In typical use, vacuous assumptions will be inadvertently
introduced into a specification, detected by an appropriate
tool, and then corrected. A typical program module will con-
tain many implicit or explicit assumptions. Most of the time,
nearly all assumptions will be non-vacuous. Hence, the effi-
ciency of checking vacuity is important to a productive soft-
ware development workflow.

The performance of the techniques described in the pre-
vious section was measured as follows:

• The OpenJML tool was used to translate sample Java pro-
grams into VCs with testable assumptions.

• Three different SMT solvers were assessed: Simplify,
Yices, and CVC3. However, the performance compari-
sons always compare different techniques using the same
solver; different solvers were not compared against each
other.

• Since most existing code is either not annotated with
user assumptions or has already been checked for vacuity,
these performance tests were performed on constructed
programs that contained dead code from unused condi-
tional and switch statement branches. The scale of the
test programs was varied to provide performance checks
across a range of time scales and locations of the vacuous
assumptions.

• Each measurement was repeated at least three times; com-
parisons were made against the median baseline time (the
baseline was usually the A-InsertAssert technique).

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Time (secs) for Technique A

T
im

e
B

 /
T

im
e

A

Fig. 13 Ratio of times for Technique B-TruncAssert to A-InsertAssert
versus the time by Technique A-InsertAssert (filled circles Yices, open
circles Simplify, and asterisks CVC3 provers)

These test scenarios are atypical of common programming
environments in two ways.

• The test programs are simpler than most programs would
typically be, with less dependence on other modules. I
expect that using more complex programs would accentu-
ate the value of the optimizations described in the sequel.

• The test programs contain assumptions mostly from
branch and loop statements; typical vacuous assumptions
are also (perhaps more) likely to arise from incorrect axi-
oms and invariants.

4.2.1 Technique B-TruncAssert versus A-InsertAssert

Figure 13 shows the ratio of times using the B-TruncAssert
technique to A-InsertAssert, as a function of the time using
Technique A-InsertAssert. Recall that the difference between
these two techniques is that in Technique B-TruncAssert, the
VC is truncated after known false assertions. The comparison
shows that, particularly for longer running tests, the trunca-
tion can save up to 60% of the running time. The savings
is greater for Simplify and CVC3 than for Yices, prompting
the conjecture that Yices may implement this optimization
internally.

4.2.2 Technique C-PushPop versus A-InsertAssert

Figure 14 shows the ratio of times using the C-PushPop
technique to A-InsertAssert, as a function of the time using
Technique A-InsertAssert. This comparison shows a clear
improvement across all tests and provers of 30–90%. The
time saved using stored state is an improvement over the
truncation technique (Technique B-TruncAssert).

123

478 D. R. Cok

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Time (secs) for Technique A

T
im

e
C

 /
T

im
e

A

Fig. 14 Ratio of times for Technique C-PushPop to A-InsertAssert
versus the time by Technique A-InsertAssert (filled circles Yices, open
circles Simplify, and asterisks CVC3 provers)

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Time (secs) for Technique A

T
im

e
D

 /
T

im
e

A

Fig. 15 Ratio of times for Technique D-Retract to A-InsertAssert ver-
sus the time by Technique A-InsertAssert (Yices prover only)

4.2.3 Technique D-Retract versus A-InsertAssert

The retraction technique is only available in the Yices prover.
Figure 15 shows the performance of this technique compared
to the baseline. Most test scenarios show a further improve-
ment over Technique C-PushPop, with times that are about
10% of the baseline. Very short tests show less improvement;
presumably those times are dominated by initialization.

4.2.4 Technique E-Search versus C-PushPop and D-Retract

Technique E-Search also shows substantial improvement
over the baseline (Technique A-InsertAssert), so it is more
interesting to compare E-Search to the best techniques so

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Time (secs) for Technique A

T
im

e
E

 /
T

im
e

C

Fig. 16 Ratio of times for Technique E-Search to C-PushPop versus
the time by Technique A-InsertAssert (filled circles Yices and open
circles Simplify provers)

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (secs) for Technique A

T
im

e
E

 /
T

im
e

D

Fig. 17 Ratio of times for Technique E-Search to D-Retract versus the
time by Technique A-InsertAssert (Yices prover only)

far: C-PushPop and D-Retract. Technique E-Search could be
implemented only in Yices and Simplify; technique
D-Retract is only available for Yices. Figure 16 shows the
ratio of times using Technique E-Search vs. Technique
C-PushPop for the various tests: Fig. 17 shows the com-
parison between E-Search and D-Retract. Though E-Search
does generally better than C-PushPop, it usually is worse than
D-Retract. In fact, the comparison depends both on the prover
and on the details of the particular test.

In Technique D-Retract, we test each assumption individ-
ually with an explicit false assertion. In Technique E-Search,
we allow the prover to find an assertion which, if false, will
invalidate the VC. This more complicated problem makes

123

Improved usability of SMT solvers 479

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (secs) for Technique A

T
im

e
F

 /
T

im
e

D

Fig. 18 Ratio of times for Technique F-UnsatCore to D-Retract versus
the time by Technique A-InsertAssert (Yices prover only)

each prover invocation of E-Search take longer than each
prover invocation of D-Retract.

We do expect Technique E-Search to require fewer prover
invocations. However, the prover invocations that are saved
are only those for which there are vacuous assumptions. If
there are only a few vacuous assumptions, then E-Search will
require nearly as many prover invocations as D-Retract, and
therefore perform worse.

This observation parallels one made by Leino et al. [40].
Those authors found that individually testing a number of
logical assertions was faster than a single test of the con-
junction of the assertions. They conjectured that the search
techniques or quantifier heuristics are sometimes less effi-
cient when confronted with a larger, more complex logical
assertion to test. Similarly, in the situation presented here,
the more complicated VC takes longer to check than does an
equivalent but larger set of simpler assertions.

4.2.5 Technique F-UnsatCore versus D-Retract

The unsatisfiable core technique is available only in the Yices
prover. Figure 18 shows the comparison to D-Retract, the best
other technique for Yices. In the context of these tests, tech-
nique F-UnsatCore performs worse than D-Retract. In the
Yices prover, in order to obtain information about the unsat-
isfiable core, one must turn on the “evidence” option. This
degrades the performance of each validity test. Furthermore,
the results showed that the assertions being added to test
for vacuous assumptions were, nearly always, still present in
the unsatisfiable core, even when the core would have been
unsatisfiable without them. That is, the core was generally
far from minimal and sometimes no different than the entire
original assertion set. Also, in practice, we would expect there

to be few vacuous assumptions compared to the number of
non-vacuous assumptions. Thus, little benefit is gained for
the cost of generating the unsatisfiable core. A qualitative
observation is that the degree to which the reported core is
minimal depends on the details of how the VC is constructed
(as well as on the particular internal algorithms of the prover);
equivalent VCs, expressed in different but equivalent logical
forms, can result in markedly different unsatisfiable cores.

5 Concluding observations and future work

The discussion above presented improvements in the use of
verification systems for debugging programs and specifica-
tions. First, we described a novel method of presenting coun-
terexample information to the user. In this style, variable and
subexpression values are presented in a trace of the program’s
control flow, as if the program were executed given the value
assignments of a particular counterexample. This presents
the counterexample information in the programming context,
rather than in the theorem proving and VC context.

Secondly, we noted that the logical state manipulation
features of some provers allow alternate ways to do vacu-
ity checking. Performance comparisons show that vacuity
checking using saving and restoring of logical state in order
to do a number of nearly similar validity checks can save
substantial amounts of time. However, the reporting of unsat-
isfiable cores by provers (at least, by Yices) is insufficiently
minimal to provide a reliable performance improvement.
Similarly, no gain is obtained by constructing the VC tests in
a fashion in which the algorithm repeatedly reduces the set
of assumptions being checked until only the vacuous ones
remain.

Both of these innovations for user workflow benefit from
support by the underlying theorem prover. Current provers
generally have the ability to incrementally add additional
constraints to a logical context, checking for satisfiability
as new groups of assertions are added. Effective workflow
would be further helped by these additional capabilities:

• the ability to query a satisfying assignment for the implied
value of variables or expressions without the current
assignment changing (although it may perhaps be aug-
mented);

• the ability to add new constraints that are consistent with
the current assignment, without the current assignment
changing (although it may perhaps be augmented);

• for sets of logical assertions used here, Yices showed bet-
ter performance using assert and retract instead of push
and pop operations, suggesting that other provers might
implement a corresponding technique;

• when reporting that a logical context is unsatisfiable, a
prover also reports an unsatisfiable core and, when effi-
ciently possible, that it is minimal.

123

480 D. R. Cok

These comparisons of vacuity-checking performance used
programs constructed to have infeasible assumptions or
branches. It would also be helpful to understand the rela-
tive performance on large-scale natural programs. However,
the most useful checks are those of the consistency of user-
specified assumptions, so such a study is left for future work
when there are a larger number of adequately specified (but
not error-free!) programs available. However, we can note
first that vacuity checks are only necessary if a program or
module is reported to have no bugs. Second, large portions of
a program’s specifications will remain unchanged as a pro-
gram is developed. Thus, any system that allows incremental
checks will be able to usefully avoid doing vacuity checks
on every change; once a set of specifications for a module
is developed and checked, it is reasonable to omit checking
them regularly until there is reason to doubt their consistency
or until a final pass over the program is required. Both of these
considerations will reduce the overhead of including vacuity
checking in a full verification system.

There are now a number of very capable SMT provers
available for use. This paper compared three of them, find-
ing significant differences in their response to different opti-
mizations. There is, however, no detailed information about
the internal algorithms within the various provers. Thus, one
is not able to relate these differences to differences in inter-
nal heuristics. Nor is one even able to explain why a given
prover responds as it does to simpler or more complex VCs.
Clearly, the static analysis and software verification commu-
nity would benefit from better explication of prover internals
and a better understanding of the interaction between prover
algorithms and the structure of logical assertions.

The investigations described here also inspire some addi-
tional avenues of study:

• The intuitive improvement of Fig. 12 over Fig. 8 should
be informed by field studies of actual debugging practice
and the value of various aids.

• The performance of the mechanisms described for obtain-
ing counterexample and vacuity information should be
measured on large-scale code bases.

• The counterexample information shows what value a var-
iable has. Information from the prover explaining why it
has that value would be even more useful.

• In real-world scenarios, the VCs presented to an SMT
solver include a mass of axioms, most of which will be
irrelevant to the particular proof. Both performance and
presentation need to be assessed and improved for this
situation.

The work to date in improving the back-end SMT provers
has concentrated on raw speed and accuracy against bench-
marks, driven by competitions. The discussion in this paper
points out the need for advances on another front as well:

the capabilities needed for effective support of a particular
application of the provers, namely, static program checking.

References

1. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: gen-
erating compact verification conditions. SIGPLAN Not. 36(3),
193–205 (2001)

2. Leino, K.R.M.: Efficient weakest preconditions. Inform. Process.
Lett. 93(6), 281–288 (2005)

3. Barrett, C., de Moura, L., Stump, A.: Design and results of the
1st satisfiability modulo theories competition (SMT-COMP 2005).
J. Autom. Reason. 35(4), 373–390 (2005)

4. The SMT-COMP web site provides results of the SMT competi-
tion and links to the system descriptions of the participants. http://
smtcomp.org

5. Diller, A.: Z: An Introduction to Formal Methods. 2nd edn.
Wiley, New York (1994)

6. Meyer, B.: Object-oriented Software Construction. Prentice
Hall, New York, NY (1988)

7. Leavens, G.T., Baker, A.L., Ruby, C.: JML: a notation for detailed
design. In: Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral
Specifications of Businesses and Systems, pp. 175–188. Kluwer
Academic Publishers, Boston (1999)

8. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D.R.,
Müller, P., Kiniry, J., Chalin, P., Zimmerman, D.M.: JML Reference
Manual. Available from http://www.jmlspecs.org (May 2008)

9. JML web site. http://www.jmlspecs.org
10. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# program-

ming system: an overview. In: Barthe, G., Burdy, L., Huisman, M.,
Lanet, J.-L., Muntean, T. (eds.) Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices (CASSIS 2004), vol. 3362
of Lecture Notes in Computer Science, pp. 49–69. Springer (2005)

11. Spec# web site. http://research.microsoft.com/SpecSharp
12. Luckham, D.C., von Henke, F.W., Krieg-Brückner, B., Owe, O.:

ANNA—A Language for Annotating Ada Programs, Reference
Manual, vol. 260 of Lecture Notes in Computer Science. Springer
(1987)

13. ACSL web site. http://www.frama-c.cea.fr/acsl.html
14. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural lan-

guage for checking object-oriented programs. Technical Report
MSR-TR-2005-70. Microsoft Research (2005)

15. Why web site. http://why.lri.fr
16. The SMTLIB web site hosts benchmarks for SMT solvers and

defines a common SMT input language. http://combination.cs.
uiowa.edu/smtlib

17. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for
program checking. J ACM 52(3), 365–473 (2005)

18. Rushby, J.: Tutorial: automated formal methods with PVS, SAL,
and Yices. In: Fourth IEEE International Conference on Soft-
ware Engineering and Formal Methods, 2006 (SEFM 2006), 11–15
September 2006

19. Yices web site. http://yices.csl.sri.com
20. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.)

Computer Aided Verification, Proceedings of 19th International
Conference (CAV 2007) Berlin, Germany, 3–7 July 2007, vol.
4590 of Lecture Notes in Computer Science, pp 298–302. Springer
(2007)

21. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In:
TACAS, pp. 337–340 (2008)

22. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS
Language Reference, Version 2.4. SRI International (2001)

23. Paulson, L.: Isabelle: A Generic Theorem Prover, vol. 828 of Lec-
ture Notes in Computer Science. Springer (1994)

123

http://smtcomp.org
http://smtcomp.org
http://www.jmlspecs.org
http://www.jmlspecs.org
http://research.microsoft.com/SpecSharp
http://www.frama-c.cea.fr/acsl.html
http://why.lri.fr
http://combination.cs.uiowa.edu/smtlib
http://combination.cs.uiowa.edu/smtlib
http://yices.csl.sri.com

Improved usability of SMT solvers 481

24. Cok, D.R., Kiniry, J.R.: ESC/Java2: uniting ESC/Java and JML:
progress and issues in building and using ESC/Java2, including a
case study involving the use of the tool to verify portions of an
Internet voting tally system. In: Barthe, G., Burdy, L.,Huisman,
M., Lanet, J.-L., Muntean, T. (eds.) Construction and Analysis of
Safe, Secure, and Interoperable Smart Devices (CASSIS 2004),
vol. 3362 of Lecture Notes in Computer Science, pp. 108–128.
Springer (2005)

25. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-
Oriented Software: The KeY Approach. LNCS 4334. Springer
(2007)

26. KeY web site. http://www.key-project.org
27. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured

programs. In: Ernst, M.D., Jensen, T.P. (eds.) Program Analysis
for Software Tools and Engineering (PASTE). ACM (September
2005)

28. Leino, K.R.M., Nelson, G., Saxe, J.B.: ESC/Java User’s Manual.
Technical Note. Compaq Systems Research Center (October 2000)

29. CodeSonar® web site. http://www.grammatech.com/products/
codesonar

30. Burdy, L., Requet, A., Lanet, J.-L.: Java Applet Correctness: A
Developer-oriented Approach. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003: Formal Methods: International Symposium of
Formal Methods Europe, vol. 2805 of Lecture Notes in Computer
Science, pp. 422–439. Springer (2003)

31. Cook, J.J.: Reverse Execution of Java Bytecode. Comput. J.
45, 2002 (2002)

32. Lewis, B.: Debugging Backwards in Time (2003)
33. Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2. Tech-

nical Report. Department of Computer Science, The University of
Iowa (2006). Available at http://www.SMT-LIB.org

34. OpenJDK web site. http://openjdk.java.net
35. Beatty, D.L., Bryant, R.E.: Formally verifying a microprocessor

using a simulation methodology. In: DAC ’94: Proceedings of the
31st Annual Conference on Design Automation, ACM, pp. 596–
602. New York, NY, USA (1994)

36. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection
of vacuity in ACTL formulas. In: CAV ’97: Proceedings of the
9th International Conference on Computer Aided Verification, vol.
1254 of Lecture Notes in Computer Science, pp. 279–290. Springer,
London, UK (1997)

37. Janota, M., Grigore, R., Moskal, M.: Reachability analysis for
annotated code. In: SAVCBS ’07: Proceedings of the 2007 Confer-
ence on Specification and Verification of Component-based Sys-
tems, ACM, pp. 23–30. New York, NY, USA (2007)

38. Egyed, A.: Instant consistency checking for the UML. In: ICSE
’06: Proceedings of the 28th International Conference on Software
Engineering, ACM, pp. 381–390. New York, NY, USA (2006)

39. Smaragdakis, Y., Csallner, C., Subramanian, R.: Scalable satisfi-
ability checking and test data generation from modeling diagrams.
Autom. Softw. Eng. 16(1) (2009)

40. Leino, K.R.M., Moskal, M., Schulte, W.: Verification condition
splitting. Available at http://research.microsoft.com/apps/pubs/
default.aspx?id=77373 (2008)

123

http://www.key-project.org
http://www.grammatech.com/products/codesonar
http://www.grammatech.com/products/codesonar
http://www.SMT-LIB.org
http://openjdk.java.net
http://research.microsoft.com/apps/pubs/default.aspx?id=77373
http://research.microsoft.com/apps/pubs/default.aspx?id=77373

	Improved usability and performance of SMT solvers for debugging specifications
	Abstract
	1 Introduction
	2 Background: the design of static program checkers
	2.1 Static analysis systems
	2.2 The structure of VCs
	2.3 Examples

	3 Counterexample information
	3.1 The anatomy of a failed verification
	3.2 Presenting counterexample information
	3.3 Improved presentation of counterexample information

	4 Vacuity checking
	4.1 Methods of vacuity checking
	4.1.1 A-InsertAssert. The assert false technique
	4.1.2 B-TruncAssert. The truncated assert false technique
	4.1.3 C-PushPop. The push-pop technique
	4.1.4 D-Retract. The retraction technique
	4.1.5 E-Search. The search technique
	4.1.6 F-UnsatCore. The unsatisfiable core technique

	4.2 Performance of vacuity testing techniques
	4.2.1 Technique B-TruncAssert versus A-InsertAssert
	4.2.2 Technique C-PushPop versus A-InsertAssert
	4.2.3 Technique D-Retract versus A-InsertAssert
	4.2.4 Technique E-Search versus C-PushPop and D-Retract
	4.2.5 Technique F-UnsatCore versus D-Retract

	5 Concluding observations and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

