
Int J Softw Tools Technol Transfer (2009) 11:105–116
DOI 10.1007/s10009-009-0098-1

SPECIAL SECTION ON TACAS07

A low-level memory model and an accompanying reachability
predicate

Shaunak Chatterjee · Shuvendu K. Lahiri ·
Shaz Qadeer · Zvonimir Rakamarić

Published online: 27 January 2009
© Springer-Verlag 2009

Abstract Reasoning about program heap, especially if it
involves handling unbounded, dynamically heap-allocated
data structures such as linked lists and arrays, is challeng-
ing. Furthermore, sound analysis that precisely models heap
becomes significantly more challenging in the presence of
low-level pointer manipulation that is prevalent in systems
software. The reachability predicate has already proved to be
useful for reasoning about the heap in type-safe languages
where memory is manipulated by dereferencing object fields.
In this paper, we present a memory model suitable for reason-
ing about low-level pointer operations that is accompanied by
a formalization of the reachability predicate in the presence
of internal pointers and pointer arithmetic. We have designed
an annotation language for C programs that makes use of the
new predicate. This language enables us to specify properties
of many interesting data structures present in the Windows
kernel. We present our experience with a prototype verifier
on a set of illustrative C benchmarks.

1 Introduction

Static software verification has the potential to improve
programmer productivity and reduce the cost of producing

S. Chatterjee
University of California, Berkeley, USA
e-mail: shaunakc@cs.berkeley.edu

S. K. Lahiri · S. Qadeer
Microsoft Research, Redmond, USA
e-mail: shuvendu@microsoft.com

S. Qadeer
e-mail: qadeer@microsoft.com

Z. Rakamarić (B)
University of British Columbia, Vancouver, Canada
e-mail: zrakamar@cs.ubc.ca

reliable software. By finding errors at the time of compila-
tion, these techniques help avoid costly software changes late
in the development cycle and after deployment. Many suc-
cessful tools for detecting errors in systems software have
emerged in the last decade [1,3,12,13,22,37]. These tools
can scale to large software systems; however, this scalability
is achieved at the price of precision. Heap and heap-allocated
data structures are one of the most significant sources of
imprecision for these tools. Fundamental correctness proper-
ties, such as control and memory safety, depend on intermedi-
ate assertions about the contents of data structures. Therefore,
imprecise reasoning about the heap usually results in a large
number of annoying false warnings increasing the probabil-
ity of missing the real errors. This is a significant drawback
since studies have shown that many of the systems software
code bugs and reported failures with high impact on avail-
ability are still related to memory management [11,28,36].

Because of the vast size of available memory in todays
computer systems, faithfully representing each memory allo-
cation and access in a static verifier is not going to scale.
Therefore, verification tools rely on abstract memory models
that trade precision for scalability, and in turn, they define the
operational semantics of their programming language with
respect to the chosen memory model. We present in this paper
a memory model that is precise enough to capture most of the
low-level pointer operations, and yet abstracts enough details
to enable verification to scale. We also give the respective
operational semantics of the C language.

The reachability predicate [30] is important for specify-
ing properties of linked data structures. Informally, a memory
location v is reachable from a memory location u in a heap if
either u = v or u contains the address of a location x and v is
reachable from x . Automated reasoning about the reachabil-
ity predicate is difficult for two reasons. First, reachability
cannot be expressed in first-order logic, the input language

123

106 S. Chatterjee et al.

of choice for most modern and scalable automated theorem
provers. Second, it is difficult to precisely specify the update
to the reachability predicate when a heap location is updated.

Previous work has addressed these problems in the context
of a reachability predicate suitable for verifying programs
written in high-level languages such as Java and C# [2,8,
23,26,34]. This predicate is inadequate for reasoning about
low-level software, which commonly uses programming idi-
oms such as internal pointers (addresses of object fields) and
pointer arithmetic to move between object fields. We illus-
trate this point with several examples in Sect. 3.

The goal of our work is to build a scalable verifier for sys-
tems software that can reason precisely about heap-allocated
data structures. To this end, in addition to the memory model,
we introduce in this paper the accompanying reachability
predicate suitable for verifying low-level programs written
in C. We describe how to automatically compute the pre-
cise update for the described predicate and a method for rea-
soning about it using automated first-order theorem provers.
With recent noticable performance improvements of theorem
provers, we believe that the introduced reachability predicate
could be used for suitably extending theorem-prover-based
static checkers for low-level programs, making them there-
fore more precise.

We have designed a specification language that uses our
reachability predicate, allows succinct specification of inter-
esting properties of low-level software, and is conducive
to modular program verification. We have implemented a
modular verifier for annotated C programs called Havoc
(Heap-Aware Verifier fOr C programs). We report on our
preliminary encouraging experience with Havoc on a set of
illustrative C programs.

2 Related work

Havoc is a static assertion checker for annotated C programs
in the same style that ESC/Java [20] is a static checker for
annotated Java programs, and Boogie [4] is a static checker
for Spec# [6] programs.1 However, Havoc is different in
that it deals with the low-level intricacies of C and provides
reachability as a fundamental primitive in its specification
language. The ability to specify reachability properties also
distinguishes Havoc from other assertion checkers for C
such as SATABS [12], SATURN [37], Calysto [1], and Veri-
fiedC [35]. Traditionally, such tools either overapproximate
unbounded data structures, which in turn leads to a lot of
false warnings, or simply treat them unsoundly as bounded
data structures (often with only one element), which causes
real bugs to be missed. The work of McPeak and Necula [29]

1 Spec# is an extension of C# that provides specification primitives for
writing method pre- and postconditions and object invariants.

allows reasoning about reachability, but only indirectly using
ghost fields in heap-allocated objects. These ghost fields must
be updated manually by the programmer whereas Havoc
provides the update to its reachability predicate automati-
cally.

There are several verifiers that do allow the verification
of properties based on the reachability predicate. TVLA [27]
is a verification tool based on abstract interpretation using
3-valued logic [34]. It provides a general specification logic
combining first-order logic with reachability. Recently, an
axiomatization of reachability in first-order logic was also
added to the system [26]. However, TVLA has mostly been
applied to Java programs and, to our knowledge, cannot han-
dle the interaction of reachability with pointer arithmetic.

Caduceus [19] is a modular verifier for C programs. It
allows the programmer to write specifications in terms of
arbitrary recursive predicates, which are axiomatized in an
external theorem prover. It then allows the programmer to
interactively verify the generated verification conditions in
that prover. Havoc only allows the use of a fixed set of
reachability predicates but provides much more automation
than Caduceus. All the verification conditions generated by
Havoc are discharged automatically using SMT (Satisfi-
ability Modulo Theories) provers. Unlike Caduceus, Havoc
understands internal pointers and the use of pointer arithme-
tic to move between fields of an object.

There are many approaches to checking of heap-manipu-
lating programs that employ the idea of local reasoning based
on the frame rule of separation logic [32,33]. The frame
rule in this context shows that it is sound to look at only
a fragment of the input heap when analyzing each program
instruction. This important property has been used to speed
up and increase scalability of many analyses [7,18,21,38].
While many of these approaches infer loop invariants of
list-manipulating programs automatically, they do not handle
low-level features of C programs that are prevalent in sys-
tems code, such as pointer arithmetic, at all. Havoc, on the
other hand, supports reasoning about linked data structures in
the presence of low-level pointer manipulations, while loop
invariants currently have to be provided manually.

Calcagno et al. have used separation logic to reason about
memory safety and absence of memory leaks in low-level
code [9]. They perform abstract interpretation using rewrite
rules that are tailored for “multi-word lists”, a fixed predicate
expressed in separation logic. Our approach is more general
since we provide a family of reachability predicates, which
the programmer can compose arbitrarily for writing richer
specifications (possibly involving quantifiers); the rewriting
involved in the generation and validation of verification con-
ditions is taken care of automatically by Havoc. Their tool
can infer loop invariants but handles procedures by inlining.
In contrast, Havoc performs modular reasoning, but does
not infer loop invariants.

123

A low-level memory model and an accompanying reachability predicate 107

3 Motivation

Consider the two doubly-linked lists shown in Fig. 1. The list
at the top is typical of high-level object-oriented programs.
The linking fields Flink and Blink point to the beginning
of the successor and predecessor objects in the list. In each
iteration of a loop that iterates over the linked list, the iter-
ator variable points to the beginning of a list object whose
contents are accessed by a simple field dereference. Existing
work would allow properties of this linked list to be speci-
fied using the two reachability predicatesRFlink andRBlink,
each of which is a binary relation on object references. For
example, RFlink(a, b) holds for object references a and b if
a.Flinki = b for some i ≥ 0.

The list at the bottom is typical of low-level systems soft-
ware. Such a list is constructed by embedding a structure
LIST_ENTRY containing the two fields, Flink and
Blink, into the objects that are supposed to be linked by
the list.

typedef struct _LIST_ENTRY {
struct _LIST_ENTRY *Flink;
struct _LIST_ENTRY *Blink;

} LIST_ENTRY;

The linking fields, instead of pointing to the beginning of the
list objects, point to the beginning of the embedded linking
structure. In each iteration of a loop that iterates over such a
list, the iterator variable contains a pointer to the beginning
of the structure embedded in a list object. A pointer to the
beginning of the list object is obtained by performing pointer
arithmetic captured with the following C macro.

Flink

BlinkBlink

Flink

Blink

Flink

p

p + 4

q

k

Flink

FlinkFlink

Blink

FlinkFlink

Blink

FlinkFlink

Blink

Fig. 1 Doubly linked lists in Java and C

#define CONTAINING_RECORD(a, T, f) \
(T *) ((int)a - (int)&((T *)0)->f)

This macro expects an internal pointer a to a field f of an
object of type T and returns a typed pointer to the beginning
of the object.

There are two good engineering reasons for this ostensi-
bly dangerous programming idiom. First, it becomes possi-
ble to write all list manipulation code for operations such as
insertion and deletion separately in terms of the type LIST_
ENTRY. Second, it becomes easy to have one object be a
part of several different linked lists; there is a field of type
LIST_ENTRY in the object corresponding to each list. For
these reasons, this idiom is common both in the Windows
and the Linux operating system.2

Unfortunately, this programming idiom cannot be
modeled using the predicates RFlink and RBlink described
earlier. The fundamental reason is that these lists may link
objects via pointers at a potentially non-zero offset into the
objects. Different data structures might use different offsets;
in fact, the offset used by a particular data structure is a cru-
cial part of its specification. This is in stark contrast to the first
kind of linked lists in which the linking offset is guaranteed
to be zero.

The crucial insight underlying our work is that for analyz-
ing low-level software, the reachability predicate must be a
relation on pointers rather than object references. Therefore,
we introduce an integer-indexed set of binary reachability
predicates: for each integer n, the predicate Rn is a binary
relation on the set of pointers. Suppose n is an integer and p
and q are pointers. Then Rn(p, q) holds if and only if either
p = q, or recursivelyRn(∗(p + n), q) holds, where ∗(p + n)
is the pointer stored in memory at the address obtained by
incrementing p by n.

Our reachability predicate captures the insight that in low-
level programs a list of pointers is constructed by performing
an alternating sequence of pointer arithmetic (with respect to
a constant offset) and memory lookup operations. For exam-
ple, let p be the address of the Flink field of an object in the
linked list at the bottom of Fig. 1. Then, the forward-going
list is captured by the pointer sequence

p, ∗(p + 0), ∗(∗(p + 0)+ 0), . . .

Similarly, assuming that the size of a pointer is 4, the
backward-going list is captured by the pointer sequence

p, ∗(p + 4), ∗(∗(p + 4)+ 4), . . .

Our reachability predicate is a generalization of the exist-
ing reachability predicate and can just as well describe the
linked list at the top of Fig. 1. Suppose the offset of the

2 In Linux, the CONTAINING_RECORD macro corresponds to the
list_entry macro.

123

108 S. Chatterjee et al.

Flink field in the linked objects is k and q is the address of
the start of some object in the list. Then, the forward-going
list is captured by

q, ∗(q + k), ∗(∗(q + k)+ k), . . .

and the backward-going list is captured by

q, ∗(q + k + 4), ∗(∗(q + k + 4)+ k + 4), . . .

3.1 Example

We illustrate the use of our reachability predicate in pro-
gram verification with the example in Fig. 2. The example
has a type A and a global structure g with a field a. The
field a in g and the field link in the type A have the type
LIST_ENTRY, which was defined earlier. These fields are
used to link together in a circular doubly linked list the object
g and a set of objects of type A. The field a in g is the dummy
head of this list. For an example of such a heap structure
(Fig. 3). The procedure list_iterate iterates over this
list, setting the data field of each list element to 42.

Except for verifying the safety of each memory access in
list_iterate, we would also like to verify two addi-
tional properties. First, the only parts of the caller-visible
state modified by list_iterate are the data fields of
the list elements. Second, the data field of each list element
is 42 when list_iterate terminates.

To prove these properties on list_iterate, it is cru-
cial to have a precondition stating that the list of objects linked
by the Flink field of LIST_ENTRY is circular. To specify

Fig. 2 Motivating example

data data data

link.Flink link.Flink link.Flink

link.Blink link.Blink link.Blink

a.Flink

a.Blink

elem

iter

g

Fig. 3 Example of an input structure for our motivating example

this property, we extend the notion of well-founded lists, first
described in an earlier paper [23], to our new reachability
predicate. The predicate Rn is well-founded with respect to a
set BS of blocking pointers if for all pointers p, the sequence

∗(p + n), ∗(∗(p + n)+ n), . . .

contains a pointer in BS. This member of BS is called the
blocker of p with respect to the offset n and is denoted by
Bn[p]. Typical members of BS include pointer values that
indicate the end of linked lists, e.g., the null pointer or the
head &g.a of the circular lists in our example.

Our checker Havoc enforces a programming discipline
associated with well-founded lists. Havoc provides an aux-
iliary variable BSwhose value is a set of pointers and allows
program statements to add or remove pointers from BS. Fur-
ther, each heap update in the program is required to preserve
the well-foundedness of Rn with respect to each offset n of
interest.

The first precondition oflist_iterate uses the notion
of well-foundedness to express that &g.a is the head of
a circular list. In this precondition, B(&g.a,0) refers to
B0[&g.a]. We use B0 to specify that the circular list is
formed by theFlinkfield, which is at offset 0 withinLIST_
ENTRY. The second precondition illustrates how facts about
an entire collection of pointers are expressed in our specifi-
cation language. In this precondition, the expression list
(g.a.Flink,0) refers to the finite and non-empty set of
pointers in the sequence

g.a.Flink, ∗(g.a.Flink+ 0), . . .

upto but excluding the pointer B0(g.a.Flink). In Havoc,
we represent a pointer as a pair comprised of an object ref-
erence and an integer offset into the object, and the pro-
gram memory is a map from pointers to pointers. Therefore,
the function Off retrieves the offset (or the second compo-
nent) from a pointer. This precondition states that the offset
of each pointer in list(g.a.Flink,0), excluding the
dummy head, is equal to 4, the offset of the field sequence
link.Flink in the type A. The third precondition uses the
function Obj, which retrieves the object reference (or the
first component) from a pointer. This precondition says that
the object of each pointer, excluding the dummy head, in
list(g.a.Flink,0) is different from the object of the
dummy head.

The modifies clause illustrates yet another constructor
of a set of pointers provided by our language. If S is a set
of pointers, then decr(S, n) is the set of pointers obtained
by decrementing each pointer in S by n. The modifies clause
captures the update of the data field at relative offset −4
from the members of list(g.a.Flink,0).

The postcondition of the procedure introduces the oper-
ator deref, which returns the content of the memory at a
pointer address. This postcondition says that the value of the

123

A low-level memory model and an accompanying reachability predicate 109

data field of each object in the list, excluding the dummy
head, is 42.

Using loop invariants provided by us (not shown in the
figure), Havoc is able to verify that the implementation of
this procedure satisfies its specification. Note that in the pres-
ence of potentially unsafe pointer arithmetic and casts, it is
nontrivial to verify that the heap update operation elem ->
data := 42 does not change the linking structure of the
list. Since Havoc cannot rely on the static type of the var-
iable elem, it must prove that the offset of elem before
the operation is 0 and therefore the operation cannot modify
either linking field.

4 Operational semantics of C

Our semantics for C programs depends on three fundamental
types, the uninterpreted type ref of object references, the
type int of integers, and the type ptr = ref × int of
pointers. In Havoc, each variable from a C program, regard-
less of its static type, contains a pointer value. A pointer is
a pair containing an object reference and an integer offset.
An integer value is encoded as a pointer value whose first
component is the special constant null of type ref. The
constructor function Ptr : ref × int → ptr constructs
a pointer value from its components. The selector functions
Obj : ptr → ref and Off : ptr → int retrieve the
first and second component of a pointer value, respectively.

The heap of a C program is modeled using two map vari-
ables, Mem and Alloc, and a map constant Size. The vari-
able Memmaps pointers to pointers and intuitively represents
the contents of the memory at a pointer location. The vari-
able Alloc maps object references to the set {UNALLO-
CATED, ALLOCATED, FREED} and is used to model
memory allocation. The constant Size maps object refer-
ences to positive integers and represents the size of the object.
The procedure call malloc(n) for allocating a memory
buffer of size n returns a pointer Ptr(o, 0) where o is an
object such that Alloc[o] = UNALLOCATED before the
call and Size[o] ≥ n. The procedure modifies Alloc[o] to
be ALLOCATED. The procedure call free(p) for freeing
a memory buffer whose address is contained inp requires that
Alloc[Obj(p)] == ALLOCATED andOff(p) == 0
and updates Alloc[Obj(p)] to FREED. The full specifi-
cation of malloc and free is given in Fig. 4.

Currently, Havoc’s memory model understands only
word-aligned memory accesses. For example, writing a
4-byte integer value to the memory location Ptr(o, 20) is
not going to affect the value stored at the memory location
Ptr(o, 21). Similarly, reading a byte from the memory loca-
tion Ptr(o, 21) is not going to return the second byte of the
integer that was written to Ptr(o, 20), but rather an uncon-

Fig. 4 Specification of procedures malloc and free that are used
to model memory allocation

strained value. We are planning to address this deficiency in
the future.

Havoc takes an annotated C program and translates it into
a BoogiePL [15] program. BoogiePL has been designed to
be an intermediate language for program verification tools
that use automated theorem provers. This language is simple
and has well-defined semantics. The operational semantics
of C, as interpreted by Havoc, is best understood by com-
paring a C program with its BoogiePL translation. Figure 6
shows two procedures, create and init, on the left and
their translations on the right. The example uses the C struct
type DATA defined on line C1.

Note that variables of both static type int and int* in C
are translated uniformly as variables of type ptr. The trans-
lation of the first argument d -> y of the call to init on line
C7 shows that we treat field accesses and pointer arithmetic
uniformly. Since the array field y is at an offset 4 in DATA,
we treat d -> y as d+4 on line B6. Array accesses are also
translated using pointer arithmetic. For instance, array access
on line C18 is translated as in+i*4 on line B17 since the
size of each array element is 4. The translation uses the func-
tion PLUS to model pointer arithmetic and the function LT
on line B16 to model arithmetic comparison operations on
the type ptr. The definitions of these functions are given in
Fig. 5.

The example also shows how we handle the & operator.
In the procedure create, the address of the local variable
a is passed as an out-parameter to the procedure init. Our
translation handles this case by allocating a on the heap on
line B3. Then, the C expression &a on line C7 is translated as
a on line B7, while the expression a on line C9 is translated

123

110 S. Chatterjee et al.

Fig. 5 Specification of functions PLUS, MINUS, and LT that are used
to model arithmetic and comparison operations on the type ptr

as the heap access Mem[a] on line B8. Note that our transla-
tor allocates a static variable on the heap only if the program
takes the address of that variable or if the type of the vari-
able is a structure or union. We allocate all structures on the
heap. For example, there is no heap allocation for the local
variable i in the procedure init. To prevent access to the
heap-allocated object corresponding to a local variable of a
procedure, it is freed at the end of the procedure. Therefore,
the translation freed the local variable a on line B9.

5 Reachability and pointer arithmetic

We now give the formal definition of our new reachability
predicate in terms of the operational semantics of C as inter-
preted by Havoc. As in our previous work [23], we define the
reachability predicate on well-founded heaps. Let the heap
be represented by the function Mem : ptr → ptr and let
BS ⊆ ptr be a set of pointers. We define a sequence of
functions f i : int × ptr → ptr for i ≥ 0 as follows:
for all n ∈ int and u ∈ ptr, we have f 0(n, u) = u and
f i+1(n, u) = Mem[f i (n, u) + n] for all i > 0. Then Mem
is well-founded with respect to the set of blocking pointers
BS and offset n if for all u ∈ ptr, there is i > 0 such that
f i (n, u) ∈ BS. If a heap is well-founded with respect to BS
and n, then the function idxn maps a pointer u to the least
i > 0 such that f i (n, u) ∈ BS. Using these concepts, we
now define for each n ∈ int, a predicate Rn ⊆ ptr× ptr
and a function Bn : ptr → ptr.

Rn[u, v] ≡ ∃i. 0 ≤ i < idxn(u) ∧ v = f i (n, u)

Bn[u] ≡ f idxn(u)(n, u)

Suppose a program performs the operation Mem[x] := y
to update the heap. Then Havoc performs the most precise
update to the predicate Rn and the function Bn by automati-
cally inserting the following code just before the operation:

assert(Rn[y,x− n] ⇒ BS[y])
Bn := λ u : ptr.

Rn[u,x− n]
? (BS[y] ? y : Bn[y])
: Bn[u]

Rn := λ u,v : ptr.
Rn[u,x− n]
? (Rn[u,v] ∧ ¬Rn[x− n,v]) ∨ v = x− n ∨

(¬BS[y] ∧ Rn[y,v])
: Rn[u,v]

The assertion enforces that the heap stays well-founded with
respect to the blocking set BS and the offset n. It is inserted
for each offset n of interest in the program. The value of
Bn[u] is updated only if x− n is reachable from u and oth-
erwise remains unchanged. Similarly, the value of Rn[u,v]
is updated only if x − n is reachable from u and otherwise
remains unchanged. These updates are generalizations of the
updates provided in our earlier paper [23] to account for
pointer arithmetic.

We note that the ability to provide such updates as
described above guarantees that if a program’s assertions—
preconditions, postconditions, and loop invariants—are
quantifier-free, then its verification condition is quantifier-
free as well. This property is valuable because the handling
of quantifiers is typically the least complete and efficient
aspect of all theorem provers that combine first-order rea-
soning with arithmetic.

6 Annotation language

Our annotation language has three components: basic expres-
sions that evaluate to pointers, set expressions that evaluate to
sets of pointers, and formulas that evaluate to boolean values.
The syntax for these expressions is given in Fig. 7.

The set of basic expressions is captured by Expr. The
expression addr(x) represents the address of the variable x.
The expression x represents the value of x in the post-state
and old(x) refers to the value of x in the pre-state of the
procedure. The expressions deref(e) and old_deref(e)
refer to the value stored in memory at the address e in the

123

A low-level memory model and an accompanying reachability predicate 111

Fig. 6 Translation of a simple
C example on the left into the
slightly simplified (to make it
more readable) BoogiePL code
on the right

Fig. 7 Core annotation
language. Syntactic sugar, that
allows writing many common
idioms succinctly and more
conveniently, is added on top
of it

post-state and pre-state, respectively.3 The expressions
block(e, n) and old_block(e, n) represent Bn[e] in the
post-state and pre-state of the procedure, respectively. To be
able to reason about sets of pointers, we use the expression
forall(x, S, φ)which says that for all elements x of some
set of pointers S formula φ has to hold.

The set expressions are divided into the basic set expres-
sions in Set and the compound set expressions in CmpdSet.
The expression array(e1, n, e2) refers to the set of point-
ers {e1, e1 + n, e1 + 2 ∗ n, . . . , e1 + Off(e2) ∗ n}. The
expressions list(e, n) and old_list(e, n) represent the
list of pointers described by the reachability predicate Rn

in the post-state and pre-state, respectively. The compound
set expressions include incr(C, n) and decr(C, n) which
respectively increment and decrement each element of C
by n, and deref(C) and old_deref(C) which read the
contents of memory at the members of C in the post-state
and pre-state, respectively. The expressions union(C,C),

3 Note that the translation of old_deref(e) wraps only the implicit
map Mem with old, which is sometimes necessary. Therefore, using
old(deref(e)) that would wrap old around the whole translation of
expression deref(e) wouldn’t be sufficient.

intersection(C,C), anddifference(C,C) provide
the basic set-theoretic operations.

The translation function [| ◦ |] that recursively translates
each expression from our annotation language into the corre-
sponding BoogiePL expression is formally defined in Fig. 8.
The function translates integer value n as a pointer whose
first component is the constant null. Based on whether
its address has been taken or not, a variable x is translated
into a memory reference Mem[bpl_x] or a BoogiePL vari-
able bpl_x, respectively. Because variables whose address
has been taken are allocated on the heap, the expression
addr(x) is simply translated as a BoogiePL variable. Arith-
metic expressions perform corresponding operations on the
integer components of pointers, while pointer dereference
accesses the map Mem that represents contents of the mem-
ory. The block(e, n) expression is translated into applica-
tion of the BoogiePL function Bn . The expressions old(x),
old_deref(e), and old_block(e, n) simply wrap x,
Mem, and Bn with old(), respectively.

Our annotation language contains the forall(x, S, φ)
expression whose translation uses the element of set
[|in(x, S)|] expression to check whether pointer x is an ele-
ment of S. Two important, basic in checks that we support
are in(e,array(e1, n, e2)) and in(e,list(e′, n)) for

123

112 S. Chatterjee et al.

Fig. 8 Translation of
expressions from our annotation
language into BoogiePL. In this
figure, bpl_x refers to the
BoogiePL variable
corresponding to the C
variable x

arrays and lists of pointers, respectively. The element of array
checkin(e,array(e1, n, e2)) is translated into a BoogiePL
expression that looks for an index i such that i is at least 0
and less than the size of the array, and furthermore that the ele-
ment is at the appropriate offset. The expression in(e,list
(e′, n)) is translated into the Rn predicate to check whether
[|e|] is reachable from [|e′|].

Havoc is designed to be a modular verifier. Consequently,
we allow each procedure to be annotated by four possi-
ble specifications, requires φ, ensures ψ , modifies
C , and frees D, where φ,ψ ∈ Formula and C, D ∈
CmpdSet. The default value for φ and ψ is true, and for
C and D is ∅. The translation of these specifications is given
in Fig. 9. The translation refers to the translation function
[| ◦ |] defined in Fig. 8.

We also allow each loop to be annotated with a formula
representing its invariant.

In Fig. 9, the translation of requires φ and ensures
ψ is obtained in a straightforward fashion by applying the
translation function [|◦ |] to φ andψ respectively. Then, there
are four pairs of modifies and ensures clauses. The translation
of modifies C is captured by the first three pairs and the
translation of frees D is captured by the fourth pair. Our
use of set expressions in these specifications results in a sig-
nificant reduction in the annotation overhead at the C level.

The first pair of modifies and ensures clauses in
Fig. 9 states that the contents of Mem remains unchanged
at each pointer that is allocated and not a member of C in
the pre-state of the procedure. The second pair is parame-
terized by an integer offset n and specifies the update of Rn .
Similarly, the third pair specifies the update of Bn . Based
on the set C provided by the programmer in the modi-
fies clause, one such pair is automatically generated for
each offset n of interest. The postcondition corresponding
to Rn says that if the set of pointers reachable from any
pointer x is disjoint from the set decr(C, n), then that set
remains unchanged by the execution of the procedure. The
postcondition corresponding to Bn says that if the set of
pointers reachable from any pointer x is disjoint from the
set decr(C, n), then Bn[x] remains unchanged by the exe-
cution of the procedure. These two postconditions are guar-
anteed by our semantics of reachability and the semantics
of the modifies clause. Consequently, Havoc only uses
these postconditions at call sites and does not attempt to ver-
ify them. The set D in the annotation frees D is expected
to contain only pointers with offset 0. Then, the fourth pair
states that the contents of Alloc remain unchanged at each
object that is allocated and is such that a pointer to the begin-
ning of that object is not a member of D in the pre-state of the
procedure.

123

A low-level memory model and an accompanying reachability predicate 113

Fig. 9 Translation of
requires φ, ensures ψ ,
modifies C , and frees D

7 Implementation

We have developed Havoc, a prototype tool for verifying
C programs annotated with specifications in our annotation
language. We use the ESP [13] infrastructure to construct the
control flow graph and parse the annotations. Havoc trans-
lates an annotated C program into an annotated BoogiePL
program as described in Sects. 4 and 6. The Boogie ver-
ifier [4] generates a verification condition (VC) from the
BoogiePL description, which implies the partial correctness
of the BoogiePL program. The VC generation in Boogie is
performed using a variation [5] of the standard weakest pre-
condition transformer [17]. The resulting VC is checked for
validity using the Z3 theorem prover [14].4

7.1 Proving verification conditions

The verification condition generated is a formula in first-
order logic with equality, augmented with the following
theories:

1. The theory of integer linear arithmetic with symbols
+,≤ and constants . . . ,−1, 0, 1, 2, . . .

4 In the early versions of this work, we used the older Simplify theorem
prover [16], which also supports all of the required theories, instead of
Z3. Currently, Z3 is the best choice performance-wise, although any
other theorem prover that accepts Boogie output format and has the
required theories could be used instead of it.

2. The theory of arrays with the select and update
symbols [31].

3. The theory of pairs, consisting of the symbols for the
pair constructor Ptr, and the selector functions Obj
and Off.

4. The theory of the new low-level reachability predicate,
consisting of the symbols Rn , Bn , BS and Mem.

To discharge the verification conditions, a theorem prover
requires axioms about the theory of pairs, and a way of han-
dling the theory of the new low-level reachability predicate.
The axioms for the theory of pairs are fairly intuitive and are
given in Fig. 10. In our previous paper [10], we described
how we initially supported the theory of the new low-level
reachability predicate. The support for the theory was built
on a sound but incomplete axiomatization of the theory of
well-founded lists without pointers as in Java and C# [23].
To account for low-level C operations such as pointer arith-
metic and internal pointers that the new reachability predicate
supports, we suitably generalized the described incomplete
axiomatization for Java/C#. In this work, however, we turn
to a similarly extended decision procedure for well-founded

Fig. 10 Axioms for the theory of pairs

123

114 S. Chatterjee et al.

Fig. 11 Reachability axioms.
Note that the symbol + is the
addition operation on pointers.
We have overloaded + for ease
of exposition

reachability over objects that has proven to be much more
effective [24,25].

The decision procedure for well-founded reachability is
based on a sound, complete, and terminating set of rewrite
rules. The prototype implementation of the decision proce-
dures emulates the rewrite rules in an SMT solver by encod-
ing them using universally quantified first-order axioms with
appropriate matching triggers. Triggers are subterms of the
quantified formula that are used by the underlying theo-
rem prover in deciding how to instantiate universal quan-
tifiers [16]. Figure 11 presents the set of axioms. To support
the low-level reachability predicate described in this paper,
these axioms are subtle generalizations of the previously pub-
lished ones [24] to account for low-level C operations such
as pointer arithmetic and internal pointers. The main differ-
ence is that fields are modeled as offsets within an object and
the reachability relation is then defined with respect to these
offsets.

8 Evaluation

In this section, we describe our experience applying Havoc
to a set of small to medium size C examples. Figure 12 lists
the examples considered in this paper. The examples manip-
ulate singly and doubly linked lists. In addition to performing

Fig. 12 Results of assertion checking using Havoc. Z3 was used as
the theorem prover. The experiments were conducted on a 3.6 GHz,
2 GB machine running Windows XP

operations on linked data structures, the examples also use
pointer arithmetic, internal pointers into objects, and cast
operations. The examples range from 10 to 150 lines of C
code. For all these examples, we check a set of partial cor-
rectness properties including (but not limited to) the implicit
memory-safety requirements. Next, we will give a brief
description of each example and additional properties we
check, when applicable:

iterate initializes the data elements of a cyclic list. This
is the example from Fig. 2.

iterate_acyclic similar to iterate, just initializes
the data elements of an acyclic list.

slist_add adds a node to an acyclic singly linked list.
reverse_acyclic performs in-place reversal of an acy-

clic singly linked list; we verify that the output list is
acyclic and contains the same set of pointers as the input
list.

slist_sorted_insert inserts a node into a sorted (by
the data field) linked list; we verify that the output list
is sorted. This example illustrates the use of arithmetic
reasoning (using ≤) on the data fields.

dlist_add, dlist_remove insertion and deletion rou-
tines for cyclic doubly linked lists used in the Windows
kernel. The examples using doubly linked lists require the
use of R0 and R4 to specify the lists reachable through the
Flink andBlinkfields of theLIST_ENTRY structure.

allocator low-level storage allocator that closely resem-
bles the malloc_firstfit_acyclic example
described by Calcagno et al. [9]. The allocator main-
tains a list of free blocks within a single large object;
each call to the allocate routine returns either (i) a block
within the object larger than or equal to the requested
block size, or (ii) null, otherwise. The acyclic linked list
threads through the free blocks, and each node in the list
maintains a pointer to the next element of the list and the
size of the free block in the node. Allocation of a block
may result in either removing a node (if the entire free
block at the node is returned) from the list, or readjusting
the size of the free block (in case only a chunk of the

123

A low-level memory model and an accompanying reachability predicate 115

free block is returned). We check two main postcondi-
tions: (i) the allocated block (when a non null pointer is
returned) is a portion of some free block in the input list,
and (ii) the free blocks of the output list do not overlap.
This example required the use of R0 to specify the list of
free blocks.

list_appl simple application with multiple doubly linked
lists, parent pointers, and usage of the primitive doubly
linked list operations; we verify that the disjoint lists sat-
isfy certain data invariants.

muh_free simplified version of the muh example descri-
bed in the recent paper by Lahiri and Qadeer [25]; we
check the absence of the double-free property.

Figure 12 gives the running times taken by Havoc to
check the assertions in each example. It takes only a small
fraction of the presented time to generate verification condi-
tions. Therefore, reported times are largely dominated by the
time it takes Z3 to discharge the generated VCs. The results
are very encouraging since Z3 proved most of our exam-
ples in just a couple of seconds. Only list_appl is taking
a little bit more time due to the use of complex invariants
that connect the forward-going and backward-going links in
a doubly linked list. In addition, we also believe that the
presented results could be further improved. Currently, the
decision procedure for our low-level reachability predicate
is just a prototype implementation using universally quan-
tified axioms. Actually implementing the presented rewrite-
rule-based decision procedure in an SMT solver will provide
additional performance boost and is an area of future work.

Interestingly, Havoc revealed a bug in our implementa-
tion of the allocator. This bug was caused by an interac-
tion between pointer casting and pointer arithmetic. Instead
of the following correct code that casts a pointer variable
cursor to an unsigned int and then performs an inte-
ger addition

return ((unsigned int) cursor) +
sizeof(RegionHeader);

or similarly

return (unsigned int) (cursor + 1);

we had written the following incorrect code

return (unsigned int)
(cursor + sizeof(RegionHeader));

Note that the two statements return different values
because the size ofRegionHeader, which is the static type
of the structure the pointer cursor is pointing to (i.e. the
type of cursor is RegionHeader*), is not 1. We believe
that such mistakes are common when dealing with low-level
C code, and our tool can provide great value in debugging
such programs.

9 Conclusions and future work

In this work, we introduced a memory model and the accom-
panying reachability predicate suitable for reasoning about
data structures in low-level systems software. Our reach-
ability predicate is designed to handle internal pointers and
pointer arithmetic on object fields. It is based on the classical
reachability predicate used in existing verification tools. In
addition, we described a decision procedure for the predicate
based on a set of rewrite rules. We have designed an annota-
tion language for C programs that allows concise specifica-
tion of properties of lists and arrays. We have also developed
Havoc, a verifier for C programs annotated with assertions
in our specification language. Furthermore, we tested Havoc
on a set of illustrative C programs that perform operations
on linked data structures as well as use low-level C pointer
manipulations.

Based on the presented results, we believe that Havoc
is a good foundation for building a powerful safety checker
for systems software based on automated first-order theorem
proving. We are currently working to extend Havoc with
techniques for inference and abstraction to reduce the man-
ual annotation requirement by automatically inferring many
annotations. That would make Havoc much easier to adopt
and enable its use on realistic code bases inside Windows.

The reachability predicate we introduced is mainly suit-
able for describing linked lists, while more complex recursive
data structures, such as trees, are beyond its reach. Lists are
the most commonly used recursive data structures in systems
software, and therefore were the natural place to start. The
obvious next step, which we are planning to address in the
future, is to extend the theory of reachability to be able to
handle more complex data structures.

Acknowledgments Our formalization of the C memory model has
been deeply influenced by discussions with Madan Musuvathi. We
are grateful to Stephen Adams, Henning Rohde, Jason Yang and Zhe
Yang for their help with the ESP infrastructure. Rustan Leino answered
numerous questions about Boogie. Finally, we thank Tom Ball and
Rustan Leino for providing valuable feedback on the paper.

References

1. Babić, D., Hu, A.J.: Calysto: scalable and precise extended static
checking. In: International Conference on Software Engineering
(ICSE’08), pp. 211–220 (2008)

2. Balaban, I., Pnueli, A., Zuck, L.D.: Shape analysis by predicate
abstraction. In: International Conference on Verification, Model
checking, and Abstract Interpretation (VMCAI’05), pp. 164–180
(2005)

3. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic
predicate abstraction of C programs. In: ACM SIGPLAN Con-
ference on Programming Language Design and Implementation
(PLDI’01), pp. 203–213 (2001)

4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino,
K.R.M.: Boogie: a modular reusable verifier for object-oriented

123

116 S. Chatterjee et al.

programs. In: International Symposium on Formal Methods for
Objects and Components (FMCO’05), pp. 364–387 (2005)

5. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured
programs. In: ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis For Software Tools and Engineering (PASTE’05), pp.
82–87 (2005)

6. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming
system: An overview. In: Construction and Analysis of Safe, Secure
and Interoperable Smart Devices (CASSIS’05), pp. 49–69 (2005)

7. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.,
Wies, T., Yang, H.: Shape analysis for composite data struc-
tures. In: International Conference on Computer Aided Verification
(CAV’07), pp. 178–192 (2007)

8. Bingham, J., Rakamarić, Z.: A logic and decision procedure for
predicate abstraction of heap-manipulating programs. In: Interna-
tional Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’06), pp. 207–221 (2006)

9. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Beyond
reachability: Shape abstraction in the presence of pointer arithme-
tic. In: Static Analysis Symposium (SAS’06), pp. 182–203 (2006)

10. Chatterjee, S., Lahiri, S.K., Qadeer, S., Rakamarić, Z.: A reachabili-
ty predicate for analyzing low-level software. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’07), pp. 19–33 (2007)

11. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.R.: An empir-
ical study of operating system errors. In: ACM Symposium on
Operating Systems Principles (SOSP’01), pp. 73–88 (2001)

12. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate
abstraction of ANSI–C programs using SAT. Formal Methods Syst.
Des. (FMSD) 25, 105–127 (2004)

13. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program ver-
ification in polynomial time. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’02),
pp. 57–68 (2002)

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Inter-
national Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’08), pp. 337–340 (2008)

15. DeLine, R., Leino, K.R.M.: BoogiePL: a typed procedural lan-
guage for checking object-oriented programs. Technical Report
MSR-TR-2005-70, Microsoft Research (2005)

16. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for
program checking. J. ACM 52(3), 365–473 (2005)

17. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM 18, 453–457 (1975)

18. Distefano, D., O’Hearn, P., Yang, H.: A local shape analysis based
on separation logic. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TA-
CAS’06), pp. 287–302 (2006)

19. Filliâtre, J., Marché, C.: Multi-prover verification of C programs.
In: International Conference on Formal Engineering Methods (IC-
FEM’04), pp. 15–29 (2004)

20. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe,
J.B., Stata, R.: Extended static checking for Java. In: ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation (PLDI’02), pp. 234–245 (2002)

21. Gotsman, A., Berdine, J., Cook, B.: Interprocedural shape analysis
with separated heap abstractions. In: Static Analysis Symposium
(SAS), pp. 240–260 (2006)

22. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstrac-
tion. In: ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’02), pp. 58–70 (2002)

23. Lahiri, S.K., Qadeer, S.: Verifying properties of well-founded
linked lists. In: ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’06), pp. 115–126 (2006)

24. Lahiri, S.K., Qadeer, S.: A decision procedure for well-founded
reachability. Technical Report MSR-TR-2007-43, Microsoft
Research, (2007)

25. Lahiri, S.K., Qadeer, S.: Back to the future: Revisiting precise
program verification using SMT solvers. In: ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL’08), pp. 171–182 (2008)

26. Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, S., Srivastava,
S., Yorsh, G.: Simulating reachability using first-order logic with
applications to verification of linked data structures. In: Interna-
tional Conference on Automated Deduction (CADE’05), pp. 99–
115 (2005)

27. Lev-Ami, T., Sagiv, S.: TVLA: A system for implementing static
analyses. In: Static Analysis Symposium (SAS’00), pp. 280–301
(2000)

28. Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.: Have things
changed now? An empirical study of bug characteristics in modern
open source software. In: 1st Workshop on Architectural and Sys-
tem Support for Improving Software Dependability (ASID’06), pp.
25–33 (2006)

29. McPeak, S., Necula, G.C.: Data structure specifications via local
equality axioms. In: International Conference on Computer Aided
Verification (CAV’05), pp. 476–490 (2005)

30. Nelson, G.: Verifying reachability invariants of linked structures.
In: ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’83), pp. 38–47 (1983)

31. Nelson, G., Oppen, D.C.: Simplification by cooperating decision
procedures. ACM Trans. Program. Lang. Syst. (TOPLAS) 2(1),
245–257 (1979)

32. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about
programs that alter data structures. In: International Workshop on
Computer Science Logic (CSL’01), pp. 1–19 (2001)

33. Reynolds, J.C.: Separation logic: A logic for shared mutable data
structures. In: Annual IEEE Symposium on Logic in Computer
Science (LICS’02), pp. 55–74 (2002)

34. Sagiv, S., Reps, T.W., Wilhelm, R.: Solving shape-analysis prob-
lems in languages with destructive updating. ACM Trans. Program.
Lang. Syst. (TOPLAS) 20(1), 1–50 (1998)

35. Schulte, W., Xia, S., Smans, J., Piessens, F.: A glimpse of a verify-
ing C compiler (extended abstract). In: C/C++ Verification Work-
shop (2007)

36. Sullivan, M., Chillarege, R.: Software defects and their impact
on system availability—a study of field failures in operating sys-
tems. In: International Symposium on Fault-Tolerant Computing
(FTCS’91), pp. 2–9 (1991)

37. Xie, Y., Aiken, A.: Scalable error detection using boolean satisfi-
ability. In: ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’05), pp. 351–363 (2005)

38. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B.,
Distefano, D., O’Hearn, P.W.: Scalable shape analysis for systems
code. In: International Conference on Computer Aided Verification
(CAV’08), pp. 385–398 (2008)

123

	A low-level memory model and an accompanying reachability predicate
	Abstract
	1 Introduction
	2 Related work
	3 Motivation
	3.1 Example

	4 Operational semantics of C
	5 Reachability and pointer arithmetic
	6 Annotation language
	7 Implementation
	7.1 Proving verification conditions

	8 Evaluation
	9 Conclusions and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

