
Int J Softw Tools Technol Transfer (2008) 10:503–520
DOI 10.1007/s10009-008-0087-9

SPECIAL SECTION ON WQVV 07

Automated verification of access control policies using a SAT solver

Graham Hughes · Tevfik Bultan

Published online: 21 October 2008
© Springer-Verlag 2008

Abstract Managing access control policies in modern
computer systems can be challenging and error-prone. Com-
bining multiple disparate access policies can introduce unin-
tended consequences. In this paper, we present a formal
model for specifying access to resources, a model that encom-
passes the semantics of the xacml access control language.
From this model we define several ordering relations on
access control policies that can be used to automatically
verify properties of the policies. We present a tool for automa-
tically verifying these properties by translating these ordering
relations to Boolean satisfiability problems and then applying
a sat solver. Our experimental results demonstrate that auto-
mated verification of xacml policies is feasible using this
approach.

Keywords Access control · Automated verification

1 Introduction

A major problem in modern software systems is keeping
track of which users are permitted access to shared resources.
Nowadays, Web-based applications are used to access all
types of sensitive information such as bank accounts, emp-
loyee records and even health records. Given the ease of
access provided by the Web, it is crucial to provide access

This work is supported by NSF grants CCF-0614002 and
CCF-0716095.

G. Hughes (B) · T. Bultan
Computer Science Department, University of California,
Santa Barbara, CA 93106, USA
e-mail: graham@cs.ucsb.edu

T. Bultan
e-mail: bultan@cs.ucsb.edu

control mechanisms for such applications that deal with
sensitive information. Moreover, due to the increasing use
of service-oriented architectures, it is necessary to develop
techniques for keeping the access control policies consistent
across heterogeneous systems and applications spanning
multiple organizations. Although effectively enforcing the
access control rules within a single application is already
challenging, keeping the access control policies consistent
across multiple heterogeneous systems, each with their own
specific access control language, is even more difficult. Seve-
ral unified access policy languages attempt to guarantee
consistency in such situations. In this paper, we focus on one
particular such language, the oasis standard xacml [34].

The Organization for the Advancement of Structured
Information Standards (oasis) is an international standards
consortium that publishes, among others, standards based
on the popular markup language xml [35]. The standard
that we are concerned with in this work is the “eXtensible
Access Control Markup Language” (abbreviated xacml), an
xml-based language for expressing access rights to arbitrary
objects that are identified in xml, with a particular focus
on the composition of many individual policies into a single
disparate “super-policy”. Having such a combined policy is
useful for eliminating inconsistencies among separate poli-
cies and for achieving a uniform access control mechanism,
but such a policy will inevitably become increasingly large
and complex as it incorporates all the varied access rules
different applications and organizations may have. It is pos-
sible, even likely, that the act of creating a unified super-
policy out of several smaller policies could have unintended
consequences.

In this paper, we investigate static verification of access
control policies, with the goal of preventing such errors. We
first translate xacml policies into a simplified mathemati-
cal model, which we reduce to a normal form separating the

123

504 G. Hughes, T. Bultan

conditions that give rise to three different classes of results:
access permitted, access denied, and internal error. We
define several partial orderings between access control poli-
cies, which we can use to automatically check whether a
policy is over- or under-constrained with respect to another
one. We show that these ordering relations can be translated to
Boolean formulas which are satisfiable if and only if the cor-
responding relation is violated. We use a sat solver to check
the satisfiability of these Boolean logic formulas. Using our
translator and a sat solver we can check if a combination
of xacml policies does or does not faithfully reproduce the
properties of its sub-policies, and thus discover unintended
consequences before they appear in practice.

Although we accommodate more of the xacml language
than previous efforts do, which we discuss in Sects. 5.1 and
5.2, our approach also has some limitations. The first limi-
tation is due to the fact that we perform bounded analysis.
Since xacml includes several unbounded domains including
strings of characters and integers, this can introduce impre-
cision. For example, our approach may miss errors that only
occur with a larger domain size than the bound used in our
analysis, which can lead to false negatives.

A second cause of imprecision is due to abstraction. The
xacml language includes several functions that are extre-
mely complex or in some cases cannot be encoded as a
Boolean logic formula. In these cases we use unconstrai-
ned Boolean predicates to abstract these functions. When
such abstractions are used, our analysis may produce false
positives, i.e., report errors that may not exist in the spe-
cification. In these cases the user may need to validate the
reported errors manually. We discuss these two limitations in
detail in Sect. 4.2. Note that for finite state specifications our
approach is sound and complete as long as the user chooses
a sufficiently large bound and the complex xacml functions
are not used in the specification.

Finally, for ease of analysis we use slightly simplified ver-
sions of some of the xacml policy combining algorithms.
The differences between the combining algorithms that we
use and the xacml semantics are discussed in Sect. 2.2. Des-
pite these limitations we have successfully performed analy-
sis on several xacml policies, which we detail in Sect. 5.

We have organized our paper as follows: in Sect. 2, after
giving an overview of xacml, we develop a formal model
for access policies. In Sect. 2.3, we discuss how to trans-
form these models into a normal form that distinguishes
access permitted, access denied, and internal error condi-
tions. In Sect. 3, we define several partial order relations
among access policies, which we use to specify their pro-
perties. We show how to check these properties automati-
cally in Sect. 4. Finally, we report the results of experiments
using our tool in Sect. 5. We also compare our tool with two
other approaches: first, Fisler et al’s Margrave tool [12]; and
second an approach based on translation to Alloy [17]. We

discuss the related work in Sect. 6 and conclude the paper in
Sect. 7.

2 Policy specifications

Xacml is an oasis standard for specifying access policies.
Xacml policies are written in xml, and typically authored
using a dedicated policy editor. The language describes three
classes of objects—individual rules, collections of rules cal-
led policies, and collections of policies called policy sets. An
xacml Policy Enforcement Point, the gateway that deter-
mines whether an action is permitted or not, takes access
requests, which are specially formatted xml documents that
define a set of data that we call the environment. Policy Enfor-
cement Points yield one of four results: Permit, meaning that
the access request is permitted; Deny, meaning that the access
request will not be permitted; Not Applicable, meaning that
this particular policy says nothing about the request; and
Indeterminate, which means that something unexpected has
occurred and the execution of the policy has failed. Which
result occurs depends on what result the policy dictates, given
the environment defined in the access request.

Xacml rules, the most basic component of a policy, have
a goal effect (either Permit or Deny), a domain of applicabi-
lity, and conditions under which they can yield Indeterminate
and fail. The domain of applicability is realized in a series of
predicates about the environmental data that must all be satis-
fied for the rule to yield its goal effect. The error conditions
are embedded in the domain predicates, but can be separated
out into a set of predicates all their own. Policy sets combine
individual policies with a domain of applicability.

Xacml predicates comprise one of a number of primitive
functions, with mechanisms for extension (we do not consi-
der extensions in this work). These functions include simple
equality, set inclusion, ordering within numeric types, and
also more complex functions such as XPath matching and
X500 name matching.

Let us consider a simple example policy. The policy states
that to be able to vote a person must be at least 18 years old
and a person who has voted already cannot vote. Our envi-
ronment, the set of information we are interested in, consists
of the age of the person in question and whether they have
voted already. We can represent this as a Cartesian product of
the power sets of xml Schema [36] basic types, as follows:

E=P(xsd:int)×P(xsd:boolean)×P(xsd:string) (1)

The first component of the environment E is the age of the
person, the second component is whether they have voted
already, and the third component is the action they are
attempting—perhaps voting, but perhaps something else. The
use of power sets is due to xacml semantics. In xacml an
attribute always describes a set of values, never a scalar value.

123

Automated verification of access control policies using a SAT solver 505

Fig. 1 A simple xacml policy

A scalar value, for example the age of a person, is represented
as a singleton set.

The xacml policy for this example is shown in Fig. 1.
The full xacml syntax is cumbersome for discussing our
techniques; accordingly, we will explain the semantics of
this policy using a simple mathematical notation below. Our
tool accepts the policies in the xml input format defined by
the xacml specification.

We illustrate our notation using our example policy. The
goal for our example policy is that if a person is doing some-
thing other than voting, we do not really care what happens,
and we require that there be only one age and one voting
record presented. To do this we can divide E into four sets,
Ea , Ev , E p, and Ed as follows, using the notation ∃!x P to
assert that there is a unique x that satisfies a condition P

Ea = {〈a, v, o〉 ∈ E : ∃!a0 : a0 ∈ a ∧ ∃!v0 : v0 ∈ v}
Ev = {〈a, v, o〉 ∈ Ea : ∃x ∈ o : x = vote}
E p = {〈{a0}, {v0}, o〉 ∈ Ev : a0 ≥ 18 ∧ ¬v0}
Ed = Ev\E p = {〈{a0}, {v0}, o〉 ∈ Ev : a0 < 18 ∨ v0}

Here, Ea is the set of all environments whose inputs are not
erroneous, Ev is the set of all environments where voting
is attempted, E p is the set of all environments where the
person can vote (their attempt to vote is permitted), and Ed

is the set of all environments where the person cannot vote
(their attempt to vote is denied). In the following section, we
will define a concise formal model for xacml policies and
express our example policy in this formal model.

2.1 Formal model

Let R = {Permit, Deny, NotApp, Indet} be the set of valid
results. Now, we can define the set of valid policies P as
follows (with the semantics defined later):

Permit ∈ P

Deny ∈ P

∀p ∈ P : ∀S ⊆ E : Scope(p, S) ∈ P

∀p ∈ P : ∀S ⊆ E : Err(p, S) ∈ P

∀p, q ∈ P : p ⊕ q ∈ P

∀p, q ∈ P : p � q ∈ P

∀p, q ∈ P : p ⊗ q ∈ P

∀p, q ∈ P : p q ∈ P

Informally, we regard Permit and Deny as symbols whose
semantics ignore the environment, always yielding Permit
or Deny, respectively. Along these same lines, Scope and
Err attach conditions to policies

– Scope(p, S) modifies policy p to yield p’s answer if the
current environment is in S, or NotApp otherwise.

– Err(p, S) yields Indet if the current environment is in S
or p’s answer otherwise.

The other four symbols (⊕,�,⊗,) are combinators, that
combine two policies in various ways

– Permit-overrides (p ⊕ q) always yields Permit if either
p or q yield Permit.

– Deny-overrides (p � q) always yields Deny if either p
or q yield Deny.

– Only-one-applicable (p ⊗ q) requires that one of p or q
yield NotApp and then yields the other half’s answer.

– First-applicable (p q) yields p’s answer unless that
answer is NotApp, in which case it yields q’s answer.

To formalize the semantics of policies, we define a func-
tion eff : E × P → R that, given an environment and a
policy produces a result. We will use this function to define
the result indicated by a policy for any given environment,
but also to define semantics-preserving transformations later.
We define this function in Fig. 2 so that it corresponds to the

123

506 G. Hughes, T. Bultan

Fig. 2 Semantics of policies

intuitive semantics we described for the policies above. To
ease presentation of this function, we define two ordering
relations on results >⊕ and >�. We define these ordering
relations as follows:

Permit >⊕ Indet >⊕ Deny >⊕ NotApp

Deny >� Indet >� Permit >� NotApp

Using these ordering relations we use sup>⊕ S to mean the
supremum of the set S using the >⊕ ordering, and similarly
for sup>� . For example, sup>⊕ {Deny, NotApp} = Deny and
sup>� {Permit, Deny} = Deny.

Using this notation, we can now model our example as
follows:

S0 = {〈a, v, o〉 ∈ E : ∀x ∈ a : x < 18} (2)

S1 = {〈a, v, o〉 ∈ E : ∀x ∈ v : x} (3)

S2 = {〈a, v, o〉 ∈ E : ∃x ∈ o : x = vote} (4)

S3 = {〈a, v, o〉 ∈ E : ¬∃!a0 : a0 ∈ a} (5)

S4 = {〈a, v, o〉 ∈ E : ¬∃!v0 : v0 ∈ v} (6)

r1 = Err(Scope(Deny, S0), S3) (7)

r2 = Err(Scope(Deny, S1), S4) (8)

p = Scope(r1 � r2 � Permit, S2) (9)

Here, S0 is the set of environments that fail the age require-
ment (corresponding to lines 25–34 of Fig. 1), S1 is the set
of environments that fail the voting requirement (correspon-
ding to lines 37–46 of Fig. 1), S2 is the set of environments
where someone’s trying to vote (corresponding to lines 9–22
of Fig. 1), S3 represents the uniqueness constraint on ages
(corresponding to lines 26–30 of Fig. 1), S4 represents the

uniqueness constraint on whether or not the user has voted
(corresponding to lines 38–42 of Fig. 1), r1 represents the
rule “urn:example:ruleid:1” (corresponding to lines 24–35
of Fig. 1), r2 represents the rule “urn:example:ruleid:2” (cor-
responding to lines 36–47 of Fig. 1) and p represents the
whole policy (with the scoping information defined on lines
8–23 of Fig. 1, and the rule combining algorithm defined on
line 7 of Fig. 1).

2.2 Xacml combinators

Although our definition of ⊗ and are identical to the corres-
ponding policy combinators from the xacml language, our
definition of ⊕ and � differ slightly from the xacml speci-
fication. In the case that there are no errors, that is there are
no Indet results, then the operators ⊕ and � are identical to
the combinator algorithms given in the xacml specification.
If Indet results are considered, then the permit-overrides and
deny-overrides algorithms in the xacml specification differ
depending on whether they are applied to rules or applied to
policies. As well, the policy combining algorithms for deny-
overrides and permit-overrides are not symmetric. We denote
the xacml versions of these combinators by using ⊕R and
⊕P for permit-overrides and �R and �P for deny-overrides
where subscript R denotes the combinators on rules and P
denotes the combinators on policies. In Fig. 3, we show how
these operators can be expressed using the formalism we
introduced above. We will discuss this translation in more
detail below; however, note that, the semantics of the opera-
tors ⊕R , ⊕P , �R and �P are considerably more complex
than ⊕ and �. After presenting these operators, we will dis-
cuss how they differ from ⊕ and �.

To simplify our presentation of ⊕R , ⊕P , �R and �P in
Fig. 3, we use one auxiliary result Indet•, two sets P⊕, P� ⊂
P , and four auxiliary collation functions cS , c⊕, c�R and
c�P . Indet• is not normally a legal result, and can only arise
through the auxiliary function c⊕ and c�R and is stripped out
with cS . We must amend the ordering relations to accommo-
date this result, and we do so as follows:

Permit >⊕ Indet >⊕ Deny >⊕ Indet• >⊕ NotApp

Deny >� Indet >� Permit >� Indet• >� NotApp

We use the subsets of P P⊕ and P� to encode the xacml
concept of a rule with an associated outcome. We have confla-
ted rules with policies for simplicity, but they are distinct in
xacml language specification. P⊕ is just the set of policies
that are Permit wrapped in Scope and Err declarations, and
P� is similarly the set of policies that are Deny wrapped in
Scope and Err declarations.

The auxiliary collation functions c⊕ and c�R handle an
unusual feature of ⊕R and �R . During the calculation of
the result of ⊕R , if the result of a rule is Indet but the rule

123

Automated verification of access control policies using a SAT solver 507

Fig. 3 xacml semantics for permit-overrides and deny-overrides com-
binators

itself would otherwise yield Deny, the result is defined to
be Indet• instead. Otherwise processing continues normally.
The auxiliary collation function c�P is used for the definition
of �P , wherein an Indet intermediate result will yield a Deny
for the whole policy; accordingly we map Indet to Deny.

Finally, with these preliminary operators defined we may
begin defining ⊕R and the like. The definition for ⊕R is
in essence “if the first policy yields Permit, then permit;
otherwise if the second policy yields Permit, then permit;
otherwise if either policy yields Indet and said policy is a
rule with effect Permit then yield indeterminate; otherwise
if either policy yields Deny then deny; otherwise if either
policy yields Indet and said policy is not a rule with effect
Permit then yield indeterminate; otherwise both policies must
yield NotApp so yield not applicable”. The definition for �R

is symmetrical; “if the first policy yields Deny, then deny;
otherwise if the second policy yields Deny, then deny; other-
wise if either policy yields Indet and said policy is a rule
with effect Deny then yield indeterminate; otherwise if either
policy yields Permit then permit; otherwise if either policy
yields Indet and said policy is not a rule with effect Deny
then yield indeterminate; otherwise both policies must yield
NotApp so yield not applicable”.

The definition for policy combining rules is slightly
simpler. The definition for ⊕P is in essence “if either policy
yields Permit, then permit; if either policy yields Indet, then
yield indeterminate; if either policy yields Deny, then deny;
otherwise yield not applicable”. The definition for �P is in
essence “if either policy yields Deny, then deny; if either
policy yields Indet, then deny; if either policy yields Permit,
then permit; otherwise yield not applicable”. These defini-
tions are not symmetric; in particular combining policies that
yield Indet using a deny-overrides policy combinator yields
Deny, but combining policies that yield Indet using a permit-
overrides policy combinator yields Indet. This asymmetry
appears to arise from a domain requirement; if at any time
the result of an xacml policy cannot be proven to be Permit,
the enforcement machinery should reject the request.

The complex semantics of xacml policy combinators
does not make analysis impossible but it does make it more
cumbersome. We have defined our combinators differently to
simplify the implementation of our analysis. In the case that
the policies being combined do not yield Indet—which is
hopefully an exceptional occurrence—our combinators give
precisely the same result. This can be shown by noting the
following: cS , c⊕, c�R and c�P are all equivalent to the iden-
tity if no result is ever Indet. Therefore in the absence of
Indet

eff(e,⊕R(p0, . . . , pn)) = eff(e,⊕P (p0, . . . , pn))

= sup
>⊕

{0 ≤ i ≤ n : eff(e, pi)}

and

eff(e �R (p0, . . . , pn)) = eff(e,�P (p0, . . . , pn))

= sup
>�

{0 ≤ i ≤ n : eff(e, pi)}

Because we are dealing with finite sets, sup{p1, . . . , pn} =
sup{p1, sup{p2, . . . , sup{pn}}}. Therefore

eff(e,⊕R(p0, . . . , pn))

= sup
>⊕

{eff(e, p0), sup
>⊕

{eff(e, p1), . . . , sup
>⊕

{eff(e, pn)}}}

and similarly for �R , ⊕P and �P . But these precisely the
form of ⊕ and �: therefore

eff(e,⊕R(p0, . . . , pn)) = p0 ⊕ · · · ⊕ pn

and similarly for �R and the others. Therefore our policy
combinators are the same as the official ones in the absence
of Indet. If a policy does yield Indet our combinators will
tend to propagate that to the root of a policy, whereas the offi-
cial combinators will perform more complicated processing,
apparently with the intent of recovering from an error. We
would like to note that the verification techniques we use are
not dependent on our combinators. We could use the official
versions by extending our implementation. For the policies

123

508 G. Hughes, T. Bultan

we investigated in our experiments, there is no difference
between the three versions of the permit-overrides operators
⊕R , ⊕P and ⊕, and the three versions of the deny-overrides
operators �R , �P and �.

2.3 Policy transformations

Now that we have defined a formal model for policies, we
would like to analyze them, and it would be easier to do the
analysis if we could bring the model into a normal form. To
do this, first we define an equivalence relation:

P1 ≡ P2 iff ∀e ∈ E : eff(e, P1) = eff(e, P2)

We call a function f that takes a policy and returns ano-
ther policy an eff-preserving transformation if ∀p ∈ P :
f (p) ≡ p.

For any given policy, we want to regard the subset of E
that will give a Permit result, the subset of E that will give a
Deny result, and the subset of E that will give an Indet result
independently. We define a shorthand 〈S, R, T 〉, where S, R
and T are pairwise disjoint, as follows:

〈S, R, T 〉 = Err(Scope(Permit, S) ⊗ Scope(Deny, R), T)

Hence, 〈S, R, T 〉 is simply a policy that yields Permit for any
environment in S, Deny for any environment in R, Indet for
any environment in T , and NotApp for any remaining envi-
ronment. We call this triple notation and refer to individual
nodes 〈S, R, T 〉 as triples.

Now that we have a framework for transforming policies,
we would like to transform an entire policy with Scope, Err
and combinators alike into a single triple. We know that for
any policy p a triple pT that is equivalent to it exists: the
triple is just

pT = 〈{e ∈ E : eff(e, p) = Permit},
{e ∈ E : eff(e, p) = Deny},
{e ∈ E : eff(e, p) = Indet}〉.

However, this is not a constructive definition. To transform
the policies to the triple form, we define two functions f :
P → P and g : P → 〈S, R, T 〉, both eff-preserving trans-
formations, such that g(f (p)) is a triple representation for
the policy p. The f function transforms the policy into an
equivalent one that is composed of triples joined by combi-
nators. The g function combines triples joined by combina-
tors into a single triple. The two together generate the triple
representation. We define f in Fig. 4, and g in Fig. 5.

Fig. 4 eff-preserving transformations for reduction to normal form

As an example, applying f to the policy p defined in
Eq. (9) leads to the following:

p = Scope(Err(Scope(Deny, S0), S3)

� Err(Scope(Deny, S1), S4) � Permit, S2)

f (p) = Err(Scope(Deny, (S2 ∩ S0) \ S3), S3 ∩ S2)

� Err(Scope(Deny, (S2 ∩ S1) \ S4), S4 ∩ S2)

� Scope(Permit, S2)

Note that the function f pushes all Scope forms down to the
leaves of the policy tree, and all Err forms down to just above
the leaves.

The f function transforms a policy to a collection of
expressions of the form Err(Scope(A, B), T) (where A ∈
{Permit, Deny}, B ⊆ E , T ⊆ E , and B ∩ T = ∅) com-
bined using ⊕,�,⊗ and . Since ∀e ∈ E : eff(e, X ⊗
Scope(Y,∅)) = eff(e, X), we can rewrite these expressions
further into the form

Err(Scope(Permit, S) ⊗ Scope(Deny, R), T)

combined with ⊕,�,⊗ and where S = B and R = ∅ if
A = Permit and S = ∅ and R = B if A = Deny. Since S, R
and T are all pairwise disjoint this is exactly the required form
for our triple notation. Hence, after applying the function f
we have a set of subpolicies in our triple notation combined
with ⊕,�,⊗ and . We define the function g in Fig. 5. The
transformations for function g all preserve the disjointness
property, and using the function g we can transform the policy
generated by function f to a single triple 〈S, R, T 〉 for some
S, R, T ⊆ E .

123

Automated verification of access control policies using a SAT solver 509

Fig. 5 eff-preserving transformations for 〈S, R, T 〉 reduction

When we apply the function g to our example we get the
following:

f (p) = Err(Scope(Deny, (S2 ∩ S0) \ S3), S3 ∩ S2)

� Err(Scope(Deny, (S2 ∩ S1) \ S4), S4 ∩ S2)

� Scope(Permit, S2)

= 〈∅, (S2 ∩ S0) \ S3, S3 ∩ S2〉
� 〈∅, (S2 ∩ S1) \ S4, S4 ∩ S2〉 � 〈S2,∅,∅〉

g(f (p)) = 〈S2 \ (S0 ∪ S1 ∪ S3 ∪ S4),

((S0 \ S3) ∪ (S1 \ S4)) ∩ S2,

((S3 ∪ S4) \ ((S0 \ S3) ∪ (S1 \ S4))) ∩ S2〉
Now that we have our policy in a form that is convenient for
analysis, we would like to check it.

3 Properties of policies

In order to check policies, we first need to figure out what
sort of properties we wish to check. For this purpose, we
have chosen to define several partial ordering relations that
can be used to relate policies. We can specify policies using
a normal xacml policy editor, and then automatically deter-
mine whether they are related in the desired manner using
our analysis tool. For example, we might have a large policy
composed of numerous sub-policies that we have difficulty
comprehending all at once. We might want to prove that this
comprehensive policy protects some resource at least as much
as some simpler policy does. Similarly we might want to gua-
rantee that the act of combining several sub-policies does not
lead this new, larger policy to have a scope greater than any
of its components. We can express properties like these using
the ordering relations defined below.

Let P1 = 〈S1, R1, T1〉 and let P2 = 〈S2, R2, T2〉 be two
policies. We define the following partial orders:

P1 �P P2 ≡ S1 ⊆ S2

P1 �D P2 ≡ R1 ⊆ R2

P1 �E P2 ≡ T1 ⊆ T2

P1 �P,D,E P2 ≡ P1 �P P2 ∧ P1 �D P2 ∧ P1 �E P2

Note that, we can define a partial order for any combination
of P , D and E . We define P1 � P2 ≡ P1 �P,D,E P2. We
can regard P1 � P2 as stating that for any e ∈ E where
eff(P1, e) �= NotApp, eff(P2, e) = eff(P1, e).

To demonstrate the use of these ordering relations, let us
create a new policy; people are permitted to check the current
results of the election, for exit polls. We encode this with the
following policy

S5 = {〈a, v, o〉 ∈ E : ∃x ∈ o : x = getresult}
r3 = Scope(Err(Permit, S4), S5) (10)

where S4 is defined in Eq. (6). Now, we can create a composite
policy as follows pc = p ⊕ r3, where p is defined in Eq. (9).
This policy has a bug—specifically, it permits people under
18 to vote in certain circumstances—and we will demonstrate
the usefulness of our technique by showing this. First, we
perform our translations on this new policy as above, getting

g(f (r3)) = 〈S5 \ S4,∅, S4 ∩ S5〉
g(f (pc)) = 〈((S2 \ (S0 ∪ S1 ∪ S3 ∪ S4)) ∪ (S5 \ S4)) ,

(((S0 \ S3) ∪ (S1 \ S4)) ∩ S2) \ (S4 ∩ S5),

((S4 ∩ S5) ∪ ((S3 ∪ S4)\((S0\S3) ∪ (S1\S4)))

∩S2) \ ((S2\(S0 ∪ S1 ∪ S3 ∪ S4)) ∪ (S5\S4))〉
where S0, S1, S3 and S4 are from Eqs. (3) to (6). Using set
algebra we can simplify the expression for policy pc to

g(f (pc)) = 〈((S2 \ (S0 ∪ S1 ∪ S3)) ∪ S5) \ S4,

(((S0 \ S3) ∪ (S1 \ S4)) ∩ S2) \ (S4 ∩ S5),

((S4 ∩ S5) \ (S2 \ (S0 ∪ S1 ∪ S3))) ∪
(((S3 ∪ S4) \ ((S0 \ S3) ∪ (S1 \ S4))) ∩ S2)〉

Now, we insist that this combined policy deny anyone
trying to vote who is under 18. This is itself a policy, which

123

510 G. Hughes, T. Bultan

we call pv:

pv = 〈∅, (S0 ∩ S2) \ (S3 ∪ S4), (S3 ∪ S4) ∩ S2〉
The interesting thing here is whether or not pv �D pc, i.e.,
does the policy pc deny every input that is denied by pv .
That would mean that everyone trying to vote who is under
18 is denied, and that our policy combination has not done
any harm. However, the environmental tuple

e = 〈{17}, {true}, {vote, getresult}〉
demonstrates that that is not the case. Input e passes the
second part of the Permit requirement and so is permitted
by pc (which means that it is not denied by pc) but denied
by pv , i.e., e demonstrates that pv ��D pc. The error is that
this policy does not enforce that only one action be given in
the third component of the input, and because of this we have
the surprising result that someone who is under eighteen and
has already voted, but asks for the voting results at the same
time as trying to vote will be permitted, and so can cast any
number of ballots. To fix this, we could insist upon a new
condition, that ∃!x : x ∈ o; or we could use ⊗ instead of ⊕,
which would ensure that only one of the sub-policies could
be definitive on any given point (and so turn eff(e, pv) into
an Indet result instead of a Permit); or we could decide that
only people who have voted already can check the results.

4 Automatically proving properties of policies

Given the formal model defined in Sect. 2.1 and properties
defined in Sect. 3, we would like to check properties of access
policies automatically. To do this we first formalize the syntax
of formulas we use to specify subsets of E . Then we discuss
how policies constructed using these formulas and policy
combinators can be translated to Boolean logic formulas.
After this translation we show that we can check properties
of access policies using a sat solver.

4.1 Characterizing subsets of the environment

In Sect. 2.1, we defined our formal model using subsets of
the set of possible environments E . We showed that each
policy can be expressed in triple form P = 〈S, R, T 〉 where
S, R, and T are subsets of E . We will assume that all subsets
of E are specified in the form {e ∈ E : C} where C is a
constraint that evaluates to true or false for each environment.
That is, the only free variables in C are the components of
the environment tuple e. Note that the sets S0, S1, . . . , S4 in
Eq. (2) are expressed this way.

Given a set in the form S = {e ∈ E : C} our goal is to
generate a Boolean logic formula B which encodes the set S.
The encoding will map each e ∈ E to a valuation of the Boo-
lean variables in B, and B will evaluate to true if and only if

e ∈ S. Based on such an encoding we can convert questions
about different policies (such as if one subsumes the other
one) to sat problems and then use a sat solver to check them.
For example, we can generate a Boolean formula which is
satisfiable if and only if an access policy is not subsumed
(i.e., ��) by another one. If the sat solver returns a satisfying
assignment to the formula, then we can conclude that the
property is false, and generate a counterexample based on
the satisfying assignment. If the sat solver declares that the
formula is not satisfiable then we can conclude that the pro-
perty holds. We will discuss the details of such a translation
below.

To present our translation we use the following notational
conveniences: for elements e ∈ E , we name the components
of e e[0], e[1], . . . , e[n]. We use s, s0, s1, . . . , sn to denote
set variables, a, a0, a1, . . . , an to denote scalar variables, and
A, A0, A1, . . . , An to denote constants. We use the function
n(A) to define a unique nonnegative integer for each constant
A. Finally, BP is a set of basic predicates which we define as
follows:

SCAL → A | a

BSET → s | e[i]
BP → true | false | SCAL = SCAL

| SCAL ∈ SET | SET ⊆ SET

SET → BSET | {SCAL} | SET ∪ SET

| SET ∩ SET | SET \ SET

The above grammar is sufficient for specifying policies
using only enumerated types (which obviously have finite
domains) and the simple operations ¬, =, ∈, ⊆. This is suf-
ficient for Boolean types, and also xml Schema enumerated
types. We will discuss extension to other domains later in this
section. This grammar is sufficient to model statements such
as x ∈ a from Eq. (5), or x = vote from Eq. (4) (provided
we consider this string to be an enumerated type). Howe-
ver we cannot yet model the bounding conditions with this
grammar.

We can define them using the nonterminal C ; assuming
that all subsets of E are specified in the form {e ∈ E : C},
where there are no free variables save e in C , C is defined as
follows:

C →, BP | C ∧ C | C ∨ C | ¬C

| ∀a ∈ BSET : C | ∃a ∈ BSET : C

| ∃!a ∈ BSET : C

We use ∃! to mean there exists exactly one instance that holds.
We can express all set definitions on unordered and enumera-
ted types that are permitted in xacml using the expressions
above. This is sufficient to model expressions like ∀x ∈ v : x
from Eq. (3).

123

Automated verification of access control policies using a SAT solver 511

Fig. 6 Translation of the basic predicates to Boolean logic formulas

We will explain our translation from a constraint C defined
by the above grammar to a Boolean logic formula by using
attribute grammars. We will first discuss the translation of the
basic predicates BP. In order to simplify our presentation we
will assume that domains of all the scalars have the same size,
call it k. We will encode a set of values from any domain using
a Boolean vector of size k. Given a Boolean vector v, we will
denote its components as v[1], v[2], . . ., v[k] where v[i] ↔
truemeans that element i is a member of the set represented
by v whereas v[i] ↔ falsemeans that it is not. We encode
a set variable s and each component of the environment tuple
e using the same encoding, i.e., as a vector of Boolean values.
To simplify our presentation we also encode a scalar variable
a as a set using a vector of Boolean values but restrict it to
be a singleton set by making sure that at any time only one
of the Boolean values in the vector can be true. In our actual
implementation scalar variables are represented using log2 k
Boolean variables where k is the size of the domain.

The attribute grammar for basic predicates is shown
in Fig. 6. We have numbered the production rules. Each

production rule has a corresponding semantic rule next to
it. Semantic rules describe how to compute the attributes of
the nonterminal on the left-hand side of the production rule
using the attributes of the terminals and nonterminals on the
right-hand side of the production rule. In the attribute gram-
mar shown in Fig. 6 the nonterminals SCAL, BSET and SET
have two attributes. One of them is a Boolean vector v deno-
ting a set of values, and the other one is a Boolean logic
formula f which accumulates the frame constraints. Again
to simplify our presentation we represent scalar constants and
scalar variables (i.e., the nonterminal SCAL) as singleton sets
whereas in our actual implementation they are represented
using log2 k Boolean variables.

Equation (11) in Fig. 6 states that a scalar constant A is
encoded as a singleton set that contains only A. We represent
this singleton set as a Boolean vector v, such that v[n(A)] is
set to true and all the rest of the elements of the vector are set
to false. This condition is stored in the frame constraint f .
Equation (12) states that a scalar variable is also encoded as a
Boolean vector v. The frame constraint f makes sure that the

123

512 G. Hughes, T. Bultan

Fig. 7 Translation of the constraints to Boolean logic formulas

elements of the Boolean vector v are same as the elements
of the Boolean vector representing the scalar variable a and
exactly one of the elements in a or v is set to true in any given
time. Equations (13) and (14) show that the set variables
(s) and components of the environment tuple (e[i]) are also
encoded as Boolean vectors.

Equation (15) creates a singleton set from a scalar constant
SCAL. However, since we encode scalar constants as single-
ton sets, this simply means that the Boolean vectors encoding
the scalar constant SCAL.v and the set SET .v are equivalent
and the frame constraint SET . f expresses this constraint.
Note that in the attribute grammar shown in Fig. 6 the frame
constraint of a nonterminal on the left-hand side of a produc-
tion is a conjunction of the frame constraints of the nonter-
minals on the right-hand side of the production plus some
other constraints that are added based on the production
rule.

Equations (17)–(19) encode the set operations: union,
intersection and set difference. Each set operation on two
set expressions SET1 and SET2 results in the creation of new
Boolean vector SET .v. The value of an element in SET .v

is defined based on the corresponding elements in SET1.v

and SET2.v. For example for the union operation SET .v[i]
is true if and only if SET1.v[i] is true or SET2.v[i] is true.
The intersection and set difference are defined similarly.

The nonterminal BP corresponds to the basic predicates
and it has two attributes. One of them is a Boolean variable
b representing the truth value of the predicate and the other
one is a Boolean logic formula f that accumulates the frame
constraints.

Equations (20) and (21) create two basic predicates which
have the truth value true and false, respectively.

Equation (22) is a basic predicate that corresponds to an
equality expression comparing two scalars. Since scalars are
expressed as Boolean vectors, the Boolean variable encoding
the truth value of the predicate is true if and only if all ele-
ments of the Boolean vectors encoding the two scalar values
are the same. This constraint is added to the frame constraint
of the basic predicate.

Equation (23) creates a basic predicate that corresponds
to a membership expression testing membership of a scalar
to a set expression. Equation (24) creates a basic predicate
that corresponds to a subset expression testing if a set expres-
sion is subsumed by another set expression. Since we encode
scalars a singleton sets, the frame constraints generated for
Eqs. (23) and (24) are very similar. They state that if a value
is a member of the set on the left-hand side, then it should
also be member of the set on the right-hand side.

The attribute grammar for the constraints is shown in
Fig. 7. The nonterminal C has two attributes. One of them
is a Boolean variable b representing the truth value of the
constraint, and the other one is a Boolean logic formula
f that accumulates the frame constraints. Again, the frame
constraint of a nonterminal on the left-hand side of a produc-
tion is a conjunction of the frame constraints of the nonter-
minals on the right-hand side of the production plus some
other constraints that are added based on the production rule.

Equation (25) is just a syntactic rule expressing that a
constraint can be a basic predicate. Equation (26) defines the
negation operation. As expected the frame constraint states

123

Automated verification of access control policies using a SAT solver 513

that the value of the constraint on the left-hand side of the
production rule is the negation of the value of the constraint
on the right-hand side of the production rule. Equations (27)
and (28) define the disjunction and conjunction operations.
The frame constraints generated in Eqs. (27) and (28) state
that the value of the constraint on the left-hand side of the
production rule is the disjunction or the conjunction of the
values of the constraints on the right-hand side of the pro-
duction rule, respectively.

Equations (29)–(31) deal with quantified constraints. In
these equations, a denotes a scalar variable which is quan-
tified over a basic set expression BSET which is either a
set variable s or a component of the environment tuple e[i].
The quantified variable a can appear as a free variable in the
constraint expression on the right-hand side (C1). The expres-
sion that follows fixes the value of a. First, we must establish
as a frame condition that a is a singleton set; accordingly one
value of the a[i]s must be true and the rest must all be false.
Next, for universal quantification we want to constrain that
for every value i where BSET .v[i] is true, the condition C1

must hold for a scalar a representing that element. Accordin-
gly, for each BSET .v[i] that is true, if a[i] is true C1 must
hold.

Existential qualification is very similar. We use the same
frame condition guaranteeing that a is a singleton set. We
must find some i such that BSET .v[i] is true, a is the scalar
representing that element and C1 holds for that a. This can be
derived from Eq. (29) using the identity ∃a : b ≡ ¬∀a : ¬b.

Equation (31) models existentially quantified constraints
which evaluate to true if and only if the constraint C1 eva-
luates to true for exactly one member of the set s or e[i].
We use the same frame condition guaranteeing that a is a
singleton set. First, we must find some i for which the condi-
tion holds; this is the same as the existential quantification
case. Then, we must ensure that for every other index, Ci is
false; this is very similar to the universal quantification case
with a negated condition. If we follow formal logical conven-
tions and regard C in the construction ∃!a : C as a predicate
with argument a, then we can express ∃!a ∈ BSET : C1 as
∃a ∈ BSET : C1(a) ∧ ∀a′ ∈ BSET : a′ �= a → ¬C1(a′).

4.2 Bounded domains, unbounded domains, and domain
specific predicates

The translation we described above can handle xacml poli-
cies that only use bounded unordered and enumerated types.
In fact, during our analysis we limit the size of every domain
to a given fixed size and then analyze the policies as though
they were specified using finite enumerated sets of that size.
The problem is that if our automated analysis does not yield
a counterexample to a given property, then that does not
necessarily mean that no counterexample exists—perhaps
if we had increased the scope just a little more we would

have found one. As an example, in Eq. (4) we state the
condition x = vote. We can set a domain size so that x
can take on the value of any string with less than, say, six
characters. This is more than sufficient for our initial needs,
but will not discover the flaw in Eq. (10) because it will not
be capable of generating the string getresult. The small
scope hypothesis (discussed by Jackson and Damon [18],
and tested and confirmed for some data structure algorithms
by Marinov et al. [24]) suggests that small scopes could be
sufficient in practice. Note that if a counterexample is found
using bounded domains, that counterexample is definite and
can be translated into an error in the original policy.

Another limitation of the translation we described above
is the fact that it does not handle domain specific predi-
cates, e.g., ordering relations on domains such as integers.
An example here is in Eq. (2), where we state x < 18 in a
constraint. When we translate sets described using such pre-
dicates to Boolean logic formulas we represent them as unin-
terpreted Boolean functions. We create a Boolean variable for
encoding the value of the uninterpreted Boolean function and
we generate constraints which guarantee that the value of the
function is the same if its arguments are the same. Other than
this restriction, the variables encoding the functions can get
arbitrary values. To encode Eq. (2), we would introduce a
Boolean variable v0 which represents the expression x < 18
and then encode the formula ∀x ∈ a v0. If we had addi-
tional expressions of this sort, perhaps a constraint x < 21,
then we would encode that with an additional variable v1.
However, the relationship between these two predicates, i.e.,
v0 → v1 also needs to be added as a frame constraint to
achieve precise analysis. Since our encoding does not gene-
rate all such constraints, our analysis can sometimes report
spurious errors.

As discussed above, due to the scope restriction our
analysis cannot guarantee absence of errors for unbounded
domains. Due to our conservative approximation of domain
specific predicates, it is also possible that some counterexam-
ples may be spurious, and will need to be validated against the
original policy. However, we believe that this type of automa-
ted analysis can still be useful in uncovering errors in access
policies. First, our analysis is both sound and complete for
bounded unordered and enumerated domains as long as the
size used during analysis is not smaller than the actual size
of the domain. Second, for unbounded domains, our analysis
can be used to prove the absence of errors within a certain
bound. Third, for bounded and ordered domains, our analy-
sis is sound and can be used to prove the absence of errors.
However, the counter-example scenarios generated for such
policies need to be validated to make sure that they are not
spurious.

For unbounded and ordered domains, our analysis would
be neither sound nor complete unless we represent the domain
specific predicates on ordered domains precisely within a

123

514 G. Hughes, T. Bultan

certain bound. Note that it is possible to fully interpret
ordering relations as long as the domain is bounded. We can
encode a type with a domain of n ordered elements using n2

Boolean variables, one for each pair of values in the domain,
representing the ordering relations. However, xacml uses
many complex functions such as XPath matching and X500
name matching. Attempting to fully realize these in Boo-
lean logic is possible, but would lead to extremely complex
formulas due to the need to, for example, parse the XPath
expression. Hence, we believe that using uninterpreted func-
tions for abstracting such complex functionality is a justified
approach and enables us to handle a significant portion of the
xacml language. This means that for unbounded and orde-
red domains, our analysis can be used to prove the absence of
errors within a certain bound, however, the counter-example
scenarios need to be validated to make sure that they are not
spurious due to the conservative approximation of some of
the predicates using uninterpreted functions. We would like
to note that the imprecision caused by abstraction of such
complex functions has not led to any spurious results in the
experiments we performed so far.

4.3 Verification of policies

As discussed in Sect. 3, we specify properties of policies
using a set of partial ordering relations. These partial ordering
relations can be used to state that a certain type of outcome for
one policy subsumes the same type of outcome for another
policy. In this section, we will only focus on the � relation.
Translation of properties specified using other relations are
handled similarly.

Given a query like P1 � P2, our goal is to generate a
Boolean logic formula which is satisfiable if and only if P1 ��
P2. As we discussed earlier our tool first translates policies P1

and P2 to triple form, such that P1 = 〈S1, R1, T1〉 and P2 =
〈S2, R2, T2〉 where each element of each triple is specified
with a constraint expression as follows:

S1 = {e ∈ E : CS1}
R1 = {e ∈ E : CR1}
T1 = {e ∈ E : CT1}
S2 = {e ∈ E : CS2}
R2 = {e ∈ E : CR2}
T2 = {e ∈ E : CT2}

After translating policies P1 and P2 in to the triple form
our translator generates a Boolean logic formulas for the
constraints CS1 , CR1 , CT1 , CS2 , CR2 and CT2 based on the
attribute grammar rules described in Figs. 6 and 7. For
example, after this translation the truth value of the constraint
CS1 is represented with the Boolean variable CS1 .b and the

frame constraint CS1 . f states all the constraints on the
Boolean variable CS1 .b.

Recall that for P1 = 〈S1, R1, T1〉 and P2 = 〈S2, R2, T2〉,
P1 � P2 holds if and only if

S1 ⊆ S2 ∧ R1 ⊆ R2 ∧ T1 ⊆ T2

Based on this, we can generate a formula F such that F =
true iff P1 � P2 as follows:

F = (CS1 . f ∧ CR1 . f ∧ CT1 . f ∧ CS2 . f ∧ CR2 . f ∧ CT2 . f)

→ (
(CS1 .b → CS2 .b) ∧ (CR1 .b → CR2 .b)

∧(CT1 .b → CT2 .b)
)

Finally, we send the property ¬ F to the sat solver. If the
sat solver returns a satisfying assignment for the Boolean
variables encoding the environment tuple e (which are the
only free variables in the formula ¬ F), the satisfying assi-
gnment corresponds to a counter-example environment dem-
onstrating how the property is violated. If the sat solver states
that ¬ F is not satisfiable, then we conclude that the property
holds, i.e., P1 � P2.

Since the majority of the sat solvers expect their input
to be expressed in Conjunctive Normal Form (cnf), the last
step in our translation before we send the formula ¬ F to
the sat solver is to convert ¬ F to cnf. For conversion to
cnf we have implemented the structure preserving technique
from [27]. The structure preserving technique, in essence,
creates an auxiliary variable for each subexpression, and then
combines the auxiliary variables. For example, the formula
(a → b) ∨ (b ∧ c) might get translated to (v0 ↔ (a →
b)) ∧ (v1 ↔ (b ∧ c)) ∧ (v0 ∨ v1). Following this step, the
subexpressions are expanded using DeMorgan’s Rule. This
technique is simple to implement but introduces large num-
bers of auxiliary variables, which may negatively impact run
time. We discuss the performance impact of this choice in
more detail in Sect. 5.

5 Experiments

Using the algorithms given above, we are able to convert a
policy property to a Boolean formula in cnf. We then apply a
sat solver to this formula to determine if the property holds.
In particular, we use the Zchaff [25] sat solver. We conduc-
ted experiments in order to investigate if our tool runs in a
reasonable amount of time on xacml policies. We also com-
pared the performance of our tool to other xacml verification
efforts. In our experiments we use the Continue example
[23], encoded into xacml by Fisler et al. [12]. Continue
is a Web-based conference management tool, aiding paper
submission, review, discussion and notification. In addition,
we also use the Medico example from the xacml [34] spe-
cification, which models a simple medical database meant

123

Automated verification of access control policies using a SAT solver 515

to be accessed by physicians. Finally, we have encoded our
example from Sect. 3 into xacml and applied our tool to
the discovery of the error which we know to exist. In these
examples, C1–C11 have been encoded by Fisler et al., and
M1, M2 and V1 have been encoded by us.

Given that our experiments consist of two realistic xacml
policies and one toy example it is difficult to generalize our
experimental results. All we can say is that our approach
performs efficiently on these examples, and can successfully
verify nontrivial properties on these policies. Assessing the
effectiveness of our verification approach in practice would
require a comprehensive empirical study, which is beyond
the scope of this work.

We tested 11 properties (labeled C1, C2, and so on) for
subsumption on Continue and two (labeled M1 and M2) on
the Medico example; our voting example is property V1. Run
times for verification are given in Table 1. The properties we
checked can be described informally as follows:

1. Property C1 tests that the conference manager correctly
denies program committee chairs the ability to review
papers he/she has a conflict with.

2. Property C2 and C7 test that the conference manager per-
mits program committee members to edit reviews they
own.

3. Property C3 and C8 test that the conference manager
denies access to users without a defined role.

4. Property C4 and C5 test that the conference manager will
permit a program committee member who has called a
meeting to read documents concerning the meeting, but
not other arbitrary documents.

5. Property C6 tests whether the conference manager per-
mits program committee members to read all parts of a
review.

6. Property C9 tests whether the conference manager per-
mits unauthorized user roles to set meetings.

7. Property C10 and C11 test that the conference mana-
ger permits program committee members who have filed
their review to read the reviews of others, and denies pro-
gram committee members that have not yet filed their
review from reading other reviews.

8. Property M1 and M2 test whether the unified Medico
policy permits a physician to edit the medical records of
their patients.

9. Property V1 is just the voting property we demonstrated
in Sect. 3.

Some of these properties are expected to be subsumed by
the Continue policy, and some are expected to subsume
the policy. In general, if one wishes to verify that a pro-
perty is upheld for any potential outcome, one should write a
policy that is expected to subsume the target policy. Existence

properties are most readily demonstrated with policies that
are expected to be subsumed by the target policy.

We performed our analysis on a 2.8 GHz Intel Pentium 4,
with 2 GB of memory, running the Linux 2.6.26 kernel. The
listed values for each property are the median of five runs.
The performance results shown in Table 1 indicate that ana-
lysis time is dominated by the initial parsing of the policies
and by the conversion from triple form to a Boolean formula;
sometimes the Boolean conversion is strongly dominant, as
in the Medico examples. The resulting formulas are unexpec-
tedly small and analysis time is so small the startup and I/O
overhead of the Zchaff tool is probably dominating. This was
unexpected; our tool goes to some length to simplify the Boo-
lean formula on the assumption that run times would be domi-
nated by the sat solver. The results show that our assumption
was wrong. However, these results are very encouraging in
terms of the scalability of the proposed approach. Among the
different components of our analysis, sat solving is the one
with worst case complexity. Since the examples we tested
so far were easily handled by the sat solver we believe that
our approach will be feasible for analysis of large xacml
policies.

The number of variables in our Boolean formulas is quite
large, approximately half the number of clauses. We have
made a deliberate tradeoff to get this. Our translation machi-
nery from Sect. 4 introduces large numbers of tightly constrai-
ned variables, and our cnf conversion uses the structure pre-
serving technique [27] which generates even more variables,
but in exchange we get a relatively small formula, and the
search space is not so large as might be presumed because of
the constraints. A different cnf conversion might embody a
different tradeoff between the cnf conversion and sat sol-
ving that might be worth exploring.

Our experimental results show that the subsumption pro-
perties can be analyzed quickly for these policies. Although
our experiments demonstrate the feasibility of our approach,
determining its scalability would require more experiments
with a larger set of policies. Inasmuch as total runtime is
dominated by the Boolean formula generation and cnf trans-
formation steps, steps which we did not initially think would
be as significant a contributor to run time as the sat compu-
tation, we believe that we could improve the performance of
our tool by optimizing Boolean formula generation and the
cnf transformation.

5.1 Comparison with Margrave

We have also compared our analysis with the Margrave tool
written by Fisler et al. [12]. Margrave is a change impact ana-
lysis tool for the xacml language, similar in many respects to
our own work. Therefore where possible we have compared
the performance of our tool with Margrave’s performance on
our examples. Table 2 shows the results of running Margrave

123

516 G. Hughes, T. Bultan

Table 1 Verification performance for the properties of the Continue conference manager (C1–11), Medico (M1–2) and voting (V1) examples

Property I/O (ms) Transform (ms) Boolean (ms) sat (ms) Variables Clauses Result

C1 429 45 617 13 56 114 No

C2 421 44 504 11 42 83 No

C3 426 45 581 11 51 108 No

C4 427 45 582 10 52 106 No

C5 425 428 854 10 79 166 No

C6 428 44 1110 15 89 190 Yes

C7 126 7 1620 12 95 218 Yes

C8 433 44 486 11 42 83 Yes

C9 430 46 578 11 51 106 Yes

C10 416 44 1464 12 108 250 Yes

C11 412 45 2462 13 129 297 Yes

M1 137 7 5144 14 109 280 No

M2 138 7 5168 13 108 279 No

V1 115 10 1765 11 52 123 Yes

We divided the execution time to I/O, transformation to triple form, Boolean formula generation and cnf transformation and sat solving. The times
are in milliseconds. We also listed the size of the generated sat problem instance (in terms of the number of Boolean variables and clauses) for
verification of each property. If the result is “Yes” the generated sat instance is satisfiable and the property is violated. If the result is “No” the
generated sat instance is not satisfiable and the property holds

Table 2 Verification performance for the properties of the Continue conference manager under Margrave

Property Parse/conversion Property verification

CPU time (ms) Real time (ms) GC time (ms) CPU time (ms) Real time (ms) GC time (ms)

C1 1084 1102 244 4 0 0

C2 1084 1102 244 0 1 0

C3 1084 1102 244 0 0 0

C4 1084 1102 244 0 1 0

C5 1084 1102 244 4 2 0

C6 1084 1102 244 0 0 0

C7 1084 1102 244 0 0 0

C8 1084 1102 244 0 2 0

C9 1084 1102 244 0 0 0

C10 1084 1102 244 0 1 0

C11 1084 1102 244 0 0 0

Due to differences in tool architecture, only one parse/conversion step is necessary to verify any number of properties; accordingly only one such
time is given

on the Continue properties. As with Table 1, these figures
represent a median of five runs on the same 2.8 GHz machine.

The current version of Margrave is 2–1, which has been
updated for xacml 2.0. The Continue example which we
both use has not been updated to xacml 2.0 and only runs
under Margrave 1–1. The differences between xacml 2.0 and
xacml 1.0 have minimal impact upon change analysis but
the syntax is very different. Margrave 1–1 only runs under
plt Scheme 209, which may not be as optimized as more
recent versions.

Margrave’s architecture is very different from our own,
which makes a direct comparison of the time taken to analyze
properties difficult. Margrave parses the xacml and converts
it into a form suitable for analysis only once, and then can
check as many properties as is desired. Margrave manages
this by using a binary decision diagram (bdd) [6] for analy-
sis. The conversion process can be time consuming and can
also consume large amounts of memory. However, once the
bdd has been created, checking properties is very quick—
effectively linear in the number of variables used. This is

123

Automated verification of access control policies using a SAT solver 517

why the figures for property verification are so small; while
clearly it does not actually take 0 ms to perform property
verification the actual time taken is so small it is difficult
to measure. Adding together the parse/conversion time and
the property verification time gives a result more comparable
to our own. However, this is not a fair comparison since it
ignores Margrave’s ability to do several checks on a given
policy with only one conversion step.

Margrave itself has several important limitations which
prevent us from comparing our tools using all our examples.
Among the limitations, Margrave 1–1 is not capable of hand-
ling Condition elements in Rules or generally any restric-
tion that cannot be expressed using <Target> elements. The
number of predicates admissible in <Target> elements is a
fraction of those available in the language as a whole. In
particular none of the predicates and functions that com-
plicate conversion to a Boolean formula, like ordering or
XPath comparison that we discuss in Sect. 4.2, can be used
in <Target> elements. Margrave 2–1 adds minimal support
for Condition elements, supporting only Boolean functions
and string equality. Neither version of Margrave can handle
the only-one-applicable policy or rule combining algorithms,
nor does it understand the Indet result.

Because of these limitations, we cannot run the M1, M2
and V1 examples in Margrave. In particular the x < 18
property in S0 which is part of V1, the XPath node matching
in M1 and M2, the uniqueness declarations (for example, the
string-one-and-only function) used extensively in M1
and M2, and the date calculations present in M1 and M2
prevent those examples from being used with Margrave.

The only examples we have been able to find that are sup-
ported both by our tool and by Margrave is the Continue
conference manager examples, which were in fact written for
Margrave; these correspond to our C1 through C11 proper-
ties. For these examples, Margrave is able to parse the xacml,
convert it to a Boolean formula and build the corresponding
decision diagram in 1.1 s. After the decision diagram is built,
the time it takes to check properties is negligible; in many
cases our test harness reports 0 s required for completion.
Our system is more sensitive to the structure of the property
but for the Continue examples is quite competitive. The
majority of the time for our tool is spent performing I/O or
generating a Boolean formula in CNF form. As well, we must
regenerate the Boolean formula for each property whereas a
decision diagram approach does not. However, note that, the
median time for checking the SAT instances generated by
our tool never exceeds 0.015 s; since we run the sat solver as
a separate process it is very possible that most of this time is
spent in process creation overhead. Since this is the only part
in our analysis that has exponential worst-case complexity,
it is very encouraging to see that it is an insignificant part
of the computation time of our tool for these examples. In
contrast, for the decision diagram based approach used by

Margrave, the time consuming step is the construction of the
decision diagram and, hence, the verification time for Mar-
grave is dominated by the time it takes to build the decision
diagram.

It should be noted that while Margrave’s total run time
is swifter than our own, Margrave is only capable of exa-
mining policies specifically written for it, due its inability
to handle any condition not expressible as a scoping restric-
tion. It would be interesting to run our other examples against
Margrave, but this is not possible due to its limitations.

5.2 Comparison with Alloy translation

Before we built a direct xacml to sat translator, we expe-
rimented with using the Alloy [17] analyzer as a back-end
verification tool for xacml policy analysis [14]. We develo-
ped a tool that automatically translates xacml policies into
the Alloy [17] declarative modeling language. Alloy is based
on first order relational logic and is intended to model com-
plex structures. It does so through extensive set manipulation,
and this makes it an attractive target for translation from our
mathematical model. We briefly discuss here our translation
from our formal model to Alloy and the results from attemp-
ting analysis using that translation.

Alloy models consist of sets of concrete objects, called
signatures, facts about these sets, and relations between the
sets. Distinguished subsets of these signatures are possible,
and these new sub-signatures are said to extend the origi-
nal signature. Unlike some other modeling languages, Alloy
does not require that relations be completely specified. Alloy
cannot in general prove assertions about all possible models,
but it can prove assertions about models with a fixed scope.

5.2.1 Translation to Alloy

The general structure we use for translation is as follows: to
prove that P1 � P2 we define each of P1 and P2 and then
check that each set of P1 is contained in the corresponding
set of P2; this is structured as follows.

static sig P1 extends Triple {} {
…

}
static sig P2 extends Triple {} {
…

}
assert Subset {
P1.permit in P2.permit
P1.deny in P2.deny
P1.error in P2.error

}

We translate from our mathematical model for P1 and
P2 to Alloy code for the same as follows. We first define a

123

518 G. Hughes, T. Bultan

signature corresponding to our environment E ; each
component of E is encoded as a field. So for our example we
might encode the environment E in Alloy as

sig E {
age : set Integer,
voted : set Bool,
actions : set String

}

We also need to encode constants; while Alloy already defines
the Boolean constants True and False we must manually
define any others. So for our running example we would
have a signature of constants defined as follows:

static sig CONSTANTS {
eighteen : scalar Integer,
vote : scalar String,
…

}

For each set S ⊆ E we define an auxiliary set as we did the
sets S0, S1, . . . , S4 in (2) through (6) in Sect. 2. For example,
if we wanted to encode S2 as an Alloy set, we might encode
it as

sig S_2 extends E {} {
CONSTANTS.vote in actions

}

We can encode relations like < using an auxiliary Alloy func-
tion LessThan and enforcing transitivity as follows:

fact {
all a,b,c:Type {
LessThan (a, b) = True &&
LessThan (b, c) = True =>
LessThan (a, c) = True

}
}

In fact Alloy has a library for this specific operation, but the
technique is useful for converting other relations. Using this
definition we can encode S0 as

sig S_0 extends E {} {
all x : age |
LessThan(x, CONSTANTS.eighteen)

= True
}

Once all the various Si s have been encoded, we can define
the triples directly using Alloy’s set operations.

5.2.2 Effectiveness of the Alloy translation

Armed with the translation detailed above, we can apply our
analysis of xacml policies much as we did with our direct
sat translation. Unfortunately due to limitations in the Alloy
Analyzer it is not possible to analyze the same policies we
did with our sat based tool. We observed that as the policies
get larger the Alloy Analyzer either runs out of memory or
crashes, and that we encountered these difficulties surprisin-
gly quickly.

We were able to analyze a simpler portion of the Medico
example used by our M1 and M2 examples described in
Sect. 5. Specifically, we took a subset of the Medico policy
and checked that this subset was subsumed by the full policy
(which should be true) and also checked that the full policy is
not subsumed by the subset. Note that these tests are not the
same as the M1 and M2 examples given above; M1 and M2
test more semantically meaningful properties. On the same
hardware that we used to run the earlier examples, we found
that checking that a subset is subsumed by the full policy
took 21.7 s, and checking that the full policy is not subsumed
by the subset took 42.0 s.

We experienced severe difficulties finding properties that
the Alloy Analyzer could analyze successfully. When we
attempted to check the M1 and M2 properties themselves,
the Alloy Analyzer alternately crashed or ran out of memory.
Sometimes restructuring the Alloy encoding of the policy
ameliorated the difficulties, suggesting some inefficiency in
the Boolean encoding process. Ultimately the manner in
which the Analyzer failed—that is, abruptly and with no indi-
cation of what went wrong—made it extremely difficult to
determine where the error lay.

To deal with these issues, we developed the direct-to-sat
translation we have detailed in Sect. 4.3. We use the same sat
solver (that is, Zchaff) that the Alloy Analyzer uses, but our
direct-to-sat translation handles the largest xacml policies
we can find gracefully, and considerably more quickly as
well.

6 Related work

This paper is an extended version of our earlier work [15].
We extended the results reported in [15] by adding a detailed
discussion of the differences between the simplified policy
combinator operators we use in our tool and the correspon-
ding policy combinator operators from the xacml language
specification. We show that our operators are equivalent to
their xacml counterparts under certain conditions, and, fur-
thermore, xacml operators can be translated to our opera-
tors using a translation algorithm we describe in this paper.
In this paper, we also extend the experimental results from
that work [15] in two significant ways: first, we compare the

123

Automated verification of access control policies using a SAT solver 519

performance of our tool with that of Margrave [12] using
one of the policy examples from our experiments, and dis-
cuss the benefits and the limitations of Margrave compared to
our tool; second, we discuss the use of Alloy [17] as the back
end verification tool for xacml policy analysis (instead of a
direct translation to a SAT solver), and provide experimental
results in this direction.

Access control has been the subject of extensive research:
Samarati and De Capitani de Vimercati [28], Sandhu and
Samarati [29,32] introduce the process; Bertino et al. [3],
Bonatti et al. [4], Sandhu [30], and Sandhu et al. [31] des-
cribe various models for access control; Damiani et al. [7–10]
describe a particular fine grained access control for xml
documents; Bonatti et al. [5] define an algebra for compo-
sing different parts of a model into a unified whole; and
Abadi et al. [2], De Capitani de Vimercati [11], Heckman
and Levitt [13] describe ways to distribute the control so that
it is consistent across a distributed system.

Access policy languages, too, are not new: Abad-Piero
et al. [1] describes a general purpose policy language for
authorization systems, Jajodia et al. [20–22] define a model
and language for access control and then present a framework
for enforcing multiple access policies by expressing how to
combine them in a new language. We chose xacml because
it is a standardized language with tool support, and so our
results are more likely to be immediately useful.

The problem with access policies becoming large and
difficult to reason about has also been studied, but not in
the general case: Heckman and Levitt [13] present a way
of verifying a hierarchy of security servers to ensure that
they are enforcing the whole access policy, and Naumovich
[26] presents an algorithm for computing the flow of permis-
sions through the Java security model, to aid static analysis.
Neither of these are exactly what we want: Heckman and
Levitt’s work can prove that the programs you have collecti-
vely implement the policy you specified, but their technique
cannot tell you whether you have made a subtle error in crea-
ting your policy in the first place; Naumovich’s work is more
comprehensive but is specific to Java’s security model.

Automated analysis of access control policies has also
been researched; Schaad and Moffet [33] and Zao et al. [37]
analyze role based access control schemas using the Alloy
analyzer. Schaad and Moffet use Alloy to verify that the com-
position of specifications is well formed and is silent about
their content, whereas we introduce a formal model of and
a partial ordering on xacml specifications specifically desi-
gned for analyzing the semantics. Zao et al. model rbac
schemas in Alloy and then checks these models against pre-
dicates, also written in Alloy. We introduce a formal model
for xacml with a partial ordering on policies that we then
automatically check using a sat solver as a back end; we do
not insist that the user write predicates in another language
and operate solely on xacml.

Jackson’s Alloy Analyzer also uses a sat solver as a
back-end to solve verification queries [16,19]. Hence, trans-
lating xacml policies to Alloy in order to verify them is in
effect an indirect way of using a sat solver for verification.
We attempted to use the Alloy Analyzer for verification of
xacml policies previously [14]; we detail our technique in
Sect. 5.2. Our experiments have shown that a direct transla-
tion to sat is much more effective then translating the veri-
fication queries to Alloy. Using a direct translation we can
generate a customized encoding of the problem. The Alloy
Analyzer is optimized for a more general class of models
and hence, not necessarily efficient for types of verification
queries we are interested in.

Recently, Fisler et al. [12] used multi-terminal decision
diagrams to verify properties of xacml policies with the
Margrave tool. We compare Margrave with our tool in
Sect. 5.1. Briefly; verification queries in Margrave are expres-
sed in the Scheme language. We use relationships between
policies instead, and we believe this makes our tool easier to
use. Also, a verification approach that uses decision diagrams
is more likely to be successful for incremental analysis tech-
niques; we agree that the multi-terminal decision diagrams
are the appropriate representation to use the change-impact
analysis Fisler et al. describe. However, for the type of veri-
fication queries we discuss in this paper, we expect a veri-
fication approach based on sat solvers to perform better on
large policies than a verification approach based on decision
diagrams. A final difference is that our tool handles more of
xacml than Margrave does, including complex conditionals
and more datatypes.

7 Conclusion

We have presented a formal model for access control poli-
cies, and shown how to verify interesting properties about
such models in an automated way. In particular we translate
queries about access control policies to Boolean satisfiabi-
lity problems and use a sat solver to obtain an answer. We
express properties about access control policies as subsump-
tion queries between two policies. We have implemented a
tool that translates xacml policies into to our formal model
and also translates subsumption queries between two xacml
policies to a Boolean satisfiability problem. Our experimen-
tal results indicate that automated verification of nontrivial
access policies is feasible using our approach.

Our approach is not without its limitations; we perform a
bounded analysis which can lead to false negatives, and we
abstract certain functions which can lead to false positives.
However, for finite state specifications our approach is sound
and complete as long as the user chooses a sufficiently large
bound and the complex xacml functions are not used in
the specification. We successfully accommodate far more of

123

520 G. Hughes, T. Bultan

the xacml specification in our analysis than previous efforts
have managed.

In the future, we would like to investigate different abs-
traction techniques to generate more precise models for the
functions that we cannot directly simulate. We would also
like to experiment on more and larger policies. One issue
worth investigating is the relationship between the charac-
teristics of a policy (such as its textual size) and the time
taken to perform analysis upon it. The Continue examples
from Sect. 5 are textually larger than the Medico examples
we used, but the latter have more variables and clauses in the
generated Boolean formula.

References

1. Abad-Peiro, J.L., Debar, H., Schweinberger, T., Trommler, P.:
PLAS—Policy language for authorizations. Technical Report RZ
3126, IBM Research Division (1999)

2. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus
for access control in distributed systems. ACM Trans. Programm.
Lang. Syst. 15(4), 706–734 (1993)

3. Bertino, E., Bettini, C., Ferrari, E., Samarati, P.: An access control
model supporting periodicity constraints and temporal reaso-
ning. ACM Trans. Database Syst. 23(3), 231–285 (1998)

4. Bonatti, P., Damiani, E., De Capitani di Vimercati, S., Samarati, P.:
An access control model for data archives. In: Proceedings of the
16th International Conference on Information Security: Trusted
Information, pp. 261–276. Kluwer International Federation For
Information Processing Series Paris, France (2001)

5. Bonatti, P., De Capitani di Vimercati, S., Samarati, P.: An alge-
bra for composing access control policies. ACM Trans. Inf. Syst.
Secur. 5(1), 1–35 (2002)

6. Brace, K.S., Rudellv, R.L., Bryant, R.E.: Efficient implementation
of a bdd package. In: Proceedings of the 27th ACM/IEEE Design
Automation Conference, pp. 40–45 (1990)

7. Damiani, E., De Capitani di Vimercati, S., Fernández-Medina, E.,
Samarati, P.: Access control of SVG documents. In: Proceedings
of DBSec 2002, pp. 219–230 (2002)

8. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S.,
Samarati, P.: Design and implementation of an access control pro-
cessor for XML documents. Comput. Netw. 33(1–6), 59–75 (2000)

9. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S.,
Samarati, P.: A fine-grained access control system for XML docu-
ments. ACM Trans. Inf. Syst. Secur. 5(2), 169–202 (2002)

10. Damiani, E., Samarati, S.P., De Capitani di Vimercati, S.,
Paraboschi, S.: Controlling access to XML documents. IEEE Inter-
net Comput. 5(6), 18–28 (2001)

11. De Capitani di Vimercati, S., Samarati, P.: Access control in federa-
ted systems. In: Proceedings of the 1996 Workshop on New Secu-
rity Paradigms, pp. 87–99. ACM Press, Lake Arrowhead (1996)

12. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.:
Verification and change-impact analysis of access-control policies.
In: Proceedings of the 27th International Conference on Software
Engineering, pp. 196–205, St. Louis, Missouri (2005)

13. Heckman, M., Levitt, K.N.: Applying the composition principle to
verify a hierarchy of security servers. In: HICSS (3), pp. 338–347
(1998)

14. Hughes, G., Bultan, T.: Automated verification of access control
policies. Technical Report 2004-22. Department of Computer
Science, University of California, Santa Barbara (2004)

15. Hughes, G., Bultan, T.: Automated verification of XACML
policies using a SAT solver. In: Proceedings of the Workshop on
Web Quality, Verification and Validation (WQVV ’07) (2007)

16. Jackson, D.: Automating first-order relational logic. In: Procee-
dings of ACM SIGSOFT Conf. Foundations of Software Enginee-
ring (2000)

17. Jackson, D.: Software Abstractions: Logic, Language and Ana-
lysis. MIT Press, Cambridge (2006). http://softwareabstractions.
org/

18. Jackson, D., Damon, C.A.: Elements of style: analyzing a software
design feature with a counterexample detector. IEEE. Trans. Softw.
Eng. 22(7), 484–495 (1996)

19. Jackson, D., Schechter, I., Shlyakhter, I.: Alcoa: the Alloy
constraint analyzer. In: Proceedings of International Conference
on Software Engineering. IEEE, Limerick (2000)

20. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.:
Flexible support for multiple access control policies. ACM Trans.
Database Syst. 26(2), 214–260 (2001)

21. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A logical language
for expressing authorizations. In: Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pp. 31–42. IEEE Press,
Oakland (1997)

22. Jajodia, S., Samarati, P., Subrahmanian, V.S., Bertino, E.: A uni-
fied framework for enforcing multiple access control policies. In:
SIGMOD’97, pp. 474–485. Tucson, AZ (1997)

23. Krishnamurthi, S.: The Continue server. In: Symposium on the
Practical Aspects of Declarative Languages (2003)

24. Marinov, D., Andoni, A., Danilinc, D., Khurshid, S., Rinard, M.:
An evaluation of exhaustive testing for data structures. Technical
Report MIT-LCS-TR-921, MIT CSAIL (2003)

25. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff:
engineering an efficient SAT solver. In: 39th Design Automation
Conference (DAC 2001), Las Vegas (2001)

26. Naumovich, G.: A conservative algorithm for computing the flow
of permissions in Java programs. In: Proceedings of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA ’02),
pp. 33–43 (2002)

27. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form
translation. J. Symb. Comput. 2, 293–304 (1986)

28. Samarati, P., De Capitani di Vimercati, S.: Foundations of Security
Analysis and Design. Chap. 3, pp. 137–196. Springer, Heidelberg
(2001)

29. Sandhu, R., Samarati, P.: Authentication, access control, and
audit. ACM Comput. Surv. 28(1), 241–243 (1996)

30. Sandhu, R.S.: Lattice-based access control models. IEEE Com-
put. 26(11), 9–19 (1993)

31. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-
based access control models. IEEE Comput. 29(2), 38–47 (1996)

32. Sandhu, R.S., Samarati, P.: Access control: principles and prac-
tice. IEEE Commun. Mag. 32(9), 40–48 (1994)

33. Schaad, A., Moffet, J.: A lightweight approach to specification and
analysis of role-based access control extensions. In: 7th ACM Sym-
posium on Access Control Models and Technologies (SACMAT
2002) (2002)

34. eXtensible Access Control Markup Language (XACML) Ver-
sion 1.0. OASIS Standard (2003). http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=xacml

35. Extensible markup language (XML) 1.0, 2nd edn. W3C (2000).
http://www.w3.org/TR/REC-xml

36. XML Schema part 2: Datatypes. W3C Recommendation (2001).
http://www.w3.org/TR/xmlschema-2/

37. Zao, J., Wee, H., Chu, J., Jackson, D.: RBAC schema verification
using lightweight formal model and constraint analysis. In: Procee-
dings of the Eighth ACM Symposium on Access Control Models
and Technologies (2003)

123

http://softwareabstractions.org/
http://softwareabstractions.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-2/

	Automated verification of access control policies using a SAT solver
	Abstract
	1 Introduction
	2 Policy specifications
	2.1 Formal model
	2.2 Xacml combinators
	2.3 Policy transformations

	3 Properties of policies
	4 Automatically proving properties of policies
	4.1 Characterizing subsets of the environment
	4.2 Bounded domains, unbounded domains, and domain specific predicates
	4.3 Verification of policies

	5 Experiments
	5.1 Comparison with Margrave
	5.2 Comparison with Alloy translation

	6 Related work
	7 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

