Int J Softw Tools Technol Transfer (2008) 10:443-454
DOI 10.1007/s10009-008-0070-5

REGULAR CONTRIBUTION

Properties of state spaces and their applications

Radek Pelanek

Published online: 6 June 2008
© Springer-Verlag 2008

Abstract Explicit model checking algorithms explore the
full state space of a system. State spaces are usually treated
as directed graphs without any specific features. We gather
a large collection of state spaces and extensively study their
structural properties. Our results show that state spaces have
several typical properties, i.e., they are not arbitrary graphs.
We also demonstrate that state spaces differ significantly
from random graphs and that different classes of models
(application domains, academic vs. industrial) have differ-
ent properties. We discuss consequences of these results for
model checking experiments and we point out how to exploit
typical properties of state spaces in practical model checking
algorithms.

1 Introduction

Model checking is an automatic method for formal verifi-
cation of systems. In this paper we focus on explicit model
checking which is the state-of-the-art approach to verifica-
tion of asynchronous models (particularly protocols). This
approach explicitly builds the full szate space of the model
(also called Kripke structure, occurrence or reachability
graph). The state space represents all (reachable) states of the
system and transitions among them. Verification algorithms
use the state space to check specifications expressed in a
temporal logic. The main obstacle of model checking is the
state explosion problem—the size of the state space can grow
exponentially with the size of the model description. Hence,
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model checking algorithms have to deal with extremely large
graphs.

The classical model for large unstructured graphs is the
random graph model of Erd6s and Renyi [ 13]—every pair of
vertices is connected with an edge by a given probability p.
Large unstructured graphs are studied in many diverse areas
such as social sciences (networks of acquaintances, scientist
collaborations), biology (food webs, protein interaction net-
works), and computer science (Internet traffic, world wide
web). Recent extensive studies of these graphs revealed that
they share many common structural properties and that these
properties significantly differ from properties of random
graphs. This observation led to the development of more
accurate models for complex graphs (e.g., ‘small worlds’ and
‘scale-free networks’ models) and to a better understanding
of processes in these networks, e.g., spread of diseases and
vulnerability of computer networks to attacks. See [1] for an
overview of this research and further references.

1.1 Questions

In model checking, we usually treat state spaces as arbitrary
graphs. However, since state spaces are generated from short
descriptions, it is clear that they have some special properties.
This line of thought leads to the following questions:

1. What are typical properties of state spaces? What do state
spaces have in common?

2. Can state spaces be modeled by random graphs? Is it rea-
sonable to use random graphs instead of state spaces for
model checking experiments?

3. How can we apply properties of state spaces? Can we
exploit these typical properties to traverse a state space
more efficiently? Can some information about a state
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space be of any use to the user or to the developer of
a model checker?

4. Are state spaces similar to such an extent that it does not
matter which models we choose for benchmarking our
algorithms? Is there any significant difference between
toy academical models and real life case studies? Are
there any differences between state spaces of models
from different application domains?

In this paper we address these questions by an experimen-
tal study of a large number of state spaces of asynchronous
systems.

1.2 Related work

Many authors point out the importance of the study of mod-
els occurring in practice [15]. But to the best of our knowl-
edge, there has been no systematic work in this direction. In
many articles one can find remarks and observation concern-
ing typical values of individual parameters, e.g., diameter
[7,37], back level edges [4,40], degree [ 18], stack depth [18].
Some authors make implicit assumptions about the structure
of state spaces [10,24] or claim that the usefulness of their
approach is based on characteristics of state spaces without
actually identifying these characteristics [39]. Another line
of work is concerned with visualization of large state spaces
with the goal of providing the user with better insight into a
model [17].

The paper follows on our previous research, particularly
on [29,31-34]. The paper syntheses common topics of these
works and present them in an uniform setting. The paper also
presents several new observations (e.g., labels in state spaces,
product graphs) and describes possible applications in more
detail.

1.3 Organization of the paper

Section 2 describes the benchmark set that we used to obtain
experimental results reported in the paper. Section 3 intro-
duces parameters of state spaces and presents results of mea-
surements of these parameters over the benchmark set.
Section 4 is concerned with parameters of state space tra-
versal techniques (breadth-first search, depth-first search, and
random walk). In Sect. 5 we compare properties of state
spaces from different classes (application domains, industrial
vs. toy, models vs. random graphs). Possible applications of
all the reported results are discussed in Sect. 6. Finally, the
last section provides answers to the questions raised above.

2 Background

In our previous study [29] we have used state spaces gene-
rated by six different model checkers. This study demonstrates
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that most parameters are independent of the specification lan-
guage used for modeling and the tool used for generating a
state space. The same protocols modeled in different lan-
guages yield very similar state spaces.

For this study we use models from our BEnchmark set
for Explicit Model checkers (BEEM) [31]. Models in the set
are implemented in a low-level modeling language based
on communicating extended finite state machines (DVE lan-
guage). Most of the models are well-known examples and
case studies. Models span several different application areas
(e.g., mutual exclusion algorithms, communication proto-
cols, controllers, leader election algorithms, planning and
scheduling, puzzles).

The benchmark set includes more than 50 parametrised
models (300 concrete instances). For this study we use
instances which have state space sizes smaller than 150,000
states (120 instances). We use only models of restricted size
due to the high computational requirements of the performed
analysis. However, our results show that properties of state
space do not change significantly with the size of the state
space.

The benchmark set is accompanied by an comprehensive
web portal [31], which provides detailed information about
all models. The web portal also includes detailed informa-
tion about state spaces used in this paper. All the data about
properites of analyzed state spaces are available for down-
load (in XML format) and can be used for more detailed
analysis.

The DVE modeling language is supported by an extensible
model checking environment—The Distributed Verification
Environment (DiVinE) [5]. We use the environment to per-
form all experiments reported in this paper. The benchmark
set also contains (automatically generated) models in Pro-
mela, which can be used for independent experiments in the
well-known model checker Spin [21].

3 State space parameters

A state space is a relational structure which represents the
behavior of a system (program, protocol, chip, ...). It repre-
sents all possible states of the system and transitions between
them. Thus we can view a state space as a simple directed
graph G = (V, E, vg) with a set of vertices V, a set of
directed edges E € V x V, and a distinguished initial vertex
vo. Note that we use simple graphs, i.e., graphs without self-
loops and multiple edges. This choice have a minor impact
on some of the reported results (e.g., degrees of vertices),
but it does not influence conclusions of the study. We also
suppose that all vertices are reachable from the initial vertex.
In the following we use graph when talking about generic
notions and state space when talking about notions which
are specific to state spaces of asynchronous models.
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Fig. 1 Degree statistics. Values are displayed with the boxplot method.
The upper and lower lines are maximum and minimum values, the mid-
dle line is a median, the other two are quartiles. Note the logarithmic
y-axis

3.1 Degrees

Out-degree (in-degree) of a vertex is the number of edges
leading from (to) this vertex. Average degree is the ratio
|E|/|V]. The basic observation is that the average degree is
very small—typically around 3 (Fig. 1). Maximal in-degree
and out-degree are often several times higher than the average
degree but with respect to the size of the state space they are
small as well. Hence state spaces do not contain any ‘hubs’. In
this respect state spaces are similar to random graphs, which
have Poisson distribution of degrees. On the other hand, scale
free networks discussed in the introduction are characterized
by the power-law distribution of degrees and the existence of
hubs is a typical feature of such networks [1].

The fact that state spaces are sparse is not surprising and
was observed long ago—Holzmann [18] gives an estimate 2
for average degree. It can be quite easily explained: the degree
corresponds to a ‘branching factor’ of a state; the branching
is due to parallel components of the model and to the inner
nondeterminism of components; and both of these are usu-
ally rather small. In fact, it seems reasonable to claim that in
practice |E| € O(]V|). Nevertheless, the sparseness is usu-
ally not taken into account either in the construction of model
checking algorithms or in the analysis of their complexity.

3.2 Strongly connected components

A strongly connected component (SCC) of G is a maximal
set of states C C V such that for each u, v € C, the vertex
v is reachable from u and vice versa. The quotient graph of
G is a graph (W, H) such that W is the set of SCCs of G
and (Cy, C2) € H if and only if C; # C; and there exist
r € Cy,s € Cy such that (r,s) € E. The SCC quotient
height of the graph G is the length of the longest path in the
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Fig. 2 Histogram of sizes of the largest SCC component in a state
space

quotient graph of G. Finally, a component is ferminal if it
has no successor in the quotient graph.

For state spaces, the height of the SCC quotient graph is
small. In all but one case it is smaller than 200, in 70% of
cases it is smaller than 50.

There is an interesting dichotomy with respect to the struc-
ture of strongly connected components, particularly concern-
ing the size of the largest SCC (see Fig. 2). A state space either
contains one large SCC, which includes nearly all states, or
there are only small SCCs. The largest component is usually
terminal and often it is even the only terminal.

3.3 Labels

So far we have considered state spaces as plain directed
graphs. However, state spaces do not have ‘anonymous’ edges
and states:

— Vertices are state vectors which consist of variable valua-
tions and process program counter values.

— Edges are labelled by actions which correspond to actions
of the model.

Distribution of edge labels is far from uniform. Typically
there are few labels which occur very often in a state space,
whereas most labels occur only in small numbers. More spe-
cifically, for most models the most often occurring label
appears on approximately 6% of all edges, the five most often
occurring labels appears on approximately 20% of all edges.
This result does not depend on number of labels, i.e., the 20%
ratio taken by the five most common labels holds approxi-
mately for both small models with thirty different labels as
well as for realistic models with hundreds of different labels.

State vectors can be divided into parts which correspond
to individual processes in the model (i.e., program counter of
the process and valuation of local variables). The number of
distinct valuations of these local parts is small, in most cases
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smaller then 255, which means that the state of each process
can be stored in 1 byte. Moreover, the distribution of differ-
ent valuations is again non-uniform, i.e., some valuations of
the local part occur in most states (typically valuations with
repeated value 0), whereas other valuations occur only in few
states.

The number of differences in state vectors of two adja-
cent vertices is small, typically the action changes the state
vector in 1—4 places. Distribution of these changes is again
non-uniform. This is not surprising since changes in the state
vector are caused by (non-uniformly distributed) labels.

For more details see the BEEM webpage [31], which con-
tains specific results for each model.

3.4 Local structure and motifs

As the next step we analyze the local structure of state spaces.
In order to do so, we employ some ideas from the analysis
of complex networks. A typical characteristic of social net-
works is clustering—two friends of one person are friends
together with much higher probability than two randomly
picked persons. Thus vertices have a tendency to form clus-
ters. This is a significant feature which distinguishes social
networks from random graphs.

In state spaces we can expect some form of clustering as
well—two successors of a state are more probable to have
some close common successor than two randomly picked
states. Specifically, state spaces are well-known to contain
many ‘diamonds’. We try to formalize these ideas and pro-
vide some experimental base for them.

The k-neighborhood of v is a subgraph induced by a set
of vertices with the distance from v smaller or equal to k.
The k-clustering coefficient of a vertex v is the ratio of the
number of edges to the number of vertices in the k-neighbor-
hood (not counting v itself). If the clustering coefficient is
equal to 1, no vertex in the neighborhood has two incoming
edges within this neighborhood. A higher coefficient implies
that there are several paths to some vertices within the neigh-
borhood. For state spaces, the clustering coefficient linearly
increases with the average degree. Most random graphs have
clustering coefficients close to 1.

Another inspiration from complex networks are so-called
‘network motifs’ [27,28]. Motifs are studied mainly in bio-
logical networks and are used to explain functions of net-
work’s components (e.g., function of individual proteins) and
to study evolution of networks.

We have systematically studied motifs in state spaces. We
find the following motifs to be of specific interest either
because of abundant presence or because of total absence
in many state spaces:

— Diamonds (we have studied several variations of struc-
tures similar to diamond, see Fig.3). Diamonds are well
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Fig. 4 Relationship between occurrence of diamonds and the average
degree. The occurrence of diamonds is reported as a ratio of the number
of states which are roots of some diamond to all states

known to be present in state spaces of asynchronous con-
current systems due to the interleaving semantics. Dia-
monds display an interesting dependence on the average
degree (Fig.4). There is a rather sharp boundary for value
2 of the average degree: for a state space with average
degree less than two there is a small number of diamonds,
for state spaces with average degree larger than two there
are a lot of them.

— Chains of states with just one successor. We have mea-
sured occurrences of chains of length 3, 4, 5. Chains occur
particularly in state spaces with average degree less than
two (i.e., their occurrence is complementary to diamonds).

— Short cycles of lengths 2, 3, 4, 5. Short cycles are nearly
absent in most state spaces.

— Feed forward loop (see Fig.3). This motif is a typical for
networks derived from biological systems [28]; in state
spaces it is very rare.

The bottom line of these observations is that the local
structure depends very much on the average degree. If the
average degree is small, then the local structure of the state
space is tree-like (without diamonds and short cycles, with
many chains of states of degree one). With the high average
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Fig. 5 The BFS height plotted against the size of the state space. Note
the logarithmic x-axis. Three examples have BES height larger than 300

degree, the state space has many diamonds and high cluster-
ing coefficient.

4 Properties of search techniques

In verification, the basic operation is the traversal of a state
space. Therefore, it is important to study not only ‘static’
parameters of state spaces but also their ‘dynamics’, i.e.,
properties of search techniques. Here we consider three basic
techniques for state space traversal and their properties.

4.1 Breadth-first search (BFS)

Let us consider BFS from the initial vertex vg. A BFS level
with an index k is a non-empty set of states with minimal dis-
tance from vy equal to k. The BFS height is the largest index
of alevel. An edge (u, v) is a back level edge if v belongs to
a level with a lower or the same index as u. The length of a
back level edge is the difference between the indices of the
two levels.

In our benchmarks, the BFS height is small (Fig.5). There
is no clear correlation between the state space size and the
BFS height; it depends rather on the type of the model.

The sizes of levels follow a typical pattern. If we plot the
number of states on a level against the index of a level we get
a BFS level graph.! See Fig. 6. for several examples of BFS
level graphs. Note that in all cases the graph has a ‘bell-like’
shape.

The ratio of back level edges to all edges in a state space
varies between 0 and 50%; the ratios are uniformly distrib-
uted in this interval. Most edges are short—they connect two

! Note that the word ‘graph’ is overloaded here. In this context we mean
graph in the functional sense.

close levels (as already observed by Tronci et al. [40]). How-
ever, for most models there exist some long back level edges.

4.2 Depth-first search (DFS)

Next we consider the DFS from the initial vertex. The behav-
ior of DFS (but not the completeness) depends on the order
in which successors of each vertex are visited. Therefore we
have considered several runs of DFS with different orderings
of successors.

If we plot the size of the stack during DFS we get a stack
graph. Figure 6. shows several stack graphs; for more graphs
see [31]. The interesting observation is that the shape of
the graph does not depend much on the ordering of succes-
sors. The stack graph changes a bit of course, but the over-
all appearance remains the same. This suggests, that DFS
is rather ‘stable’ with respect to the ordering of successors.
Each state space, however, has its own typical stack graph;
compare to BFS level graphs, which all have more or less
bell-like shape.

For implementations of the breadth- and depth-first search
one uses queue and stack data structures. Figure 7. compares
the maximal size of a queue and a stack during the traversal.
The maximal size of a stack is smaller then maximal size of
a queue in 60% of cases, but the relative size of a queue is
always smaller than 25% of the state space size whereas the
relative size of a stack can go up to 100% of the state space
size. These results have implications for practical implemen-
tation of model checking tools (see Sect. 6).

4.3 Random Walk

Finally, we consider a simple random walk technique. The
technique starts in the initial state of the graph. In each step it
randomly chooses a successor of the current state and visits it.
If the current state does not have any successors the algorithm
re-starts from the initial state. The search also uses periodic
re-start in order to avoid the situation when the random walk
gets trapped in a small terminal strongly connected compo-
nent.

From the theoretical point of view the most relevant char-
acteristic of the random walk is the covering time, i.e., the
expected number of steps after which all vertices of the graph
are visited. For undirected graphs the covering time is poly-
nomial. For directed graphs the covering time can be expo-
nential. Even in those cases when it is not exponential, it is
still too high to be measured experimentally even for medium
sized graphs (hundreds of states). For this reason we have
measured the coverage, i.e., the ratio of vertices which were
visited after a given number of steps.

The coverage increases with the number of computation
steps in a log-like fashion, i.e., at the beginning of the compu-
tation the number of newly visited states is high and it rapidly
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decreases with time. After a threshold point is reached the
number of newly visited states drops nearly to zero. After
this point it is meaningless to continue in the exploration.
Our experience indicates that this happens when the num-
ber of steps is about ten times the size of the graph. This
is the basic limit on the number of steps that we have used
in our experiments. Figure8 gives the coverage after this
limit. Note that the resulting coverage is very much graph-
dependent. In some cases the random walk can cover the
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whole graph, whereas sometimes it covers less than 3% of
states.

A natural question is whether there is any correlation
between the efficiency (coverage) of the random walk and
structural properties of a state space. Unfortunately, it seems
that there is no straightforward correlation with any of the
above studied graph properties. The intuition for this nega-
tive result is provided by Fig.9. The two displayed graphs
have similar global graph properties, but the efficiency of the
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Fig. 7 A comparison of maximal queue and stack sizes expressed as
percentages of the state space size

random walk is very different. While the first graph is easily
covered, the random walk will behave poorly on the second
one. Note that graphs of these types occur naturally in model
checking.

Finally, we measure the probability of visiting individual
states in order to find whether the probability of a visit has a
uniform distribution or whether some states are visited more
frequently than others. We find that the frequency of visits
has the power law distribution. Thus the probability that a
given state is visited is far from being uniform. This leads to
the conclusion that the subgraph visited by the random walk
cannot be considered to be a random sample of the whole
graph!

5 Comparisons

In this section we compare properties of state spaces of mod-
els from different classes.

5.1 Application domains

We have classified models according to their application
domains and studied the parameters of each class. State
spaces from each domain have some distinct characteristics;
see [31] for description of the classification and [32] for more
specific results.

— Mutual exclusion algorithms: state spaces usually contain
one large strongly connected component and contain many
diamonds.

— Communication protocols: state spaces are not acyclic,
have a large BFS height and long back level edges, usu-
ally contain many diamonds.

— Leader election algorithms: state spaces are acyclic and
contain diamonds.

Final coverage (%)

Fig. 8 Histogram of random walk coverage after number of steps equal
to 10 times the size of the state space. Frequency means the number of
state spaces for which the final coverage was in the given interval

— Controllers: state spaces have small average degree, alarge
BFS height and long back level edges, usually contains
many diamonds.

— Scheduling, planning, puzzles: state spaces are often acy-
clic, with a very small BFS height, large average degree,
many short back level edges; state space are without prev-
alence of diamonds or chains.

We expect that similar distinct characteristic exists for
other application domains as well.

5.2 Random graphs

Let us compare properties of state spaces and properties of
random graphs, which are often used in experiments with
model checking algorithms. We use the classical Erd6s-Re-
nyi model of a random graph [13].

Although distances (BFS height, diameter) in state spaces
are small, distances in random graphs are even smaller. For
most state spaces we observe that there are only a few typical
lengths of back level edges and a few typical lengths of cycles
(this is caused by the fact that back level edges correspond to
specific actions in a model). However, random graphs have
no such feature.

State spaces are characterized by the presence (respec-
tively absence) of specific motifs, particularly diamonds
(respectively short cycles). More generally, state spaces
shows significant clustering and the size of k-neighborhood
grows (relatively) slowly. Random graphs do not have clus-
tering and the size of k-neighborhood grows quickly.

If we plot the size of the queue (stack) during BFS (DFS)
(as done in Fig. 6) then we obtain for each state space a spe-
cific graph, which is usually at least a bit ragged and irregular.
In contrast, for most random graphs we obtain very similar,
smooth graphs.
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Fig. 9 Graphs with similar properties but different random walk cov-
erage. The color correspond to probability of a visit by a random walk;
darker vertices have higher change of a visit.

Finally, we provide a specific example which demon-
strates how the use of random graphs can obfuscate experi-
mental analysis. Figure 10 demonstrates the correlation
between the average vertex degree and the random walk cov-
erage both for random graphs and model checking graphs.
There is a clear correlation for random graphs. For model
checking graphs such a correlation has not been observed. If
we did the experiments only with random graphs, we could
be misled into wrong conclusions about the effectiveness and
applicability of random walk technique.

5.3 Toy versus industrial examples

We have manually classified examples into three categories:
toy, simple, and complex. The major criterion for the classi-
fication was the length of the model description. State spaces
sizes are similar for all three categories, because for toy mod-
els we use larger values of model parameters (as is usual in
model checking experiments).

The comparison shows differences in most parameters.
Here we only briefly summarize the main trends; more
detailed figures can be found on the BEEM web page [31].

— The maximal size of the stack during DFS is significantly
shorter for complex models (Fig. 11).

— The BFS height is larger for state spaces of complex mod-
els. The number of back level edges is smaller for state
spaces of complex models but they have longer back level
edges.

— The average degree is smaller for state spaces of complex
models. Since the average degree has a strong correlation
with the local structure of the state space (see Sect. 3.4),
this means that also the local structure of complex and toy
models differs.

— Generally, the structure is more regular for state spaces of
toy models. This is demonstrated by BFS level graphs and
stack graphs which are smoother for state spaces of toy
models.
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These results stress the importance of having complex case
studies in model checking benchmarks. Particularly exper-
iments comparing explicit and symbolic methods are often
done on toy examples. Since toy examples have more regular
state spaces, they can be more easily represented symboli-
cally.

5.4 Product graphs

During the verification of temporal properties, algorithms
often work with the ‘augmented state space’ rather then
directly with the state space. Particularly, the verification
of linear temporal logic is based on the construction of so-
called product graph: a negation of a temporal logic formulae
is transformed into an equivalent Biichi automaton, a prod-
uct of a state space and the automaton is computed, and the
product graph is searched for accepting cycles [41]. What
are the properties of product graphs? Is there any significant
difference from properties of plain state spaces?

The BEEM benchmark [31] also contains temporal prop-
erties. We have used these properties to construct product
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Fig. 11 The maximal stack size (given in percents of the state space
size) during DFS. Results are displayed with the boxplot method (see
Fig. 1 for explanation)

graphs and we have studied their properties. Our experiments
indicate that the structure of product graphs is very similar to
structure of plain state spaces. Since the results are so simi-
lar, we do not provide explicit results and figures. The only
difference worth mentioning is that the height of the SCC
quotient graphs is slightly larger for product graphs, but it is
still rather small.

6 Applications

In previous sections we outlined many interesting properties
of state spaces. Are these properties just an interesting curi-
osity? Or can we exploit them in the verification process?
In this section we outline several possible applications of
described properties.

6.1 Algorithm tuning

Knowledge of typical properties of state spaces can be useful
for tuning the performance of model checking algorithms.

In Sect. 4 we demonstrate that the size of a queue (stack)
during the state space search can be quite large, i.e., it may
happen that the applicability of a model checker becomes
limited by the size of a queue (stack) data structure. There-
fore, it is important to pay attention to these structures when
engineering a model checker. This is already done in some
model checkers—SPIN can store part of a stack on disc [20],
UPPAAL stores all states in the hash table and maintains only
references in a queue (stack) [12].

Breadth-first search parameters (particularly BFS height
and sizes of BFS levels) can be used to set parameters of algo-
rithms appropriately: algorithms that exploit magnetic disk
often work with individual BFS levels [38]; random walk
search [33] and bounded search [23] need to estimate the
height of the state space; techniques using stratified caching

[16] and selective storing of states [6] can also take the shape
of the state space into account.

The local structure of a state space (e.g., presence or
absence of diamonds) can also be used for tuning param-
eter values, particularly for techniques which employ local
search, e.g., random walk enhancements [33,36], sibling
caching and children lookahead in distributed computation
[25], or heuristic search.

Typical motifs and state vector characteristics (number
of local states, number of changes in state vector) can be
employed for efficient storage of states (e..g, state compres-
sion [19]). The fact that distribution of edge labels is not
uniform is important for selection of a covering set of transi-
tions, which can be used for partial order reduction or selec-
tive storing [6].

6.2 Automation of verification

Any self-respecting model checker has a large number of
options and parameters which can significantly influence the
run-time of verification. In order to verify any reasonable
system, it is necessary to set these parameters properly. This
can be done only by an expert user and it requires lot of time.
Therefore, it is desirable to develop methods for automatic
selection of techniques and parameter values. We discuss in
detail two concrete examples.

6.2.1 Memory reduction techniques

The main obstacle to model checking is memory require-
ments. Researchers have developed a large number of
memory reduction techniques which aim at alleviating this
problem. Most of these techniques introduce time/memory
trade-offs. Each of these techniques has specific advantages
and disadvantages and is suitable only for some type of mod-
els (state spaces). State space parameters can be employed
for the selection of a suitable technique; in the following we
outline several specific examples.

The sweep line technique [11] deletes from memory states
that will never be visited again. This technique is useful only
for models with acyclic state spaces or with small SCCs. This
technique also requires short back level edges. The same
requirement holds for caching based on transition locality
[40].

For acyclic state spaces it is possible to use specialized
algorithms, e.g., dynamic partial order reduction [14] or a
specialized bisimulation based reduction [30, pp. 43-47].

For state spaces with many diamonds it is reasonable to
employ partial order reduction, whereas for state spaces with-
out diamonds this reduction is unlikely to yield significant
improvement. On the other hand, selective storing of states
[6] can lead to good memory reduction for state spaces with
many chains.
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The heuristic algorithm based on bayesian meta heuris-
tic [35] works well for models with high average degree
(greater than 10). This fact calls into question the applica-
bility of the approach to industrial models (see Sect. 5.3). On
the other hand, the [O-efficient algorithm for model checking
[2] works better for models with small vertex degrees.

6.2.2 Cycle detection algorithms

Cycle detection algorithms are used for LTL verification.
Currently, there is a large number of different cycle detec-
tion algorithms, particularly if we consider distributed algo-
rithms for networks of workstations [3]. Analysis of state
space parameters can be helpful for an automatic selection
of a suitable algorithm.

For example, a distributed algorithm based on localiza-
tion of cycles [24] is suitable only for state spaces with small
SCCs (which are, unfortunately, not very common). Simi-
larly, the classical depth-first search based algorithm [22] can
be reasonably applied only for state spaces with small SCCs,
because for state spaces with large SCCs it tends to produce
very long counterexamples (long counterexamples are not
very useful in practice). On the other hand, the explicit one-
way-catch-them-young algorithm [9] has complexity O (nh),
where 7 is the number of states and 4 is the height of the
SCC quotient graph, i.e., this algorithm is more suitable for
state space with one large component. The complexity of
BFS-based distributed cycle detection algorithm [4] is pro-
portional to the number of back level edges.

6.3 Estimation of state space size

The typical pattern of the BFS level graph (see Sect. 4.1) can
be used for estimating the number of reachable states. Such
an estimate has several applications: it can be used to set
verification parameters (e.g., size of a hash table, number of
workstations in a distributed computation) and it is also valu-
able information for the user of the model checker—at least,
users are more willing to wait if they are informed about the
remaining time [26].

We outline a simple experiment with state space size esti-
mation based on BFS levels. We generate a sample consisting
of the first kK BFS levels. Then we estimate how many times
the number of reachable states is larger than the size of the
sample. More specifically, we do just an order of magnitude
estimate. Let R be the ratio of the total number of reach-
able states to the size of the sample. We use the following
three classes for estimates: class 1 (1 < R < 4), class 2
(4 <R <32),class 3 (32 < R).

We use three techniques for estimating the classification:
human, classification tree [8] and a neural networks. All tech-
niques are trained on a training set and then evaluated using
a different testing set. All three techniques achieve similar
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results—the success rate is about 55%, with only about 3%
being major mistake (class 1 classified as class 3 or vice
versa). These results can be further improved by a combina-
tion with other estimation techniques and by using domain
specific information. See [34] for more details about this
experiment and for description of several other techniques
for estimating state space parameters.

7 Answers

Finally, we provide answers to questions that were raised in
the introduction and we discuss directions for the future work.
Although we have done our measurements on a restricted
sample of state spaces, we believe that it is possible to draw
general conclusions from the results. Results of measure-
ments are consistent—there are no significant exceptions
from reported observations.

What are typical properties of state spaces?

State spaces are usually sparse, without hubs, with one
large SCC, with small diameter and small SCC quotient
height, with many diamond-like structures.

These properties can not be explained theoretically. It is
not difficult to construct artificial models without these fea-
tures. This means that observed properties of state spaces
are not the result of the way state spaces are generated nor
of some features of specification languages but rather of the
way humans design/model systems.

Can state spaces be modeled by random graphs?

In Sect. 5.2 we have discussed many properties in which
state spaces differ from random graphs. Unfortunately, ran-
dom graphs are often used for experiments with model check-
ing algorithms. We conclude that random graphs have signif-
icantly different structure than state spaces and thus that this
practice can lead to wrong conclusions (see Sect. 5.2 for a
specific example). Thou shalt not do experiments on random
graphs.

Are state spaces similar to such an extent that it does not
matter which models we choose for benchmarking our
algorithms?

Although state spaces share some properties in common,
some can significantly differ. Behavior of some algorithms
can be very dependent on the structure of the state space. This
is clearly demonstrated by experiments with random walk.
For some graphs one can quickly cover 90% of the state
space by random walk, whereas for other we were not able
to get beyond 3%. So it is really important to test algorithms



Properties of state spaces and their applications

453

on a large number of models before one draws any conclu-
sions.

Particularly, there is a significant difference between state
spaces corresponding to complex and toy models. Moreover,
we have pointed out that state spaces of similar models are
very similar. We conclude that it is not adequate to perform
experiments just on few instances of some toy example. Thou
shalt not do experiments (only) on Philosophers.

How can we apply properties of state spaces?

Typical properties can be useful in many different ways.
In Section 6 we discuss two broad types of applications:

— Tuning of model checking algorithm, i.e., using the knowl-
edge of typical properties to improve the performance of
model checking algorithms.

— Automation of verification, i.e., using the knowledge of
parameter values to choose a suitable verification tech-
nique or algorithm.

We outline many specific examples of applications and we
believe that there are (potentially) many more. Moreover, we
outlined also one untypical application — estimation of the
state space size based on the typical behaviour of BFS.
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