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Abstract We present a new concept for online multiobjec-
tive optimization and its application to the optimization of
the operating point assignment for a doubly-fed linear motor.
This problem leads to a time-dependent multiobjective opti-
mization problem. In contrast to classical optimization where
the aim is to find the (global) minimum of a single function,
we want to simultaneously minimize k objective functions.
The solution to this problem is given by the set of optimal
compromises, the so-called Pareto set. In the case of the lin-
ear motor, there are two conflicting aims which both have to
be maximized: the degree of efficiency and the inverter uti-
lization factor. The objective functions depend on velocity,
force and power, which can be modeled as time-dependent
parameters. For a fixed point of time, the entire corresponding
Pareto set can be computed by means of a recently developed
set-oriented numerical method. An online computation of the
time-dependent Pareto sets is not possible, because the com-
putation itself is too complex. Therefore, we combine the
computation of the Pareto set with numerical path following
techniques. Under certain smoothness assumptions the set
of Pareto points can be characterized as the set of zeros of
a certain function. Here, path following allows to track the
evolution of a given solution point through time.
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1 Introduction

For the optimization of mechatronical systems one has to
bear in mind many things.

• It is possible that several objectives have to be optimized
at the same time.

• The objectives may depend on time or other parameters.
• The solutions have to be adjusted online—that is,

one has to achieve low computational effort for the
optimization.

The purpose of this work is to develop an optimization strat-
egy that allows to account for all these aspects in an adequate
way and to apply this strategy to the determination of opti-
mized operating points of a linear motor.

The outline of this contribution is as follows: Sect. 2
gives an introduction into the field of multiobjective opti-
mization. The main idea in multiobjective optimization is
to develop an optimization theory that allows to optimize
several conflicting objectives at the same time. For objec-
tive functions that additionally depend on time, our idea was
to use so-called numerical path following methods which
allow to track solutions of parameter-dependent (nonlinear)
systems of equations (see Sect. 3). The following section
explains how we combine time-dependent multiobjective
optimization and numerical path following methods. The
resulting optimization algorithm is applied to develop an
optimized strategy for the assignment of an operating point
to a linear motor in railway vehicles which is described
in detail in Sect. 5. This example shows that the mathe-
matical techniques developed in this work are not only of
theoretical interest but are also useful in mechatronical
applications.
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2 Multiobjective optimization

In classical optimization the goal is to find the (global) mini-
mizer of one single objective function f : R

n → R, n ∈ N.
But many problems e.g. in engineering show that it is not
clear what “the objective function” is. Often there arise sev-
eral objectives which are (partly) conflicting but which have
to be optimized at the same time. The application consid-
ered in this work—that is the operating point assignment of
a doubly fed linear motor—provides us with two conflicting
objective functions. Hence, multiobjective optimization tech-
niques are well qualified to solve the problems. Mathemati-
cally, an unconstrained multiobjective optimization problem
is given by

min{F(x) : x ∈ R
n}, (MOP)

where F is defined as the vector of the objective functions
f1, . . . , fk : R

n → R,

F : R
n → R

k, F(x) = ( f1(x), . . . , fk(x)).

We obviously have to explain, what ‘min’ means in this con-
text, because we want to minimize a vector-valued function.
Therefore we define the following partial order ≤p on R

k :

Definition 1 Let u, v ∈ R
k . Then the vector u is less than v,

if

ui ≤ vi for all i ∈ {1, . . . , k}.
In this case we write u ≤p v.

Using this relation, we can define a solution of (MOP).
This solution is not a single optimum, but a set of optimal
compromises.

Definition 2 A point x� ∈ R
n is called globally Pareto opti-

mal for (MOP) (or a global Pareto point of (MOP)), if there
is no x ∈ R

n with

F(x) ≤p F(x�) and f j (x) < f j (x�)

for at least one j ∈ {1, . . . , k}. If this property is only
valid inside a neighborhood U (x�) ⊂ R

n , we call x� locally
Pareto optimal (or a local Pareto point). The set of all (global)
Pareto points is called Pareto set.

From this definition it is not clear how to compute the
entire Pareto set efficiently. The following famous theorem
of Kuhn and Tucker [9] provides us with a necessary condi-
tion for Pareto optimality.

Theorem 1 (Kuhn, Tucker) Let x� be a local Pareto point
and let all objectives fi , i = 1, . . . , k be continuously
differentiable. Then there exist nonnegative multipliers
α1, . . . , αk ∈ [0, 1] such that

k∑

i=1

αi∇ fi (x�) = 0 and
k∑

i=1

αi = 1. (1)

This condition is obviously not sufficient in general, but it is
necessary and sufficient, if the objective functions are con-
vex. Numerical methods for the computation of the Pareto set
often use this theorem e.g. for the construction of a descent
direction [15]. Following [10] we define:

Definition 3 If the vector x ∈ R
n satisfies the Kuhn-Tucker

condition (1) then it is called a substationary point.

Recently, set-oriented numerical methods for the compu-
tation of the entire Pareto set in continuous multiobjective
optimization problems have been developed. They can be
divided into two main classes: the subdivision techniques
(see [2,16,20]) and the recovering techniques (see [17–19]).
The subdivision techniques are of global nature and suitable
for derivative-free optimization, but restricted to moderate
dimensions. The recovering techniques are of local nature,
but applicable in higher dimensions both in parameter space
(n > 1000) and in image space (typically 2 ≤ k ≤ 5). Both
types of algorithms (and also combinations of them) are very
useful for our applications, because they come up with a fine
covering of the (global) Pareto set in a comparatively short
computational time.

Having computed the entire Pareto set one has to decide
which solution within this set “matches best” for the under-
lying system. This process is called “decision making”. The
person who has to determine this solution, e.g. the engineer,
is called “decision maker” (cf. [10]). Due to practical rea-
sons we substitute the decision making process by decision
heuristics, which have to be specially designed for the appli-
cations considered with the help of the decision maker. Such a
decision heuristics can provide us with good operating points
online (see for example [14]).

When optimizing mechatronical systems it frequently hap-
pens that the objective functions additionally depend on time.
In the application we consider (cf. Sect. 5), time does play an
important role, as the objective functions depend explicitly
on the time. Therefore, we have to optimize

f1(x, t), . . . , fk(x, t)

for each t ∈ [tstart, tend] ⊂ R, and thus we also have a distinct
Pareto set for each t . This means that it is not sufficient for
the decision maker to choose one Pareto point for the whole
time-interval. Instead, a curve x(t) of Pareto points has to be
chosen, parameterized by the time t such that x(t) is a Pareto
point for the corresponding MOP.

Such a curve could in principle be computed numerically
by solving all the multiobjective optimization problems that
correspond to a discrete covering of the time-interval one
wants to consider. But this is computationally costly and for
the case of mechatronical systems, where solutions have to be
adapted online and the time-interval can be arbitrarily long,
not of practical interest.
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Thus it is more reasonable to investigate in how to compute
a “good solution curve” without the global information about
every Pareto set. On the other hand we do not want to lose
information about the structure of global Pareto sets com-
pletely. In this context, numerical path following methods
are a useful tool. These methods allow to track the evolution
of a given solution point, described as a zero of a certain func-
tion, through time. Numerical path following methods will
be described in the next section. In Sect. 4 we explain how
these methods can be used in terms of online multiobjective
optimization.

3 Numerical path following methods

The aim of this work is to develop numerical techniques for
the treatment of time-dependent multiobjective optimization
problems. This task will be reformulated in Sect. 4 into the
problem of finding the set of zeros of a smooth parameter-
dependent function H : R

N ×R → R
N . Techniques for fol-

lowing solutions under the variation of a parameter, which
in our special case is the time t , have already been devel-
oped (see e.g. [1,3]). In the following, we shortly outline
how these numerical path following methods, also known as
continuation methods [8], work in principle.

We consider a time-dependent nonlinear equation system

H(y, t) = 0, (2)

where y ∈ R
N and t ∈ R. In the context of the algorithms

for online multiobjective optimization proposed in this work
we will have y = (x, α), where α denotes the weight of the
objectives defined by the Kuhn–Tucker system (1).

Let u0 = (y0, t0) be a solution of (2), i.e. H(u0) = 0.
Suppose that the Jacobian H ′(u0) has full rank. In this case
the solution set H−1(0) can locally be parametrized by one
parameter s in the neighborhood of u0. Thus, one obtains a
solution curve c(s) with

c(0) = u0 and H(c(s)) = 0.

Differentiating the last equation we obtain

H ′(c(s))c′(s) = 0.

Thus c′(s) spans the one–dimensional kernel of H ′(c(s)). By
choosing s to be the arclength of the curve it follows that

‖c′(s)‖ = 1.

Moreover, one can show that c(s) is the solution of the initial
value problem

u̇ = T (H ′(u))

u(0) = u0. (3)

Fig. 1 Illustration of the predictor and corrector step in path following
methods

Here, for a matrix A ∈ R
N×(N+1) with rank(A) = N , T (A)

denotes the unique vector T satisfying the following condi-
tions:

AT = 0, ‖T ‖ = 1 and det

(
A

T T

)
> 0.

The last condition allows to fix the orientation of the tangent
vector.

A numerical path following method generates a series of
points ui , i = 0, 1, 2, . . . in the following way. Let u0 be an
initial point satisfying H(u0) = 0. Then ui+1 is generated
inductively in two steps (cp. Fig. 1).

Predictor step: Compute an approximation to the solu-
tion of (3), e.g. by using the explicit Euler method:

vi+1 = ui + h · T (H ′(ui )),

where h > 0 is a certain steplength.

Corrector step: Here one uses the fact that c(s) solves
H(c(s)) = 0. Define wi+1 to be that point on the curve c,
which is closest to vi+1, i.e. one solves

min{‖vi+1 − w‖ : H(w) = 0}.
The solution of this problem—this is typically done by
Newton’s method—defines the new point ui+1.

4 Online multiobjective optimization

Path following methods have already been used in the con-
text of multiobjective optimization (see e.g. [7]), but—as far
as we know—only for the generation of Pareto sets itself and
not for varying parameters (in our case time) in time-depen-
dent multiobjective optimization problems. But especially
in the time-dependent case these techniques are very use-
ful, because computing a path between sets of substationary
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Fig. 2 Schematic visualization of a possible second step in a decision
heuristic

points can be performed much faster than computing the
entire Pareto sets for “every” point of time.

In order to combine numerical path following methods
and time-dependent multiobjective optimization problems
we use the necessary condition given by the Kuhn–Tucker-
Theorem which states that

k∑

i=1

αi (t)∇x fi (x, t) = 0

k∑

i=1

αi (t) − 1 = 0

for every fixed point of time t . Here ∇x denotes the column
vector of partial derivatives with respect to x .

This equation system consists of n + 1 equations and
n + k + 1 variables (x ∈ R

n , α ∈ R
k, t ∈ R). For a fixed

value of the vector α, i.e. α(t) is constant for all t , there are
n equations and n + 1 variables left. For this kind of system,
path following methods can be applied directly.

Having computed the entire Pareto set for an initial point
of time, e.g. t = tstart = 0, it is sensible to choose one point
in this set as the most preferred adjustment of the system.
The choice of the most preferred adjustment can be realized
by a certain decision heuristic, which has to be tailored to
the special applications under consideration (cp. [14]). The
decision heuristic for the application considered in this work
is described in Sect. 5. In a second step this decision heuristic
can contain a check how flat (assuming an adequate scalari-
zation) the Pareto set in the image space is. From a math-
ematical point of view it is not recommendable to choose
such a Pareto point as the most preferred adjustment, where
the Pareto set in the image space is “flat”, because only little
losses in one objective can cause great benefits to the other.
This fact is visualized schematically in Fig. 2. Of course the
“flatness” is relative with respect to scaling and has to be
adjusted for the special applications.

In order to update the optimal solutions online, we suggest
the following algorithm:

1. Compute the entire Pareto set for the given problem at
an initial point in time. Based on a certain decision heu-
ristic the most preferred adjustment for the system at this
initial point in time is calculated.

2. The corresponding ratio of the objectives (weight
vector α) is set fixed. Using path-following techniques,
we compute the solution curve corresponding to this α

over time.
3. After a certain time, the entire actual Pareto set is recom-

puted, the decision heuristic is applied again, and the
adjustment of the system is updated. Then we proceed
with step 2.

There are different ways how to decide that the new entire
Pareto set has to be computed in step 3. The first trivial idea
is to compute the Pareto set at fixed points of time, e.g. every
minute (assuming that the dimension of the problem is low
enough). This computation can be performed in parallel to
the computation of the path of solutions, so that the assign-
ment of the optimal solutions never has to be interrupted.
The computation of the entire Pareto set can also be started
anew in reaction to external influences. As an example in
case of the linear motor some precomputed velocity profiles
are contained in the optimization. If these profiles cannot
be realized any more, e.g. because the vehicle has to brake
unexpectedly, a recomputation of the entire Pareto set and the
corresponding path (including the new profiles) is necessary.

Including such criteria, the system performs the self-
optimizing scheme described in [5].

5 Application and results

5.1 The Railcab system

The development of the online optimization algorithm
described in the last sections has been inspired by a novel
linear-motor driven railway system, developed by the pro-
ject Railcab (“Neue Bahntechnik Paderborn”) [12]. This sys-
tem also is one of the demonstrators of the Collaborative
Research Center (SFB 614) [11] in which this work has been
developed. Figure 3 displays the test vehicle. This vehicle
belongs to a test facility with a track length of about 530 m.
The track contains an artificial hill with an altitude of about
2.5 m and gradients up to 5.3%, requiring an aligned thrust
along the track. The track includes a novel passive switch,
which allows the processing of closely following vehicles.
The vehicle consists of a superstructure that carries the load
and two undercarriages. Figure 4 shows the concept of the
undercarriage module, which is one of the basic modules
of the vehicle. The undercarriage houses three sub-modules:
A driving, an active suspension and a guidance module, the
latter based on one single wheel set. The guidance module
[4] enables a driving with low attrition and allows to use the
novel concept for a passive switch. The active suspension
module gives the vehicle the possibility to improve com-
fort for passengers [6]. The driving module serves two main
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Fig. 3 Vehicle of the demonstrator

Undercarriage Module

Driving Module

Active Suspension Module
Guidance Module

Fig. 4 Concept of the undercarriage

functions: the energy transfer from the track to the vehicle
and the generation of thrust described in [11,21]. The doubly
fed linear motor partly included in this driving module (cf.
Fig. 5) consists of a primary motor part between the rails of
the track and a secondary part on the vehicle. Both parts have
an own power supply with power inverters for the control of
the currents.

5.2 Optimization of the operating points of the doubly-fed
linear motor

5.2.1 Goals of the operating point assignment

In the construction of the driving module, several goals
should be achieved. Proper operating points should maxi-
mize both the efficiency of the drive and the inverter utiliza-
tion factor. The efficiency considers the mechanical power
PM (4) resulting from the thrust FM and the electrical power
transferred to the vehicle denoted by PB (5). For thrust gener-
ation (FM > 0) the efficiency ηL M and the inverter utilization
factor ηSN are given by:

ηL M = PM + PB

PS
and ηSN = PM + PB

SS + SL
.

In the case of braking (FM ≤ 0), the equations change to:

ηL M = PB

PS + PM
and ηSN = PB

SS + SL
.

PS denotes the active power, SS the apparent power of the
primary motor part and SL the apparent power of the second-
ary motor part.

PM = vM FM (4)

PB = 3

(
π fL

Lh N2

N1
I2q I1d − R2 I 2

2q

)
(5)

In (4) vM names the speed of the vehicle that is defined by the
velocity profiles of the maneuver. The currents in the primary
part I1d and in the secondary part I2q depend on the motor
constant KM and the thrust, which is also specified by the
maneuver, in the following way:

FM = KM I1d I2q (6)

R2, Lh , N1 and N2 are constant motor parameter and f2

denotes the frequency of the secondary current. The current
in the primary motor part has to be determined for both driv-
ing modules of the vehicle. In case of a second vehicle on the
same track section, the assignment has to be done by a mas-
ter vehicle. The output value of the speed controller of the
vehicle is the required thrust for the instantaneous speed. For
a given thrust, the primary current I1d is a suitable optimi-
zation variable. Figure 5 illustrates the principle of the driv-
ing module and the control structure of the doubly fed linear
drive. The key function of this structure is the operating point
assignment of the vehicle, which is in the focus of this arti-
cle. We assume that the other functional blocks in the vehicle
like current-, speed- and position-control, profile generation
and energy management do not influence the operating point
assignment. In this case, the assignment alone determines
the controlled thrust generation and the power transfer (5)
from the track to the vehicle power supply system. For the
assignment of the operating point, operation conditions of
the vehicle like speed, actual stored energy in the batteries
etc. have to be considered. An operating point of the doubly
fed linear drive is characterized by the distribution of thrust
forming currents and its frequency at the secondary motor
part. This frequency and the mechanical speed of the vehicle
define the frequency of the current at the primary motor part.

By definition, an optimization of the efficiency leads to
minimal required primary real power. The inverter utilization
factor represents the ratio of real output power to apparent
power of the linear motor. The latter is a gage for the electri-
cal copper losses in the secondary motor part. Figure 6 shows
the two objectives at two different mechanical operation con-
ditions for the thrust FM . The maximum values of the objec-
tives do not belong to the same values of the primary current.
Thus the objectives are partly conflicting and an optimal com-
promise is desirable. As within one maneuver the requested
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Fig. 5 Control Structure of the
Driving Module
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Fig. 6 Objectives and optimization variable for different thrusts

thrust changes and with it also the aligned frequency, the
optimization problem is time-dependent (Fig. 7).

The thrust generation has the highest priority, but the
power transfer is also very important for the operation of
the vehicle. Both goals are constraints for the optimization.

5.2.2 Applying the new optimization algorithm

The problem outlined above with two objectives, one
optimization variable and several time-dependent parameters
can be solved by the 3-step-algorithm described in Sect. 4.
For the demonstration of the algorithm we use profiles for
position, speed, thrust and transferred power, cf. Figs. 8 and 9.
These profiles stem from a round trip on the test track of the
Railcab-Project.

In the first step the algorithm selects the mechanical
operating point from the profiles at a special point of time and
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computes the corresponding Pareto set. The decision heuris-
tic needed for the choice of one of these Pareto points is real-
ized as follows: as the temperature in the secondary motor
part and the charging state of the battery play an important
role for the system. We use these values as decision criteria.
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For our application it is desirable to follow solutions with
a high efficiency in case of a low charging state of the bat-
tery, which guarantees the power supply of the vehicle. Addi-
tionally, for high temperatures in the secondary motor part,
higher values of the inverter utilization factor ηSN should be
preferred. Assuming a certain value range for the temperature
and the charging state we use this background information
for controlling the selection of Pareto points.

Based on the chosen Pareto point, the time-depending
curve of solutions—the current values—is computed in the
second step using the path following techniques as described
on page 226. This solution curve is stored in a buffer for the
reference values and fed to the controller at the corresponding
positions of the vehicle.

A varying condition, e.g. the required thrust or the energy
transfer requires a new operating point (step III).
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Fig. 10 Energy rate (above) and temperature of the secondary motor
part (below)

5.2.3 Implementation

The implementation of the online multiobjective optimiza-
tion algorithm is supported by the concept of the opera-
tor-controller-model (OCM) (cf. Fig. 7). At the lowest level
the controllers perform the current- and speed-control under
hard real-time conditions. The reflective operator links the
hard real-time of the controller with the soft real-time of the
optimization algorithm in the cognitive operator. It buffers
the calculated path from the cognitive operator and feeds
reference values to the controller. It also supports possible
emergency response in cases like unexpected change of these
requirements or changing parameters in the linear drive. Until
a new optimization is performed and a new path is available,
the current optimization value is replaced by a sub-optimal
value from a look-up table. In this case, a new strategy for
following selected operating points influenced by changing
conditions or parameters is required. This has been done
by the presented online algorithm (cf. Sect. 4). The main
advantage of this very fast algorithm is that it prevents the
time-consuming calculation of a new Pareto set and allows to
use a multiobjective optimization approach for this complex
application.

5.2.4 Results

In order to illustrate the quality of the presented method we
compare it to another multiobjective optimization approach
described in [14]. This approach—which can only be real-
ized offline—consists of the permanent computation of entire
Pareto sets for discretized points in time. The desired adjust-
ments within the Pareto set have been selected with the same
decision heuristic that we use in this work. To make the results
comparable we consider the same maneuver of the vehicle as
the results in [14] were based on, i.e. a round trip on the test
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Fig. 11 Pareto optimal values
in objective space
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track. The maneuver consists of an acceleration and a braking
term. While the vehicle accelerates, the thrust shown in Fig. 9
is positive. In the braking term, the thrust becomes negative.
If the absolute value of the thrust is small, the required trans-
ferred power does not fulfill the constraints (cp. the peak
in Fig. 9). In fact, the temperature of the secondary motor
part and the stored energy of the batteries depend on the
chosen operating point. For this simulative-based applica-
tion it is assumed that both values can be measured. To sim-
plify the used model and to make the results comparable, the

model considers pre-calculated values (see Fig. 10) for the
measurements. Figure 12 shows some Pareto sets in preim-
age space—that is intervals of Pareto–optimal values for the
current I1d—(vertical lines), the Pareto points which would
have been selected by the decision heuristic (stars) and the
computed path (line). In Figure 11 the same Pareto sets and
selected solutions (stars) are shown in image space. The qual-
ity of the combination of the multiobjective optimization and
path following techniques is proven in Figure 12 by the low
distance between the followed path and the chosen Pareto
points. Because of the low thrust requirements, the trans-
ferred power is conflicting to the constrained power transfer.
This leads to a disruption of the followed path at t = 12.5 s;
the path following process has to be restarted with a new
Pareto point.

6 Conclusions

In general, a Pareto set (for a fixed point of time) of a time-
dependent problem is based on old information at the time
when it is completely computed. The problems resulting from
this insufficiency increase with time. Therefore, a global
Pareto optimization approach is impracticable for online
applications. A possible way out of this dilemma is the com-
bination of multiobjective optimization and numerical path
following as presented in this work. Having computed one
Pareto set (e.g. for t = 0) and having applied a decision
heuristic (which takes information about the objective
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values into account) to this set, the path can be computed
until the new Pareto set is available. The selected Pareto point
and the path of optimized values for the optimization vari-
able I1d can be adjusted online. In case of the optimization
studied in this work it took about 3 s to approximate the entire
Pareto set sufficiently precise and about 0.5 s to compute a
path which provides us with solutions for a time interval of
11 s. The remaining time (in this case 10.5 s) is long enough
for the computation of a new Pareto set, e.g. the entire one
for t = 11 s, assuming known profiles for the maneuver.
Although we can only guarantee that the computed points in
the path are substationary points, the results for the oper-
ating point assignment as described above lie within the
Pareto-optimal set. Even if one leaves the Pareto set to some
substationary points which are not Pareto points, restarting
the path on new entire Pareto sets will correct this problem.
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