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Abstract We present PROB, a validation toolset for the
B method. PROB’s automated animation facilities allow users
to gain confidence in their specifications. PROB also contains
a model checker and a refinement checker, both of which
can be used to detect various errors in B specifications. We
describe the underlying methodology of PROB, and present
the important aspects of the implementation. We also present
empirical evaluations as well as several case studies, high-
lighting that PROB enables users to uncover errors that are
not easily discovered by existing tools.

1 Introduction

The B method, originally devised by J.-R. Abrial [2], is a the-
ory and methodology for formal development of computer
systems. Itis used by industries in a range of critical domains,
most notably railway control. The B Method is intended to
support a verification by construction approach to system
development. This involves a formal framework in which
models are constructed at multiple levels of abstraction and
related by refinement. The highest levels of abstraction are
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used to express the required behaviour in terms of the prob-
lem domain. The closer it is to the problem domain, the easier
itis to validate against the informal requirements, i.e., ensure
that it is the right specification. The lowest level of abstraction
corresponds to an implementation.

Models at any abstraction level are represented in B as
machines. A machine essentially consists of state variables,
a state invariant and operations on the variables. The vari-
ables of a machine are typed using set theoretic constructs
such as sets, relations and functions. Typically these are con-
structed from basic types such as integers and given types
from the problem domain (e.g., Name, User, Session, etc.).
The invariant of a machine is specified using predicate logic.
Operations of a machine are specified as generalised substi-
tutions, which allow deterministic and nondeterministic state
transitions to be specified. There are two main proof activities
in B: consistency checking, which is used to show that the
operations of a machine preserve the invariant, and refine-
ment checking, which is used to show that one machine is
a valid refinement of another. These activities are supported
by industrial strength tools, such as Atelier-B [21] and the
B-toolkit [8]. Significant recent developments are Event-B
[1], an evolution of B to support reactive system develop-
ment, and the Rodin platform [4], an open tool platform
to support Event-B. In this paper, we focus on classical B,
though PROB is being extended and ported to the Rodin plat-
form to support Event-B.

In this paper we give an overview of the PROB tool which
we developed to complement the existing tools for the B
Method. PROB is an animation and model checking tool for
the B method. PROB’s animation facilities allow users to gain
confidence in their specifications. PROB supports automated
consistency checking which can be used to detect various
errors in B specifications. PROB also supports automated
refinement checking between B specifications. We describe
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the functionality provided to users of the tool through some
simple examples. We then describe key elements of the imple-
mentation of PROB. We also outline results from applying the
tool to a range of industry-based case studies.

Some of the functionality of ProB was previously intro-
duced in [42,43]. Here we provide a more comprehensive
and up-to-date presentation of the tool. All of the function-
ality of ProB is presented in a more coherent way and the
algorithms and implementation are described in more detail.
We also present more experimental results and outline some
of the case studies in which the tool has been used.

1.1 Animation and exhaustive exploration

Based on Prolog, the PROB tool supports automated consis-
tency checking of B machines via model checking [20]. For
exhaustive model checking, the given sets of a machine must
be restricted to small finite sets, and integer variables must
be restricted to small numeric ranges. This makes it possible
to determine the enabled operations and allows the checking
to traverse all the reachable states of the machine with finite
types. PROB will generate and graphically display counter-
examples when it discovers a violation of the invariant. PROB
can also be used as an animator of a B specification. Due
to a mixed depth-first/breadth-first strategy, PROB’s model
checking facilities are also useful for infinite state machines,
not as a verification tool, but as a sophisticated debugging
and testing tool.

The interactive proof process with Atelier-B or the
B-Toolkit can be quite time consuming. A development can
involve going through several levels of refinement to code
generation before attempting any interactive proof [39]. This
is to avoid the expense of reproving POs as the specification
and refinements change in order to arrive at a satisfactory
implementation. We see one of the main uses of PROB as
a complement to interactive proof in that errors that result
in counterexamples should be eliminated before attempting
interactive proof. For finite state B machines it may be possi-
ble to use PROB for proving consistency without user inter-
vention. We also believe that PROB can be very useful in
teaching B, making it accessible to new users. Finally, even
for experienced B users PROB will often unveil problems in a
specification that are not easily discovered by existing tools.

1.2 Refinement checking

Refinement is a key concept in the B-method. It allows one
to start from a high-level specification and then gradually
refine it into an implementation, which can then be auto-
matically translated into executable code. While there is tool
support for proving refinement via semi-automatic proof
(within Atelier-B [21], the B-Toolkit [8], and now also
Click’n’Prove [5]), there has been up to now no automatic
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refinement checker in the style of FDR [27] for CSP (Com-
municating Sequential Processes) [32,55]. The proof-based
approach to refinement checking requires that a gluing invari-
ant be provided. In contrast, with our automatic approach
no gluing invariant needs to be provided. The proof based
approach to refinement is a labour intensive activity. Indeed,
when a refinement does not hold it may take a while for a B
user to realise that the proof obligations cannot be proven,
resulting in a lot of wasted effort. In this paper we wish to
speed up B development time by providing an automatic
refinement checker that can be used to locate errors before
any formal refinement proof is attempted. In some cases the
refinement checker can actually be used as an alternative to
the prover,' but in general the method presented in this paper
is complementary to the traditional B tools.

1.3 Distinctive features and aspects of PROB

Below we summarise some of the distinctive features and
aspects of PROB:

1. Bisahigh-level modelling language, making strong use
of set theory. Compared to mainstream model checkers
such as Spin [33] or SMV [15,49] the the difficulty lies
in computing the individual states and possible outgo-
ing transitions as well as finding suitable values for the
constants and initial values for the variables.

2. A large part of the rich B language is covered by PROB
including set comprehensions, lambda abstractions,
record types and multiple machines. This is important in
order to be able to deal with existing real-life specifica-
tions from industry.2 The Event-B syntax, as introduced
by AtelierB and B4Free, is also supported.

3. PROB provides support for integration of B with other
formalisms. So far the integration with CSP has been
implemented (described later in Sect. 8); but in prin-
ciple one can link B-machines with StAC (Structured
Activity Compensation) [26] (a version of CSP with a
compensation mechanism to model business processes
and transactions) or Object Petri nets [25]. (The PROB
toolset can already be used to animate and model check
StAC and Object Petri net models in isolation.)

4. PROB has been applied to industrial specifications, e.g.,
Volvo Vehicle Function, Mechanical Press, USB Con-
troller, Mobile Internet Framework.

! Namely when all sets and integer ranges are already finite and do not
have to be reduced to make animation by PROB feasible.

2 A faster version of PROB that would only support a subset of B and
thus require major rewriting of industrial specifications, would in our
view not be that useful.
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5. PROB provides both automated consistency checking
and refinement checking. The consistency model
checker uses a mixed depth-first/breadth-first heuristic
providing good usability, whereas the refinement
checker obtains good performance by employing on-
the-fly normalisation. Recently symmetry reduction has
been added, which can considerably speed up the con-
sistency checking [44,61].

6. PROB canbe used in conjunction with the existing proof-
based tools for B.

2 Using PROB

In this section we introduce the functionality of PROB though
some example specifications and refinements.

2.1 Automatic consistency checking

Figure 1 presents a B specification (Scheduler0) of a system
for scheduling processes on a single shared resource. In this
model, each process has a state which is either idle, ready to
become active or active whereby it controls the resource. The
current set of processes is modelled by the variable proc and
the pst variable maps each current process to a state. There is a
further invariant stating that there should be no more than one
active process (pst~[{active}], the image of {active} under
the inverse of pst, represents the set of active processes).
Scheduler0 contains events for creating new processes, mak-
ing a process ready, allowing a process to take control of the
resource (enter) and allowing a process to relinquish control
(leave). Each of these events is appropriately guarded by a
WHEN clause.? In particular, the enter event is enabled for
a process p when p is ready and no other process is active.
The definitions in the DEFINITIONS clause of the sched-
uler are used to limit the size of the given set PROC. Nor-
mally, definitions are used to provide macros that can be
included at several places within a machine. Since the defi-
nition of scope_PROC is not used elsewhere in the machine,
it does not affect the meaning of the specification as far as
Atelier-B or the B-Toolkit are concerned. However, the defi-
nition acts as a pragma for the PROB tool. In this case PROB
will automatically enumerate the given set PROC with the
symbolic values {p1, p2, p3}. This has the effect of making
the state space finite for the purposes of model checking.
Figure 2 presents a counterexample resulting from per-
forming an automatic consistency check on a modified
version of the scheduler specification using PROB. The mod-
ification involves removing pst—![{active}] = {} from the
guard of the enter operation. This trace of operations shown

3 WHEN is the the Event-B syntax for the SELECT clause of
classical B.

MACHINE Scheduler (0
SETS

PROC'; ready (p : PROC') =

STATE = {idle,ready, active} ~ WHEN
VARIABLES proc,pst pst(p) = idle
DEFINITIONS THEN

scope_PROC == {p1,p2,p3} pst(p) := ready
INVARIANT END;

proc € P(PROC') A
pst € proc — STATE A
card (pst " [{ active}]) <1

enter(p : PROC') =
WHEN
pst(p) = ready A

INITIALISAT ION pst™* [{active}] = {}
proc; pst :=={},{} THEN
pst(p) = active
OPERATIONS END;
new(p : PROC) =
WHEN leave(p : PROC') =
p € PROC'\ proc WHEN
THEN pst(p) = active
pst(p) := idle || THEN
proc := proc U{p} pst(p) := idle
END; END

Fig. 1 Scheduler specification

in the counterexample leads to a state in which both pl
and p2 are active. This state clearly violates the invariant
card(pst_l[{active}]) < 1. Although not shown in Fig. 2,
PROB can pinpoint for the user the invariant clauses which
are violated by a reachable state. Re-instating the condition
in the guard of the enter operation results in a successful
consistency check, i.e., an exhaustive search of the reach-
able states for a system of three processes finds no states that
violate the invariants.

2.2 Refinement checking

Figure 3 presents a B refinement called Schedulerl. The
refines clause indicates that Schedulerl is intended to be a
refinement of Scheduler0. In this refinement, instead of map-
ping each current process to a state, we have a pool of idle
processes, idleset, and a queue of ready processes, readyq.
We also have a flag indicating whether or not there is a process
currently active (activef). When activef is true, the identity
of the currently active process is stored in activep. The queue
of ready processes means that processes will become active
in the order in which they became ready.* Now the enter
event is enabled for process p when p is the first element in
the queue and there is no active process.

We expect that Schedulerl is a valid refinement of
the machine SchedulerO since any sequence of operations
in Schedulerl should also be possible in SchedulerO.

4 In the ready event, readyq < p represents the appending of p to the
end of readyq.
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N

initialise_machine({ },{ }.p1,FALSE,{})

proc={ },readyq={ },activep=p1,
idleset={}

J

new(pl)

proc={pl},readyq={},activep=pl,
idleset={p1}

new(p2)

proc={pl,p2},readyq={},activep=pl,
idleset={p1,p2}

ready(p1l)

proc={pl,p2},activep=pl,idleset={p2},
readyq(1,pl)

AL
v

ready(p2)

proc={p1,p2},activep=pl,idleset={ },
readyq(1,p1),readyq(2,p2)

b

enter(pl)

proc={pl,p2},activep=p1,activef,
idleset={ } readyq(1,p2)

enter(p2)

proc={pl,p2},readyq={},activep=p2,
activef,idleset={ }

Fig. 2 Consistency counter examples for modified SchedulerO

Refinement checking of Scheduler! against Scheduler0 with
our tool for a maximum of three processes (PROC =
{pl, p2, p3}) finds no counterexamples. If we were to
weaken the guard of the refined enter event, removing the
clause activef = FALSE, this weaker refinement would allow
more than one process to take control of the single resource.
In terms of operation sequences, it would allow sequences in
the refinement in which, for example, enter(p1) is followed
by enter(p2) without leave(p1) occurring in between. Such
sequences are not possible in SchedulerO and Schedulerl
would thus be an incorrect refinement. The following coun-
terexample is generated by PROB for the incorrect refine-
ment: new(pl), new(p2), ready(pl), ready(p2), enter(p1),
enter(p2). This counterexample discovered by PROB is a
trace allowed by the incorrect refinement that is not a trace
of the specification Scheduler0. This counterexample is the
same as the counterexample shown in Fig. 2 generated when
performing the automatic consistency checking on the incor-
rect version of Scheduler(. It is important to remember
though thatrefinement checking is a different form of analysis
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REFINEMENT Scheduler1 ready(p: PROC) =

REFINES Scheduler 0 WHEN
VARIABLES p € idleset
proc;idleset;readyq; THEN

activep, activef
INVARIANT

idleset € P(PROC') A

readyq € seq(PROC') A

activep € PROC' A

readyq := readyq-—7p ||
idleset := idleset {p}
END;

enter(p : PROC') =

activef € BOOL WHEN
readyq #[ '] A
INITIALISAT ION p = first(readyq) A
proc:={} || activef = FALSE
readyq =[] || THEN

activep :€ PROC ||
activef := FALSE ||
idleset := {}

activep:=p ||
readyq := tail (readyq) ||
activef := TRUE

END;

OPERATIONS

leave(p : PROC') =

new(p: PROC) = WHEN
WHEN activef = TRUE A
p € PROC \ proc p = activep
THEN THEN

idleset := idleset U{p} ||

proc:= procU {p}
END;

idleset := idleset U {p} k
activef := FALSE
END

Fig. 3 Refinement of the scheduler

to consistency checking. A consistency checking counterex-
ample is a sequence of operation calls that leads to a violation
of an invariant in a single machine. A refinement counterex-
ample is a sequence of operation calls that is allowed in a
refined machine but is not allowed in its intended
abstraction.

3 The challenges of animating B

Let us first clarify some of the issues that an animator for B
has to address:

1. It has to be able to find values for the constants of
the machine that satisfy the PROPERTIES clause. The
machines in Figs. 1 and 3 do not have constants, so
this issue does not arise there. But many machines have
constants, often with complicated properties. An inter-
esting use of the animator is thus to check whether there
actually exist values for the constants that satisfy the
properties of the machine.

2. The animator has to find values for the variables that
satisfy the INITIALISATION clause. Sometimes this
is relatively straightforward—Ilike the initialisation in
Fig. 1—but in many cases the initialisation is more com-
plicated. For example, a common initialisation clause
consistsof vy, ..., v, : INV)wherevy, ..., v, are the
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variables of the machine and / N'V is the invariant. This
is anondeterministic assignment with the constraint that
the resulting variable values must satisfy the invariant.

3. Given a state of a machine, the animator has to deter-
mine whether the INVARIANT clause is violated. Fur-
thermore, in case the invariant is violated, it is of interest
to indicate which part of the invariant was violated.

4. Given a state and parameter values, the animator should
be able to decide whether a given operation is applicable
or not, and, if it is, compute the effect of the operation as
well as the return values. Usually, it will also be of inter-
est to let the animator determine the possible parameter
values automatically.

Unfortunately, in the general case, all of the above prob-
lems are undecidable. Indeed, integer arithmetic can be used
and the set of possible states of a B machine is generally
infinite, as types can be infinite (or have no fixed cardinal-
ity bound). Furthermore, the set of possible values for an
individual operation parameter can be infinite. The same is
true for existentially or universally quantified variables, as
well as various local variables introduced in nondeterminis-
tic substitutions. In particular, it is thus undecidable whether
an operation can be applied or not, even if the initial state
as well as all arguments are completely specified. Precondi-
tions and guards can be arbitrarily complex with existential
or universal quantification over infinite sets. Let us examine
a simple example to illustrate this point:

gold = WHEN !n. (n:NAT & n>2 =>
#(x,y).(x<2*n & y<2*n & 2*n=x+y
card({z|z:NAT1l & z<x & x mod z = 0})
card({z|z:NAT1l & z<y & y mod z
THEN skip END

I°g
1

[Rg

1l
o
-

1l

This is a perfectly legal B operation which can be exe-
cuted if and only if Goldbach’s conjecture (i.e., that every
even number greater than 2 can be expressed as the sum of
two primes) is true.’> Similarly, given that deferred sets can
be infinite we get undecidability via this route, even in the
absence of arithmetic.

3.1 Making things decidable via finite types

Every variable, constant and parameter in B can be given
a type. Below, we formally define the set of types that are
allowed in B. The full details about type inference can be
found in [2].

Recall, that in B there are two ways to introduce sets
into a B machine: either as a parameter of the machine (by

5 While the conjecture may eventually be decided by mathematicians
(see, however, [38] where Knuth argues that it may be unprovable), it is
clearly outside the range of current automated theorem proving methods
to do so.

convention parameters consisting only of upper case letters
are sets; the other parameters are integers) or via the SETS
clause. Sets introduced in the SETS clause are called given
sets. Given sets which are explicitly enumerated in the SETS
clause are called enumerated sets, the other given sets are
called deferred sets. Other types may be constructed using
the Cartesian product (x) and powerset (P) constructors.

Definition 1 Let M be a B machine with given sets Sy and
parameter sets Py;. The basic types BasicType of the machine
M are inductively defined as the least set satisfying:

BOOL € BasicType

Z € BasicType

S € BasicType if S € Sy U Py

71 X 7o € BasicType if t1 € BasicType Aty € BasicType
P(t) € BasicType if T € BasicType

AEE Nl

One way to make animation decidable is to ensure that via
typing, any variable, parameter or constant can only take on
finitely many possible values. This can be accomplished by
requiring that, at least for the purposes of the animation, all
sets in Sys U Pys of a B machine be finite. Note that enumer-
ated sets are already finite; hence we just need to fix some
finite cardinality for the deferred sets and parameter sets.
We also only consider B’s implementable integers, ranging
from MININT..MAXINT (see, e.g., [21 ]).6 Furthermore, for
the purposes of animation, we will usually set MININT and
MAXINT to small absolute values, but allow larger values
if they are explicitly used or constructed by the machine.
(We return to this issue later, as it has some implications for
soundness.)

These restrictions turn animation of B into a decidable
problem. A naive solution to the animation problem is thus
simply to enumerate all possibilities for the values under
consideration; e.g., to find possible values of the constants
that satisfy the PROPERTIES clause, we “simply” need to
enumerate all possible values for the constants and check
whether all PROPERTIES evaluate to true (this in turn can
be decided as existential and universal variables also only
have finitely many possible values).

3.2 Efficiency

Above we have seen how to make animation decidable by
ensuring that every variable, parameter and constant has only
finitely many possible values. But obviously the number of
possible values will often be of such considerable size so as to
make the sketched decision procedure impractical. Take for
example the following predicate: myrels: POW (A<->A)

6 Machines using the mathematical set of integers are allowed, but they
are treated as implementable integers.
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Fig. 4 Basic phases of ProB

animation New
Enumeration of State 1
Operation: Variables,
Parameters over
Op(x,y) = Interpretation | _—v Base Types \5' New
PRE ... and Non-Deterministic State 2
Simple Propagation
Propagation \

S —
State of
Machine

where A is a deferred set. The basic type of the variable
myrels is POW (POW (A*A) ). Assuming that we set the
cardinality of A to 4, the variable myrels has 224 965536
possible values, and even with a cardinality of 3 we still have
2512 a2 1.34 % 10'5* possible values.

This shows that we should avoid or at least delay enumera-
tion as much as possible. In case enumeration is unavoidable,
we may have to set the cardinality of the basic sets to small
or very small values (e.g., with a cardinality of 2 we only get
65536 possible values for myrels).

The former is implemented within PROB, which works in
multiple phases as illustrated in Fig. 4. In the first phase, only
deterministic propagations are performed (e.g., the predicate
x=1 will be evaluated but the predicates x: INT and y: z
will suspend until they either becomes deterministic or until
the second phase starts). In the second phase, a restricted
class of non-deterministic enumerations will be performed.
For example, the predicate x: {a, b} will suspend during
the first phase but will lead to two solutions x = @ andx = b
during the second phase. In the final phase, all variables,
parameters and constants that are still undetermined (or par-
tially determined) are enumerated.

In summary, a predicate of the form x: NAT & x<10 &
x=5 will thus result in no enumeration at all: phase 1 will
determine that the only possible value for x is 5. Similarly,
for f:A-->A & !x. (x:A => f(x) = X) noenumer-
ation for f will be required (and the PROB kernel can quite
easily handle cardinalities of above 100 for A).

Some of the further challenges of animating B are detailed
below:

1. B provides sophisticated data structures, including sets,
Cartesian products, relations, sequences, etc. This also
means that deciding whether two variables have the
same value is a non-trivial task (e.g., {a, b} = {b, a}
or {{a, b}, {a}, {c, a}} = {{a}, {c, a}, {b, a}}). It is thus
also non-trivial to decide whether a given state of the
machine has already been encountered or not.

7 Notice that type inference is not shown in the figure; it is run once
when a new machine is loaded for animation. Also, the figure just illus-
trates the problem of determining the enabled operations. The procedure
for finding valid constants and initialisations is similar.
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2. B provides a large range of operations over the data-
types, ranging from basic set operations such as union
or intersection, up to more involved operations such as
inverting or computing the transitive closure of a rela-
tion. The use of lambda abstractions or set compre-
hensions are also especially tricky, due to the need to
convert arbitrarily complex predicates into sets of values
(e.g.,asimpleexample wouldbe: r={y|y:ran(f) &
card (£~ [{y}]) = 1}, wherer are all the elements
in the range of f which are the image of a single element
in the domain of f).

In PROB these issues are dealt with by the PROB-kernel,
which treats the basic datatypes of B and their operations. The
PROB-kernel is implemented in Prolog with co-routines. This
kernel is tailored for extensibility and deals with almost all B
operators. It is also capable of dealing with large data values.
In order to represent B’s data structures we have employed
classical Prolog terms, notably representing sets as lists with-
out repetition. In order to avoid multiple representations of
the same state, these Prolog representations are normalised.

In the following section we go into more detail about the
architecture and implementation of the PROB toolset.

4 The implementation of ProB
4.1 Overview

The overall architecture of PROB is shown in Fig. 5. To read
in the AMN (Abstract Machine Notation) syntax we employ
the jbtools [60] parser by Bruno Tatibouet; a parser written
using javacc, which we slightly extended to support the
application of functions with multiple arguments (allowing
f (a,b) rather than £ (a|->b), for example), as well as
various other syntactic extensions employed by AtelierB and
B4Free. This parser produces the abstract syntax tree in XML
format, which is converted into a Prolog encoding suitable
for the PROB interpreter. The PROB interpreter evaluates the
B Machine’s constructs and calls the PROB kernel to treat the
core B datatypes and operators. The PROB interpreter itself
is driven by various other components of PROB, one being
the PROB animator.
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Fig. 5 The main components

of ProB

B Machine
(in AMN)

ibtools _ ProB XML
(in Java) > cpnverter
(in Java)

Included
Machine(s)

Prolog

GUI

Encoding
ProB
/ Animator
o
ProB ProB
o—> Temporal Interpreter
Model Checker

4.2 The PROB interpreter

The PROB interpreter is written in a structured operational
semantics [51] (SOS) style. More precisely, given a descrip-
tion o of the state of a B machine, we describe which opera-
tions (with parameter values) can be applied in o1 and which
new states can be reached by performing those operations.
For this, the constructs of B were divided into three main
classes:

1. B substitutions, which modify the variables of a B
machine,

2. B expressions, which do not modify the variables but
denote values, and

3. B predicates, which are either true or false.

To manipulate these constructs, the PROB interpreter con-
tains Prolog predicates® to execute statements, compute
expressions, and test Boolean expressions. Each of these Pro-
log predicates has access to the global state of the machine
(the state of the variables of a machine) and a local state
that contains the values for local variables and parameters of
operations. In order to manipulate B’s basic data structures
and operators, the PROB interpreter calls the PROB kernel,
which we discuss later.

Here is a very small part of the interpreter that tests Bool-
ean expressions, responsible for handling the logical connec-
tives “and” and “or”:

8 Note that there is a potential confusion concerning the use of the word
“predicate” in B and in Prolog.

N— i

Refinement
Checker ProB
B-Kernel

b_test_boolean_expression(’And’ (LHS,RHS),LocalSt, State) : -
b_test_boolean_expression (LHS,LocalSt, State),
b_test_boolean_expression (RHS,LocalSt, State) .
b_test_boolean_expression(’Or’ (LHS,RHS),LocalSt, State) : -
b_test_boolean_expression (LHS, LocalSt, State)
/* or */
(b_not_test_boolean_expression (LHS,LocalSt, State),
b_test_boolean_expression (RHS, LocalSt, State)) .

The first argument of the Prolog predicate is the encoding
of the Boolean expression to be tested. The second argu-
ment (Localst) contains the values of all variables local to
an operation, i.e., the choice variables from Any statements
and the operation’s arguments. The third argument (State)
contains the values of all “global” variables and constants of
the B machine under consideration. The b_test_boolean_
expression predicate also has a counterpart, b_not_test_
boolean_expression, which is used to check whether a
Boolean expression evaluates to false.This is required, as
Prolog’s built-in negation is not sound in general.

For expressions, the corresponding Prolog predicate has
an extra argument to return the value of the expression, while
for substitutions the corresponding Prolog predicate has an
extra argument where it returns the updates (i.e., changed
variables with their new values).

While it is non-trivial to cover the vast syntax of B, the
code of the PROB interpreter is for the most part relatively
simple. The reason is that the PROB kernel is very flexible and
“hides” much of the complexity of B from the PROB inter-
preter. In fact, while the PROB interpreter is written in clas-
sical Prolog, the PROB kernel uses the co-routining features
of Prolog to provide a robust foundation, which allows the
interpreter to be written in a straightforward way. The kernel
also provides the various propagation phases shown in Fig. 4.
In the next section, we present more details about the PROB
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kernel. Some complicated aspects inside the interpreter are
the treatment of set comprehensions, lambda abstractions, as
well as universal and existential quantification. Here, co-rou-
tining is used to defer the evaluation of such constructs until
sufficient information is available. More precisely:

e 3dx.(x € XType A P) will suspend until all open vari-
ables in P (i.e., free variables of P excluding x) have
received a value, at which point the interpreter will try
to find a (single) solution for P.

e Vx.(x € XType = P) will be expanded out into a large
conjunction if possible; otherwise it will suspend in a
similar way to the existential quantification. For exam-
ple, in the context of the machine from Fig. 1, the formula
Vp.(p € PROC = pst(p) = s) would be expanded out
into pst(pl) = s A pst(p2) = s A pst(p3) =s.

e {x|x e XType N P} will suspend until all open vari-
ables in P have received a value, at which point the set is
computed. Lambda abstractions are treated by convert-
ing them into a set comprehension with an additional
parameter (the return value).9

4.3 The PROB kernel

First, let us see how some of B’s data structures are actually
encoded by the PROB Kernel:

B Type B value Prolog encoding
number 5 int (5)
boolean true term(bool (1))
element of set S C fd(3,’'s")
pair 45 (int (4),int (5))
set {4, 5) [int (4), int(5)]
relation {4 — 5} [ (int(4),int(5)) ]
sequence [4, 5] [(int (1), int (4)),
(int(2),int(5))]

As can be seen, sets are represented by Prolog lists; the
PROB kernel ensures that the same element is not repeated
twice within a list. The Prologterm £d (3, ' s’ ) represents the
third element of the given or deferred set S. So if S is defined
within the B machine by S = {A, B, C, D} then £d4(3,’s")
denotes the constant C. Sequences are encoded in the stan-
dard B style, i.e., as afunction from 1..size(s) to the elements
of the sequence.

The kernel then contains Prolog predicates for all
of B’s operators and mainly uses SICStus Prolog’s when
co-routining predicate to control the enumeration of B val-
ues. More precisely, the binary when predicate [59] suspends
until its first argument becomes true, at which point it will
call its second argument. From a logical point of view, the
when declarations can be ignored, as they are just annota-
tions guiding the Prolog execution engine: they do not change

9 In recent work [45] we have developed a method to keep certain
set comprehensions and lambda abstractions symbolic, only evaluating
them on demand.
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the logical meaning of a Prolog program. We employ the
coroutining to ensure that enumeration will be deferred until
either only a single or no possible value remains, or until the
PROB kernel has been instructed to move to a more aggres-
sive enumeration phase.

In working with finite base types and enumeration, the
PROB kernel has some similarities with the classical finite
domain constraint solver CLP(FD) [19]. However, there are
also considerable differences:

e Our solver provides multiple phases, but does not yet
provide a way to control the enumeration order within a
single phase.

e We provide multiple datatypes building upon the finite
domain base types.

e We provide many sophisticated operations over the basic
finite domains.

4.4 The PROB animator

The first graphical user interface of the PROB animator was
developed using the Tcl/Tk library of SICStus Prolog. The
user interface was inspired by the ARC tool [31] for system
level architecture modelling and builds upon our earlier ani-
mator for CSP [40].

Our animator supports (backtrackable) step-by-step ani-
mation of the B-machines. As can be seen in Fig. 6 it presents
the user with a description of the current state of the machine,
the history that has led the user to reach the current state, and
a list of all the enabled operations, along with proper argu-
ment instantiations. Thus, unlike the animator provided by
the B-Toolkit, the user does not have to guess the right values
for the operation arguments. The same holds for choice vari-
ables in nondeterministic assignments where the user does
not have to find values that satisfy the constraint. If the num-
ber of enabled operations becomes larger, one could envisage
a more refined interface where not all options are immedi-
ately displayed to the user. This is being developed in the
Rodin platform within Eclipse [4]. The current version
already allows the user to set an upper limit on the number
of ways the same operation can be executed.

The PROB animator also provides visualisation of the state
space that has been explored so far, and provides visual feed-
back on which states have been fully explored and which ones
are still “open.” For the visualisation we make use of the dot
tool of the graphviz package [7], and various ways to visu-
alise larger state spaces compactly have been developed and
implemented [47].

5 Exhaustive consistency checking in PROB

In this section we outline the method of exhaustive consis-
tency checking implemented in PROB.
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0006

ProB 1_.2._3_’:_ [(_:arla_Trav_eIA_gencyrcorrected 1.m_ch_]__: _[__c__)_N_Iichael I_.eus_ghei

DEFINITIONS
rooms_available(h) == (dom(global_room bookings)

cars_available(r) == (dom(global_car_bookings)
INVARIANT

session: SESSION +-> USER

session_response: SESSION +-- RESP

session_card: SESSION +-> CARD
session_state: SESSION +-> SESSION_STATE
session_request: SESSION +-- SESSION_REQUEST
user_hotel bookings: USER +- HOTEL
user_rental bookings: USER +-> CAR_RENT
rooms_hotel: ROOM --> HOTEL

cars_rental: CAR --- CAR RENT

global_room bookings: ROOM +-> USER

rooms_hotel~[(h}])
cars_rental-[{r}])

rooms_hotel~[{h}];
cars_rental-[{r}])

global_car_bookings: CAR +-> USER
lom({session)=dom(session_response) om(session)=dom(session_card)
lom(session)=dom(session_state) dom(session)=dom(session_request)
m{user_hotel_ bookings)=dom{user_rental_ bookings)
(session) <: (user_hotel bookings)
( userl:dom(user_ hotel bookings) user_hotel_bookings(userl) noHotel - = A

EE:!I [ State Properties

IAGENCY _USER={user1,user2}
session(sess1,user2)
esslon(sess3,user2)
ession_response(sess1,undef)
ession_response(sess3,done)
ession_card(sess1,unknown)
ession_card(sess3,valid)
ession_state(sess1,51) \
ession_state(sess3,s7)
ession_request(sess1,none)
ession_request(sess3,br)
ser_hotel_bookings(user2,h1)
ser_rental_bookings(user2,c1)
ooms_hotel(h1a,h1)

unbookCar(sess1)
again(sess3)
logout(sess3)
BACKTRACK

invariant_ok m login(userz)-->(sessZ)

EnabledOperations History
gain(sess1)
login(user1)-->(sess2) response(sess3)
bookRoom(sess1) nterCard(sess3)
ookCar(sess1) bookRoom(sess3)

unbookRoom(sess1)

response(sess1)
lenterCard(sess1)
lbookCar(sess1)
login(userZ )-->(sess3)
login(user2)-->(sess1)
initialise_machine({},{},{},{}.{}.{}.{},{(h2b,
lsetup_constants({userl,user2})

Fig. 6 Animation of the E-travel agency case study (cf. Sect. 7.3.2)

5.1 Overview of the algorithm

By manually exploring a B-machine using the PROB anima-
tor, it is possible to discover problems with a machine, such
as invariant violations, deadlocks (states where no operation
is applicable) or other unexpected behaviour not encoded in
the invariant. We have implemented a model checker [20],
which will do such an exploration systematically and auto-
matically. It will alert the user as soon as a problem has been
found, and will then present the shortest trace (within cur-
rently explored states) that leads from an initial state to the
error. The model checker will also detect when all states have
been explored, and can thus also be used to formally guaran-
tee the absence of errors. This will obviously only happen if
the state space is finite (and small enough to fit into memory),
but the automatic consistency checker can also be applied to
B machines with large or infinite state spaces and will then
explore the state space until it finds an error or runs out of
memory.

The model checker drives the PROB interpreter in the same
way that the PROB animator does. In addition, the model
checker needs to keep track of which states have already

been explored, and needs to decide which unexplored state
to investigate next.

To avoid the same state (e.g., s1 = ({a,b}) and s, =
({b, a})) being treated multiple times, the PROB interpreter
contains a normalisation procedure. Furthermore, to quickly
determine whether a particular state of a B machine has
already been encountered, state hashing is used.

The exploration is derived from the A* algorithm, and can
be tuned to perform in the extreme cases as either a depth-
first or breadth-first exploration. The default behaviour uses a
mixed depth-first breadth-first strategy, where a random fac-
tor is used to decide whether any given node will be treated
in depth-first or breadth-first order. This heuristic has proven
itself to be very good in practice. Indeed, in our case stud-
ies, at least for the initial machines being developed, errors
were easy to find and often fell into one of the following two
categories:

1. Systematic errors inside an operation that occur in most
states; here it is not important to locate a particular
state just to systematically try out all operations for all
arguments.
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2. Errors that arise when the machine is animated long
enough (e.g., deadlock errors); here it is often not impor-
tant which particular path is taken, just that the machine
is animated long enough.

Breadth-first is good at picking out errors of type 1 but may
fail to find errors of type 2 (if the state space is too big to
be explored exhaustively). Depth-first is good at picking out
errors of type 2 but may fail to find errors of type 1. Our
heuristic mixed strategy will pick out both types of errors
quickly.

The visited states are stored in Prolog’s clause database.
While this is not as efficient as for example tabling, ' it allows
the model checking state to be easily queried (e.g., for visu-
alisation) and saved to file. For a formalism as rich as B, most
of the model checking time is spent evaluating the invariant
and computing the enabled operations and the resulting new
states. The time needed to look up whether a given state has
already been encountered is typically not the bottleneck.

Currently the consistency checker detects the following
conditions:

1. Invariant violation errors;
Assertion violation errors (assertions are properties of a
B machine that should follow from the invariant);

3. Deadlock errors (a deadlocked state is one in which no
operation is enabled);

4. When a user-specified goal predicate becomes true.

Full temporal logic model checking was not supported in the
early releases of PROB, but it could be achieved by other
means (namely by refinement checking with CSP processes,
see Sect. 8). In the latest release, a full-blown LTL model
checker has been integrated in PROB.

Below we present a formal description PROB’s model
checking algorithm; experimental Results are presented later
in Sect. 7.

5.2 Formalisation

In [2], the semantics of B operations is defined in terms of
weakest precondition rules. For the purposes of making the
link between B and model-checking we find it convenient to
treat B operations as relations on a state space. The state space
of a machine is defined as the Cartesian product of the types
of each of the machine variables. We represent the machine
variables by a vector v. Classical B distinguishes between an
enabling condition (guard) and a precondition in operations.

10" A tabled logic programming system such as XSB [56] provides very
efficient data structures and algorithms to tabulate calls, i.e., it remem-
bers which calls it has already encountered. This can be used to write
very efficient model checkers [46,52].

@ Springer

The difference between a guard and a precondition is that
an operation can never be executed outside its guard while it
can be executed outside its precondition but in that case its
behaviour is aborting [2].

The B syntax supported by PROB allows preconditions,
but they are treated as guards.!! If we ignore preconditions
but allow for guards, then all B operations have a normal
form defined by a characteristic predicate P relating before
state v, after state v’, inputs x and outputs y as follows
[2, Chap. 6]:

ANY v,y WHERE P(x,v, v,y

THEN v, y :=v', y END

This statement nondeterministically assigns values v/, y’ to
v and y such that P(x, v, v’, y") holds. Characterising a B
operation by a predicate in this way gives rise to a labelled
transition relation on states: state s is related to state s’ by
event op.a.b, denoted by s —>%.a.h s', when P(a,s,s’, b)
holds.

The syntactic constraints on initialisation operations in B
are such that the outcome of an initialisation will be inde-
pendent of the initial values of the variables. This means an
initialisation has a normal form

ANY v WHERE P(v') THEN v := v END

In this case, P is used to define a set of initial states for a
machine. For convenience we add a special state root, where
we define root —>%i tiatise S 1 5 satisfies the initialisation
predicate.

Below we describe PROB’s consistency checking algo-
rithm. The algorithm employs a standard queue data structure
to store the unexplored nodes. The function error determines
whether a given state gives rise to an error, e.g., error(state)
will check whether state ¢ [ (invariant violation) and
whether no operations can be applied (deadlock).

The key operations are computing “state —>£;[, succ” and
“state ¢ I” (both of which are achieved by the PROB inter-
preter, in turn calling the kernel) and determining whether
“succ ¢ States” (which is performed by normalising succ,
computing the hash value of succ and then checking all nodes
in States with the same hash value for equality with the nor-
mal form of succ). The algorithm terminates when there are
no further queued states to explore or when an error state is
discovered.

T 1t is possible to set a PROB preference so that preconditions are
treated differently from guards. However, we are focussing our efforts
on migrating PROB towards supporting Event-B [1] which supports
guards but not preconditions.
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Algorithm 5.1 [Consistency Checking |

Input: An abstract machine M with invariant /
Queue := {root} ; States := {root} ; Graph = {}
while Queue is not empty do
if random(1) < « then
state := pop_from_front(Queue); /* depth-first */
else
state := pop_from_end(Queue); /* breadth-first */
end if
if error(state) then
return counter-example trace in Graph
from root to state
else
for all succ,op such that srate —>",‘f) succ do
Graph := Graph U {state — ,, succ}
if succ & States then
add succ to front of Queue
States := States U {succ}

end if
end if
end for
od
return ok

5.3 Relationship with the classical B proof method

In this section we outline how exhaustive consistency check-
ing of a (finite) B machine relates to the standard proof-based
approach to consistency in B. For a machine to be consis-
tent, its initialisation must establish the invariant, and each
operation must preserve the invariant. Expressed in terms of
the relational formulation of B machines outlined above, the
consistency obligations for a B machine with invariant 7,

initialisation Inir and operations OP; are as follows :!°

Init C 1

sel A s—M

op s’ = s’ eI, foreach operation op
When PROB finds a counterexample, the final transition of
the counterexample is from a state satisfying the invariant to
a state falsifying the invariant. It is easy to see that such a
transition falsifies these consistency conditions.

In the case where PROB finds no counterexamples in an
exhaustive check and the machine contains only finite types
(i.e., no deferred sets or integers), then consistency can be
proven. Let us consider this further. When taking a proof
approach to consistency checking in B, it is often the case
that the desired invariant is not strong enough to be provable
and a stronger invariant I’ is required (by adding conjuncts
to 7). A successful exhaustive consistency check computes
the set of reachable states R and will have checked that all of

12 This is easy to demonstrate by using the normal form for operations
characterised by a before-after predicate and the weakest precondition
rules for B.

those states satisfy the invariant /. This set of reachable states
R corresponds to a stronger invariant since after successful
termination of the algorithm we have

RC1I

Init € R

M

/ / .
SER AN s—, s = s €R, foreach operation op

Thus the set of reachable states R is a sufficient invariant to
prove consistency w.r.t. the original invariant / in the stan-
dard way.

In the case where PROB finds no counterexamples in an
exhaustive check and the machine contains deferred sets or
integers, then we cannot conclude that the machine with infi-
nite types is consistent. As usual with model checking, we
may find a counterexample with larger scopes for types that
do not appear with smaller scopes. But lack of counterexam-
ples will at least give us more confidence that the proof will
go through.

6 Refinement checking for B

In this section we outline the B notion of refinement. We
outline the trace behaviour of B machines and trace refine-
ment for B machines and relate it to standard B refinement.
We then explain the automatic refinement checking algorithm
implemented in PROB.

B refinement is defined in terms of a gluing invariant
which links concrete states to abstract states. In [2], refine-
ment checking checking rules are defined in terms of weakest
precondition rules for B operations. As in the previous sec-
tion, we express the refinement proof obligations in terms
of the relational model for B machines. These proof obli-
gations correspond to the standard relational definition of
forward simulation. Let R be the gluing relation, A/ and CI
be the abstract and concrete initial states respectively and aop
and cop stand for corresponding abstract and concrete oper-
ations. The usual relational definition of forward simulation
is as follows [30]:

e Every initial concrete state must be related to some initial
abstract state: c € CI = da €Al - cRa

e If states are linked and the concrete one enables an oper-
ation, then the abstract state should enable the corre-
sponding abstract operation and both operations should

result in states that are linked: ¢ Ra A ¢ —>%p =
/ M / /
da"-a —gp,a N Ra

The proof obligations for refinement are automatically
generated from the gluing invariant and the definitions of the
abstract and concrete operations by, for example, AtelierB or
the BToolkit. The user can then try to prove these using the
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semi-automatic provers of those systems. If the proof obli-
gations are all proven, every execution sequence performed
by the refinement machine can be matched by the abstract
machine [17]. Automatic refinement checkers work directly
on the execution sequences and try to disprove refinement
by finding traces that can be performed by the refinement
machine but not by the specification. For this we need to
formalise the notions of execution sequences (traces) for B.

6.1 Traces

The use of event traces to model system behaviour is well-
known from process algebra, especially CSP [32]. Although
event traces are not part of the standard semantic definitions
in B, many authors have made the link between B machines
and event traces including [17,24,57]. The PROB animator
can also be viewed as a way of computing sample traces of
a B machine.

We regard execution of a B operation op with input value
a resulting in output value b as corresponding to the occur-
rence of event op.a.b. An event trace is a sequence of such
events and the behaviour of a system may be defined by a
set of event traces. For example, the following is a possible
trace of the scheduler specification of Fig. 1:

(new.pl, new.p2, ready.pl, ready.p?2, enter.pl, leave.p1 )

In Sect. 5.2, we have already defined the labelled transi-
tion relation s —>£f,_a_ , ', linking two states s and s’ via the
event op.a.b, when the operation op can be executed in the
state s with parameters a, giving rise to outputs b and the
new state s’. This transition relation — 2’1 is lifted to traces

using relational composition:

M _
> = ID

M . M
—)e ,—)l

M
e =
Note that ID is the identity relation over states. Now 7 is a
possible trace of machine M if — relates some initial state
to some state reachable through trace t: ¢t € traces(M) =

e,/ ceCl A c—M,

6.2 Trace refinement checking

A machine M is a trace refinement of a machine N if any
trace of N is a trace of M, that is, any trace that is possible
in the concrete system is also possible in the abstract system.
It is straightforward to show by induction over traces that
if we can exhibit a forward simulation between M and N
with some gluing relation, then M is trace refined by N. It
is known that forward simulation is not complete, i.e., there
are systems related by trace refinement for which it not pos-
sible to find a forward simulation. The related technique of
backward simulation together with forward simulation make
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simulation complete [30]. A backward simulation is defined
as follows:

ceCl ANcRa = acAl

M
cRa na—,,a

M / l
C—>epC NC Ra = da - p

P

The B tools produce proof obligations for forward simula-
tion only. There are cases of refinement where, although the
trace behaviour of the concrete system is more deterministic,
an individual concrete operation is less deterministic than its
corresponding abstract operation. Backwards refinement is
required in such cases. Typical developments B involve the
reduction of nondeterminism in operations so that forward
simulation is sufficient in most cases.

A single complete form of simulation can be defined by
enriching the gluing structure. Gardiner and Morgan [28]
have developed a single complete simulation rule by using a
predicate transformer for the gluing structure. Such a predi-
cate transformer characterises a function from sets of abstract
states to sets of concrete states. Refinement checking in PROB
works by constructing a gluing structure between the con-
crete and abstract states as it traverses the state spaces of both
systems. So that we have a complete method of refinement
checking, the PROB checking algorithm constructs a glu-
ing structure that relates concrete states with sets of abstract
states: R € C < P(A).On successful completion of an
exhaustive refinement checking run the constructed gluing
structure R will relate each individual concrete initial state
to the set of abstract initial states and for each pair of corre-
sponding concrete and abstract states, the following simula-
tion condition will be satisfied:
cRas N C—>CM0[,C/ = das’ - as—)%l,as/ A ¢ Ras'

Here as and as’ represent sets of abstract states and as — %p

as’ holds when as’ is the largest set of states to which to states
of as are mapped by — %p. It can be shown by induction over
traces that this entails trace refinement, i.e., a successful out-
come of the algorithm guarantees trace refinement. Because
PROB works on finite state systems, the algorithm always ter-
minates successfully or by detecting a failure. Completeness
of the algorithm is proven by demonstrating that whenever
the outcome is failure, then there is a violation of trace refine-

ment.

6.3 The refinement checking algorithm

We now present an algorithm to perform refinement check-
ing. The gluing structure discussed in Sect. 6.2. is stored
in Table, and for every entry (c, as) the algorithm checks
whether all operations of the concrete state ¢ can be matched
by some abstract state in the set of state as; if not, a counter
example has been found, otherwise all concrete successor
states are computed and put into relation with the
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corresponding abstract successor states. To ensure termi-
nation of the algorithm it is crucial to recognise when the
same configuration is re-examined. This is done by the check
“(c,as) ¢ Table”. If that check fails we know that we can
safely stop looking for a counter example. Indeed, if one
counter example exists we know that we can find a shorter
version starting from the configuration that is already in the
table.

Algorithm 6.1 [Refinement Checking ]

Input: An abstract machine M4 and
a refinement machine Mg

Table := {} ; Res :=refineCheck(root, {root}, ());
if Res = () then println 'Refinement OK’

else println(’Counter Example:’,Res)
end if

function refineCheck(ConcNode, AbsNodes, Trace)
if (ConcNode, AbsNodes) ¢ Table then
Table := Table U {(ConcNode, AbsNodes)};
for all CSucc, Op such that
ConcNode —>1gR CSucc do
TraceS := concat(Trace, ((Op, CSucc)));
ASucss :={a’ | 3a € AbsNodes N a —>g[; a'l;
if ASucss = @ then
return TraceS
else
Res := refineCheck(CSucc, ASucss, Trace);
if Res # () then return Res end if
end if
end for
end if
return ()
end function

6.4 Implementation

We have developed two implementations of the refinement
checking algorithm. The first one is implemented inside the
PROB toolset, i.e., using SICStus Prolog. The tabling is done
by maintaining a Prolog fact database, which is updated
using assert /1. Forrefinement checking, the abstract state
space currently has to be computed beforehand (using PROB).
To ensure completeness of the refinement checking, it should
be fully computed. However, our refinement checker also
allows the abstract state space to be only partially com-
puted. In that case, the refinement checker will detect whether
enough of the state space has been computed to decide the
refinement (and warn the user if not). In the SICStus Pro-
log implementation the state space of the implementation
can be computed beforehand, but does not have to be. In
other words, the implementation state space will be expanded
on-the-fly, depending on how the refinement checking algo-
rithm proceeds. This is of course most useful when counter
examples are found quickly, as in those cases only a frac-
tion of the state space will have to be computed. In future

work, we plan to enable this on-the-fly expansion also for
the abstract state space.

The second implementation has been done in XSB Prolog.
The code of the XSB refinement checker is almost identical,
but instead of using a Prolog fact database it uses XSB’s
efficient tabling mechanism [56]. As we will see later, this
implementation is faster than the SICStus Prolog one. How-
ever XSB Prolog does not support constraint solvers in the
same way as SICStus. This means that the abstract and con-
crete state spaces need to be computed beforehand using the
SICStus PROB and then loaded into the XSB version of the
refinement checker. The overhead of starting up a new XSB
Prolog process and loading the states space is only worth the
effort for larger state spaces (and even then only if there are
no or difficult-to-find counter examples).

7 Experimental results for consistency and refinement
checking

To test the performance of our consistency and refinement
checker, we have conducted a series of experiments with
various models. As well as using the scheduler example
from Sects. 2.1 and 2.2, we have experimented with a much
larger development of a mechanical by press by Abrial [3].
The development of the mechanical press started from a
very abstract model and went through several refinements.
The final model contained “about 20 sensors, 3 actuators, 5
clocks, 7 buttons, 3 operating devices, 5 operating modes, 7
emergency situations, etc.” [3]. We were able to apply our
model checker and refinement checker to successfully vali-
date consistency as well as various refinement relations. Fur-
thermore, as no finitisation was required for the mechanical
press (i.e., all types were already finite from the start), the
consistency and refinement checker can actually be used in
place of the traditional B provers. In other words, we are thus
able to automatically prove consistency and refinement using
our tool. To check the ability of our tool to find errors we have
also applied it to an erroneous refinement (m2_err.ref), and
PROB was able to locate the problem in a few seconds.We
have also experimented with a simple example of a server
allowing clients to log in (Server.mch and Server.ref). Pre-
cise timings and results for these and other experiments are
presented in the next subsections.

7.1 Consistency checking

In a first phase we have performed classical consistency and
deadlock checking on our examples using PROB’s model
checker. The results can be found in Table 1, and give an
indication of the size of the state space and how expen-
sive it is to compute the reachable state space. The experi-
ments were all run on a PowerPC G5 Dual 2.5 GHz, running
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Table 1 PROB consistency checking and size of state space

Table 2 PROB refinement checking and size of refinement relation

Machine Time States Transitions
Server.mch 0.013 s 5 9
ServerR.ref 0.05 s 14 39
scheduler0.mch 46's 55 190
schedulerl.ref 0.93s 145 447
scheduler0_6.mch 41.37 s 2,188 14,581
schedulerl_6.ref 501.61s 37,009 145,926
m0.mch 3.19s 65 9,924
ml.ref 20.38 s 293 47,574
m2.ref 44.29 s 393 59,588
m2_err.ref 31.51s 405 61,360
m3.ref 364.90 s 2,693 385,496

Mac OS X 10.3.9, SICStus Prolog 3.12.1 and ProB version
1.1.5. Note, while the machine had 4.5 Gigabytes of RAM,
only 256 Megabytes are available in SICStus Prolog 3.12 for
dynamic data (such as the state space of B machines). sched-
ulerO.mch and schedulerl.ref are the machines presented
above in Sects. 2.1 and 2.2 for 3 processes, while sched-
uler0_6.mch and schedulerl_6.ref are the same machines
but for 6 processes. The machines m0.mch, mi.ref, m2.ref,
m2_err.ref, and m3.ref are from the mechanical press exam-
ple discussed above. Servermch is a simple B machine
describing the server example, while ServerR.ref is a refine-
ment thereof.

7.2 Refinement checking

Table 2 are the results of performing various refinement
checks on these machines. Entries marked with an asterisk
mean that no previous consistency checking was performed,
that is, the reachable state space of the implementation
machine was computed on-the-fly, as driven by the refine-
ment checker. For entries without an asterisk, the experiment
was run straight after the consistency checking of Table 1;
that is, the reachable state space was already computed and
the time is thus of the refinement checking proper. The fig-
ures show that our checker was very effective, especially if
counter examples existed.

In Table 3 we have conducted some of the experiments
where the refinement checker is run as a separate process
using XSB Prolog [56], rather than inside PROB under SIC-
Stus Prolog. Our experiments confirm that XSB’s tabling
mechanism leads to a more efficient refinement checking (cf.
the third column). However the time to start up XSB and
load the state space is not negligible, meaning that the XSB
approach does not always pay off. This can be seen in the
fourth column, which contains the total time for loading and
checking: e.g., the approach pays off for the m2.ref check

@ Springer

Refinement Specification Time Table
(in's) size
Successful refinements
ServerR.ref Server.mch* 0.05 14
ServerR.ref Server.mch 0.00 ”
schedulerl.ref schedulerQ0.mch* 0.73 145
schedulerl.ref scheduler0.mch 0.00 ”
schedulerl_6.ref scheduler0_6.mch 3.80 37,009
ml.ref m0.mch* 254 585
ml.ref m0.mch 6.28 ”
m2.ref m0.mch 8.10 785
m2_err.ref mO.mch 8.13 809
m2.ref ml.ref 70.57 3,804
m3.ref mO.mch 51.96 5,345
m3.ref ml.ref 429.37 24,039
m3.ref m2.ref 333.85 21,205
Counter examples found
scheduler]_err.ref scheduler0.mch* 0.12 19
schedulerl_6_err.ref scheduler0_6.mch* 1.80 121
ml.ref m2.ref 0.01 13
m2_err.ref ml.ref* 4.22 92
m2_err.ref ml.ref 0.03 ”
Table 3 PROB refinement checking using XSB Prolog
Refinement Specification Checking  Total
time time
Successful refinements
ServerR.ref Server.mch 0.00s 0.06s
schedulerl.ref scheduler().mch 0.00s 0.11s
ml.ref m0.mch 2.85s 13.76s
m2.ref ml.ref 26.66's 40.24 s
m3.ref m2.ref 136.12s 219.03s
Counter examples found
ml.ref m2.ref 0.00s 22.68s
m?2_err.ref ml.ref 0.01s 12.79s

against m1.ref (overall gain of 30 s) but not for the smaller
examples or when a counter example is found quickly.

We have also compared our new refinement checker
against a widely known refinement checker, namely FDR
[27]. FDR is a commercial tool for the validation of CSP
specifications. The results of the experiments can be found
in [43]. The conclusion was that our algorithm compares
favourably with FDR, and that the on-the-fly normalisation
was an important aspect for the examples under consider-
ation.
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7.3 Other case studies
7.3.1 Volvo vehicle function

We have tried our tool on a case study performed at Volvo on
a typical vehicle function. The B specification machine had
15 variables, 550 lines of B specification, and 26 operations.
The invariant consisted of 40 conjuncts. This B specification
was developed by Volvo as part of the European Commission
IST Project PUSSEE (IST-2000-30103).

We first used PROB to animate the B machine, which
worked very well. The machine was already finite state (apart
from an auxiliary natural number variable which was used
to make proofs possible). We then used PROB to verify the
B-machine using the automatic consistency checker. PROB
managed to explore the entire state space of the B-machine
in a few minutes, covering 1,360 states and 25,696 transi-
tions, thereby proving the absence of invariant violations and
deadlocks. This was achieved in 34.3 s (on a PowerMac G5
Dual 2.7 GHz). However, PROB managed to identify a slight
anomaly in the B machine’s behaviour: a crucial operation
was only enabled in 8 of the 1,360 states. This shows that
PROB might be used to identify problems that would other-
wise only emerge at implementation time.

To better test the model checkers, we also injected a subtle
fault into the specification, which the automatic consistency
checker managed to unveil fully automatically within a cou-
ple of seconds (on a PowerMac G5 Dual 2.7 GHz).

7.3.2 E-travel agency

Within our ABCD'? project we developed various B models
for a distributed online travel agency, through which users
can make hotel and car rental bookings. The models were
developed jointly with a Java/JSP implementation. The B
model contains about 6 pages of B and, as can be seen in
Fig. 6 earlier, has 11 variables of complicated type.

PROB was very useful in the development of the specifi-
cation, and was able to animate all of our models properly
(see Fig. 6) and discover several problems with various ver-
sions of our system. For example, it was able to discover an
invariant violation, meaning that two cars could be booked in
a single transaction, which was not allowed by the invariant
of that machine.

7.3.3 Nokia NoTA case study

Within the RODIN Project'* the PROB tool has been used
in conjunction with the AtelierB theorem prover for the

13 “Automated validation of Business Critical systems using
Component-based Design,” EPSRC grant GR/M91013.

14 http://rodin.cs.ncl.ac.uk/.

validation and verification of Nokia’s NoTA hardware plat-
form. This platform is a WebServices/Corba-like intercon-
nect network that allows hardware and software based ser-
vices to communicate. This case study was highly successful.
To quote from a personal communication by Ian Oliver of
Nokia:

ProB also provides a simple way of explaining and
demonstrating the mathematical specification to per-
sons who would normally not be able to read such a
specification (particularly managers). The ability for
the customer of a system to interact with the specifi-
cation is of enormous value in that the customer can
obtain a much clearer understanding of what work is
being done, how it is progressing and equally impor-
tantly, what the customer really wants.

8 Combining B and CSP in PROB

In the Event-B approach [1], a B machine is viewed as a
reactive system that continually executes enabled operations
in an interleaved fashion. This allows parallel activity to be
easily modelled as an interleaving of operation executions.
However, while B machines are good at modelling parallel
activity, they can be less convenient for modelling sequential
activity. Typically one has to introduce an abstract ‘program
counter’ to order the execution of actions. This can be much
less transparent than the way in which one orders action exe-
cution in process algebras such as CSP [32]. CSP provides
operators such as sequential composition, choice and parallel
composition of processes, as well as synchronous communi-
cation between parallel processes.

The motivation is to use CSP and B together in a comple-
mentary way. B can be used to specify abstract state and can
be used to specify operations of a system in terms of their
enabling conditions and effect on the abstract state. CSP can
be used to give an overall specification of the coordination of
operations. To marry the two approaches, we take the view
that the execution of an operation in a B machine corresponds
to an event in CSP terms. Semantically we view a B machine
as a process that can engage in events in the same way that
a CSP process can. The meaning of a combined CSP and
B specification is the parallel composition of both specifica-
tions. The B machine and the CSP process must synchronise
on common events, that is, an operation can only happen in
the combined system when it is allowed both by the B and the
CSP. There is much existing work on combining state based
approaches such as B with process algebras such as CSP and
we review some of that in a later section.

In [40] we presented the CIA (CSP Interpreter and Ani-
mator) tool, a Prolog implementation of CSP. As both ProB
and CIA are implemented in Prolog, we were provided with
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a unique opportunity to combine these two to form a tool
that supports animation and model checking of specifications
written in a combination of CSP and B. The combination of
the B and CSP interpreters means we can apply animation,
consistency checking and refinement checking to specifica-
tions which are a combination of B and CSP. For example,
the mutual exclusion property of the scheduler of Sect. 2.1
can be specified as the following CSP process:

LOCK = enter?p — leave.p — LOCK.

We can check that both B schedulers (Figs. 1, 3) are trace
refinements of the LOCK CSP process. We can also check
whether a combined B/CSP specification is a refinement of
another combined specification.

A further use of the CSP interpreter is to analyse trace
properties of a B machine. In this case the behaviour is fully
specified in B, but we use CSP to specify some desirable or
undesirable behaviours and use PROB to find traces of the B
machine that exhibit those behaviours. More details may be
found in [16].

9 Related work

We are not the first to realise the potential of logic pro-
gramming for animation and/or verification of specifications.
See for example [14], where an animator for VERILOG is
developed in Prolog, or [12] where Petri nets are mapped
to CLP. Also, the model checking system XMC contains an
interpreter for value-passing CCS [22,52]. A logic program-
ming approach to encode denotational semantics specifica-
tions was applied in [37] to verify an Ada implementation of
the “Bay Area Rapid Transit” controller.

The most strongly related work is [6,13], which uses a
special purpose constraint solver over sets (CLPS) to ani-
mate B and Z specifications using the so-called BZ-Testing-
Tools. Unfortunately, it is not possible to obtain CLPS hence
we cannot perform a detailed comparison of the constraint
solving facilities of the PROB kernel with CLPS. Indeed, our
own B-Kernel, can be viewed as a constraint solver over finite
sets and sequences (it seems that sequences are not yet sup-
ported by [6]). At a higher level, [6,13] put a lot of stress
on animation and test-case generation, but do not cater for
model checking. There are also many features of B that we
support (such as set comprehensions, lambda abstractions,
multiple machines, refinement) which are not supported by
[6,13]. Finally, [6,13] can handle Z as well as B specifica-
tions, and PROB has also recently been extended for Z in [50].
In addition, we have interpreters for process languages such
as CSP [40,41] and StAC [26]. These can now be easily cou-
pled with PROB to achieve an integration like [18], where B
describes the state and operations of a system and where the
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process language describes the sequencing of the individual
operations.

Another constraint solver over sets is CLP(SET) [23].1
While it does not cater for sequences or relations, we plan to
investigate whether CLP(SE7) can be used to simplify the
implementation of PROB. Still, it is far from certain whether
CLP(SET) will be flexible enough for constraint-based
checking.

Bellegarde et al. [10] described the use of SPIN to ver-
ify that finite B machines satisfy LTL properties (though the
translation from B to SPIN does not appear to be automatic).
This differs from the PROB approach in that it does not check
for standard B invariant violation, rather it checks for satis-
faction of LTL properties, which are not part of standard B.

A very recent animator for B is the commercial Brama
tool [58] by ClearSy. It provides a very sophisticated
interface, along with support for custom Flash animations. !¢
However, Brama cannot be used for model checking and it
can only animate a restricted subset of B. E.g., a substitu-
tion of the form ANY x where x:NATURAL & x<10
THEN y:=x END cannot be animated using Brama.

Other related work is [63], which presents an animator
for Z implemented in Mercury. Mercury lacks the (dynamic)
co-routining facilities of SICStus Prolog, and [63] uses a
preliminary mode inference analysis to figure out the proper
order in which B-Kernel predicates should be put. It is unclear
to us whether such an approach will work for more involved B
machines. Another animator for Z is ZANS [35]. It has been
developed in C++ and unlike PROB only supports determin-
istic operations (called explicit in [35]), and has not been
updated since 1996 [62].

The Possum [29] tool provides an animator for SUM,
an extension of Z. Possum distinguishes between predicates
which are “checks” and “chests,” where chests can provide
values for variables whereas checks can only be true or false.
Possum works by simplification of predicates, and attempts
to simplify chests with smaller projected sizes. Possum has
also been used in [54] to animate refinements. However, the
details provided in [29] do not allow for a precise compar-
ison with our approach. It seems that Possum does not yet
support set comprehensions and existential variables [62].
Staying with Z, one has to see how the recent Jaza animator
[62] and the CZT Z community tools [48] will develop.

The Alloy language and analyzer developed by Jackson
[34] provides a powerful framework for system modelling
and analysis. Like B, the Alloy language is founded on set
theory and logic. Alloy models contain signatures represent-
ing state space as well as operations and assertions. Typically

15 There are many more constraint solvers over sets; but most of them
require sets to be fully instantiated or at least have fixed, pre-determined
sizes, cf. [23].

16 Flash animations have also been added to PROB in [11].
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assertions state invariant preservation properties. Rather than
exploring the reachable states of a model as in PROB, the
Alloy analyser uses SAT solvers to find counter-examples to
assertions. The analyser uses symmetry breaking techniques
to reduce the search required in SAT solving. In the mean-
time, symmetry reduction techniques have also been added
to PROB [44,61], and have turned out to provide big speed
improvements.

The idea of using (tabled) logic programming for veri-
fication is not new (see, e.g., [53]). The inspiration for the
current refinement checker came from the earlier developed
CTL model checker presented in [46]. Another related work
is [9], which presents a bisimulation checker written in XSB
Prolog. Compared to mainstream model checkers such as
Spin [33] or SMV [15,49] the difficulty in model checking
B actually lies more in checking the invariant and computing
the individual enabled operations along with their parame-
ters, results, and effects.

10 Conclusion

We have presented the PROB toolset for animation, consis-
tency checking and refinement for the B method. Our expe-
rience is that PROB is a valuable complement to the usual
theorem prover based development in B. Wherever possible
there is value in applying model checking to a size-restricted
version of a B model before attempting semi-automatic
deductive proof. While it still remains to be seen how PROB
will scale for very large B machines, we have demonstrated
its usefulness on medium sized specifications. PROB is being
used by our industrial collaborators and we have had positive
feedback from them on its value. We also believe that PROB
could be a valuable tool to teach beginners the B method,
allowing them to play and debug their first specifications.
PROB has and is being used at various universities to teach B
(e.g., the University of Franche-Comté, Heinrich-Heine Uni-
versitit Diisseldorf, the University of Southampton, the Uni-
versity of Surrey). PROB’s animation facilities have allowed
our users to gain confidence in their specifications, and has
allowed them to uncover errors that were not easily discov-
ered by Atelier-B. PROB’s model checking capabilities have
been even more useful, finding non-trivial counter examples
and allowing one to quickly converge on a consistent speci-
fication.
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