
Int J Softw Tools Technol Transfer (2008) 10:247–261
DOI 10.1007/s10009-007-0061-y

REGULAR CONTRIBUTION

Static verification of component composition in contextual
composition frameworks

Mircea Trofin · John Murphy

Received: 4 December 2007 / Published online: 8 January 2008
© Springer-Verlag 2007

Abstract Contextual component frameworks, such as
Enterprise JavaBeans (EJB), allow for components to specify
boundary conditions for the runtime context. These
conditions are satisfied at runtime by services of the under-
lying platform, thus ensuring that the context in which com-
ponents run exhibits properties that allow them to operate
correctly. Depending on how components call each other, it
is possible that satisfying such conditions lead to problems
such as reduced performance due to redundant service execu-
tion, or permanent errors (composition mismatches), due to
incompatible boundary conditions. Currently, the semantics
of these boundary conditions are expressed in natural lan-
guage only, making it impossible to incorporate them into
an automatic analysis tool. Furthermore, early understand-
ing of how components call each other would be necessary,
but it is currently difficult to achieve by means of a tool,
as the method dispatch rules in a component system dif-
fer from the dispatch rules of the programming language(s)
in which they were developed. We have developed a meta-
model, M, for describing boundary conditions, an analysis
method, A, and a static component-level call graph extraction
method for EJB applications, CHAEJB . A uses M models to
analyze inter-component call graphs, and thus detect prob-
lems such as composition mismatches or redundancies, thus
allowing for remedial action to take place. We present M, A

and CHAEJB in this article, show that A produces correct
results, and describe a prototype analysis tool implementing

The support of the Informatics Commercialisation initiative of
Enterprise Ireland is gratefully acknowledged.

M. Trofin (B) · J. Murphy
School of Computer Science and Informatics,
University College Dublin, Dublin, Ireland
e-mail: mtrofin@acm.org

the three, which we used to validate our approach on two
popular EJB applications.

Keywords Software components · Contextual
composition · Static analysis · Enterprise Java

1 Introduction

Contextual composition frameworks allow components to
specify, at deployment time, boundary conditions describing
properties that the runtime context must meet. Based on these
conditions, component platforms execute services when the
control is passed from a component to another one, in order
to ensure that the boundary conditions are satisfied.

Examples of such frameworks include Enterprise Java-
Beans (EJB [1]), The COM+ model [2] and CORBA Com-
ponent Model (CCM [3]). Typically, these frameworks are
targeted at developing enterprise applications. For such appli-
cations, it is important to have a clear understanding of the
behavior of an application, as early as possible, in order
to detect possible errors, or to perform optimizations—
especially since in the enterprise applications domain, any
client request that cannot be satisfied can translate into loss of
revenue.

Our work focuses on issues arising out of the very nature
of contextual composition frameworks, issues that can lead
to runtime errors or reduced performance (for example).

To best introduce the problems we are addressing, we use
the example in Fig. 1. The server-side components A, B, C,
and D are participating in a client interaction, as follows: the
client starts by calling a method of A; this call is labeled as
1. While A’s method is executing, it needs to call methods
from B and C, as depicted (the call order is represented using
UML notation, i.e. 1.1 is called from 1 and before 1.2, and
all calls are synchronous)

123

248 M. Trofin, J. Murphy

A

B

C

D
1

1.1

1.1.1

1.2

1.3

T S

Fig. 1 Problem example

What is important to note is that, when the control is
passed to a component method, there is some platform func-
tionality executed just before the method code. This is rep-
resented by the T and S elements in the figure. We will refer
to each such element as a “service”. The role of some such
services is to manage a particular aspect of the runtime con-
text in which the component method is about to execute; as
such, we refer to these services as context management ser-
vices (CMS). By context, we refer to (conceptually) a set of
attributes associated with a thread of execution—by thread
understanding a logical thread, not necessarily an operating
system thread.

Each CMS controls one such attribute. The value of such
an attribute influences the semantics of the execution of
component methods. For example, in the above-mentioned
frameworks, there are, typically, a security and a transac-
tions (concurrency control) CMS. The security service would
check that the user attempting to execute the component code
belongs to some user group in some security realm, denying
access otherwise. The transactions service ensures that, if the
component method calls upon some datastore, that happens
within some transactional isolation boundaries.

When a CMS executes, it takes the previous value of the
context attribute it manages as input, and produces a new
value as output. With this value, it creates a closure: the new
value is associated with the thread for the entire call flow of
the method in front of which the CMS executes. When the
method returns, the CMS restores the previous context attri-
bute value. Of course, CMSs in the call flow act similarly.
An important observation is that, for the purpose of under-
standing how the context changes, the order of method calls
at the same level does not matter, only their order (position)
in the call stack. For example, in Fig. 1, the actual order in
which method 1 calls the methods labeled 1.1, 1.2, and 1.3,
does not matter, all that matters is that 1 calls them.

The functionality of a CMS is controlled by configuration
parameters—the boundary conditions (BC)—that are associ-
ated with each component method. This association is either

performed at component development time, or at deployment
time - in any case, it does not change at runtime. For each dif-
ferent kind of CMS, there is a different set of valid boundary
conditions. For example, the security service is controlled by
an attribute indicating the security role to perform the check
against (i.e., what role a user must have); in the transactions
case, there is a set of possible attributes that one can chose
from, each indicating how the transactional context in which
the component method will execute relates to the one (if any)
currently available.

It is possible that the execution of CMS (i.e., the enforce-
ment of BCs) lead to runtime errors. A simple example is
that of a security check that fails because the caller does not
have the required security role. This is a desirable outcome;
the problem is, however, when regardless of the role of an
application client performing a call, the security check for a
method in a particular call sequence is bound to fail. Refer-
ring again to Fig. 1, assume that A’s method requires that a
user be in the “admin” role, while one of B’s methods require
the user to be a “manager”. If our security realm has no user
satisfying both these roles, it is certain that either the security
check in front of A’s method would fail, or that in front of
B’s method.

In the case of transactions, in EJB, for example, let us
assume that A’s method uses the “required” flag, meaning that
the method must execute in a transactional context, which is
either already created, or, if not, one must be created by the
transactions service. Let us also assume that C’s method uses
the “never” flag, meaning that it must execute outside a trans-
actional context, and that, if such a context were present, it
would constitute an error. It can easily be seen how, for the
call scenario depicted in Fig. 1, the call to C would always
fail.

These situations constitute composition mismatches or
errors, and should be detected prior to runtime. In simple
situations, applications built out of a small number of com-
ponents with few methods and simple interactions, compo-
sition mismatches can be detected manually or prevented
altogether, if the developers understand the “big picture”
in which the components they develop will participate. The
cases we are interested in are those in which the application is
built out of a large number of components, maybe with some
developed by thirdparties, where inter-component interac-
tions are complex, and no developer had a clear overview of
the entire application.

A second issue that can arise is that in which the execu-
tion of CMS is redundant. In our example, suppose that the
security requirement of A’s method is “admin”, and so is D’s
method’s requirement. In this case, there would be no need
to perform security checks for D. The cost of redundancies,
at least in the security case, has been documented [4]; in
general, since CMS need to create closures, it is desirable to
detect and remove redundancies.

123

Static verification in contextual composition frameworks 249

In our previous work [5,6], we developed a boundary
checks redundancy elimination mechanism, that employed
an initial attempt at automatic analysis. This paper builds on
our previous results, and its contributions are:

• A metamodel, M, for modeling the semantics of CMS;
• An analysis method, A, which uses M models on call

graphs to detect properties associated with the enforce-
ment of boundary conditions at various points in the
graph; such properties include redundancy or composi-
tion mismatch;

• A discussion of the problem of static call extraction in
component-based applications, and a solution for EJB
applications;

• The validation of our methods, in the form of a prototype
static analyzer for EJB, together with a Prolog rendering
of M models for transactions and security. We used to
extract and analyze call graphs in two popular applica-
tions.

2 Problem domain

In this section, we refine over some of the concepts already
presented in our introductory section. We start by describing
the component model on which we define the problem and
construct the solution. The description consists of a defini-
tion of a “component”, a description of how a component can
be used, and a description of boundary conditions.

Our view of a component is similar to that in EJB. More
specifically, it is code accessible via an interface which offers
methods as points of access—much like a class implements
an interface, in a Java context. The component is originally
implemented in some programming language, however, the
component source code cannot be assumed available; there-
fore, we assume that we work with compiled elements.

A component needs to be deployed on a platform in order
to be used. When deployed, the component is associated with
a name in a naming service. This name can be used by cli-
ents to contact the component. We refer to this name as the
“global name”. This is, essentially, a data-driven, runtime
binding mechanism. Runtime, because it can happen when
the component client is active, and data-driven, because the
name the client uses can be a variable. Once deployed, the
component performs no activity, unless a client invokes one
of its methods.

The component client is either another component or an
entity outside of the component platform boundary. In either
case, we can assume that the client has some means of con-
tacting the naming service. Additionally, client calls to a
component are programmed as calls against an interface,
following that, after binding, these calls be actually made
towards an actual component method. It is possible, however,

that the same interface be implemented by more than one
component, meaning that the same client call might be dis-
patched to different method bodies, depending on the actual
name used by the client to bind to a particular component.

We assume that component interfaces are of two types,
externally accessible (“remote”) and internally accessible
(“local”), and that an application client can use only com-
ponents with externally accessible interfaces, while compo-
nents of the application can use both.

A component may specify via some means (in EJB, an
XML document, the deployment descriptor) an association
between local names and global names. This is a facility
that decouples a component implementation from the actual
names of other components: the component is written against
the local names, following that at deployment time, the local
names be linked to global ones. It needs to be made clear,
however, that the list of local to global associations of a com-
ponent does not completely designate the components that
bindings will take place to: it is still possible for the compo-
nent to lookup other components via global names, as well
as, it is possible that elements listed be not used at all. Addi-
tionally, it is unknown which component method will bind
to which other components. Still, the list of local-to-global
associations can constitute a good indicative of what bindings
might take place.

At this point, we can make the observation that statically
deriving a call graph in a set of components is a non-trivial
task, and that, additionally, language-specific static call graph
derivation solutions (e.g., SOOT [7]), would be insufficient,
since inter-component call dispatch follows non-language-
specific rules. We need call graph information, however, since
composition mismatches depend on the position of a method
in a call stack, as it has been hinted in section 1. This is the
first problem we need to address, namely, how to statically
extract inter-component call graphs.

We have already discussed the typical chain of events that
takes place when a component method is invoked—the fact
that CMSs are called before the actual method body, and that
the behavior of a CMS is fully controlled by boundary con-
ditions. The actual mechanics through which these bound-
ary conditions are associated to component methods do not
matter—in EJB, for example, it is done via the deployment
descriptor (and in future versions of the framework, via Java
5 annotations); what is important is that the CMS are solely
responsible for managing the runtime context, and, as such,
reasoning about problems such as composition mismatches
or redundancies requires a formal description of the seman-
tics of the CMS.

In turn, the semantics of a CMS are given by the control-
ling boundary conditions, however, currently, there is no for-
mal description of BC semantics—they are simply provided
in natural language in the framework specification—Table 1
summarizes the semantics of EJB boundary conditions. Note

123

250 M. Trofin, J. Murphy

Table 1 Semantics of boundary conditions in EJB

Transactions

NotSupported The method is called with no transactional
context, regardless of whether there is
one available

Required The method is called in the transactional
context of the caller; if no such context
exists, one is created

Supports The context of the caller, whether existent
or not, is used

RequiresNew A new transactional context is created,
regardless of whether one was available
from the caller or not

Mandatory The context of the caller is used. If that
is not present, the execution cannot con-
tinue

Never The method is called without a transac-
tional context. If the caller provides one,
the execution cannot continue

Security

Role The caller of the method must provide a
security context specifying a user which
is in the role “Role”. If that is the case,
the method is called with this context;
otherwise, the execution cannot continue

that the EJB specification [1] is more verbose, detailing what
exceptions are thrown when the execution cannot continue,
and how the creation of new contexts is handled—however,
we are only interested in the transformation of the context,
not how that is achieved.

If, additionally, we consider a case in which services and
associated boundary conditions can be defined by applica-
tion developers, then the problem of automatic reasoning
becomes even more difficult. Essentially, we observe two
possible “paths” for solving this problem:

• Operate at the level of CMS. At this level, we could
apply existing formal methods for program semantics
(e.g., JML [8]), however, some of these services (e.g.,
security) call upon remote servers, and therefore, the
semantics derivable just from the service code might be
too general to be of any use; additionally, the analysis
would be heavily implementation- and language-
dependent, making it hard to port to alternative imple-
mentations (different languages), although the semantics
of the CMS/BC would be the same. This leads us to the
next logical alternative:

• Operate at the level of boundary conditions. This is advan-
tageous, since their semantics do not depend on the means
these conditions are fulfilled, however, the lack of formal-
ism at this level needs to be overcame. This is the second
problem we need to address.

L1

F-specific

L2

L1-to-F L2-to-F

Lx: language-specific call
analyser
Lx-to-F: language-to-framework
adapter
F-specific: framework-specific
call analyser

Fig. 2 Static call graph extraction in component systems

3 Statically deriving inter-component call graphs

We are interested in call graphs at a component level: which
component methods might be called when an application
client invokes a particular component method. As discussed,
the order of calls is not relevant, however, the location in the
call stack is. Therefore, the kind of call graphs we intend
to obtain associate with a given method body a set of other
method bodies that it might call; of course, the elements of
this set have, in turn, a similar kind of set associated.

The central problem of statically deriving call graphs is
deciding which method body will be selected at runtime, for
a particular method invocation point in the program code (the
dispatch problem).

To obtain an inter-component-level call graph, it is nec-
essary to produce, first, a component-local method call graph.
Therefore, a solution for deriving inter-component call
graphs would need platform- or language-specific analyzers
for each set of components developed for the same architec-
ture. A framework-specific analyzer coordinates their activ-
ity—see Fig. 2. Language-to-framework adapters may need
to be used where the framework-level understanding of the
description of a method differs from the language-level one;
again, for example, in CCM, the framework-level description
of a method is IDL, which generally differs (slightly) from
C++ or Java ones.

Neither of these modules are trivial to develop. In fact,
language-specific analyzers alone are quite problematic. This
can be further complicated by the fact that the analysis should
be carried out on compiled code. As such, we will limit the
discussion to the EJB framework and the Java language, and
describe CHAEJB an extension of class hierarchy analysis
(CHA) [9] for EJB.

We start by discussing CHA for Java, in order to provide
a frame for discussion for CHAEJB .

3.1 Determining Java call graphs

Consider the code segment example in Fig. 3. The code for the
method aMethod is written against the java.util.Map

123

Static verification in contextual composition frameworks 251

public void aMethod (java . u t i l .Map m){
. . .

m. put (‘ ‘ aKey ’ ’ , ‘ ‘ aValue ’ ’) ;
. . .

}

Fig. 3 Plain Java dispatch problem example

interface. The application to which the code fragment belongs
might provide more than one implementation for this inter-
face. At runtime, the method call put in our example will
need to be dispatched to an appropriate method body, how-
ever, which body that is depends on the actual type of the
parameter m. We can, however, assert that the method body
that will be executed belongs to an implementation of
java.util.Map. Given the set of Java classes that form
an application, it would be possible to find the subset that
implements java.util.Map, and, as such, assume that
any member of this subset is a potential target for our method
call. However, it is possible to load classes at runtime, and
their origin could be unknown at the time the static analysis is
carried out—for example, a class could be a method param-
eter and be client-provided. As such, the set of implementers
for our interface cannot be completely determined.

A similar discussion can be carried out for calls made
towards an abstract class, as well as a regular class, with the
same reservation about the completeness of the set of possi-
ble implementations (or subclasses, in this case) that can be
known prior to runtime.

Further, if an application uses reflective calls, it would be
required to carry out difficult data analysis in order to deter-
mine the method body that will be invoked by such call.

CHA determines call graphs without any form of data
analysis, based solely on the set of classes (and their inheri-
tance relationships) made available for analysis.

Given the set of all available application classes AllClass-
es, and a type (i.e. class/interface) T , we define I mpl(T)

as the set of classes C ∈ AllClasses that directly imple-
ment/extend T . That is, if c ∈ I mpl(T) then the execution
of the Java code c.get Superclass() returns T , or T is part
of c.get I nter f aces().

In Java bytecode, a method invocation carries with it the
information in the tuple (T, methodName, paramTypeList),
with T the compile time-determined type of the receiver,
and paramT ypeList the list of compile-time determined
types of the formal parameters of the method. In Fig. 3, T
is java.util.Map; paramT ypeList is (java.lang.Object,
java.lang.Object) - because this is the only available sig-
nature that matches our call (refer to the Java Virtual Machine
specification [10]). We are interested in obtaining the set of
possible method bodies, B(T, S), that the call could be dis-
patched to. These bodies would have the same signature S
(i.e., method Name, paramT ypeList pair), what is left to

C1

C2

I1 <extends>

<impements>

Fig. 4 Interface implementation providing method bodies through par-
ent

determine is the set of classes T that declare this method
(i.e., provide an implementation). We say a class c declares
a method with signature S, and write c :: S, if the execution
of the Java code c.getDeclaredMethod(methodName,param-
TypeList) succeeds.

For a call (T, S), the possible method bodies belong to,
I mpl+(T), the transitive closure under the inheritance rela-
tionship of T . That is because “any” class having T as a parent
could potentially contain the method body the call would be
dispatched to. Additionally, if T is a class, then we want to
consider it as well in our set of possible implementations. In
general, we shall label with AllImpl(T) either I mpl+(T), if
T is an interface, or I mpl+(T) ∪ T if T is a class.

If I 1 is an interface declaring a method with signature S
(as defined above), it is possible that none of the elements of
I mpl+(I 1) declare (implement) that method. Consider the
situation in Fig. 4. Our interface, I 1, is implemented by C2,
which, in turn, extends C1. It is possible that our method (not
depicted in the figure) be provided by C1 and not by C2, and
C2 still be considered a legal implementation of I 1.

In such a case, we need to extend the set of classes to
search for a method body to include parent classes of the
elements c ∈ All I mpl(I 1). For such a c, we would be inter-
ested only in the most specific implementation of the method
with signature S, that is, the implementation provided by a
parent class p of c, but not by any other parent of c that is a
child of p. If we use the notation a <: b to indicate that a is
a subtype of b, we define �S

T = c, with T <: c, c :: S and
�d, with T <: d and d <: c and d :: S.

We can summarize that, given a method call specified by
a pair (T, S) as above, the set of classes that provide method
bodies that this call could be dispatched to is:1

I mpls(T, S)=
⎧
⎨

⎩

{c|c ∈ All I mpl(T), c :: S}, if T class
{u|u = �S

c , c ∈ All I mpl(T)}∪
{c|c ∈ All I mpl(T), c :: S}, if T interface

Then, the set of method bodies corresponding to our call
(T, S) is: B(T, S) = {m|c :: m, c ∈ I mplsS

T }, with m of the
form (Ti , Si), as before.

1 The formula below includes classes that have all their methods over-
ridden by subclasses. This is intentional, since it is still possible that
such classes be instantiated.

123

252 M. Trofin, J. Murphy

Given a method (T0, S0), we define the set C(T0, S0) as the
set of method calls of the form (Ti , Si) made from (T0, S0)

(this set can be practically extracted with a bytecode analyzer,
like ASM [11]), and the set P(T0, S0) = {(Tj , S j)|(Tj , S j) ∈
B(Ti , Si),∀(Ti , Si) ∈ C(T0, S0)}. Based on the Java Virtual
Machine Specification [10], it can be argued that P(T0, S0) is
guaranteed to contain all method bodies that might be called
from (T0, S0), assuming that no reflective or native method
calls are made, and that the application does not load new
classes at runtime, unknown at the time of the analysis.

Definition 1 (Call graph of a method) Given a method m
(through a pair (T, S) as before), we define the call graph of
m a directed graph where nodes represent methods (and are
labeled with (T, S) pairs). An arc from a node (T1, S1) to a
node (T2, S2) exists, if (T2, S2) ∈ P(T, S).

Based on the definitions and observations above, the
resulting call graph is complete, in the sense that any node in
the graph points to all the methods that it might call (under
the assumptions listed above).

3.2 CHAEJB : extracting EJB call graphs

In an EJB scenario, the definitions above are not readily
applicable. The problem lies with the fact that components
do not explicitly implement their interfaces via regular Java
mechanisms (i.e., using the keyword “implements”). Instead,
this relationship is expressed in the deployment descriptor
using XML constructs. A second aspect specific to EJB appli-
cations is that components can give relative names to other
components they might use, again via the deployment des-
criptor. In turn, this information can “hint” towards possible
bindings taking place at runtime—this aspect, however, will
be investigated as part of our future work.

To address the problem of interface—implementation
relationship, we observe that it is sufficient to include the
information contained by deployment descriptors when com-
puting AllImpl(T), where T is a component interface,
namely, the relationship between a component’s interface(s)
and its implementation. Formally, we can refer to
AllImpEJBl(T)= AllImpl(T)∪{C |C implements T }, where T
is an EJB business interface and C is an EJB component
implementation, and the relation “implements” between T
and C exists if there is an entry in a deployment descriptor
stating that.

We can now construct “component-aware” graphs using
Definition 1, and replacing AllImpl with AllImplEJB when
computing any of the other sets (like P , etc.). The same
claim can be made, namely, that the set of method bod-
ies evaluated to possibly correspond to a call is complete,
under the same set of assumptions (i.e. no native or reflec-
tive calls, and no runtime loading of new classes). Essentially,

(Ta,Sa)

(t1,s1) (t4,s4)

(t2,s2) (Td,Sd)

(Tb,Sb)

(t3,s3)

(Tc,Sc)

(a)

(Ta,Sa)

(Td,Sd) (Tb,Sb)

(Tc,Sc)

(b)

Fig. 5 Extracting component call graphs

CHAEJB requires the inclusion in CHA of non-language-spe-
cific information.

So far we can obtain call graphs showing a mixture of
component as well as plain Java calls. We define in what
follows the component-level call graph of a method:

Definition 2 A CHAEJB component-level call graph of a
method is obtained from the “component-aware” call graph
of that method as follows: non-component nodes are removed
from the graph; from the remaining nodes, two such nodes,
representing component methods (T1, S1) and (T2, S2) are
reconnected if, in the original graph, there existed a path from
(T1, S1) to (T2, S2) which did not contain another component
method

Figure 5 shows an example, where nodes with capital let-
ters (e.g. (T a, Sa)) represent component methods. Figure 5a
shows the initial call graph, while Fig. 5b depicts the resulting
component call graph.

Note that details as to how EJB components are deployed
(i.e., on different hardware servers) are not relevant to the call
graph extraction, as long as all component classes, regardless
where they would run, are considered.

4 CMS/BC semantics and analysis

Let us start by considering the call graph in Fig. 6,
where nodes depict component methods (e.g. Command

123

Static verification in contextual composition frameworks 253

CommandProcessor::processCommand
(transactions mandatory)

Purchasing::purchaseProduct
(transactions supported)

Logging::Log
(transactions never)

Product::getPrice
(transactions required)

Product::getName
(transactions required)

Fig. 6 Example Annotated Call Graph

Processor:: processCommand) together with
their CMS boundary conditions (e.g. (transactions
required)):

The external client calls processCommand. The value
of the transaction context that the client provides cannot be
predicted, so it can be assumed that it may be any valid value
- including no value at all (the “null” value).

The transactional boundary condition (BC) of process
Command is mandatory. From the semantics of this BC
(see table 1), we know that, if the client provides no trans-
action context, the execution cannot continue, however, if a
context is provided, it is simply kept, and the execution con-
tinues (i.e. processCommand is called). We know, then,
that if processCommand executes, it does so in some
transaction context.

Next, let us pick the situation where processCommand
callsLog. The latter’s transactions BC isnever. That means
that, if a transaction context is provided, the execution cannot
continue, however, if no transaction context is provided, it is
left unmodified and the execution continues. Now, based on
the reasoning above, we are guaranteed that, at this stage,
there is, in fact, a transaction context available, meaning
that the execution cannot continue, and Log is not going to
be called. Since our initial assumption was that the transac-
tion context the external client calls with can have any value
(including no value), it means that, in all cases, in this partic-
ular call graph,Logwill not be executed due to a composition
error (BC mismatch).

On a separate path,processCommand callspurchase
Product. The latter’s transactions BC does not change the
transactions context - therefore, the transactions context is
still the value that it had in processCommand - therefore,
a non-null value. Going further, purchase Product calls
getPrice, with the transactions BC specified as
required. That means that if a null transactions context

is provided, a new one is created, however, if a non-null
transactions context is provided, it is simply kept—a redun-
dancy case. Since we are guaranteed, at this stage, that a
non-null context is passed, the execution of the transactions
CMS at this point is redundant for this call graph, regardless
of the initial (external client-provided) value of the transac-
tions context.

What becomes apparent from the analysis sketch above
is that the focus of the analysis is what is known about the
set of values the context lies on after the enforcement of a
particular BC, given some knowledge about the set of values
the context lied on before this enforcement; and what can be
said about the execution of the CMS enforcing this BC, given
such knowledge about the initial set of values (for example,
that it is redundant).

The next section studies in more detail how to repre-
sent (model) such information about BC enforcement (the
M meta-model), how to use such information to carry anal-
ysis with the aim of detecting properties of the execution of
CMSs, such as redundancies or errors; and how to extract
inter-component call graphs to be used for such analysis.

4.1 M: Describing CMS/BC Semantics

Let us assume that boundary condition languages for some
BC domain2 d are described through a set, Ld , containing
all valid expressions for this domain. For example:
Ltransactions = {required, requires new, supported,

never, not supported, mandatory}
Lsecuri ty = {r |r is a role in a securi t y realm}

We will next denote with Dd the set of all context values
for some domain d. For example:
Dtransactions = {x |x is a transaction id} ∪ E
Dsecuri ty = {x |x is a user in a securi t y realm}

where the set E represents the set of “null” transaction con-
texts—that is, the absence of such context. This case needs
to be considered, since the informal semantics of the trans-
actions BC language mentions it.

Let us assume that CMSs behave like functions of the
form fd : Ld × Dd → Dd . The current examples of BCs in
EJB suggest that the informal description of the semantics of
BCs (or CMSs) is policy-like. This leads, conveniently, to a
definition of fd through partial functions, as follows:

fd(e, x) =

⎧
⎪⎪⎨

⎪⎪⎩

∀x ∈ Pre1, f (e1, x) = y, y ∈ Post1
∀x ∈ Pre2, f (e2, x) = y, y ∈ Post2
. . .

∀x ∈ Prek, f (ek, x) = y, y ∈ Postl

2 Domain, in the sense of “area of interest”.

123

254 M. Trofin, J. Murphy

Fig. 7 A model for the transactions CMS

where Prei ⊆ Dd , Posti ⊆ Dd , and ei ∈ Ld .
The notations Prei and Posti were used to refer to the

domain and co-domain, respectively, of the i th partial func-
tion.

For example, Fig. 7 depicts ftransactions - incompletely,
for reasons of space, a full depiction is given in section 4.3.
The notation E was used to indicate the set of null trans-
action contexts (which has only one value), while the set F
indicates the set of non-null transaction contexts.

By convention, in the case of an error, fd(ei , x) ∈ φ.
Based on the discussion in the introduction of this section,

the aim is to be able to assert the following:

1. given some arbitrary S ⊆ Dd , and some expression
e ∈ Ld , what set does fd(e, x),∀x ∈ S, lie on; and

2. for the same S and e, what can be said about the execu-
tion of the CMS for the domain d, when it attempts to
calculate f (c, x),∀x ∈ S.

For example, in the example in Fig. 7, if x ∈ F , then
we know that (1) ftransactions(required, x) ∈ F , and also
that (2) the execution of the CMS calculating ftransactions is
redundant.

4.2 M: Rules for Defining CMS semantics

Let us consider the following definitions:

Definition 3 (O) For some domain d, if Pre ⊆ Dd and
e ∈ Ld , we define O : Ld × P(Dd) → P(Dd), with
O(e, Pre) � {y|∀x ∈ S, fd(e, x) = y}.

In particular, in the partial function definitions used before,
Posti = O(ei , Prei).

Next, let us consider T AGS a set of symbols that each
describes a property of the execution of a CMS. This set can
be chosen independent of the domain. For example, in both
the cases of transactions and security, we are interested in
redundancies and errors, so a set T AGS = {redundant,
error} can be chosen. The elements of the set do not carry
any semantics for our analysis purposes, they are expected to
mean something for the user of the analysis. However, it is
expected that their meaning is mutually orthogonal (i.e. the
set should not contain at the same time two symbols meaning
redundant and not redundant, respectively). We can
refer to an element of T AGS as a tag.

Fig. 8 Defining a function through tagged expressions

We can now define:

Definition 4 (T) For some domain d, if Pre ⊆ Dd and e ∈
Ld , T : Ld × P(Dd) → P(T AGS), with T (e, Pre) �
{Y |∀x ∈ S, the calculation by the CMS of fd(e, x) exhibits
all properties in Y }.

For example, in the case of transactions, T (required,

F)= {redundant} (based on Table 1).
To accommodate for tags, we can extend the definition

of fd before to fd : Ld × Dd → Dd × P(T AGS). M is a
set of rules for defining such fd through partial functions, as
shown in Fig. 8.

It can be observed that the essential elements of such a
definition are the ei , Prei , Posti , and Ti , respectively. As
such, a short-hand definition for such fd is through a set
of tuples (ei , Prei , Posti , Ti)—as the examples in Sect. 4.3
will further illustrate. These tuples must satisfy the following
properties:

1. ∀(e, x) ∈ Ld × Dd , there is one and only one partial
function defined.

2. in any expression, Ti is the set of tags for fi .
3. the set of tags Ti is complete, in the sense that if some

t ′ ∈ T AGS − Ti , the CMS computing fd(ei , x), ∀x ∈
Di , does not have the tag t ′ associated.

4. by convention, if for some e′ ∈ L and Pre′ ⊆ Dd ,
∀x ∈ Pre′, f (e′, x) leads to an error, then a partial func-
tion f ′

d : e′ × Pre′ → φ × T ′, for some T ′, must be
present in the definition of fd .

The next question is how to compute, from an M model, O
and T sets for an arbitrary pair (e, S), with e ∈ Ld , S ⊆ Dd .

Theorem 1 Given the M model of a domain d, some e ∈ Ld,
and some set S ∈ Dd, O(e, S) and T (e, S) can be computed
as follows:

• if there is some i for which S ⊆ Prei and ei = e, then
O(e, S) = Posti , and T (e, S) = Ti , from the construc-
tion of the M model. Because of condition 1 above, such
an i is unique;

• otherwise, O(e, S) = ⋃
all i O(e, Xi), and T (e, S) =

⋂
all i T (e, Xi), where Xi = S ∩ Prei , and Xi 	= φ

123

Static verification in contextual composition frameworks 255

Proof The first part of the theorem is immediate, from the
construction of a M model, and was included just for com-
pleteness. For the second part, for the O equation: ∀x ∈ S,
from condition 1 in the definition, we know that we can find in
the M model partial functions i where e = ei and x ∈ Parti .
For such i , S ∩ Prei 	= φ, since the intersection contains at
least x . Then, from the model, f (e, x) ∈ Posti , which is
included in O(e, S) (from the way O(e, S) is calculated), so
this means that fd(e, x) ∈ O(e, S′), ∀x ∈ S.

For the T equation, similar to the first proof, ∀x ∈ S, we
can find partial functions i so that x ∈ Parti . From construc-
tion, T (e, S) ⊆ Ti . Since this holds for all x ∈ S, it follows
that T thus calculated is the set of tags for the pair (e, S).
�

Theorem 2 (Correctness of O and T under vague assump-
tions) If S, S′ ⊆ Dd and S ⊆ S′, then for any e ∈ Ld,
O(e, S) ⊆ O(e, S′) and T (e, S′) ⊆ T (e, S). We refer to
the assumption that the context belongs to such a set S′ as a
vague assumption.

Proof It follows from the expressions for O and T that the
number of partial functions in a M model providing satisfac-
tory Prei terms for S′ is at least as large as that for S. That
means more Posti terms in the expression for O and T . Then
we have that O(e, S′) = O(e, S) ∪ R and that T (e, S′) =
T (e, S) ∩ P (where R,P denote the additional Posti terms).
Hence O(e, S) ⊆ O(e, S′) and T (e, S′) ⊆ T (e, S).
�

This theorem guarantees that overestimating the set of val-
ues the context might lie on, yields correct results, in terms
of finding the tags associated with the enforcement of the
BC, as well as an overestimation of the set of the resulting
context.

4.3 Illustration: EJB boundary checks

For illustration, we will describe the semantics of the security
and transactions CMS as found in EJB.

4.3.1 Security

The M model for security is

fsecuri t y :
{

(r, u(r), u(r), {redundant}),∀r ∈ Lsecuri ty (1)

(r, u(r)C , φ, {error}),∀r ∈ Lsecuri t y (2)

where the notation u(r) denotes the set of users in Dsecuri ty

that have the role r .
It can be observed that the semantics are well-formed.

The numbers in brackets (e.g. (1) or (2)) are simply used for
labeling (e.g., T1 = {redundant})

The relationship between the different roles cannot be
known in general. Let us consider the situation in Fig. 9,

admin
guest

user

manager

root

Fig. 9 Example of a security realm

where some roles share users and some not (i.e., there are
users in multiple roles, while others have only one role).

We can see that, for example:
O(admin, u(root)) = u(root); T (admin, u(root)) =

{redundant}
This is expected, since all users in the root role are also

in the admin role. Theorem 1 produces the same result:
since u(root) ⊆ u(admin), this example corresponds to the
first part of the theorem, and O(admin, u(root)) is sim-
ply Pre1. From expression 1 in the M model for security,
Pre1 is u(root). Similarly, T (admin, u(root)) = T1 =
{redundant}.

Let us consider the following examples:

1. O(admin, u(admin)) = u(admin);
T (admin, u(admin)) = {redundant}

2. O(admin, u(user)) = u(user) ∩ u(admin);
T (admin, u(user)) = φ

In the first equation, it is known that the user belongs
to u(admin), therefore, as expected, enforcing the secu-
rity constraint admin leaves the context unchanged and the
security CMS is redundant. Let us analyze how these results
are calculated. From Theorem 1, we know that, in order to
calculate O(admin, u(admin)), we must calculate: X1 =
u(admin) ∩ u(admin) and X2 = u(admin) ∩ u(admin)C .
As such, X1 = u(admin) and X2 = φ. Then only the first
partial function in the M model of security participates in
the calculation of O and T , and O(admin, u(admin)) =
u(admin) and T (admin, u(admin)) = T1 = {redundant}.

In the second equation, X1 = u(user) ∩ u(admin) and
X2 = u(user) ∩ u(admin)C . Neither of these evaluates
to φ. From the formula for O , we need now to determine:
O(admin, u(user) ∩ u(admin)) and O(admin, u(user) ∩
u(admin)C). The former has the property that u(user) ∩
u(admin) ⊆ u(admin), which means that it evaluates sim-
ply to what the M model specifies: therefore, u(user) ∩
u(admin), which is Post1 for Pre1 = u(user)∩u(admin).
Similarly, since u(user) ∩ u(admin)C ⊆ u(admin)C , then
O(admin, u(user)∩u(admin)C) = φ - again, this is known
from the M model. The result is that O(admin, u(user))

123

256 M. Trofin, J. Murphy

= u(user)∪u(admin). This is expected: a successful check
for a user being in the role admin, when the user is known
to be a user means that the users that pass this check must
be in both roles.

For T (admin, u(user)), since both X1 and X2 are not
evaluating to φ, T (admin, u(user)) = {redundant} ∩
{error} = φ. Again, this is expected: checking for users in
the roleadmin among users in the roleusermight succeed,
but not always: hence, the CMS is not always redundant, nor
always leading to an error, therefore, nothing can be said
about it.

Let us consider one more example based on Fig. 9, namely,
checking for the role manager, when it is known that the
context belongs to the set u(user) ∪ u(admin). For
O(manager, u(user) ∪ u(admin)), X1 = u(user) ∪
u(admin) ∪ u(manager) and X2 = u(user) ∪ u(admin) ∪
u(manager)C . Since the rolemanager shares no users with
neither admin nor user, X1 = φ and X2 	= φ. This means
that O(manager, u(user) ∪ u(admin)) = φ - since just
the second partial function in the M model of security par-
ticipates. Similarly, T (manager, u(user) ∪ u(admin)) =
{error} - since only the second partial function in M par-
ticipates. This is expected: checking for the role manager,
in this case, is bound to always lead to errors, since no user
can possibly be in all three roles (manager, admin, and
user).

4.3.2 Transactions

The M model for transactions is given by ftransactions as
follows:

ftransactions(e, x) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(required, E, F, φ) (1)
(required, F, F, {redundant}) (2)

(supported, D, D, {redundant}) (3)

(requires new, D, F, φ) (4)

(never, F, φ, {error}) (5)
(never, E, E, {redundant}) (6)

(not supported, E, E, {redundant}) (7)
(not supported, F, φ, φ) (8)

(mandator y, F, F, {redundant}) (9)
(mandator y, E, φ, {error}) (10)

Let us consider:

O(mandatory, Dtransactions) and T (mandatory,

Dtransactions).

We start by calculating: X5 = Dtransactions ∩ E = E
and X6 = Dtransactions ∩ F = F . Neither evaluate to φ,
and O(mandatory, E) = φ and O(mandatory, F) = F .
Therefore, O(mandatory, Dtransactions) = F and T
(mandatory, Dtransactions) = φ.

Dd

T(e1,Dd)

O(e1,Dd)

T(e2, O(e1,Dd))
1 2

Fig. 10 Analysis method

4.4 A: Analyzing call graphs

We can now describe our mechanism for analyzing call
graphs. The goal of the analysis is associating tags to the
execution of a particular CMS at every point in a call graph—
in other words, to associate tags to nodes. The value of the
context attribute associated with the top node of the graph
is unknown, therefore, it lies somewhere on Dd . Refer to
Fig. 10, which depicts a simple example, where two meth-
ods (the nodes) have constraints e1 and e2 associated (for the
same domain d). We determine O(e1, Dd) and T (e1, Dd) for
the top method in the graph. The T thus determined is the
set of tags associated with the CMS executed in front of this
method, while the O is used as parameter in the computa-
tion of O and T for the methods called from the current one.
Hence, O(e1, Dd) is used to compute the tags for the CMS
in front of method 2.

Definition 5 (A) Given a call graph and any path in this call
graph originating at the top node, and labeling the nodes in
such path in order, starting with 0 for the top node, 1 for
the node immediately connected to this node, and so forth,
then the tags associated with a call (node) i are given by
T (ei , Oi), with Oi = O(ei−1, Oi−1), where ei is the con-
straint associated for the domain d with the node (method)
i , and O0 = Dd .

Theorem 3 (A produces correct results) Assuming that the
tuples are properly defined, A guarantees that CMS execu-
tions are correctly (but perhaps incompletely) tagged, ∀x, x
being the value of the context at the top node.

Proof (Induction) Given a path as described in Definition 5,
we observe that for i = 0 (i.e. for the first method),
T (e0, O0) = T (e0, Dd) and that Dd is a vague assumption
for the set of values of the context at this point, which means
(Theorem 2) that the set of tags is correct.

For i = 1, O1 = O(e0, O0) = O(e0, Dd). Since Dd was
a vague assumption for the initial set of values of the context,
from Theorem 2 it follows that O1 is a vague assumption for
the set of values the context has before method 1 is called.
This means (based on the same theorem) that the set of tags
for i = 1 is correct but maybe incomplete.

Then, for i = k, k > 1, if we assume Ok−1 is a vague
assumption, then T (ek, Ok−1) is correct. Then, by induction,
the theorem is proven.
�

What does this mean? In general, it depends on the details
of the analysis. For the cases considered throughout the paper,

123

Static verification in contextual composition frameworks 257

JAR
/

dir

EAR WAR

xml

Call Graph Analyser

Call Graph Extractor

Set algebra

O and T calculation

Domain Semantics

P
rolog

U
ser Interface

Fig. 11 EJB analyzer

it means two things are possible: (1) not all redundant CMS
executions are detected, and (2) not all composition
mismatches are detected.

In the first case, an effect is that redundancy elimination
mechanisms leave the system in an optimized, but sub-
optimal state. Since, however, the detection is correct, the
transformation of the system to this state is guaranteed to be
semantics-preserving.

In the second case, it simply means that, while the reported
composition mismatches are correctly identified, it may be
the case that additional mismatches be detected at runtime.
The value here is that the analyst can confidently address the
early-detected cases, and, while the need for runtime verifi-
cation is not removed, the effort is reduced.

5 Validation

To validate M, A, and CHAEJB , we need to show that they
can be used to analyze real scenarios. We implemented a
prototype call graph analysis tool for EJB applications. The
prototype has three parts: an inter-component call graph
extractor (implementing CHAEJB), an analyzer (implement-
ing A), and a user interface.

The call graph extractor is given, via the user interface
(UI), a list of locations covering all the classes of an applica-
tion. These locations are either jar files, directories, enterprise
archives (“EAR” files) containing EJB components and their
XML deployment descriptors, or web archives (war files)
containing servlets (Fig. 11).

The classes are loaded by a specialized class loader. This
class loader maintains I mpl(T) relationships, and is “EJB-
aware”, meaning that it generates I mpl(T) for components
as well. Class bytecode is visited using ASM [11]. The call
graph of a method is generated using the information

s e c u r i t y (Cond , In , Cond , Input , [redundant]) .
s e c u r i t y (Cond , Input ,−Cond , f , [e r r o r]) .

:−assert (d i s j o i n t (n , o)) .
trans−a t t r i bu t e (requ i red , Input , some , some , [redundant]) .
trans−a t t r i bu t e (requ i red , Input , none , n , []) .

trans−a t t r i bu t e (never , Input , some , f , [e r r o r]) .
trans−a t t r i bu t e (never , Input , none , none , [redundant]) .

Fig. 12 Example Prolog rendering of BC semantics

contained in the bytecode, as well as the I mpl(T) relation-
ships provided by the specialized class loader. The method to
start the analysis from is specified via the UI. It is left to the
client of the analyzer to decide how top methods are selected.
The full description of the call graph extractor is out of the
scope of this article.

The call graph analyzer is defined around a Prolog inter-
preter. We decided to represent sets as set algebra expres-
sions. Individual terms are Prolog atoms, and represent
“basic” sets in the domain. How a domain is broken down
into such basic sets is left open, however, the assumption is
that they are neither disjoint, nor in any inclusion relationship
with each other, unless explicitly specified.

A simple set algebra module is provided, which can con-
struct and reduce expressions. It additionally provides the
means for indicating whether two basic sets are disjoint or
if one is included in the other. When an expression is con-
structed, it is always attempted to verify whether it reduces
to φ (represented with the atom f). Equivalence to φ is the
single relevant result, since we are interested in the value of
intersection expressions as part of the calculation of O and T .

On top of the algebra module, we defined the computation
of O and T as a single predicate, o_and_t. Given the name
of a domain (as an atom), a constraint (an atom as well), and
a set expression as constructed by our set algebra module,
it returns the O as another set expression, and T as a list of
atoms.

Tuples are defined as predicates which mimic their math-
ematical definition. The name of the predicate is the name of
the domain. Figure 12 depicts the “translation” into Prolog
of our original tuples, as defined in Sect. 4.3 (with n and o
as defined in that section). Note that there is an additional
element in the tuple, namely, the second parameter is used
to provide the set of values the context is currently know to
belong to (necessary to determine intersections with Prei

sets).
The transactions domain is broken down in the two sets,

as defined previously in Sect. 4.3. In the implementation, we
used the atoms some for the set of non-null transaction ids,
and none for the set of null transaction ids (F and respec-
tively E).3 The sets are represented by the Prolog atoms

3 Since capital letters are interpreted by Prolog as variables, and since
the “f” atom was already chosen for the φ symbol, we chose these more
verbose labels for the E and F sets.

123

258 M. Trofin, J. Murphy

Fig. 13 Analysis of
transactions boundary
conditions in PetStore

MainServlet.doGet

EJBControllerLocalEJB.processEvent

[]

ShoppingControllerEJB.getShoppingClientFacade

[]

ShoppingClientFacadeLocalEJB.setUserId

’.’(redundant, [])

UniqueIdGeneratorEJB.getUniqueId

’.’(redundant, [])

UniqueIdGeneratorEJB.getCounter

’.’(redundant, [])

CounterEJB.getNextValue

’.’(error, [])

CounterEJB.getCounter

’.’(?, [])

CounterEJB.getName

’.’(?, [])

CounterEJB.setCounter

’.’(?, [])

with the same name, and, additionally, their disjointness is
explicitly indicated, in order to ensure well-formedness. For
security, any Prolog atom can be used to represent a security
role, and the Prolog translation for the M model for security
operates with roles generically (as did the M model).

It is the responsibility of the designer of such tuples to
ensure that the atoms used to represent domains and con-
straints is consistent with the literal representation they have
in the framework to which the application being analyzed
belongs, or alternatively provide mappings. For example, in
EJB, the transaction constraints start with capital letter, how-
ever, since that is interpreted by Prolog as variable names,
we chose to lowercase them.

Currently, the output of the analyzer is graphviz files [12],
where nodes represent methods, and arcs are labeled with the
deduced tags.

For testing purposes, two EJB applications were used, Pet-
Store 1.3.2 [13] and MedRec 1.0 [14].

PetStore is a reference EJB application that was chosen
because it is meant to showcase “best practices” in EJB appli-
cation design, and, thus, should constitute a good source of
sample call scenarios. MedRec is a sample application devel-
oped as a demo for the WebLogic application server, and,
like PetStore, it is meant to showcase best practice design
patterns. Source code is freely available for both applica-
tions, and they are both relatively small in terms of number
of components, making manual verification of the results of
the analyzer possible.

We selected a servlet method as entry point for PetStore,
and verified the output of the call graph generator against
a manually produced output. For analysis, we introduced a
number of errors manually, and checked the output for their
presence. For exemplification, refer to Fig. 13.

The figure depicts a subset (for page space reasons) of
the call graph that would result if a client called the doGet

method of the MainServlet web component. The nodes
represent component methods (the package names are
removed for brevity). The arcs represent method calls. The
label of the arcs indicates the set of tags, if any, produced by
the analysis.

The analysis depicted in Fig. 13 is resumed to the domain
of transactions. It can be observed how most transaction
verifications are redundant - this is because most methods
have the required transaction configuration—with the
exception of the first component method, there is no need
for the rest to ensure there is a transaction context avail-
able. The exception is the getNextValue method of the
CounterEJB component, which we have modified the
transaction constraint, for testing purposes, to never, and,
as such, this call will always result in an error, in this call
scenario. The calls stemming out of the call causing a com-
position mismatch are label led with ?, indicating that the
analysis could not be performed for them (since they would
not be called).

In Fig. 14, the results of a similar analysis are presented,
for MedRec (again, a subset is shown, for space consider-
ations).

5.1 Experience with the analyzer and performance
characterization

Developing the set of tuples for a particular CMS (or BCs)
is a one-time effort, to be undertaken when such BCs are
defined. This means that application developers need not be
concerned at all with the definition of BC semantics, unless
they intend to define new ones. Using the analyzer is, in
our opinion, straight forward: all is needed is providing it
with the set of archives or directories containing the classes
of an application—listing the component EAR files would

123

Static verification in contextual composition frameworks 259

XMLUploadEJB.onMessage

AdminSessionEJB.insertMedicalRecord

[]

AdminSessionEJB.findPatientByEmail

’.’(redundant, [])

PatientEJB.getPatient

’.’(redundant, [])

PatientEJB.getDateOfBirth

’.’(redundant, [])

AddressEJB.getAddress

’.’(redundant, [])

AddressEJB.getStreetName2

’.’(redundant, [])

AddressEJB.getStreetName1

’.’(redundant, [])

AddressEJB.getState

’.’(redundant, [])

Fig. 14 Analysis of transactions boundary conditions in MedRec

Table 2 cost of analysis

class loading (211 classes, 5 depl. desc.) 10s

call graph generation - 599 methods 0.76s

analysis - 1 domain, 31 methods 0.07s

all tests were run on a Pentium M 1.7 GHz

1 GB RAM machine

normally be sufficient; and the name and list of parameter
types of a method to start the analysis from. A particular
strength of our approach is that no application instantiation
is required—this, in the EJB case especially, saves consider-
able amounts of time.

Table 2 provides an orientative evaluation of the perfor-
mance characteristics that can be expected from an imple-
mentation of our analysis method, as measured on the
prototype. By far, the most expensive process is class load-
ing and deployment descriptor parsing. Call graph generation
for a servlet method (resulting in the reported 599 methods
visited) and analysis—out of the 599, 31 were component
methods—amount, together, to under 1 s. We envision our
analysis solution as a development environment-integrated
tool, and, as such, class loading would occur rarely and can
be a background task, running in parallel with the developer’s
activity. Call graph analysis is then fast enough to be provided
as a per-request operation.

The interpretation of the results of the analyzer, as well
as the actions that might need to be undertaken, are out of
the scope of this article. In the case of redundancies, we
have described a self-optimizing platform design elsewhere
[6].

6 Related work

The authors of [15] describe an extensible runtime verifi-
cation framework. The framework requires the component
application be deployed on an application server, where vali-
dation agents run testcases. By their nature, runtime testcases
lead to incomplete results, and, furthermore, the degree of
incompleteness/correctness is unknown. Or approach offers
two benefits: it does not require the instantiation of the appli-
cation, and the completeness and correctness of the results it
produces is characterized.

Cadena [16] is an integrated environment for building
and modeling CCM systems. Among other features, Cade-
na facilitates the specification and verification of correctness
properties of models of CCM systems. The verification con-
sists of model-checking using dSPIN [17], and, as such, the
main issues being verified have to do with the distributed
and concurrent characteristics of the application. As such,
middleware (platform) services are modeled, however, only
insofar as event and thread services.

Work in static analysis of role-based access control
(security) in component applications [18] focuses on field
access, using points-to analysis to determine which com-
ponent fields are accessed by which component method(s).
Reasoning about potential security problems is made on the
assumption that, if some role q is given access to a method
m1 but not to a method m2, then the level of access of m1 is
expected to be the same or less than that of m2. Information
about security realm configuration is not taken into account.
Our approach, in contrast, is applicable to more than just the
security aspect of an application (we discussed security and
transactions in this article). Limiting the comparison to the
domain of security, our analysis is more extensive, not being
limited only to field access control, and the quality of the
results can be improved, as the details of the security realm
can be taken into account.

Other component verification techniques [19,20] focus
on the validation of structural properties of components and
are orthogonal to our efforts. Reference [19] focus on con-
finement checking: the verification of EJB framework-spe-
cific rules that specify that direct access to the Java object
implementing a component should not be made directly, but
only through the wrapper built around it by the component
platform. The authors propose a “confinement discipline”, a
programming convention which can be verified statically at
deployment time. Reference [20] focus on “bad store” errors.
These errors result in data structures that violate framework
rules—for example, an object cannot be stored into a data
structure rooted at another object.

In [21], the authors describe a static method for detect-
ing composition errors arising from component behavior.
The component framework targeted is SOFA [22]. In SOFA,
communication among components can be captured formally

123

260 M. Trofin, J. Murphy

using behavior protocols, component behavior descriptions
based on regular languages. This formalism offers the basis
for error detection.

ESC/Java [8] is a static analysis tool that attempts to find
runtime errors in Java programs annotated using JML. In
turn, JML annotations are Java-like. In effect, the analysis
relies on the semantics of a closed set of languages (JML
and Java), as opposed to the situation discussed here, where
the set of languages used in the analysis is unknown.

Class hierarchy analysis [9] has been employed in a num-
ber of settings. In [23], for example, it is compared with two
other static analysis algorithms in terms of their ability to aid
the optimization of C++ programs. In [24], under the name
of “data-driven simplification”, CHA is used in a Modula-3
linker, mld, to direct optimizations.

SOOT [7], a Java optimization framework, can generate
call graphs for entire Java applications [25]. In particular, the
method described in [25] offers certain benefits over CHA,
especially in terms of graph size. The applicability of call
graph extraction methods, other than CHA, to the area of EJB
(or similar) application analysis is subject of future work. In
particular, the use of aspects specific to EJB, such as rela-
tive names specified in the deployment descriptor, hinting to
more “probable” inter-component calls, is of interest.

Algebraic expression reducers have been previously built
in academia, notably, REDUCE [26], or in the industry (e.g.,
Maple4). Any such tools could be used as a basis for defining
boundary conditions semantics, as well as for performing the
call graph analysis. We preferred building our own set alge-
bra reducer, as the above solutions are unnecessarily large
and generic for our purposes.

In general, the task of statically analyzing properties of a
program arising out of composition has been that of a type
checker, especially when the properties in question are for-
bidden runtime errors [27]. Our problem domain requires
more than just runtime error detections, and we were able to
address with one formalism an open number of properties,
out of which we focused on runtime error and redundancy
detection. The relationship between our work and type sys-
tems will be further investigated as part of our future work.

7 Conclusions and future work

We have presented an analysis method, A, for contextual
composition applications which can be used to detect prop-
erties associated with the services that enforce components’
boundary conditions. The method uses M models of the
semantics of such boundary conditions, and component-level
call graphs extracted using the CHAEJB method.

4 htttp://www.maplesoft.com.

We proved that the analysis produces correct results. We
have also shown that the correctness of the results is not
affected by vague assumptions of the initial value of the con-
text, however, the set of properties detectable may diminish.
One effect of this is that redundancy removal [6] is guaran-
teed to be semantics-preserving.

A prototype implementation, targeted at EJB applications,
has been used to validate the approach. The services/bound-
ary conditions modeled were transactions and security. The
properties targeted for analysis were redundancy and compo-
sition mismatch. We have validated our approach using the
prototype on two popular EJB applications.

A number of issues remain to be solved, for example,
whether a rigorous design strategy for designing M tuples
can be specified, as well as methods for reducing the call
graph produced through CHAEJB . For example, some EJB
containers apply rules for dependency injection—heuristics
based on these rules would aid in pruning call graphs.

References

1. Sun Microsystems. Enterprise JavaBeans Specification (2003).
http://java.sun.com/products/ejb/docs.html#specs

2. Don Box. Essential COM. Addison-Wesley (1998)
3. Object Management Group. Corba Component Model (2002).

http://www.omg.org
4. Ammons, G., Choi, J.-D., Gupta, M., Swamy, N.: Finding and

removing performance bottlenecks in large systems. In: Proceed-
ings of ECOOP (2004)

5. Trofin, M., Murphy, J.: A self-optimizing container design for
enterprise java beans applications. In: Proceedings of the Sec-
ond International Workshop on Dynamic Analysis (WODA 2004),
pp. 52–59 (2004)

6. Trofin, M., Murphy, J.: Removing Redundant Boundary Checks in
Contextual Composition Frameworks. J. Obj. Technol pp. 63–82,
July–August 2006

7. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E.,
Co, P.: SOOT - a Java Optimization Framework. In: Proceedings
of CASCON 1999, pp. 125–135 (1999)

8. Flanagan, C., Leino, K., Lillibridge, M., Nelson, C., Saxe, J.,
Stata, R.: Extended static checking for Java. In: Proceedings of
Programming Language Design and Implementation (2002)

9. Dean, J., Grove, D., Chambers, C.: optimization of object-oriented
programs using static class hierarchy analysis. Lecture Notes
Comput. Sci. 952, 77–101 (1995)

10. Lindholm, T., Yellin, F.: The JavaTM Virtual Machine Specifica-
tion. Sun Microsystems, Inc. (1999)

11. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a Code Manipu-
lation Tool to implement adaptable systems. In: Proceedings of
the ASF (ACM SIGOPS France) Journées Composants 2002 :
Systèmes à composants adaptables et extensibles (Adaptable and
Extensible Component Systems), November 2002

12. Gansner, E.R., North, S.C.: An open graph visualization sys-
tem and its applications to software engineering. Softw. Pract.
Exp. 30(11), 1203–1233 (2000)

13. Sun Microsystems. Java Pet Store Demo 1.3.2 (2003). http://java.
sun.com/developer/releases/petstore/

14. BEA Systems, Inc. Avitek Medical Records 1.0 Architecture
Guide (2003)

123

htttp://www.maplesoft.com
http://java.sun.com/products/ejb/docs.html#specs
http://www.omg.org
http://java.sun.com/developer/releases/petstore/
http://java.sun.com/developer/releases/petstore/

Static verification in contextual composition frameworks 261

15. Grundy, J., Ding, G.: Automatic validation of deployed j2ee com-
ponents using aspects. In ASE ’02: Proceedings of the 17th IEEE
International Conference on Automated Software Engineering.
Washington, DC, USA, p. 47. IEEE Computer Society (2002)

16. Hatcliff, J., Deng, X., Dwyer, M.B., Jung, G., Ranganath, V.P.:
Cadena: An integrated development, analysis, and verification
environment for component-based systems. In: International Con-
ference on Software Engineering (ICSE), pp. 160–173 (2003)

17. Demartini, C., Iosif, R., Sisto, R.: dSPIN: a dynamic extension of
SPIN. In SPIN, pp. 261–276 (1999)

18. Naumovich, G., Centonze, P.: Static analysis of role-based access
control in J2EE applications. SIGSOFT Softw. Eng. Not. 29(5),
1–10 (2004)

19. Clarke, D., Richmond, M., Noble, J.: Saving the World from Bad
Beans: Deployment-Time Confinement Checking. In: OOPSLA
’03: Proceedings of the 18th annual ACM SIGPLAN Confer-
ence on Object-Oriented Programing, Systems, Languages, and
Applications. New York, NY, USA, pp. 374–387. ACM Press,
New York (2003)

20. Reimer, D., Schonberg, E., Srinivas, K., Srinivasan, H., Dolby, J.,
Kershenbaum, A., Koved, L.: Validating Structural Properties of
Nested Objects. In: OOPSLA ’04: Companion to the 19th annual
ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications. New York, NY, USA,
pp. 294–304. ACM Press, New York (2004)

21. Adamek, J., Plasil, F.: Component Composition Errors and Update
Atomicity: Static Analysis. J. Softw. Mainten. Evolut. Res.
Pract. 17(5), 363–377 (2005)

22. Plasil, F.: Enhancing component specification by behavior
description: the SOFA Experience. In: WISICT ’05: Proceedings
of the 4th International Symposium on Information and Com-
munication Technologies, pp. 185–190. Trinity College Dublin
(2005)

23. Bacon, D.F., Sweeney, P.F.: Fast Static Analysis of C++ Virtual
Function Calls. In: OOPSLA ’96: Proceedings of the 11th ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pp. 324–341. ACM Press,
New York (1996)

24. Fernandez, M.F.: Simple and effective link-time optimization of
Modula-3 Programs. In: SIGPLAN Conference on Programming
Language Design and Implementation, pp. 103–115 (1995)

25. Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R.,
Lam, P., Gagnon, E., Godin, C.: Practical virtual method call
resolution for Java. In OOPSLA ’00: Proceedings of the 15th
ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications. New York, NY, USA,
pp. 264–280. ACM Press, New York (2000)

26. Hearn, A.C.: REDUCE User’s and Contributed Packages
Manual, Version 3.7. Knorad-Zuse-Zentrum Berlin, Germany,
February 1999

27. Cardelli, L.: Handbook of Computer Science and Engineering,
chapter Type Systems. CRC Press, New York (1996)

123

	Static verification of component composition in contextualcomposition frameworks
	Abstract
	Introduction
	Problem domain
	Statically deriving inter-component call graphs
	Determining Java call graphs
	CHAEJB: extracting EJB call graphs
	CMS/BC semantics and analysis
	M: Describing CMS/BC Semantics
	M: Rules for Defining CMS semantics
	Illustration: EJB boundary checks
	Security
	Transactions
	A: Analyzing call graphs
	Validation
	Experience with the analyzer and performance characterization
	Related work
	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

