
Int J Softw Tools Technol Transfer (2008) 10:29–56
DOI 10.1007/s10009-007-0050-1

SPECIAL SECTION CPN 06

Analysis of the Datagram Congestion Control Protocol’s
connection management procedures using the sweep-line
method

Somsak Vanit-Anunchai · Jonathan Billington ·
Guy Edward Gallasch

Published online: 4 September 2007
© Springer-Verlag 2007

Abstract State space explosion is a key problem in the
analysis of finite state systems. The sweep-line method is a
state exploration method which uses a notion of progress to
allow states to be deleted from memory when they are no
longer required. This reduces the peak number of states that
need to be stored, while still exploring the full state space.
The technique shows promise but has never achieved reduc-
tions greater than about a factor of 10 in the number of states
stored in memory for industrially relevant examples. This
paper discusses sweep-line analysis of the connection man-
agement procedures of a new Internet standard, the Data-
gram Congestion Control Protocol (DCCP). As the intuitive
approaches to sweep-line analysis are not effective, we intro-
duce new variables to track progress. This creates further state
explosion. However, when used with the sweep-line, the peak
number of states is reduced by over two orders of magnitude
compared with the original. Importantly, this allows DCCP
to be analysed for larger parameter values.

Somsak Vanit-Anunchai was partially supported by an Australian
Research Council Discovery Grant (DP0559927) and Suranaree
University of Technology.
Guy Edward Gallasch was supported by an Australian Research
Council Discovery Grant (DP0559927).

S. Vanit-Anunchai (B) · J. Billington · G. E. Gallasch
Computer Systems Engineering Centre,
School of Electrical and Information Engineering,
University of South Australia,
Mawson Lakes Campus, SA 5095, Australia
e-mail: somsak.vanit-anunchai@postgrads.unisa.edu.au

J. Billington
e-mail: jonathan.billington@unisa.edu.au

G. E. Gallasch
e-mail: guy.gallasch@unisa.edu.au

Keywords State space methods · Sweep-line · DCCP ·
Coloured Petri Nets · State explosion

1 Introduction

The state space method is one of the main approaches for
formally analysing and verifying the behaviour of concur-
rent and distributed systems. In essence, this method gener-
ates all or part of the reachable states of the system. After the
state space is generated, many analysis and verification ques-
tions about the system’s behaviour (such as “does the system
deadlock or livelock?”), can be answered. Unlike theorem
proving, state space analysis tools are easier to use because
they involve less complex mathematics that is often hidden
by automatic computer tools, and they can provide counter
examples for debugging purposes. Despite these advanta-
ges, the state space approach suffers from the well-known
state explosion problem [31]. Even relatively small systems
can generate state spaces that cannot be stored in computer
memory. Thus many attempts have been made to alleviate this
problem. An excellent overview and literature review about
the state explosion problem is given in [31]. The attempts
to alleviate state explosion fall into three broad classes. The
first considers methods that represent the state space in a
condensed or compact form, such as symmetry reduction
[4,14]. The second class restricts state space exploration to
a subset of the reachable states and includes partial order
methods [29,38] such as stubborn sets [30]. The third class
involves deleting or throwing away states or state information
on-the-fly during state space exploration. It includes meth-
ods such as bit-state hashing [13,39], state space caching
[10,12], the sweep-line method [2,23] and the pseudo-root
technique [28]. To further reduce the state space, techniques
from the different classes have also been combined, e.g.
sweep-line and equivalence [1].

123

30 S. Vanit-Anunchai et al.

The sweep-line method exploits a notion of progress
exhibited in the system being analysed. Progress mappings
are defined by the user, to map the states of the system into
a set of ordered progress values. Based on progress values,
this method deletes old states from memory by reasoning that
states with a lower progress value will not (or are unlikely to)
be reached from states with a higher progress value. During
exploration, a number of system properties, such as absence
of deadlocks, can be verified on-the-fly.

In the area of formal analysis and verification of com-
puter protocols that recover from loss using retransmissions,
the maximum number of retransmissions of messages plays
an important role in state explosion. When the maximum
number of retransmissions increases, the size of the state
space tends to increase rapidly [5]. When using a small max-
imum number of retransmissions, errors tend to reveal them-
selves quickly, but this does not guarantee that the system
is error free for larger values of the maximum number of
retransmissions. Thus it is necessary to extend state space
analysis to include the highest maximum number of retrans-
missions possible, up to the limit specified by the proto-
col’s specification. Previously we have used the sweep-line
method to verify termination properties of Coloured Petri Net
(CPN) [15,16,25] models of various protocols such as the
Wireless Transaction Protocol (WTP) [11], the Internet Open
Trading Protocol (IOTP) [8], and the Transmission Control
Protocol [6].

The Datagram Congestion Control Protocol (DCCP),
specified in Request For Comments (RFC) 4340 [19], is a
new transport protocol proposed by the Internet Engineering
Task Force (IETF). The protocol is designed to support vari-
ous kinds of congestion control mechanisms used by differ-
ent delay sensitive applications. We use CPNs to build and
analyse a formal executable model of DCCP’s connection
management procedures according to RFC 4340 [19]. Our
analysis [33] shows that DCCP connection establishment can
fail when sequence numbers wrap.1 However, state explosion
limits our analysis to a maximum of only one retransmis-
sion. We need to extend the analysis to cover two retransmis-
sions and to determine two properties: whether the undesired
deadlocks are still present; and whether any new errors have
emerged as a result of the additional retransmissions.

Instead of applying the more conventional approach of
trying to reduce the size of the state space, we induce state
space explosion by introducing new state variables into the
specification model in order to capture additional informa-
tion during model execution. By carefully selecting new state
variables, the state space of the augmented model has a
structure which facilitates far more efficient sweep-line

1 Sequence number wrap occurs when the sequence number rolls over
the maximum sequence number to zero.

analysis when compared with the state space of the speci-
fication model.

This paper is a revised version of [36]. It has been expanded
to include the full CPN model of DCCP’s connection man-
agement procedures. The contribution of this paper is three-
fold. Firstly, the paper presents the first complete formal
specification of the connection management procedures of
RFC 4340 at a level of detail sufficient for analysing all the
main procedures. Building the CPN model has allowed us
to remove ambiguities so that the risk of misinterpretation is
very low. The CPN specification has the additional benefit
that all relevant aspects of the procedures that are defined in
different parts of the RFC have been brought together. Sec-
ondly, this paper provides insight into how an effective pro-
gress mapping for the DCCP connection management CPN
model is derived. This is important because an effective pro-
gress mapping is key to the performance of the sweep-line
method. Thirdly, we apply sweep-line analysis to the aug-
mented model and demonstrate that the number of peak states
stored, compared with sweep-line analysis of the specifica-
tion model, can be significantly reduced. This has allowed
us to extend the analysis of DCCP connection establishment
to scenarios which could not be obtained with conventional
analysis.

This paper is organised as follows. Section 2 briefly
describes DCCP’s connection management procedures
which are then formalised in Sect. 3. Section 4 identifies
sources of progress and derives a progress mapping for our
augmented model of DCCP’s connection management pro-
cedures. The analysis results obtained for scenarios where
sequence numbers wrap are discussed in Sect. 5. Finally,
Sect. 6 presents our conclusions and future work. We assume
some familiarity with CPNs [15,16,25].

2 Overview of DCCP’s connection management
procedure

DCCP connection management has one connection estab-
lishment procedure and five closing procedures. These pro-
cedures are defined in [19] with the state diagram shown
in Fig. 1. DCCP uses eight packet types: Request, Response,
Ack, DataAck, Data, CloseReq, Close and Reset to set up,
transmit data and close down the connection. Two packet
types, Sync and SyncAck, are used for synchronization pro-
cedures. Figure 2 shows the typical procedure for connection
set up (Fig. 2a) and close down (Fig. 2b).

In brief, a connection is initiated by an application at the
client issuing an “active open” command. (We assume that
the application at the server has issued a “passive open” com-
mand.) After receiving the “active open” the client sends a
DCCP-Request packet to the server to initialise sequence
numbers, and enters the REQUEST state. The server replies

123

Analysis of the DCCP’s connection management procedures using sweep-line method 31

CLOSED

REQUEST

PARTOPEN

OPEN

LISTEN

RESPOND

CLOSING

TIMEWAIT

CLOSEREQ

server active close
snd CloseReq

active close
or rcv CloseReq
snd Close

rcv Close
snd Reset

rcv Response
snd Ack/DataAck

passive openactive open
snd Request

rcv Request
snd Response

rcv Ack/DataAckrcv packet

2 MPL
timer exipres

rcv Reset

rcv Close
snd Reset

Fig. 1 DCCP state diagram redrawn from [19]

Client Server
 CLOSED CLOSED

[active open] [passive open]
 LISTEN

Request (seq=x)
REQUEST

Response (seq = y, ack=x)
 RESPOND

 Ack (seq = x+1, ack = y)
PARTOPEN

 Ack (seq = y+1, ack = x+1)
 OPEN

OPEN

(a)

(b)

 Client Server
OPEN OPEN

[server active close]
 CloseReq (seq = m, ack = n)

 CLOSEREQ

 Close (seq = n+1, ack = m)
CLOSING

 Reset (seq = m+1, ack = n+1)
 CLOSED

TIMEWAIT
(2MPL)

 .
CLOSED

Fig. 2 Typical connection establishment and release scenarios

with a DCCP-Response packet, indicating that it is will-
ing to communicate with the client and acknowledging the
DCCP-Request. The client sends a DCCP-Ack (or DCCP-
DataAck) packet to acknowledge the DCCP-Response packet
and enters the PARTOPEN state. The server acknowledges
the receipt of the DCCP-Ack, enters the OPEN state and is

 Client Server
 OPEN OPEN

[active close] Close (seq = m, ack = n)
 CLOSING

 Reset (seq = n+1, ack = m)
 CLOSED

TIMEWAIT
 (2MPL)

 CLOSED (a)

 Client Server
 OPEN OPEN

 Close (seq = m, ack = n) [active close]
 CLOSING

 Reset (seq = n+1, ack = m)
CLOSED

TIMEWAIT
 (2MPL)

 .
 CLOSED

(b)

Fig. 3 Alternative close down procedures

ready for data transfer. Upon receipt of a DCCP-Ack (or
DCCP-Data, DCCP-DataAck or DCCP-SyncAck) packet,
the client also enters OPEN and is now also ready for data
transfer.

For connection close down, the application at the server
issues a “server active close” command. The server sends a
DCCP-CloseReq and enters the CLOSEREQ state. The cli-
ent, upon receiving the DCCP-CloseReq, enters CLOSING
and generates a DCCP-Close packet in response. After the
server receives the DCCP-Close packet, it responds with a
DCCP-Reset packet and enters the CLOSED state. When the
client receives the DCCP-Reset packet, it holds the TIME-
WAIT state for 2 maximum packet lifetimes (2MPL) before
also entering the CLOSED state.

Alternatively, either side may send a DCCP-Close packet
to close the connection when receiving an “active close” com-
mand from the application. The end that sends the DCCP-
Close packet will hold the TIMEWAIT state as shown in
Fig. 3. Beside these three closing procedures, there are
another two possible scenarios concerned with simultaneous
closing. The first procedure is invoked when both users issue
an “active close”. The second occurs when the client user
issues an “active close” and the application at the server issues
the “server active close” command. For a detailed description
of the connection set up and close down procedures, see [19].

During the connection, DCCP entities maintain a set of
variables. In addition to the state and timers, the impor-
tant variables are Greatest Sequence Number Sent (GSS),
Greatest Sequence Number Received (GSR) and Greatest
Acknowledgement Number Received (GAR). The Initial
Sequence Numbers Sent and Received (ISS and ISR),
the Valid Sequence Number window width (W) and the

123

32 S. Vanit-Anunchai et al.

Acknowledgement Number validity window width (AW) are
also important parameters for a connection. Based on these
parameters and the state variables, the valid sequence and
acknowledgement number intervals are defined by Sequence
Number Window Low and High [SWL,SWH], and Acknowl-
edgement Number Window Low and High [AWL,AWH]
[19].

3 CPN model of DCCP connection management

We have followed the development of DCCP Connection
Management (DCCP-CM) since the publication of Internet
Draft version 5 [21] in 2003. Design/CPN [27] has been used
to build and maintain our DCCP connection management
CPN models, with the aim of detecting errors or deficien-
cies in the protocol procedures. We analysed the connection
establishment procedures of version 5 and discovered a dead-
lock [32]. When version 6 [17] was released, we revised our
CPN model to reflect the changes and found similar dead-
locks [22]. Version 11 of the DCCP specification was sub-
mitted to IETF for approval as a standard. We updated our
model accordingly and included the synchronization mech-
anism. We found that the deadlocks were removed but we
discovered a serious problem known as chatter2 [34,37]. On
updating the CPN model to RFC 4340, we investigated the
connection establishment procedure when sequence numbers
wrap [33] and, as indicated in the introduction, found that
the attempt to set up the connection can fail. In [7,9] we
defined the DCCP service and confirmed that the sequence
of user observable events of the protocol conformed to its
service. Most recently [35] we have reported our experience
with the incremental enhancement and iterative modelling of
the connection management procedures as the DCCP speci-
fication was developed. However, none of these papers have
presented the full CPN model for RFC 4340, with [35] only
illustrating how the specification has evolved and [33] just
including results.

Thus the purpose of this section is to present the full CPN
specification of the connection management procedures. We
include the structure of the specification in a CPN hierarchy
diagram, all of the CPN pages and some of the declarations in
the rest of this section. The complete declarations including
related ML functions can be found in Appendix. Insight into
the decisions behind the modelling choices can be found in
[35] and are thus not included, as the emphasis of this paper
is (a) to provide a complete formal specification that cap-
tures DCCP’s connection management and synchronization

2 The chatter scenario comprised undesired interactions between Reset
and Sync packets that could involve long but finite exchanges of these
packets where no progress was made, until finally the system corrected
itself.

procedures and (b) to allow the development of the progress
mappings for the sweep-line to be understood.

3.1 Modelling assumptions

RFC 4340 specifies a number of protocol mechanisms for
DCCP: reliable connection management, synchronization of
sequence numbers, reliable feature negotiation and acknowl-
edgement/optional mechanisms. The acknowledgement/
optional mechanisms are normally used during data trans-
fer together with a procedure for congestion control which is
determined using the feature negotiation proocedures. Dif-
ferent congestion control procedures are (or will be) specified
in other RFCs (e.g. RFC 4341, RFC 4342). Our CPN model
captures all of DCCP’s procedures associated with connec-
tion set up, close down and synchronization as specified in
RFC 4340 but does not include the data transfer and feature
negotiation procedures. A DCCP packet is modelled by its
packet type, and long (or short) sequence and acknowledge-
ment numbers. Other fields in the DCCP header are omitted
because they do not affect the operation of the connection
management procedure. Malicious attacks are not consid-
ered. In this paper we only discuss the case when the com-
munication channels can delay and reorder packets without
loss.

3.2 Model structure

The DCCP Connection management (DCCP-CM) CPN
model comprises four hierarchical levels shown in Fig. 4.
It has a total of 6 places, 52 executable transitions, 15
substitution transitions and 18 ML functions. The top level
page named DCCP#1 is the DCCP overview page shown in
Fig. 5. Two substitution transitions DCCP_C and DCCP_S
(rectangles with the HS tag) in Fig. 5 represent the client and
the server. Both are linked to the second level page named
DCCP_CM.

The DCCP_CM page comprises eight substitution transi-
tions shown in Fig. 6. Each substitution transition is linked
to the third level page. UserCommands models the actions
taken when receiving commands from users. The IdleState
page combines similar processing actions required in the
CLOSED, LISTEN and TIMEWAIT states. The Request,
Respond and PartOpen pages define the major processing
actions in each of the corresponding states. The actions taken
when receiving the DCCP-Data, DCCP-Ack and DCCP-
DataAck packets in the OPEN, CLOSEREQ and CLOSING
states are modelled in the DataTransfer page. The Closing-
Down page defines the procedures undertaken on receiving a
DCCP-Close in the states: RESPOND, PARTOPEN, OPEN,
CLOSEREQ and CLOSING and when the client receives
a DCCP-CloseReq in the PARTOPEN, OPEN and CLOS-
ING states. Finally, CommonProcessing shown in Fig. 7

123

Analysis of the DCCP’s connection management procedures using sweep-line method 33

Fig. 4 The DCCP hierarchy
page

DCCP#1 M Prime

DCCP_CM#2

RcvSync#11

Declarations#16

PartOpen#7

ClosingDown#9

DataTransfer#8

RcvReset#12

Retransmission#13

Request#5

UnExpected#14

IdleState#4

UserCommands#3

Respond#6

CommonProcessing#10

Hierarchy#10010

RcvInvalid#15

DCCP_S

DCCP_C

UserCMD

ClosingDown

Idle_State

Common

RcvSync

RcvReset

UnexpectedPkt

RcvInvalidHeader

Request

Respond

PartOpen

TimeOut

DataTransfer

Fig. 5 The DCCP overview
page

CB
Client_State

1‘ IdleState CLOSED_I

COMMAND

App_Client

1‘a_Open

DCCP_S
HS

Ch_C_S

PACKETS

Ch_S_C

PACKETS

DCCP_C
HS

CB
Server_State

1‘IdleState CLOSED_I

COMMAND

App_Server

1‘p_Open

comprises five substitution transitions which are linked to
fourth level pages. They model the procedures that are com-
mon to various states including: receiving DCCP-Sync and
DCCP-SyncAck packets, the receipt of DCCP-Reset packets,
retransmissions and timer expiry and processing unexpected
packets and those with an invalid header.

3.3 The DCCP overview page

The top level page (DCCP#1) shown in Fig. 5 comprises two
substitution transitions (for the client and server as mentioned
above) and six places. There are two places that allow com-
munication with the applications that use DCCP, one for the
client, App_Client and the other for the server, App_Server.
The states of the client and server protocol entities are stored
in the places Client_State and Server_State. The client and
server communicate via two channel places, Ch_C_S and
Ch_S_C, shown in the middle of Fig. 5. Each models a uni-
directional reordering channel, from the client to the server
and the server to the client respectively.

Each place has a type (or colour set) which is defined in
a set of declarations. The declarations define the data struc-
tures and any associated variables and functions used in the
model. The declarations are written in CPN ML [3], a variant
of Standard ML [26].

In Fig. 5, the channel places, Ch_C_S and Ch_S_C, are
typed by PACKETS. Figure 8 defines PACKETS (lines 27–30)
as the union of four colour sets: Type1LongPkt, Type2
LongPkt, Type1ShortPkt and Type2ShortPkt. Long sequence
numbers (SN48) in line 15 are represented using the ML
infinite integer type and range from zero to 248 − 1. Short
sequence numbers (SN24) in line 17 are represented by inte-
gers ranging from zero to 224−1. Each packet (lines 21–26) is
defined by a product comprising the Packet Type (lines 3–9),
X (Extended Sequence Number bit, called ‘X’ in [19], line 12)
and the sequence number (or a record of sequence and
acknowledgement numbers). Short sequence numbers are
allowed only for DCCP-Data, DCCP-Ack and DCCP-
DataAck packets. Thus line 7 defines a packet type for DCCP-
Data with short sequence numbers, while lines 8–9 define a
different packet type for DCCP-Ack and DCCP-DataAck

123

34 S. Vanit-Anunchai et al.

State

CB

P I/O

Ch_A_B

PACKETS

P Out

UserCMD
HS

ClosingDown
HS

Request
HS

Idle_State
HS

Respond
HS

DataTransfer
HS

PartOpen

HS

Ch_B_A
PACKETS

P In

App_A

COMMAND
P In

Common
ProcessingHS

Fig. 6 DCCP_CM page

State

CB

P I/O

RcvSync
HS

Output

PACKETS

P Out

Input
PACKETS

P In

RcvReset

HS

TimeOut

HS

UnexpectedPkt
HS

RcvInvalidHeader
HS

Fig. 7 CommonProcessing page

because they also include acknowledgements. Strong typing
of packets is very useful for developing and debugging the
model.

DCCP states and state variables are stored in a struc-
ture called the Control Block. The places Client_State and
Server_State in Fig. 5, are thus typed by CB, for Control
Block. We classify DCCP states into three groups accord-
ing to their functional behaviour: idle, request and active
states. The differences are mainly related to how an entity
responds to DCCP-Reset and DCCP-Sync packets. When

Fig. 8 Definition of DCCP PACKETS

Fig. 9 DCCP’s control block and user commands

in the CLOSED, LISTEN and TIMEWAIT states, the GSS,
GSR, GAR, ISS and ISR state variables do not exist, while
the client in the REQUEST state has only GSS and ISS
instantiated. Thus we define each group with a different set
of state variables.

Figure 9 defines CB (lines 18–19) as a union of three
colour sets: IDLE, REQUEST and ACTIVExRCNTx-
GSxISN. IDLE (lines 8–9 of Fig. 9) defines three idle states:
CLOSED, LISTEN and TIMEWAIT. The CLOSED state is
split into CLOSED_I to represent the initial CLOSED state

123

Analysis of the DCCP’s connection management procedures using sweep-line method 35

State

CB

P I/O

Output

PACKETS

P Out

App_A

COMMAND

P In

p_Open

a_Open

a_CloseInREQUEST

s_a_Close

[active_state = RESPOND orelse
active_state = S_OPEN]

a_Close

[active_state=PARTOPEN orelse active_state = RESPOND orelse
active_state = C_OPEN orelse active_state =S_OPEN]

IdleState CLOSED_I

IdleState LISTEN

1‘p_Open

IdleState CLOSED_I

ReqState(0,C_iss,C_iss) PKT1 (Request, LONG, C_iss)
1‘a_Open

IdleState CLOSED_F

ReqState (rcnt,gss,iss)
PKT2 (Rst, LONG,
{SEQ=incr(gss), ACK=ZERO})

1‘a_Close

ActiveState(CLOSEREQ,0,
incrGSS(g),isn)

if (active_state =RESPOND orelse active_state = S_OPEN)
then ActiveState(S_CLOSING, 0, incrGSS(g),isn)
else ActiveState(C_CLOSING, 0, incrGSS(g), isn)

ActiveState(active_state, rcnt, g, isn)

ActiveState(active_state,rcnt,g,isn)

PKT2(CloseReq,LONG,{SEQ=incr(#GSS(g)),
ACK=#GSR(g)})

PKT2(Close,LONG,
{SEQ=incr(#GSS(g)),ACK=#GSR(g)})

1‘a_Close

1‘server_a_Close

Fig. 10 The UserCommands page

and CLOSED_F to represent the final CLOSED state. Dif-
ferentiating the initial CLOSED state from the final CLOSED
state helps increase the effectiveness of the sweep-line
method when using the client and server states as a measure of
progress. Because we consider only one connection instance,
splitting the CLOSED state into CLOSED_I and CLOSED_F
does not affect the protocol’s behaviour. The colour set
REQUEST (line 10) is a product comprising RCNT (Retrans-
mission Counter, line 3), GSS and ISS. Because there is only
one state in this group, the REQUEST state is already distin-
guished from other states by using the ML selector, ReqState,
in the union defined in lines 18–19. ACTIVE (lines 11–13)
defines five DCCP states: RESPOND, PARTOPEN, OPEN,
CLOSEREQ and CLOSING. Because the client and server
respond to the CloseReq packet differently in the OPEN and
CLOSING states, we differentiate these states for the client
and server by prefixing them by “C” for the client; and “S” for
the server. This allows us to use DCCP_CM as a page instance
for the client and server, greatly reducing redundancy in the
model. This was of great benefit when upgrading the model as
DCCP was developed. ACTIVExRCNTxGSxISN (line 14)
is a product comprising ACTIVE (lines 11–13), RCNT, GS
(Greatest Sequence Numbers and Greatest Acknowledge-
ment Numbers, line 4) and ISN (Initial Sequence Numbers,
line 5).

The places App_Client and App_Server at the top of Fig. 5,
typed by COMMAND, model DCCP user commands (i.e.,
commands that can be issued by the applications that use
DCCP). Figure 9 defines a colour set COMMAND on lines

21–22. COMMAND comprises user commands for opening
and closing connections.

The distribution of tokens in the places of a CPN is called
a marking and represents a state of the system. The ini-
tial marking represents the initial state. In Fig. 5, the ini-
tial markings are written above each place. Client_State and
Server_State have an initial marking of one CLOSED_I idle
state token. The user command 1‘a_Open is the initial mark-
ing of App_Client indicating that the client’s application
desires to open a connection. Similarly, the initial marking
of App_Server is 1‘p_Open requesting the server to enter the
LISTEN state so that it is ready to receive requests from cli-
ents. The initial markings of Ch_C_S and Ch_S_C are empty,
representing that no packets are currently in either channel.

3.4 The third and fourth level pages

The UserCommands page in Fig. 10 specifies the actions
when the entity receives commands from its application.
Transition a_Open models sending a Request when the
client receives an active open command in CLOSED.
Transition p_Open models the server entering the LISTEN
state on receiving a passive open command in CLOSED.
When the server receives a server active close command in
the RESPOND or OPEN state, it sends a CloseReq packet
and enters CLOSEREQ. This is modelled by transition
s_a_Close. Transitions a_CloseInREQUEST and a_
Close model the actions taken when the entity receives an

123

36 S. Vanit-Anunchai et al.

State

CB

P I/O

RcvLongWAck

[p_type2<>Rst]

Output

PACKETS

P Out

Input

PACKETS

P In

RcvLongWOAck

[idle_state <> LISTEN orelse
p_type1 <> Request]

RcvShortWOAck

[ShortEnable]

TimerExpires

RcvShortWAck

[(p_type2 = Ack orelse
p_type2 = DataAck) andalso
ShortEnable]

RcvRequest

PKT2 (Rst, LONG,
SeqAck(NoGS, SA48 sn_an))IdleState idle_state

PKT2 (p_type2, LONG, sn_an)

PKT1 (p_type1, LONG, sn)

IdleState idle_state
PKT2(Rst, LONG, SeqAck(NoGS, S48 sn))

IdleState idle_state

PKT2 (Rst, LONG,
SeqAck(NoGS, S24 sn24))

PKT1s (Data, SHORT, sn24)

IdleState TIMEWAIT

IdleState CLOSED_F

IdleState idle_state
PKT2 (Rst, LONG,
SeqAck(NoGS,SA24 sn24_an24))

PKT2s (p_type2, SHORT, sn24_an24)

IdleState LISTEN
PKT2 (Response, LONG, {SEQ=S_iss,ACK=sn})

PKT1 (Request, LONG, sn)

ActiveState (RESPOND,0,{GSS=S_iss,
GSR=sn,GAR=S_iss},{ISS=S_iss,ISR=sn})

Fig. 11 The IdleState page

Input

PACKETS

P In

RcvType2ShortPkt

[not ShortEnable]

RcvType1ShortPkt

[not ShortEnable]

State

CB

P I/O

PKT2s (p_type2s,SHORT,sn24_an24)

PKT1s (Data, SHORT, sn24)

cb

cb

Fig. 12 The RcvInvalid page

active close command in the REQUEST, PARTOPEN,
RESPOND and OPEN states.

The IdleState page in Fig. 11 specifies the actions of the
entity when it is in CLOSED, LISTEN or TIMEWAIT. The
transition named RcvRequest models the server receiving
a Request in the LISTEN state. It initializes all state vari-
ables, enters the RESPOND state and replies with a Response
packet. TimerExpires abstractly models the maximum
packet lifetime timer expiring in the TIMEWAIT state.

The remaining four transitions model that when any other
packets, including Sync and SyncAck, are received (in any
idle state), the entity responds with a Reset. Because no
sequence number variables (GSS, GSR and GAR) exist in
an idle state, according to Sect. 8.3.1 of [19], the acknowl-
edgement number of the Reset being sent is equal to the
sequence number of the received packet. The sequence num-
ber of the Reset is equal to the acknowledgement number
of the received packet plus one. If the received packet has
no acknowledgement number, the sequence number of the
Reset is equal to zero. These requirements are captured by

the function SeqAck which is used to calculate the sequence
and acknowledgement numbers of the Reset packet.

ShortEnable in a guard’s expression (e.g. see transition
RcvShortWOAck) disables or enables the use of short seq-
uence numbers. If short sequence numbers are not allowed,
a packet received with a short sequence number is discarded.
This behaviour is captured in the RcvInvalid page shown in
Fig. 12.

The Request page. In the REQUEST state only Response
and Reset packets are expected. Upon receiving a valid
Response packet, the client replies with either an Ack or
a DataAck packet, initializes ISR, GSR and GAR and enters
the PARTOPEN state. These actions are represented by the
transitio RcvResponseSndAck in Fig. 13. Because there is
no record of ISR and GSR in REQUEST, only the acknowl-
edgment number in the Response can be validated according
to step 4 of the pseudo code in Sect. 8.5 of [19]. This action is
modelled by function AckValid. If short sequence numbers
are allowed, the outgoing packet could include either a long
or a short sequence number. Two variables, ack_dataack and

123

Analysis of the DCCP’s connection management procedures using sweep-line method 37

State

CB

P I/O

Output

PACKETS
P Out

Input

PACKETS
P In

RcvResponseSndAck

RcvLongWAckSndRst

[p_type2 <> Rst andalso
p_type2 <> Response]

RcvLongWOAckSndRst

RcvShortWAckSndRst

[(p_type2s = Ack orelse
p_type2s = DataAck) andalso
ShortEnable]

RcvShortWOAckSndRst

[ShortEnable]

ReqState (rcnt, gss, iss)

if AckValid(Response,sn_an,gss,iss,iss) then
ActiveState (PARTOPEN, 0,{GSS=incr(gss),
GSR=#SEQ(sn_an), GAR=#ACK(sn_an)},
{ISS=iss,ISR=#SEQ(sn_an)})
else IdleState CLOSED_F

PKT2 (Response, LONG, sn_an)

if AckValid(Response,sn_an, gss,iss, iss)
 then (if LS then 1‘PKT2 (ack_dataack, LONG,

 SeqAck(gssGS gss,SA48 sn_an))
else 1‘PKT2s (ack_dataack, SHORT,
 ShortSeqAck(gssGS gss,SA48 sn_an)))

else SndRstInReq(gss)

PKT2 (p_type2, LONG, sn_an)

SndRstInReq(gss)

IdleState CLOSED_F

ReqState (rcnt, gss, iss)

PKT1 (p_type1, LONG, sn)

ReqState (rcnt, gss, iss)

IdleState CLOSED_F
SndRstInReq(gss)

ReqState (rcnt, gss, iss)

PKT2s (p_type2s, SHORT, sn24_an24)

SndRstInReq(gss)

ReqState (rcnt, gss, iss)

PKT1s (Data, SHORT, sn24)

SndRstInReq(gss)

IdleState CLOSED_F

IdleState CLOSED_F

Fig. 13 The Request page

Output

PACKETS
P Out

Input

PACKETS

P In

State

CB

P I/O
RcvLongSndData

[p_type2 = Ack orelse
p_type2 = DataAck]

RcvRequest

RcvLongSndAckDataAck

[p_type2=Ack orelse
p_type2=DataAck]

RcvShortSndAckDataAck

[(p_type2s = Ack orelse
p_type2s = DataAck) andalso
ShortEnable]

RcvShortSndData

[(p_type2s=Ack orelse
p_type2s=DataAck) andalso
ShortEnable]

PKT2 (p_type2, LONG, sn_an)
if PktValid(p_type2, sn_an,g, isn) then
ActiveState (S_OPEN, 0, UpdateGS(g,SA48 sn_an), isn)
else ActiveState (RESPOND,rcnt,incrGSS(g),isn)

ActiveState (RESPOND,rcnt,g,isn)

PKT1 (Request, LONG, sn)

if ReqDataValid(Request, sn, g, isn) then
1‘PKT2 (Response, LONG, SeqAck(gGS g,S48 sn))
else SyncSnd(g,S48 sn)

if ReqDataValid(Request,sn,g, isn)
then ActiveState (RESPOND,rcnt,UpdateGS(g,S48 sn), isn)
else ActiveState (RESPOND, rcnt,incrGSS(g),isn)

ActiveState (RESPOND,rcnt,g, isn)

if PktValid(p_type2, sn_an, g, isn) then
 (if LS then 1‘PKT1 (Data, LONG, incr(#GSS(g)))
 else 1‘PKT1s (Data, SHORT, mod_sn24(incr(#GSS(g)))))

else SyncSnd(g,SA48 sn_an)

ActiveState (RESPOND,rcnt,g, isn)

if PktValid(p_type2, sn_an, g, isn) then
ActiveState (S_OPEN, 0,UpdateGS(g,SA48 sn_an), isn)
else ActiveState (RESPOND, rcnt,incrGSS(g), isn)

if PktValid(p_type2, sn_an, g, isn) then
 (if LS then 1‘PKT2 (ack_dataack, LONG,SeqAck (gGS g,SA48 sn_an))
 else 1‘PKT2s (ack_dataack, SHORT,

 ShortSeqAck(gGS g,SA48 sn_an)))
else SyncSnd(g,SA48 sn_an)

PKT2 (p_type2, LONG, sn_an)

if PktValid(p_type2s, extendSA(g,sn24_an24),g,isn) then
ActiveState (S_OPEN, 0,UpdateGS(g,SA24 sn24_an24),isn)
else ActiveState (RESPOND, rcnt,incrGSS(g),isn)

if PktValid(p_type2s, extendSA(g,sn24_an24), g, isn) then
 (if LS then 1‘PKT2 (ack_dataack, LONG, SeqAck(gGS g, SA24 sn24_an24))
else 1‘PKT2s (ack_dataack, SHORT,

ShortSeqAck(gGS g,SA24 sn24_an24)))
else SyncSnd(g, SA24 sn24_an24)

PKT2s (p_type2s, SHORT, sn24_an24)

if PktValid(p_type2s, extendSA(g,sn24_an24),g, isn) then
ActiveState (S_OPEN, 0,UpdateGS(g,SA24 sn24_an24), isn)
else ActiveState (RESPOND,rcnt,incrGSS(g),isn)

ActiveState (RESPOND,rcnt,g,isn)

ActiveState (RESPOND,rcnt,g, isn)

PKT2s (p_type2s, SHORT, sn24_an24)

if PktValid(p_type2s, extendSA(g,sn24_an24), g, isn)
then (if LS then 1‘PKT1 (Data, LONG, incr(#GSS(g)))
 else 1‘PKT1s (Data, SHORT,mod_sn24(incr(#GSS(g)))))
else SyncSnd(g, SA24 sn24_an24)

Fig. 14 The Respond page

LS, are used to select an Ack or DataAck packet with long or
short sequence number. If the Response is invalid, the entity
resets the connection. The reset sent is built by the function
SndRstInReq. Because the client has not yet recorded ISR,
the acknowledgement number of the outgoing Reset is equal
to zero according to Sect. 8.1.1 of [19]. The other transi-
tions model that if the client receives any packets other than
Response or Reset, it resets the connection.

The Respond page. This page (Fig. 14) models how the
server responds when it receives Request, Ack or DataAck
packets. When receiving a Request retransmitted from the

client, the server replies with a Response by the transition
RcvRequest. The transitions RcvLongSndAckDataAck
and RcvLongSndData model the server replying with either
an Ack or DataAck or Data packet and entering the OPEN
state when it receives an Ack or DataAck having a long
sequence number. The transitions RcvShortSndAckData
Ack and RcvShortSndData model similar actions when an
Ack or DataAck with a short sequence number is received.
All outgoing Ack, DataAck and Data packets can have either
long or short sequence numbers depending on the variable
LS. If LS is true, function SeqAck computes the long sequence

123

38 S. Vanit-Anunchai et al.

Fig. 15 Function SyncSnd sending a Sync packet

State

CB

P I/O

Output

PACKETS

P Out

Input

PACKETS

P In

RcvResponse

RcvDataLong

RcvAckDataAckLong

[p_type2=Ack orelse
p_type2=DataAck]

RcvDataShort
[ShortEnable]

RcvAckDataAckShort

[(p_type2s = Ack orelse
p_type2s = DataAck) andalso
ShortEnable]

ActiveState (PARTOPEN,rcnt,g,isn)

if PktValid(Response,sn_an,g,isn) then
 ActiveState (PARTOPEN,rcnt,UpdateGS(g,SA48 sn_an), isn)
else ActiveState (PARTOPEN,rcnt, incrGSS(g), isn)

if PktValid(Response,sn_an,g,isn)
 then (if LS then 1‘PKT2 (ack_dataack, LONG,

SeqAck(gGS g,SA48 sn_an))
else 1‘PKT2s (ack_dataack,SHORT,

ShortSeqAck(gGS g,SA48 sn_an)))
else SyncSnd(g,SA48 sn_an)

ActiveState (PARTOPEN,rcnt,g,isn)

ActiveState (PARTOPEN,rcnt,g, isn)

if PktValid(p_type2,sn_an,g, isn) then
ActiveState (C_OPEN, 0,{GSS=#GSS(g),
GSR=Update(#SEQ(sn_an),#GSR(g)),
GAR=Update(#ACK(sn_an),#GAR(g))}, isn)
else ActiveState (PARTOPEN,rcnt,incrGSS(g), isn)

PKT2 (p_type2, LONG, sn_an)

PKT1 (Data, LONG, sn)

PKT2 (Response, LONG, sn_an)

if ReqDataValid(Data,sn,g, isn)
then ActiveState (C_OPEN, 0,{GSS=#GSS(g),
GSR = Update(sn, #GSR(g)),GAR = #GAR(g) }, isn)
else ActiveState (PARTOPEN,rcnt,incrGSS(g), isn)

if PktValid(p_type2, sn_an, g, isn) then empty
else SyncSnd(g,SA48 sn_an)

if ReqDataValid(Data,sn,g, isn) then empty
else SyncSnd(g,S48 sn)

ActiveState (PARTOPEN,rcnt,g,isn)

if ReqDataValid(Data,extend_seq(#GSR(g),
 sn24), g, isn)

then empty else SyncSnd(g,S24 sn24)

PKT1s (Data, SHORT, sn24)if ReqDataValid(Data,extend_seq(#GSR(g),sn24),g, isn)
then ActiveState (C_OPEN, 0,{GSS=#GSS(g),
GSR = Update(extend_seq(#GSR(g),sn24), #GSR(g)),
GAR = #GAR(g) }, isn)
else ActiveState (PARTOPEN,rcnt,incrGSS(g), isn)

PKT2s (p_type2s, SHORT, sn24_an24)

ActiveState (PARTOPEN,rcnt,g, isn)

if PktValid(p_type2s, extendSA(g,sn24_an24),g, isn) then
ActiveState (C_OPEN, 0,{GSS= #GSS(g),
GSR=Update(extend_seq(#GSR(g), #SEQ(sn24_an24)), #GSR(g)),
GAR=Update(extend_seq(#GSS(g), #ACK(sn24_an24)), #GAR(g))}, isn)
else ActiveState (PARTOPEN,rcnt,incrGSS(g), isn)

if PktValid(p_type2s, extendSA(g,sn24_an24),g, isn)
then empty else SyncSnd(g,SA24 sn24_an24)

Fig. 16 The PartOpen page

and acknowledgement numbers of the outgoing packet. Simi-
lar to SeqAck, function ShortSeqAck generates short sequence
and acknowledgement numbers of the outgoing packet, when
LS is false. In active states, the sequence (and acknowl-
edgement) numbers validity check is done by the functions
ReqDataValid and PktValid. ReqDataValid is used to check
the sequence number of type1 packets (Request or Data).
PktValid is used to check both sequence and acknowledge-
ment numbers of type2 packets (see Fig. 8). If the packet is
sequence-invalid, DCCP sends a Sync packet defined by the
function SyncSnd in Fig. 15.

The PartOpen page. The PartOpen page (Fig. 16) is very
similar to the Respond page. It models how the client
responds when it receives Response, Ack, DataAck or Data
packets. When receiving a Response retransmitted from the
server, the client replies with an Ack or DataAck (transi-
tion RcvResponse). The transitions RcvDataShort and
RcvDataLong model that when the client receives a Data
packet with either a short or long sequence number, it
enters the OPEN state. The transitions RcvAckDataAck-
Long and RcvAckDataAckShort model similar actions

when an Ack or DataAck with a long or short sequence num-
ber is received. If the received packet is sequence-invalid,
DCCP sends a Sync packet instead, similar to the Respond
page. (Since we do not model DCCP’s data transfer
phase, when the client enters the OPEN state, it does not
reply.)

The DataTransfer page. (Fig. 17) model DCCP’s behav-
iour when receiving a Data, Ack or DataAck packet in
a state after the connection is established (i.e., in OPEN,
CLOSING and CLOSEREQ). It comprises four transitions:
RcvDataShort, RcvDataLong, RcvAckDataAckShort
and RcvAckDataAckLong. If the packet received is invalid,
these transitions reply with a Sync packet. When receiving
the valid packet, they do not reply but update the state vari-
ables accordingly.

The ClosingDown page (Fig. 18) defines DCCP’s behav-
iour when receiving a CloseReq or Close packet in an active
state. The transition RcvCloseReqClient models that when
the client receives a valid CloseReq, it enters the CLOSING
state and replies with a Close packet. The transition Rcv-
Close models the client or server receiving a Close packet.

123

Analysis of the DCCP’s connection management procedures using sweep-line method 39

State

CB

P I/O

Input

PACKETS

P In

RcvDataShort

[(active_state=S_OPEN orelse
active_state = C_OPEN orelse
active_state=CLOSEREQ orelse
active_state=C_CLOSING orelse
active_state=S_CLOSING) andalso
ShortEnable]

RcvDataLong

[active_state=S_OPEN orelse
active_state = C_OPEN orelse
active_state=CLOSEREQ orelse
active_state=C_CLOSING orelse
active_state =S_CLOSING]

Output

PACKETS

P Out

RcvAckDataAckLong

[(p_type2=Ack orelse p_type2 = DataAck)
andalso (active_state = S_OPEN orelse active_state = C_OPEN
orelse active_state = CLOSEREQ orelse
active_state = C_CLOSING orelse
active_state= S_CLOSING)]

RcvAckDataAckShort

[(active_state=S_OPEN orelse
active_state = C_OPEN orelse
active_state= CLOSEREQ orelse
active_state=C_CLOSING orelse
active_state = S_CLOSING) andalso
ShortEnable]

ActiveState (active_state, rcnt,g, isn)

if (ReqDataValid(Data,extend_seq(#GSR(g),sn24),g,isn))
then ActiveState (active_state, rcnt, {GSS=#GSS(g),
GSR=Update(extend_seq(#GSR(g),sn24),#GSR(g)),
GAR=#GAR(g)},isn)
else ActiveState (active_state,rcnt,incrGSS(g), isn)

PKT1s (Data , SHORT, sn24)

PKT1 (Data , LONG, sn)

ActiveState (active_state,rcnt,g, isn)

if (ReqDataValid(Data,sn,g,isn))
then ActiveState (active_state, rcnt,{GSS=#GSS(g),
GSR=Update(sn,#GSR(g)),GAR=#GAR(g)},isn)
else ActiveState (active_state,rcnt,incrGSS(g),isn)

if ReqDataValid(Data,extend_seq(#GSR(g), sn24),g,isn)
 then empty else SyncSnd(g,S24 sn24)

if ReqDataValid(Data, sn,g,isn) then empty else
SyncSnd(g,S48 sn)

if PktValid(p_type2,sn_an,g,isn) then
ActiveState(active_state,rcnt,{GSS=#GSS(g),
GSR=Update(#SEQ(sn_an),#GSR(g)),
GAR=Update(#ACK(sn_an),#GAR(g))},isn)
else ActiveState(active_state,rcnt,incrGSS(g),isn)

ActiveState(active_state,rcnt,g,isn)

ActiveState(active_state,rcnt,g,isn)

if PktValid(p_type2s, extendSA(g,sn24_an24) ,g,isn) then
ActiveState(active_state,rcnt,{GSS=#GSS(g),
GSR=Update(extend_seq(#GSR(g),#SEQ(sn24_an24)),#GSR(g)),
GAR=Update(extend_seq(#GSS(g),#ACK(sn24_an24)),#GAR(g))}, isn)
else ActiveState(active_state,rcnt,incrGSS(g), isn)

if PktValid(p_type2,sn_an,g,isn) then empty
else SyncSnd(g,SA48 sn_an)

if PktValid(p_type2s, extendSA(g,sn24_an24),g,isn)
then empty else SyncSnd(g,SA24 sn24_an24)

PKT2s(p_type2s, SHORT, sn24_an24)

PKT2(p_type2, LONG, sn_an)

Fig. 17 The DataTransfer page

State
CB

P I/O

Output

PACKETS

P Out

Input

PACKETS

P In

RcvCloseReqClient

[active_state = PARTOPEN orelse
active_state = C_OPEN orelse
active_state = C_CLOSING]

RcvClose

if PktValid(CloseReq,sn_an,g,isn) then
 1‘PKT2(Close, LONG,SeqAck(gGS g,SA48 sn_an))
else SyncSnd(g,SA48 sn_an)ActiveState (active_state, rcnt, g, isn)

if PktValid(CloseReq,sn_an,g,isn) then
ActiveState (C_CLOSING,
(if active_state = C_CLOSING then rcnt else 0),
UpdateGS(g, SA48 sn_an),isn)
else ActiveState (active_state, rcnt,incrGSS(g),isn)

PKT2 (CloseReq, LONG, sn_an)

if PktValid(Close,sn_an,g,isn) then
 1‘PKT2(Rst, LONG, SeqAck (gGS g, SA48 sn_an))
else SyncSnd(g,SA48 sn_an)

if PktValid(Close,sn_an,g,isn) then
IdleState CLOSED_F
else ActiveState (active_state,rcnt,incrGSS(g), isn)

ActiveState (active_state,rcnt,g, isn) PKT2(Close, LONG, sn_an)

Fig. 18 The ClosingDown page

If the Close is valid, DCCP resets the connection, otherwise
it sends a Sync packet.

The RcvSync page. The RcvSync page (Fig. 19) mod-
els DCCP receiving a Sync or SyncAck packet in an active
state. If the received Sync or SyncAck packet is invalid, the
packet is ignored. On receiving a valid Sync packet (see tran-
sition RcvSync), GSR is updated but GAR is not because
the acknowledgement number in the Sync packet could be
sequence-invalid. When a valid SyncAck is received, both
GSR and GAR are updated. Transition RcvSyncAckBefo-
reOpen models that when a valid SyncAck is received in
PARTOPEN or RESPOND, the endpoint enters C_OPEN or
S_OPEN, respectively, using function go_open (defined at
the end of Appendix). Transition RcvSyncAckAfterOpen

models DCCP receiving a SyncAck after it enters OPEN
(including the CLOSEREQ and CLOSING states).

The RcvReset page (Fig. 20) models the receipt of a Reset
packet. Transition InIdleState models that the Reset packet
is always discarded in an idle state. In an active state or the
REQUEST state if the Reset is valid, DCCP enters TIME-
WAIT. If the client receives an invalid Reset while in
REQUEST, it resets the connection using function SndR-
stInReq. Because the client has not yet recorded ISR, the
acknowledgement number of the outgoing Reset is equal to
zero according to Sect. 8.1.1 of [19]. Receiving an invalid
Reset in an active state results in DCCP replying with a
Sync packet (see the transition InActiveState). However,
the Sync packet has an acknowledgement number equal to

123

40 S. Vanit-Anunchai et al.

State

CB

P I/O

Output

PACKETS

P Out

Input

PACKETS

P In

RcvSyncAckBeforeOpen

[active_state = PARTOPEN
orelse active_state =RESPOND]

RcvSyncAckAfterOpen

[active_state = C_OPEN
orelse active_state = S_OPEN
orelse active_state = CLOSEREQ
orelse active_state = C_CLOSING
 orelse active_state = S_CLOSING]

RcvSync

ActiveState (active_state,rcnt,g,isn)

if PktValid(SyncAck,sn_an,g,isn) then
ActiveState (go_open(active_state), 0,{GSS=#GSS(g),
GSR=Update(#SEQ(sn_an), #GSR(g)),
GAR=Update(#ACK(sn_an),#GAR(g))}, isn)
else ActiveState (active_state,rcnt,g,isn)

PKT2 (SyncAck, LONG, sn_an)

ActiveState (active_state,rcnt,g,isn)

if PktValid(SyncAck,sn_an,g,isn) then
ActiveState (active_state,rcnt,{GSS=#GSS(g),
GSR=Update(#SEQ(sn_an), #GSR(g)),
GAR=Update(#ACK(sn_an),#GAR(g))},isn)
else ActiveState (active_state,rcnt,g,isn)

PKT2(SyncAck, LONG, sn_an)

if PktValid(Sync, sn_an, g, isn) then
1‘PKT2(SyncAck, LONG, {SEQ=incr(#GSS(g)),
ACK=#SEQ(sn_an)})
else empty

PKT2 (Sync, LONG, sn_an)

ActiveState (active_state, rcnt, g, isn)

if PktValid(Sync,sn_an,g,isn) then
ActiveState (active_state,rcnt,{GSS=incr(#GSS(g)),
GSR=Update(#SEQ(sn_an), #GSR(g)),
GAR=#GAR(g)}, isn)
else ActiveState (active_state,rcnt,g, isn)

Fig. 19 The RcvSync page

State

CB

P I/O

Output

PACKETS

P Out

Input

PACKETS

P In

InActiveState

InRequestState

InIdleState

ActiveState (active_state,rcnt,g,isn)

if PktValid(Rst, sn_an, g, isn)
then IdleState TIMEWAIT
else ActiveState (active_state,rcnt,incrGSS(g),isn)

PKT2 (Rst, LONG, sn_an)

if RstValidinReqState(sn_an,gss,iss)
then empty
else SndRstInReq(gss)ReqState (rcnt,gss,iss)

if RstValidinReqState(sn_an,gss,iss)
then IdleState TIMEWAIT
else ReqState (rcnt,IntInf.+(gss,ONE),iss)

PKT2(Rst, LONG, sn_an)

if PktValid(Rst,sn_an,g,isn) then empty
else 1‘PKT2(Sync, LONG,
{SEQ=incr(#GSS(g)),ACK=#GSR(g)})

PKT2 (Rst, LONG, sn_an)

IdleState idle_state

Fig. 20 The RcvReset page

GSR rather than the sequence number received (Sect. 7.5.4
of [19]).

The Retransmission page. During connection set up
and close down retransmissions occur when DCCP holds a
state for too long. DCCP retransmissions are modelled in
Fig. 21. Retransmission in each state is modelled by the
transition corresponding to the state’s name: Retrans_
REQUEST, RetransShort_PARTOPEN, RetransL-
ong_PARTOPEN, Retrans_CLOSEREQ and Retrans_
CLOSING. In PARTOPEN the client can retransmit either
an Ack or a DataAck. Each retransmission increases the
retransmission counter (rcnt) by one. When the counter
reaches the maximum retransmission value (lines 1–4 of
Fig. 22), DCCP resets the connection and enters the CLOSED
state. These actions are modelled by the transitions Back-
Off_REQUEST and BackOff_ActiveState. The guard
function BackOff (lines 5–12 of Fig. 22) checks whether the
number of retransmissions has reached the maximum value
or not. The server in RESPOND returns a Response packet

on receiving a valid Request packet. It does not retransmit
Response packets but backs off to CLOSED after holding the
RESPOND state for 4 MPL.

The Unexpected page in Fig. 23 models the receipt
of unexpected events as defined in the pseudo code of
step 7 of Sect. 8.5 of [19]. Firstly, DCCP does not expect
to receive a Request or Response after the connection
is established. Secondly, the client does not expect to
receive a Request and the server never expects a Response
packet. Thirdly, the server in RESPOND does not expect
to receive a Data packet. Fourthly the server never expects
to receive a CloseReq. If an unexpected packet is received,
the entity replies with a Sync packet. Transitions RcvRe-
quest and RcvResponse model DCCP receiving the
unexpected Request and Response packets, respectively.
The transitions RcvDataShort_inRESPOND and
RcvDataLong_inRESPOND model the actions taken by
the server on receipt of a short or long Data packet in the
RESPOND state. The last transition ServerRcvCloseReq

123

Analysis of the DCCP’s connection management procedures using sweep-line method 41

State

CB

P I/O

Output

PACKETS

P OutRetransLong_PARTOPEN
[rcnt < MaxRetransAckDataAck]

BackOff_ActiveState

[BackOff(active_state,rcnt)]

RetransShort_PARTOPEN

[rcnt < MaxRetransAckDataAck
andalso ShortEnable]

Retrans_CLOSEREQ

[rcnt < MaxRetransCloseReq]

Retrans_Request
[rcnt < MaxRetransRequest]

BackOff_REQUEST

Retrans_CLOSING

[(active_state = C_CLOSING orelse active_state =S_CLOSING)
andalso rcnt < MaxRetransClose]

ActiveState (PARTOPEN,rcnt,g,isn)

ActiveState (PARTOPEN,rcnt+1,
incrGSS(g),isn)

PKT2(ack_dataack, LONG,
{SEQ=incr(#GSS(g)),ACK=#GSR(g)})

ActiveState (active_state,rcnt,g,isn)
PKT2(Rst, LONG,
{SEQ=incr(#GSS(g)),ACK=#GSR(g)})

PKT2s(ack_dataack,SHORT,
{SEQ=mod_sn24(incr(#GSS(g))),
ACK=mod_sn24(#GSR(g))})ActiveState (PARTOPEN, rcnt, g, isn)

ActiveState (PARTOPEN,rcnt+1,
incrGSS(g),isn)

PKT2 (CloseReq, LONG,
{SEQ=incr(#GSS(g)),ACK=#GSR(g)})ActiveState (CLOSEREQ,rcnt,g,isn)

ActiveState(CLOSEREQ, rcnt+1,incrGSS(g),isn)

IdleState CLOSED_F

PKT1 (Request, LONG, incr(gss))

SndRstInReq(gss)

ReqState(rcnt, gss, iss)

IdleState CLOSED_F

ReqState (rcnt+1, incr(gss), iss)

ReqState (MaxRetransRequest,gss,iss)

PKT2 (Close, LONG,
{SEQ=incr(#GSS(g)),ACK=#GSR(g)})ActiveState (active_state,rcnt,g,isn)

ActiveState (active_state, rcnt+1,incrGSS(g),isn)

Fig. 21 The Retransmission page

Fig. 22 Declaration for the Retransmission page

models that when the server receives a CloseReq, it replies
with a Sync packet.

4 Sweep-line analysis

The success of applying sweep-line relies on the notion of a
progress measure which is defined [2] as a tuple P = (O,�,

ϕ), where O is a set of progress values, � ⊆ O×O is a partial
order on the progress values, and ϕ : M → O is a progress
mapping function from markings of the CPN model, M, to
progress values. Gordon et al. [11] point out that protocols
can exhibit more than one source of progress and suggest the
use of a vector of progress values that we shall call a progress

vector. In [6] the progress vector is used in conjunction with
lexicographical ordering. We use this approach to analyse the
DCCP-CM CPN model.

In this paper � is a total order rather than partial order. The
sweep-line algorithm generates the successors of all unex-
plored states with the lowest progress value first. Once all
states with this lowest progress value have been explored,
they will be deleted from memory and the conceptual “sweep-
line” will move on to states with the new lowest progress
value. A progress mapping is said to be monotonic if, for
every reachable state, it has a progress value equal to or less
than all of its successors. When this is not the case, i.e., at
least one successor of one state has a progress value that
is less than its predecessor (representing regress rather than
progress), the sweep-line must conduct additional sweeps
of (part of) the state space, using the destinations of these
so-called regress edges as roots of a new sweep. Thus, some
parts in the state space may be explored more than once.
However, the sweep-line still guarantees full exploration of
a state space and is guaranteed to terminate. Detailed expla-
nations of the sweep-line method can be found in [2,23].

4.1 Notation

We define some notation used for identifying sources of pro-
gress in a CPN model. Let M ∈ M be a marking of the CPN
model. M(p) is the marking of place p (the multiset of tokens
on place p) and |M(p)| is the number of tokens on place p.

123

42 S. Vanit-Anunchai et al.

State

CB

P I/O

Input

PACKETS
P In

RcvDataLong_in
RESPOND

Output

PACKETS

P Out

RcvResponse
[active_state <> PARTOPEN]

RcvRequest

[active_state <> RESPOND]

RcvDataShort_in
RESPOND

ServerRcvCloseReq

[active_state = RESPOND orelse active_state = S_OPEN
orelse active_state = S_CLOSING orelse
active_state = CLOSEREQ]

PKT1 (Data, LONG, sn)

ActiveState (RESPOND, rcnt, g, isn)

if ReqDataValid(Data,sn,g,isn) then
ActiveState(RESPOND,rcnt,UpdateGS(g,S48 sn),isn)
else ActiveState (RESPOND,rcnt,incrGSS(g),isn)

SyncSnd(g,S48 sn)

if PktValid(Response,sn_an,g,isn)
then ActiveState (active_state, rcnt, UpdateGS(g, SA48 sn_an),isn)
else ActiveState (active_state,rcnt,incrGSS(g), isn)

ActiveState(active_state,rcnt,g,isn) SyncSnd(g,SA48 sn_an)

PKT2 (Response, LONG, sn_an)

SyncSnd(g, S48 sn)ActiveState(active_state,rcnt,g,isn)

if ReqDataValid(Request,sn,g,isn) then
ActiveState(active_state,rcnt,UpdateGS(g, S48 sn), isn)
else ActiveState(active_state,rcnt,incrGSS(g),isn)

PKT1(Request, LONG, sn)

ActiveState (RESPOND,rcnt,g,isn) SyncSnd(g, S24 sn24)

PKT1s (Data, SHORT, sn24)if ReqDataValid(Data,extend_seq(#GSR(g),sn24),g,isn)
then ActiveState(RESPOND,rcnt,UpdateGS(g,S24 sn24),isn)
else ActiveState (RESPOND,rcnt,incrGSS(g),isn)

if PktValid(CloseReq, sn_an, g, isn) then
ActiveState(active_state, rcnt, UpdateGS(g, SA48 sn_an), isn)
else ActiveState(active_state, rcnt, incrGSS(g), isn)

PKT2 (CloseReq, LONG, sn_an)

ActiveState (active_state, rcnt, g, isn) SyncSnd(g, SA48 sn_an)

Fig. 23 The Unexpected page

Measures of progress, such as the greatest sequence number
sent, are often included as a component in a product token
residing on a state place, e.g. Client_State. To extract infor-
mation from a product token we shall use projection func-
tions. Our progress mappings operate on markings, which are
multisets of tokens rather than tokens themselves. However,
when p is a state place, it only contains one token (∀ M ∈
[M0〉, |M(p)| = 1, where [M0〉 is the set of reachable mark-
ings), and hence M(p) is a singleton multiset. If the colour
set of place p, is Type(p) then for |M(p)| = 1, we can repre-
sent M(p) as 1‘a where a ∈ T ype(p). We can then convert
a singleton multiset, into its basis element (i.e., the token),
with a function elem, so that when |M(p)| = 1, M(p) = 1‘a
and elem(M(p)) = a.

4.2 Usual sources of progress

The following describes three usual sources of progress.

4.2.1 Sequence number variables

Firstly, consider GSS. Every time the client or server sends a
packet, the state variable GSS (the Greatest Sequence number
Sent) increases by one. GSS is stored within a single product
token in the places Client_State and Server_State. However,
when an entity is in an idle state (CLOSED, LISTEN and
TIMEWAIT), there is no GSS. To capture the progress of
GSS from the marking of the place Client_State we define a
progress mapping for the client ϕc

gss : M → N, where the

superscript “c” refers to the Client entity and

ϕc
gss(M) = Projgss(elem(M(Client_State))) (1)

and Projgss takes a state variable of type CB and returns GSS
for active states and ISS otherwise. During connection estab-
lishment and close down, the number of transmitted packets
is small. We consider that the sequence number may wrap
only once. If the GSS value is less than ISS, it means that
the GSS value has wrapped. In this situation, Projgss returns
GSS plus 248 in order to maintain increasing progress val-
ues. If there is no GSS value in the state variable, Projgss

returns ISS because it is the starting value of GSS for each
connection. The progress mapping, ϕs

gss , ϕc
gsr , ϕs

gsr , ϕc
gar and

ϕs
gar for other client and server sequence number variables

can also be defined in a similar way.

4.2.2 Major states

Both entities progress through the states defined by colour
sets IDLE, REQUEST and ACTIVE. To capture this pro-
gress from the token in the place Client_State, we define a
progress mapping ϕc

state : M → N where

ϕc
state(M) = State2Num(Projstate(elem(M(Client_State))))

(2)

The projection function, Projstate, takes a state variable of
type CB and returns the DCCP state. Function State2Num
maps this state to an integer according to the ordering of

123

Analysis of the DCCP’s connection management procedures using sweep-line method 43

Table 1 An ordering and corresponding mapping for DCCP state

Client State2Num Server State2Num
state (state) state (state)

CLOSED_I 1 CLOSED_I 1

REQUEST 2 LISTEN 2

PARTOPEN 3 RESPOND 3

C_OPEN 4 S_OPEN 4

C_CLOSING 6 C_CLOSEREQ 5

TIMEWAIT 7 S_CLOSING 6

CLOSED_F 8 TIMEWAIT 7

CLOSED_F 8

DCCP states shown in Column 1 of Table 1. The server’s
progress mapping, ϕs

state, is defined analogously, using the
ordering of DCCP states shown in Column 3 of Table 1.

Because of lost and delayed packets, an entity may retrans-
mit. The progress exhibited by the retransmission counters
(RCNTs) has already been covered by GSS because GSS is
increased for every packet sent, including retransmissions.
Thus the progress captured by RCNTs is not needed. How-
ever, when retransmission occurs, the state is not changed,
and hence, intuitively, it is useful to include both major state
and GSS in progress mappings.

4.2.3 Application commands

During connection set up and close down, the applications
at the client and server will issue commands. The progress
of issuing commands can be captured by the decrease in the
total number of command tokens in both the App_Client and
App_Server places. This can help to differentiate between the
CLOSED_F state caused by timer expiry in the TIMEWAIT
state and the CLOSED_F state resulting from an application
close command. Thus we define ϕcmd : M → N where

ϕcmd(M)= − |M(App_Client)|−|M(App_Server)| (3)

Every application command issued corresponds to a change
of state. However, other DCCP state changes also occur due
to internal behaviour. Hence we consider a state change due
to an application command to be a more significant event.
Thus we give ϕcmd greater weighting than ϕc

state and ϕs
state.

4.3 More subtle measures of progress

From our experience with DCCP, more than 90% of the
state space has at least one entity in CLOSED, which has
no sequence number variables. ϕc

state and ϕc
gss provide no

differentiation when the client is CLOSED, and similarly
for the server. Thus some measure of progress is needed for
when an entity is in the CLOSED state. When an entity is in

an idle state (CLOSED,LISTEN and TIMEWAIT), there are
two ways in which progress is exhibited:

(a) Receiving DCCP-Reset Packets. When either end
receives a DCCP-Reset Packet, the total number of pack-
ets in both channel places will decrease by one. This is
simply because in CLOSED, LISTEN and TIMEWAIT, the
entity discards the DCCP-Reset and does not send a packet
in response. To capture this measure of progress we define
ϕch_num : M → N where

ϕch_num(M) = −|M(Ch_C_S)| − |M(Ch_S_C)| (4)

Note that this progress mapping initially decreases as the first
packets are sent into the channel. However, when compo-
nent progress measures are combined using lexicographical
ordering (as will be done shortly) this regress is more than
offset by progress captured in other “more significant” com-
ponent progress measures when the number of messages in
the channel are increasing.

(b) Receiving non-DCCP-Reset Packets. When any packet
but DCCP-Reset is received from one channel by an entity in
an idle state, it will send a DCCP-Reset packet into the other
channel in response, so that the total number of packets over
both channels remains the same. Owing to no GSS, GSR or
GAR in these states, the DCCP-Reset packet sent will have
a sequence number set to the acknowledgement number of
the received packet plus one, and an acknowledgement num-
ber set to the sequence number of the received packet. Thus
the summation of all sequence numbers and acknowledge-
ment numbers in all packets over both channel places will
be increased by one. Thus we define a progress mapping
ϕch_sum : M → N to capture the progress when an entity in
an idle state replies with a Reset packet, where

ϕch_sum(M) = Sum_Seq_Ack(M(Ch_C_S))

+ Sum_Seq_Ack(M(Ch_S_C)) (5)

where the function Sum_Seq_Ack takes the multiset of pack-
ets in a channel and returns the summation of sequence and
acknowledgement numbers of every packet. However, there
are still two problems. The first is that when an entity in an
idle state receives a packet with no acknowledgement num-
ber, the sequence number of the Reset packet (sent in reply) is
set to zero and its acknowledgement number to the sequence
number of the packet received. Thus the markings before and
after this action have the same progress value. To overcome
this problem, when computing Sum_Seq_Ack, we consider
that the packets with no acknowledgement number have an
acknowledgement number =−1. The second problem is that
when sequence numbers wrap ϕch_sum(M) will decrease and
degrade the performance of the sweep-line. Thus we add 248

to a sequence or acknowledgement number if it is less than
ISS, as was the case with Projgss .

123

44 S. Vanit-Anunchai et al.

ϕch_num has higher significance than ϕch_sum because the
effect of ϕch_sum is only important when ϕch_num is constant.
Both ϕch_num and ϕch_sum have lower significance than other
progress mappings because they are only effective when an
entity is in an idle state.

In conclusion, we have identified several sources of pro-
gress of the specification model. The progress vector ϕs when
considering only GSS has seven dimensions, where

ϕs(M) = (ϕcmd(M), ϕc
state(M), ϕs

state(M), ϕc
gss(M),

ϕs
gss(M), ϕch_num(M), ϕch_sum(M)) (6)

and the subscript “s” refers to the specification model.
Our experiments show that this progress vector is mono-

tonic for all scenarios analysed in this paper, and swapping
the order of the client and server progress mappings has no
effect on the performance of the sweep-line. Moreover, the
performance is improved slightly by including progress map-
pings for the GSR and GAR variables in the vector. Thus the
full progress vector ϕs is given by

ϕs(M) = (ϕcmd(M), ϕc
state(M), ϕs

state(M), ϕc
gss(M),

ϕs
gss(M), ϕs

gsr (M), ϕc
gsr (M), ϕc

gar (M),

ϕs
gar (M), ϕch_num(M), ϕch_sum(M)) (7)

4.4 Searching for a better progress measure

Although the sweep-line method helps us to analyse pro-
tocols for scenarios that could not be reached before, most
results of protocol verification (see for example [6,8,11,24])
show that the peak states stored are around 20–30% of the
full state space. The best reduction is shown in [6] where
the number of peak states is around 10% (i.e., a reduction
in states stored of a factor of 10). The sweep-line method
was also applied to compare the service language with the
protocol language (language inclusion) of DCCP connection
management in [7,9]. It used the same progress measures
as described in Sects. 4.2 and 4.3. However, the reduction
in peak states stored [7,9] is about a factor of 3–4. Because
the state space grows very rapidly with respect to the num-
ber of retransmissions, the progress measures used in [7,9]
allowed only a few additional scenarios to be analysed (that
could not be analysed by conventional state space analysis).
Further reduction is thus required to verify DCCP’s connec-
tion management behaviour.

We learnt from [6,7,9] that although the state variables
(states and sequence number sent) in the entities seem to be
intuitively good progress measures, there are three funda-
mental problems. Firstly, more than 90% of the state space
has either the server or the client in an idle state. Secondly,
in these idle states there are no sequence number state vari-
ables. Thirdly, sequence numbers can wrap, leading to regress
rather than progress. In other words, the efficiency of the

sweep-line largely depends on the progress we can capture
from the channel places. Channel places are not a good source
of progress, partly because of the overtaking property of the
channels. This explains why we only get a factor of 3–4
reduction in peak states stored.

From experiments we have noticed that the initial sequence
number received (ISR) plays a crucial role in progress. S_ISR
is the first sequence number the server receives (in a Request
packet). The client’s ISR (C_ISR) is in the first Response
packet the client receives before moving to PARTOPEN.
If the model is modified to store the values of ISR in the
places Server_State and Client_State throughout the con-
nection, including when the entity is in TIMEWAIT and
CLOSED_F, we find something interesting. For example,
when the initial sequence numbers sent (ISS) by both the cli-
ent and the server are equal to five and one retransmission is
allowed for the Request packet, the state space (total 19,602
nodes) is roughly divided into two large groups: group A,
11,930 nodes with S_ISR = 5 and group B, 7,612 nodes with
S_ISR = 6; and one small group of 60 nodes without S_ISR.
The size of group A is 60.86% of the total state space and
the size of the group B is 38.83% of the total state space.
Using only S_ISR as the progress measure, the sweep-line
will finish working on group A before it starts working on
group B. In this case the peak states stored can be reduced
to 60.91% (11,939 nodes), where some states from group B
are generated (but not explored) while exploring the states of
group A.

Using [S_ISR, C_ISR] as the progress measure, group A is
divided again into another two large groups (6,686 nodes with
C_ISR = 5 and 4,684 nodes with C_ISR = 6) and one small
group (560 nodes) with no C_ISR. However, because there is
no loss and the server cannot retransmit the Respond packet,
group B is divided into one large group with C_ISR = 5 (7,158
nodes) and a small group (454 nodes) with no C_ISR. The
peak states stored is further reduced to 36.52% (7,158 nodes).
The clue is that every new progress measure added reduces
the number of states that have the same progress vector.

We can continue to successively divide each group again
by recording the sequence numbers of the Ack packets
(S_IACK, C_IACK) that cause the server and the client to
enter OPEN. Unfortunately, while S_ISR and C_ISR are the
parameters of the specification model, S_IACK and C_IACK
are not. By adding these two parameters, the specification
model is modified to produce a different model, raising two
issues. Firstly, does the new model (denoted the augmented
model) have the same behaviour as the original specifica-
tion model? Because the added parameters are solely used to
measure progress and are not used in any protocol operations,
both models exhibit the same behaviour. Secondly, the added
parameters increase (explode) not only the total number of
states but also the amount of memory used by each node in
the state space. This is very harmful for state space analysis.

123

Analysis of the DCCP’s connection management procedures using sweep-line method 45

Fig. 24 Modified DCCP’s control block

Although the total number of states increases, the number
of states in each subset of the partition decreases. During a
sweep through one subset, the progress measure described in
Sects. 4.2 and 4.3 can be used to further subdivide it. Thus not
only is there a reduction in the peak number of states stored
but also the potential for a reduction in execution time due to
less time being spent comparing newly generated states with
the states currently in memory (due to a reduced number of
stored states).

4.5 Progress mappings for the augmented model

Further to the observation discussed in the previous section,
we experiment by adding the new variables one by one. We
notice when recording the latest sequence number of the
packets sent for each packet type (rather than received), the
sweep-line algorithm gives better reduction in peak mem-
ory. Nevertheless ISRs are still used in the progress vec-
tor because they are already in the original model. We also
exploit the progress from sequence numbers sent of Sync and
Reset packets and further divide the state space to an even
finer grain.

Figure 24 shows the modification to the declarations of
the state variables. A new colour set called SNV (Sequence
Number Vector) is defined in place of ISN. This records the
additional progress variables: the latest sequence number of
the packet sent for each packet type, and ISR. The colour
set SNV is attached to every state, including idle states and
REQUEST.

Using progress functions similar to those defined in
Sect. 4.2, we can extract an additional 14 dimension progress
vector (Eq. 8) to measure progress in the augmented model.
The ordering of progress values is arranged according to the
point when each variable first appears in the typical scenario
shown in Fig. 2 (connection set up followed by closing).

ϕa(M) = (ϕc
SN Req_Resp(M), ϕs

I S R(M), ϕs
SN Req_Resp(M),

ϕc
I S R(M), ϕc

SN Ack_L(M), ϕs
SN Ack_L(M),

ϕs
SN Data_L(M), ϕs

SNCloseReq(M),

ϕc
SNClose(M), ϕs

SNClose(M), ϕs
SN Sync(M),

ϕc
SN Sync(M), ϕs

SN Reset (M), ϕc
SN Reset (M)) (8)

Thus the overall progress vector for the augmented model is:

ϕDCC P (M) = (ϕa(M) , ϕs(M)) (9)

Although the analysis result using the proposed progress
measures are very promising, there is still one drawback. The
number of terminal markings increases rapidly with respect
to the number of new variables added. To avoid this draw-
back we introduce four transitions and two places as shown
in Fig. 25, to merge redundant terminal markings into the
terminal markings that exist in the original state space. The
places Cnt_C_S and Cnt_S_C are used to count the number
of packets in channels. The clean up operation takes place
when there is nothing left in both channels.

5 Experimental results

5.1 Initial configurations

We analyse two DCCP connection management models using
Design/CPN version 4.0.5 with the occurrence graph tool
and the prototype sweep-line library from [6] to handle pro-
gress vectors, on a Pentium-IV 2.6 GHz computer with 1 GB
RAM. The first model is the specification model as described
in Sect. 3. The second model is the augmented model as
described in Sect. 4.5. The DCCP-CM models are initialised
by distributing tokens to places App_Client, App_Server,
Client_State and Server_State of the model to create the
initial markings. Instead of non-deterministic use of long
or short sequence number and DCCP-Ack or DCCP-
DataAck, we choose to analyse the procedures when only
long sequence number and DCCP-Ack are used. Table 2
shows the initial markings for the Application places for
both the client and server. We present the analysis results
of three cases. In all cases, the client and server are initially
in CLOSED_I, both channel places are empty and ISS values
on both sides are set to 248 − 3 to allow sequence numbers
to wrap to zero.

Case A is for connection establishment. The client issues
an “active Open” command while the server issues a “pas-
sive Open” command. When limiting the maximum number
of retransmissions to one, connection establishment can fail
due to a deadlock when sequence numbers wrap [33]. In this
paper we use the sweep-line to extend the analysis to include
a scenario when the maximum number of retransmissions is

123

46 S. Vanit-Anunchai et al.

Fig. 25 Augmented model: the
top level page

CB

Client_State

init_C

COMMAND

App_Client

C_cmd

DCCP_SHS

Ch_C_S

PACKETS

Ch_S_C

PACKETS

DCCP_CHS

CB

Server_State

init_S

COMMAND

App_Server

S_cmd

Clr_Cl_Cl

[IntInf.<(#SNReq_Resp(snv1),
MaxSeqX2)]

Cnt_C_S

INT

1‘0

Cnt_S_C

INT

1‘0

CLR_CL_LI

[IntInf.<(#SNReq_Resp(snv1),
MaxSeqX2)]

CLR_OP_OP

[IntInf.<(#SNReq_Resp(snv1),
MaxSeqX2) andalso CaseA]

CLR_CL_OP

[IntInf.<(#SNReq_Resp(snv1),
MaxSeqX2) andalso CaseA]

IdleState (CLOSED_F, snv1) IdleState (CLOSED_F, snv2)

end_Send_C

1‘0
1‘0

IdleState (LISTEN, snv2)IdleState (CLOSED_F,snv1)

ActiveState
(S_OPEN,rcnt2,g2,snv2)

ActiveState
(C_OPEN,rcnt1,g1,snv1)

end_C end_S_LISTEN

end_S_OPEN(rcnt2,g2,snv2)end_C_OPEN(rcnt1,g1,snv1)

1‘0

1‘01‘0

1‘0

1‘01‘0

ActiveState
(S_OPEN,rcnt2,g2,snv2)IdleState(CLOSED_F,snv1)

end_S_OPEN(rcnt2,g2,snv2)end_C

Table 2 Initial configurations

Case Initial Markings

App_Client App_Server

A 1‘active open 1‘passive open

B 1‘active open 1‘passive open

++ 1‘active close

C 1‘active open 1‘passive open

++ 1‘server active close

two to determine if the undesired deadlocks still exist. Cases
B and C cover the case when the server issues a close com-
mand while the connection is being established. We select
configurations B and C to determine if the application on the
server can clear the deadlocks by issuing either an “active
close” or a “server active close” command.

5.2 Analysis results

The analysis results for the DCCP connection management
CPN specification and augmented models in various config-
urations are shown in Tables 3 and 4. All progress measures
used are monotonic. The first column in Table 3 shows the

configurations being analysed, where the 4-tuple is the max-
imum number of retransmissions allowed for Request, Ack,
CloseReq and Close packet types, respectively. An “x” means
the retransmission of those packet types never happens in
that configuration. Columns 2–3 show the analysis results
of the specification model when using a constant progress
value (Sweep-LineC) which simulates conventional reach-
ability analysis. Columns 4–6 show the results of the spec-
ification model using the progress measure ϕs described in
Sects. 4.2 and 4.3 (Sweep-LineS). Columns 7–9 show the
result of the augmented model using the progress measure
ϕDCC P described in Sect. 4.5 (Sweep-LineA). Comparisons
of space3 and time4 used between Sweep-LineS and Sweep-
LineC are shown in columns 10–11. Comparison of space
and time used between Sweep-LineA and Sweep-LineC are
shown in columns 12–13. A “–” means the full state space
cannot be generated due to computer memory limits. Table 3
shows five cases where Sweep-LineS cannot generate the
state space.

3 (the number of peak states/the total number of states in the original
state space)×100.
4 (the exploration time using progress vector ϕs /the exploration time
using constant progress value)×100.

123

Analysis of the DCCP’s connection management procedures using sweep-line method 47

Table 3 Sweep-line analysis results of DCCP connection management

Table 4 Terminal markings

Config. Terminal Markings

Type-I Type-II Type-III Type-IV

A-(0,0,x,x) 2 1 1 0

A-(1,0,x,x) 15 1 1 1

A-(2,0,x,x) 83 1 1 8

A-(0,1,x,x) 5 1 1 0

A-(0,2,x,x) 9 1 1 0

A-(1,1,x,x) 38 1 1 2

A-(1,2,x,x) 68 1 1 3

A-(1,3,x,x) 105 1 1 4

A-(2,1,x,x) 198 1 1 15

A-(2,2,x,x) 343 1 1 22

A-(2,3,x,x) 519 1 1 29

5.2.1 Reduction of the peak number of stored states

While Sweep-LineS reduces the peak number of stored states
to about 30–40%, Sweep-LineA gives a more promising
result. The larger the state spaces, the greater the reduction.
In most cases the reduction is better than a factor of 10 (10%).
The best result shown in Table 3 is 0.36% (277 times smaller
than the original state space). However, it is not immediately
clear how much this translates to a reduction in real mem-
ory usage, because each state in the augmented model stores
slightly more information. However, Sweep-LineA can finish

the exploration in some configurations, such as A-(2,2,x,x)
and A-(2,3,x,x), while Sweep-LineS and Sweep-LineC can-
not. This leads us to believe that, pragmatically, Sweep-LineA

also provides a significant reduction in memory usage when
the state spaces are large.

5.2.2 Execution time comparison

Generally Sweep-LineS and Sweep-LineA have longer explo-
ration times than Sweep-LineC because of the overhead com-
puting the progress mappings (11 functions for Sweep-LineS

and 25 functions for Sweep-LineA). When the original state
space is small, Sweep-LineA has the longest exploration time
because the state space of the augmented model is bigger
and Sweep-LineA has more progress mappings to calcu-
late. As the state space grows bigger, Sweep-LineA gradually
becomes more efficient. When the size of the original state
space is large, for example in configurations A-(2,1,x,x) and
C-(1,0,1,0), Sweep-LineA is faster than Sweep-LineS even
though the augmented model has a bigger state space. This
is because Sweep-LineA spends less time comparing new
states to existing states (due to storing fewer states in mem-
ory at any one time).

5.3 Terminal marking classification

Terminal markings (dead markings) are states from which
no action can occur. Undesired terminal markings are called

123

48 S. Vanit-Anunchai et al.

deadlocks. Table 4 shows the terminal markings of Con-
figuration A. All terminal markings have no packets left in
the channels and hence there are no unspecified receptions.
The terminal markings are classified into four types. Type I
terminal markings arise when both the client and server are
in the OPEN state indicating that the connection has been
successfully established. Terminal markings Types II and III
arise in situations when the connection attempt fails because
the back-off timer5 expires. Both types of terminal mark-
ings are acceptable. In Type II terminal markings both sides
are CLOSED. For Type III terminal markings, the client
is CLOSED, but the server is in the LISTEN state. This
can happen when the server is initially CLOSED (down for
maintenance or busy) and rejects the connection request.
The server then recovers and moves to the LISTEN state
while the client finishes in CLOSED on receipt of the reset.
These three types of terminal markings are expected. How-
ever, Type IV terminal markings are undesired deadlocks
where the client is CLOSED but the server stays in OPEN.
Hence, allowing up to two retransmissions of each packet
type has not eliminated the deadlocks for the case where ISS
is 248 − 3.

Every scenario of configuration B and C has two Type II
and one Type III terminal marking. One terminal marking of
Type II has a close command left in the place App_Server
while the other has no token left in this place. There are no
Type IV terminal markings in configurations B and C. This
shows that these deadlocks can be overcome by the server
closing the connection.

These experiments were conducted initially for an ISS of
248 − 3. It is infeasible to generate the state space for every
one of the 248 values of ISS (0 to 248 − 1), however, the ini-
tial experiments have been followed up with further experi-
ments for other ISS values that cause sequence numbers to
wrap. All give similar deadlock results. Thus we conjecture
that when sequence numbers wrap: (1) when the maximum
number of retransmissions is two, connection establishment
still has an undesired deadlock, and (2) when the maximum
number of retransmissions is one, the deadlocks do not occur
when the application on the server issues a close command
(either “active close” or “server active close”).

6 Conclusions and future work

In the first part of this paper we provided the first formal
specification of DCCPs connection management procedures.
Significant effort was spent in ensuring that it truly reflects
the procedures defined in RFC 4340. The complexity of the

5 After retrying for a period (measured by a “back-off” timer), the client
will send a DCCP-Reset and will “back off” to the CLOSED state [19].

specification is managed using the hierarchical constructs of
CPNs. The structure of the specification has been refined
during iterative development of the model. In addition to the
main procedures for connection establishment and release,
our CPN specification takes into account DCCPs synchroni-
zation procedures, non-deterministic choice of Ack, DataAck
or Data packets, the use of long and short sequence num-
bers and modulo arithmetic to correctly model sequence and
acknowledgement numbers and their operations, and the use
of a back-off timer in conjunction with retransmissions. The
specification provides sufficient detail to allow all the con-
nection management procedures to be analysed. Our CPN
model has been used to find various ambiguities and techni-
cal errors [18,20] in various Internet drafts as DCCP was
being developed. Those deficiencies were reported to the
Internet Engineering Task Force and rectified in RFC 4340.

This CPN specification is used in the second part of this
paper to illustrate how the sweep-line method can be used
to analyse an industrially relevant protocol. We give some
insight into how to determine sources of progress for our
DCCP-CM CPN model. We believe this approach could be
applied to other transport protocols. While the main stream
approaches try to reduce the size of the state space, we
explode it by augmenting the model with additional state
information in such a way that the exploded state space has a
structure which is easier for the sweep-line to explore. This
gives the very promising result of significant reduction in
both peak states stored and exploration time when analysing
large state spaces. The efficiency of this method increases as
the original state space gets bigger.

We also successfully extended the analysis of DCCP con-
nection management to five configurations (see Table 3) that
were previously out of reach. In this paper we confirmed
for an ISS value of 248 − 3 that when the maximum num-
ber of retransmissions is two, that connection establishment
still has an undesired deadlock. We also confirmed for this
ISS that when the maximum number of retransmissions is
one, the deadlocks do not occur when the application on
the server issues a close command (either “active close” or
“server active close”). It is infeasible to perform this kind of
analysis for all values of ISS, however, our experiments so
far suggest that this behaviour holds for values of ISS where
sequence numbers wrap.

The work presented in this paper provides some evidence
that it may be possible to exploit the full potential of the
sweep-line method. We hope it will be possible in future to
craft progress mappings that will only need several thousand
states to be stored in memory, even when the state space is
huge (i.e., greater than 109 states), and so make the sweep-
line a practical verification technique. The development of
a structured approach to obtain such progress mappings and
to perform the necessary model transformations is an open
research question.

123

Analysis of the DCCP’s connection management procedures using sweep-line method 49

Acknowledgments The authors are grateful to the anonymous
reviewers whose comments have helped to improve the quality of the
paper, and who have provided some interesting challenges for future

work. The comments of the editor have also improved the quality of
this paper and are gratefully acknowledged.

Appendix: Declaration of DCCP-CM specification model

(**)
(* Program : Declaration Page of DCCP-CM CPN Model - RFC-4340 *)
(* Author : Somsak Vanit-Anunchai *)
(* School of Electrical and Information Engineering *)
(* Computer Systems Engineering Center *)
(* Date : 23/01/07 *)
(* Copyright (c) University of South Australia 2005-2007 *)
(**)
(******************* Define constant values *************************************)
val ZERO = IntInf.fromInt(0);
val ONE = IntInf.fromInt(1);
val max_seq_no24 = 16777215; (* 24-bit sequence number *)
val MaxSeqNo48plus1 = IntInf.pow(IntInf.fromInt(2),48);
val MaxSeqNo24plus1 = IntInf.pow(IntInf.fromInt(2),24);
val MaxSeqNo48 = IntInf.-(MaxSeqNo48plus1,IntInf.fromInt(1));
val MaxSeqNo24 = IntInf.-(MaxSeqNo24plus1,IntInf.fromInt(1));

(* required for function Wrap *)
color BOOL = bool;
color SN = IntInf; (* required for function Wrap *)

(*********************** Defining the packet structure **************************)
(* Packet types *)
color PktType1 = with Request | Data;
color PktType2 = with Sync | SyncAck | Response | Ack | DataAck

| CloseReq | Close | Rst;
color DATA = subset PktType1 with [Data];
color ACK_DATAACK = subset PktType2 with [Ack, DataAck];

(********************** Extended sequence number bit ****************************)
color X = with LONG | SHORT;

(************ Sequence and Acknowledgement Numbers (Long/Short) *****************)
color SN48 = IntInf with ZERO..MaxSeqNo48;
color SN48_AN48 = record SEQ:SN48*ACK:SN48;
color SN24 = int with 0..max_seq_no24;
color SN24_AN24 = record SEQ:SN24*ACK:SN24;

(************************ Four Kinds of Packet **********************************)
color Type1LongPkt = product PktType1*X*SN48; (* Type1*)
color Type2LongPkt = product PktType2*X*SN48_AN48; (* Type2*)
color Type1ShortPkt = product DATA*X*SN24; (*Type1s*)
color Type2ShortPkt = product ACK_DATAACK*X*SN24_AN24; (*Type2s*)
color PACKETS = union PKT1:Type1LongPkt

+ PKT2:Type2LongPkt
+ PKT1s: Type1ShortPkt
+ PKT2s:Type2ShortPkt

declare of_PKT1, of_PKT2, of_PKT1s, of_PKT2s;

(******************** Declare Packet Variables **********************************)
var p_type1:PktType1;
var p_type2:PktType2;
var p_type2s:ACK_DATAACK;
var ack_dataack:ACK_DATAACK;
var sn:SN48;
var sn_an:SN48_AN48;
var sn24:SN24;
var sn24_an24:SN24_AN24;
var packet:PACKETS;

123

50 S. Vanit-Anunchai et al.

(**)
(* DCCP state variables *)
(* Retransmission Counter; Greatest Sequence Numbers; Initial Sequence Numbers***)
color RCNT = int;
color GS = record GSS:SN48*GSR:SN48*GAR:SN48;
color ISN = record ISS:SN48*ISR:SN48;

(* Major States *)
color IDLE = with CLOSED_I | LISTEN | TIMEWAIT | CLOSED_F;
color REQUEST = product RCNT*SN48*SN48; (* Counter x GSS x ISS *)
color ACTIVE = with RESPOND | PARTOPEN | S_OPEN | C_OPEN | CLOSEREQ

| C_CLOSING |S_CLOSING;

color ActiveStatexRCNTxGSxISN = product ACTIVE*RCNT*GS*ISN;
(* Control Block *)
color CB = union IdleState:IDLE

+ ReqState:REQUEST
+ ActiveState:ActiveStatexRCNTxGSxISN

declare of_IdleState, of_ReqState, of_ActiveState;
(* User Commands *)
color COMMAND = with p_Open | a_Open | server_a_Close | a_Close;

(********************* Declare State Variables **********************************)
var rcnt:RCNT;
var gss,gsr,gar,iss,isr:SN48;
var g:GS;
var isn:ISN;
var id_state:IDLE;
var active_state:ACTIVE;
var cb:CB;
var LS:BOOL;
(**)

(* Redefines two data types (seq_ack and state variable) to allow ML functions
to operate on different types of variable (different color sets) *)

datatype seq_ack = NoGS | S48 of SN48 | SA48 of SN48_AN48
| S24 of SN24 | SA24 of SN24_AN24;

datatype state_variable = NoGS | gssGS of SN48 | gGS of GS;

(* Remark: functions that operate while the sequence number wraps are *)
(* incr, Wrap, Update, extend_seq, PktValid, ReqDataValid, RstValidinReqState *)

(**)
(* Function : incr(snl) *)
(* Purpose : Increasing a 48-bit sequence number by one *)
(* if sequence number equals 2ˆ48-1 then go back to 0 *)
(* Input : snl is a 48-bit sequence number *)
(* Output : snl+1 and if sequence number equals 2ˆ48-1 then rolls to 0 *)
(* *)
fun incr(snl):SN48 =

if (snl = MaxSeqNo48) then ZERO else (IntInf.+(snl, ONE));

(**)
(* Function : Wrap(s,Max) = modulo(s,max) *)
(* Purpose : Folding the number outside [0..Max] back into the range *)
(* Input : When MaxValue = 2ˆ48, s = an integer in [-2ˆ47..2ˆ48+2ˆ47-1] *)
(* MaxValue = 2ˆ24, s = an integer in [-2ˆ23..2ˆ24+2ˆ23-1] *)
(* Output : an integer in [0..2ˆ48-1] *)

fun Wrap(seq_b:SN, MaxValue):SN48 =
if IntInf.<(seq_b,ZERO) then IntInf.+(seq_b,MaxValue)

else (if IntInf.>(seq_b,IntInf.-(MaxValue,ONE))
then IntInf.-(seq_b,MaxValue)
else seq_b);

(**)

123

Analysis of the DCCP’s connection management procedures using sweep-line method 51

(* Pre-defined constants for sequence number validity check *)
(* when sequence number wraps *)
(* client’s/server’s sequence/ack window size *)
val w = 100.0; val aw = 100.0;
val center = IntInf.pow(IntInf.fromInt(2),47);
val quarter = RealToIntInf 0 (Real.realFloor(w/4.0));
val swl = IntInf.-(IntInf.+(center,ONE),quarter);
val three_quarter = RealToIntInf 0 (Real.realCeil((w*3.0)/4.0));
val swh = IntInf.+(center,three_quarter);
val awl = IntInf.-(IntInf.+(center,ONE),RealToIntInf 0 aw);
val awh = center;

(**)
(* Function : Update(new,old) *)
(* Purpose : comparing received seq(ack) with GSR(GAR) *)
(* even when sequence number wraps. *)
(* center = new - bias *)
(* old_bias = old - bias (modulo 2ˆ48) *)
(* if center > old_bias then new else old *)
(* *)
(* Input : seq(ack), GSR(GAR) *)
(* Output : GSR(GAR) *)
(* *)
fun Update(new:SN48, old:SN48):SN48 =
let

val bias = IntInf.-(new,center); (* center = new - bias *)
val old_bias = Wrap(IntInf.-(old,bias),MaxSeqNo48plus1);

in
if IntInf.>(center,old_bias) then new else old

end;

(**)
(* Function : extend_seq(REF,S) *)
(* Purpose : Extending 24-bit to 48-bit sequence numbers *)
(* according to section 7.6 page 55 of RFC 4340 *)
(* Input : REF is GSR(GSS), S is a 24-bit seq (ack) number *)
(* Output : A 48-bit seq (ack) number *)
(* Description: comparing 24 lower bit of REF with S linearly and circularly *)
(* (modulo 2ˆ24). *)
(* 1. If S is less than REF_low due to S roll over 2ˆ24 *)
(* ____________________ *)
(* then SN48 = | REF_hi+1 | S | *)
(* |__________|_________| *)
(* 2. If REF_low is less than S due to REF_low roll over 2ˆ24 *)
(* ____________________ *)
(* then SN48 = | REF_hi-1 | S | *)
(* |__________|_________| *)
(* ____________________ *)
(* 3. Otherwise SN48 = | REF_hi | S | *)
(* |__________|_________| *)
(* *)
fun extend_seq(REF:SN48, sn24:SN24):SN48 =
let

val S = IntInf.fromInt(sn24);
val center24 = IntInf.pow(IntInf.fromInt(2),23);
val REF_hi = IntInf.quot(REF,MaxSeqNo24plus1);
val REF_lo = IntInf.mod(REF,MaxSeqNo24plus1);
val bias = IntInf.-(REF_lo,center24);
val s_bias = Wrap(IntInf.-(IntInf.fromInt(sn24),bias),MaxSeqNo24plus1);

in
if IntInf.<(S,REF_lo) andalso IntInf.<(center24,s_bias)

then IntInf.+(IntInf.*(Wrap(IntInf.+(REF_hi,ONE),MaxSeqNo24plus1)
,MaxSeqNo24plus1),S)

123

52 S. Vanit-Anunchai et al.

else (if IntInf.>(S,REF_lo) andalso IntInf.>(center24,s_bias)
then IntInf.+(IntInf.*(Wrap(IntInf.-(REF_hi,ONE)

,MaxSeqNo24plus1)
,MaxSeqNo24plus1)

,S)
else IntInf.+(IntInf.*(REF_hi,MaxSeqNo24plus1),S))

end;

(**)
(* Function : extendSA *)
(* Purpose : Extending both seq and ack numbers *)
(* Input : {GSS,GSR,GAR} and 24-bit {seq,ack} *)
(* Output : 48-bit {seq,ack} *)
(* *)
fun extendSA(g:GS,sn24_an24:SN24_AN24):SN48_AN48 =

{SEQ=extend_seq(#GSR(g),#SEQ(sn24_an24)),
ACK=extend_seq(#GSS(g),#ACK(sn24_an24))};

(**)
(* Function : mod_sn24 *)
(* Purpose : Extracting the lower 24 bits from a 48 bit sequence number *)
(* Input : A 48-bit sequence number *)
(* Output : A 24-bit sequence number *)
(* *)
fun mod_sn24(sn48:SN48):SN24 = IntInf.toInt(IntInf.mod(sn48,MaxSeqNo24plus1));

(**)
(* Function : SeqAck *)
(* Purpose : Computing 48-bit {seq,ack} an outgoing packet *)
(* Input : NoGS/gss/{GSS,GSR,GAR}, Receiving 24-bit/48-bit of seq/{seq,ack} *)
(* Output : 48-bit {seq,ack} for an outgoing packet *)
(* *)
fun SeqAck(NoGS ,SA48 sn_an) = {SEQ=incr(#ACK(sn_an)), ACK = #SEQ(sn_an)}
| SeqAck(NoGS, S48 sn) = {SEQ=ZERO, ACK=sn}
| SeqAck(NoGS,SA24 sn24_an24) =

{SEQ = IntInf.mod(IntInf.fromInt(#ACK(sn24_an24)+1),MaxSeqNo24plus1),
ACK = IntInf.fromInt(#SEQ(sn24_an24))}

| SeqAck(NoGS,S24 sn24) = {SEQ = ZERO, ACK = IntInf.fromInt(sn24)}
| SeqAck(gssGS gss, SA48 sn_an) = {SEQ = incr(gss), ACK = #SEQ(sn_an)}
| SeqAck(gGS g,SA48 sn_an) =

{SEQ = incr(#GSS(g)),ACK = Update(#SEQ(sn_an),#GSR(g))}
| SeqAck(gGS g,S48 sn) = {SEQ = incr(#GSS(g)),ACK = Update(sn,#GSR(g))}
| SeqAck(gGS g,SA24 sn24_an24) =

{SEQ = incr(#GSS(g)),
ACK = Update(#GSR(g),extend_seq(#GSR(g),#SEQ(sn24_an24)))}

| SeqAck(gGS g,S24 sn24)=
{SEQ = incr(#GSS(g)),ACK = Update(#GSR(g),extend_seq(#GSR(g),sn24))};

(**)
(* Function : ShortSeqAck *)
(* Purpose : Computing 24-bit {seq,ack} for an outgoing packet *)
(* Input : NoGS/gss/{GSS,GSR,GAR}, Receiving 24-bit/48-bit of seq/{seq,ack} *)
(* Output : 24-bit {seq,ack} for an outgoing packet *)
(* *)
fun ShortSeqAck(gssGS gss, SA48 sn_an) =

{SEQ=mod_sn24(incr(gss)), ACK=mod_sn24(#SEQ(sn_an))}
| ShortSeqAck(gGS g,SA48 sn_an) =

{SEQ=mod_sn24(incr(#GSS(g))),
ACK=mod_sn24(Update(#SEQ(sn_an),#GSR(g)))}

| ShortSeqAck(gGS g,S48 sn) =
{SEQ=mod_sn24(incr(#GSS(g))), ACK=mod_sn24(Update(sn,#GSR(g)))}

| ShortSeqAck(gGS g,SA24 sn24_an24) =
{SEQ=mod_sn24(incr(#GSS(g))),
ACK=mod_sn24(Update(#GSR(g),extend_seq(#GSR(g),#SEQ(sn24_an24))))}

| ShortSeqAck(gGS g,S24 sn24) =
{SEQ=mod_sn24(incr(#GSS(g))),
ACK=mod_sn24(Update(#GSR(g),extend_seq(#GSR(g),sn24)))};

123

Analysis of the DCCP’s connection management procedures using sweep-line method 53

(**)
(* Function : SndRstInReq (Send Reset pkt in the REQUEST state) *)
(* Purpose : Computing an outgoing Reset packet in the REQUEST state *)
(* Input : GSS *)
(* Output : An outgoing Reset packet with 48-bit {seq, ack} *)
(* *)
fun SndRstInReq(gss:SN48) = 1‘PKT2(Rst,LONG,{SEQ=incr(gss),ACK=ZERO});

(**)
(* Function : SyncSnd *)
(* Purpose : Computing an outgoing Sync packet *)
(* Input : {GSS,GSR,GAR}, Receiving 24-bit/48-bit of seq/{seq,ack} *)
(* Output : An outgoing Sync packet with 48-bit {seq, ack} *)
(* *)
fun SyncSnd(g:GS,SA48 sn_an) =

1‘PKT2 (Sync,LONG,{SEQ=incr(#GSS(g)),ACK = #SEQ(sn_an)})
| SyncSnd(g:GS,S48 sn) =

1‘PKT2 (Sync,LONG,{SEQ=incr(#GSS(g)),ACK=sn})
| SyncSnd(g:GS,SA24 sn24_an24) =

1‘PKT2 (Sync, LONG,
{SEQ=incr(#GSS(g)),ACK=extend_seq(#GSR(g),#SEQ(sn24_an24))})

| SyncSnd(g:GS,S24 sn24) =
1‘PKT2 (Sync,LONG,{SEQ = incr(#GSS(g)),ACK = extend_seq(#GSR(g),sn24)});

(***** In CLOSED, LISTEN, REQUEST and TIMEWAIT states, no Sync is sent out ******)

(**)
(* Function : UpdateGS *)
(* Purpose : Computing {GSS,GSR,GAR} of the next active state *)
(* Input : Existing {GSS,GSR,GAR}, Receiving 24-bit/48-bit of seq/{seq,ack} *)
(* Output : {GSS,GSR,GAR} of the next active state *)
(* *)
fun UpdateGS(g:GS, SA48 sn_an) = {GSS=incr(#GSS(g)),

GSR=Update(#SEQ(sn_an),#GSR(g)),
GAR=Update(#ACK(sn_an),#GAR(g))}

| UpdateGS(g:GS, S48 sn) = {GSS=incr(#GSS(g)),
GSR=Update(sn,#GSR(g)),
GAR= #GAR(g)}

| UpdateGS(g:GS, SA24 sn24_an24) =
{GSS=incr(#GSS(g)),
GSR=Update(#GSR(g),extend_seq(#GSR(g),#SEQ(sn24_an24))),
GAR=Update(#GAR(g),extend_seq(#GSS(g),#ACK(sn24_an24)))}

| UpdateGS(g:GS, S24 sn24) =
{GSS=incr(#GSS(g)),
GSR=Update(#GSR(g),extend_seq(#GSR(g),sn24)),
GAR= #GAR(g)};

(**)
(* Function : incrGSS *)
(* Purpose : When receiving sequence-invalid pkt, the sender does not change *)
(* its GSR and GAR but increments GSS. *)
(* Input : Existing {GSS,GSR,GAR}, Receiving 24-bit/48-bit of seq/{seq,ack} *)
(* Output : {GSS,GSR,GAR} of the next active state *)
fun incrGSS(g:GS) = {GSS=incr(#GSS(g)),GSR = #GSR(g),GAR = #GAR(g)};

(********************** Set up Initial markings *********************************)
val C_iss = IntInf.-(MaxSeqNo48plus1,IntInf.fromInt(3);
val S_iss = IntInf.-(MaxSeqNo48plus1,IntInf.fromInt(3);
val C_cmd = 1‘a_Open; val S_cmd = 1‘p_Open;

(* Client/Server initial state *)
val init_C =1‘IdleState CLOSED_I; val init_S = 1‘IdleState CLOSED_I;

(* Set up parameters: MaxRetrans; Allow to use short sequence number *)
val MaxRetransRequest =1; val MaxRetransAckDataAck =1;
val MaxRetransCloseReq =1; val MaxRetransClose =1;
val ShortEnable = false;
(**)

123

54 S. Vanit-Anunchai et al.

(* Function : BackOff *)
(* Purpose : Check if the retransmission counter has reached the MaxRetrans *)
(* Input : State, retransmission counter *)
(* Output : true/false *)

fun BackOff(state,rcnt):bool =
case state of

RESPOND => true
| PARTOPEN => (rcnt=MaxRetransAckDataAck)
| C_CLOSING => (rcnt=MaxRetransClose)
| CLOSEREQ => (rcnt=MaxRetransCloseReq)
| S_CLOSING => (rcnt=MaxRetransClose)
|_ => false;

(**)
(* Function : SeqValid *)
(* Purpose : Check if the received pkt has a valid sequence number *)
(* Input : Received pkt type, received {seq,ack}, {GSS,GSR,GAR}, *)
(* {ISS, ISR} *)
(* Output : true/false *)

fun SeqValid(p_type2:PktType2, s2:SN48_AN48, g:GS, isn:ISN) =
let

val bias = IntInf.-(#GSR(g),center);
val seq_b = Wrap(IntInf.-(#SEQ(s2),bias),MaxSeqNo48plus1);
val isr_b = Wrap(IntInf.-(#ISR(isn),bias),MaxSeqNo48plus1);
val SWL = IntInf.max(swl,isr_b);
val SWH = swh;

in
case p_type2 of
Response => IntInf.>=(seq_b,SWL) andalso IntInf.<=(seq_b,SWH)
| Ack => IntInf.>=(seq_b,SWL) andalso IntInf.<=(seq_b,SWH)
| DataAck => IntInf.>=(seq_b,SWL) andalso IntInf.<=(seq_b,SWH)
| CloseReq => IntInf.>(seq_b,center) andalso IntInf.<=(seq_b,SWH)
| Close => IntInf.>(seq_b,center) andalso IntInf.<=(seq_b,SWH)
| Rst => IntInf.>(seq_b,center) andalso IntInf.<=(seq_b,SWH)
| Sync => IntInf.>=(seq_b,SWL)
| SyncAck => IntInf.>=(seq_b,SWL)

end;
(**)
(* Function : AckValid *)
(* Purpose : Check if the received pkt has a valid acknowledgement number *)
(* Input : Received pkt type, received {seq,ack}, GSS, GAR, ISS *)
(* Output : true/false *)
(* *)
fun AckValid(p_type2:PktType2, s2:SN48_AN48, gss:SN48,gar:SN48, iss:SN48) =
let

val bias = IntInf.-(gss,center);
val gar_b = Wrap(IntInf.-(gar,bias),MaxSeqNo48plus1);
val ack_b = Wrap(IntInf.-(#ACK(s2),bias),MaxSeqNo48plus1);
val iss_b = Wrap(IntInf.-(iss,bias),MaxSeqNo48plus1);
val AWL = IntInf.max(awl,iss_b);
val AWH = center;

in
case p_type2 of
Response => IntInf.>=(ack_b,AWL) andalso IntInf.<=(ack_b,AWH)

| Ack => IntInf.>=(ack_b,AWL) andalso IntInf.<=(ack_b,AWH)
| DataAck => IntInf.>=(ack_b,AWL) andalso IntInf.<=(ack_b,AWH)
| CloseReq => IntInf.>=(ack_b,gar_b) andalso IntInf.<=(ack_b,AWH)
| Close => IntInf.>=(ack_b,gar_b) andalso IntInf.<=(ack_b,AWH)
| Rst => IntInf.>=(ack_b,gar_b) andalso IntInf.<=(ack_b,AWH)
| Sync => IntInf.>=(ack_b,AWL) andalso IntInf.<=(ack_b,AWH)
| SyncAck => IntInf.>=(ack_b,AWL) andalso IntInf.<=(ack_b,AWH)

end;
(**)

123

Analysis of the DCCP’s connection management procedures using sweep-line method 55

(* Function : ReqDataValid *)
(* Purpose : Check if the received Request/Data pkt has a valid seq number *)
(* Input : Received pkt type, received seq, {GSS,GSR,GAR}, {ISS,ISR} *)
(* Output : true/false *)
(* *)
fun ReqDataValid(p_type1:PktType1, s1:SN48, g:GS, isn:ISN) =
let

val bias = IntInf.-(#GSR(g),center);
val seq_b = Wrap(IntInf.-(s1,bias),MaxSeqNo48plus1);
val isr_b = Wrap(IntInf.-(#ISR(isn),bias),MaxSeqNo48plus1);
val SWL = IntInf.max(swl,isr_b);
val SWH = swh;

in
case p_type1 of

Request => IntInf.>=(seq_b, SWL) andalso IntInf.<=(seq_b,SWH)
| Data => IntInf.>=(seq_b ,SWL) andalso IntInf.<=(seq_b,SWH)

end;

(**)
(* Function : PktValid *)
(* Call : SeqValid, AckValid *)
(* Purpose : Check if the received pkt has both seq and ack numbers valid *)
(* Input : Received pkt type, received {seq,ack}, {GSS,GSR,GAR}, {ISS,ISN} *)
(* Output : true/false *)
(* *)
fun PktValid(p_type2:PktType2, s2:SN48_AN48, g:GS, isn:ISN) =
let

val check_seq = SeqValid(p_type2:PktType2,s2:SN48_AN48, g:GS, isn:ISN);
val check_ack = AckValid(p_type2:PktType2,s2:SN48_AN48,

#GSS(g),#GAR(g),#ISS(isn));
in

(check_seq) andalso (check_ack)
end;
(**)
(* Function : RstValidinReqState *)
(* Purpose : Check if the received Rst pkt (in REQUEST state) *)
(* has a valid seq number *)
(* Input : Received {seq,ack}, GSS, ISS *)
(* Output : true/false *)
(* *)
fun RstValidinReqState(s2:SN48_AN48, gss:SN48, iss:SN48) =
let

val bias = IntInf.-(gss,center);
val ack_b = Wrap(IntInf.-(#ACK(s2),bias),MaxSeqNo48plus1);
val iss_b = Wrap(IntInf.-(iss,bias),MaxSeqNo48plus1);
val AWL = IntInf.max(awl,iss_b);
val AWH = center;

in
IntInf.>=(ack_b, AWL) andalso IntInf.<=(ack_b,AWH)

end;

(****** Misc function used in Sync page *******)
fun go_open(state) = if state = PARTOPEN then C_OPEN else S_OPEN;
(**)

References

1. Billington, J., Gallasch, G.E., Kristensen, L.M., Mailund, T.:
Exploiting equivalence reduction and the sweep-line method for
detecting terminal states. IEEE Trans. Systems, Man Cybernetics,
Part A: Systems Humans 34(1), 23–37 (2004)

2. Christensen, S., Kristensen, L.M., Mailund, T.: A sweep-line
method for state space exploration. In Proceedings of TACAS

2001. Lecture Notes in Computer Science, vol. 2031, pp. 450–464.
Springer, Heidelberg (2001)

3. CPN ML: An extension of standard ML. http://www.daimi.au.
dk/designCPN/sml/cpnml.html

4. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. For-
mal Methods System Design 9(1/2), 105–131 (1996)

5. Gallasch, G.E., Billington, J.: Using parametric automata for the
verification of the stop-and-wait class of protocols. Proceedings

123

56 S. Vanit-Anunchai et al.

of ATVA’05. Lecture Notes in Computer Science, vol. 3707,
pp. 457–473. Springer, Heidelberg (2005)

6. Gallasch, G.E., Han, B., Billington, J.: Sweep-line analysis of
TCP connection management. In Proceedings of ICFEM’05. Lec-
ture Notes Computer Science, vol. 3785 pp. 156–172. Springer,
Heidelberg (2005)

7. Gallasch, G.E., Billington, J., Vanit-Anunchai, S., Kristensen,
L.M.: Checking safety properties on-the-fly with the sweep-line
method. Int. J. Software Tools Technol. Transfer 9(3–4), 371–391
(2007) (special section on material from CPN’04 and CPN’05)

8. Gallasch, G.E., Ouyang, C., Billington, J., Kristensen, L.M.:
Experimenting with progress mappings for the sweep-line anal-
ysis of the Internet Open Trading Protocol. In: Fifth Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools,
DAIMI PB 570, pp. 19–38. Department of Computer Science,
University of Aarhus, Aarhus October 8–11, (2004). Available via
http://www.daimi.au.dk/CPnets/workshop04/cpn/papers/

9. Gallasch, G.E., Vanit-Anunchai, S., Billington, J., Kristensen,
L.M.: Checking language inclusion on-the-fly with the sweep-
line method. In: Sixth Workshop and Tutorial on Practical Use
of Coloured Petri Nets and the CPN Tools, DAIMI PB 576,
pp. 1–20. Department of Computer Science, University of Aar-
hus, Aarhus October 24–26, (2005). Available via http://www.
daimi.au.dk/CPnets/workshop05/cpn/papers/

10. Godefroid, P., Holzmann, G.J., Pirottin, D.: State-space caching
revisited. Formal Methods System Design 7(3), 227–241 (1995)

11. Gordon, S., Kristensen, L.M., Billington, J.: Verification of
a revised WAP wireless transaction protocol. In: Proceedings
of 23rd International Conference on Application and Theory
of Petri Nets, Lecture Notes Computer Science, vol. 2360,
pp. 182–202. Springer, Heidelberg (2002)

12. Holzmann, G.J.: Design and Validation of Computer Proto-
cols. Prentice Hall, New York (1990)

13. Holzmann, G.J.: An analysis of bitstate hashing. Formal Methods
System Design 13(3), 287–305 (1998)

14. Jensen, K.: Condensed state spaces for symmetrical coloured Petri
Nets. Formal Methods System Design 9(1/2), 7–40 (1996)

15. Jensen, K.: Coloured Petri Nets: basic concepts, analysis meth-
ods and practical use. Vol. 1, basic concepts. Monographs in
Theoretical Computer Science. Springer, Heidelberg, 2nd edn.
(1997)

16. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and
CPN tools for modelling and validation of concurrent systems. Int.
J. Software Tools Technol. Transfer 9(3–4), 213–254 (2007) (spe-
cial section on material from CPN04/05)

17. Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Control
Protocol, draft-ietf-dccp-spec-6. Available via http://www.read.cs.
ucla.edu/dccp/draft-ietf-dccp-spec-06.txt, February (2004)

18. Kohler, E., Handley, M., Floyd, S.: Substantive differences between
draft-ietf-dccp-spec-11 and draft-ietf-dccp-spec-12. Available via
http://www.read.cs.ucla.edu/dccp/diff-spec-11-12-explain.txt,
December (2005)

19. Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Con-
trol Protocol, RFC 4340. Available via http://www.rfc-editor.
org/rfc/rfc4340.txt, March (2006)

20. Kohler, E., Handley, M., Floyd, S.: Substantive differences
between draft-ietf-dccp-spec-13 and RFC 4340. Available via
http://www.read.cs.ucla.edu/dccp/diff-spec-13-rfc-explain.txt,
March 2006

21. Kohler, E., Handley, M., Floyd, S., Padhye, J.: Datagram Con-
gestion Control Protocol, draft-ietf-dccp-spec-5. Available via
http://www.read.cs.ucla.edu/dccp/draft-ietf-dccp-spec-05.txt,
October 2003

22. Kongprakaiwoot, T.: Verification of the Datagram Congestion
Control Protocol using coloured petri nets. Master’s thesis,
Computer Systems Engineering Centre, School of Electrical and

Information Engineering, University of South Australia, South
Australia (2004)

23. Kristensen, L.M., Mailund, T.: A generalised sweep-line method
for safety properties. In: Proceedings of FME’02. Lecture Notes in
Computer Science, vol. 2391, pp. 549–567. Springer, Heidelberg
(2002)

24. Kristensen, L.M., Mailund, T.: Efficient path finding with the
sweep-line method using external storage. In: Proceedings of
ICFEM’03. Lecture Notes in Computer Science, vol. 2885, pp.
319–337. Springer, Heidelberg (2003)

25. Kristensen, L.M., Christensen, S., Jensen, K.: The practitioner’s
guide to Coloured Petri Nets. Int. J. Software Tools Technol. Trans-
fer 2(2), 98–132 (1998)

26. Milner, R., Harper, R., Tofte, M.: The definition of standard ML.
MIT Press, New York (1990)

27. Design/CPN Online. http://www.daimi.au.dk/designCPN/
28. Parashkevov, A.N., Yantchev, J.: Space efficient reachability

analysis through use of pseudo-root states. In: Proceedings of
TACAS’97, Lecture Notes in Computer Science, vol. 1217,
pp. 50–64. Springer, Heidelberg (1997)

29. Peled, D.: All from one, one for all: on Model checking using repre-
sentatives. In: Proceedings of CAV’93, Lecture Notes in Computer
Science, vol. 697, pp. 409–423. Springer, Heidelberg (1993)

30. Valmari, A.: A stubborn attack on state explosion. In: Proceed-
ings of CAV’90, Lecture Notes in Computer Science, vol. 531,
pp. 156–165. Springer, Heidelberg (1990)

31. Valmari, A.: The state explosion problem. In: Lectures on Petri Nets
I: Basic Models, Lecture Notes in Computer Science, vol. 1491,
pp. 429–528. Springer, Heidelberg (1998)

32. Vanit-Anunchai, S., Billington, J.: Initial result of a formal analysis
of DCCP connection management. In: Proceedings of Fourth Inter-
national Network Conference (INC 2004), pp. 63–70, University
of Plymouth, Plymouth, 6–9 July 2004

33. Vanit-Anunchai, S., Billington, J.: Effect of sequence number wrap
on DCCP connection establishment. In: Proceedings of the 14th
IEEE International Symposium on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems (MAS-
COTS), pp. 345–354 IEEE Computer Society Press, Monterey,
11–13 September 2006

34. Vanit-Anunchai, S., Billington, J.: Chattering behaviour in the
Datagram Congestion Control Protocol. IEE Electron. Lett. 41(21),
1198–1199 (2005)

35. Vanit-Anunchai, S., Billington, J.: Modelling the Datagram
Congestion Control Protocol’s connection management and syn-
chronization procedures. In: Proceedings of 28th International
Conference on Application and Theory of Petri Nets and other
models of concurrency (ICATPN’07), Lecture Notes in Computer
Science, vol. 4546, pp. 423–444. Springer, Heidelberg (2007)

36. Vanit-Anunchai, S., Billington, J., Gallasch, G.E.: Sweep-line anal-
ysis of DCCP connection management. In: Seventh workshop and
tutorial on practical use of coloured petri nets and the CPN tools,
DAIMI PB-579, pp. 157–175. Department of Computer Science,
University of Aarhus, Aarhus 24–26 October (2006). Available via
http://www.daimi.au.dk/CPnets/workshop06/cpn/papers/

37. Vanit-Anunchai, S., Billington, J., Kongprakaiwoot, T.: Discover-
ing chatter and incompleteness in the Datagram Congestion Con-
trol Protocol. In: Proceedings of FORTE’05, Lecture Notes in
Computer Science, vol. 3731, pp. 143–158. Springer, Heidelberg
(2005)

38. Wolper, P., Godefroid, P.: Partial order methods for temporal veri-
fication. In: Proceedings of CONCUR’93, Lecture Notes in Com-
puter Science, vol. 715, pp. 233–246. Springer, Heidelberg (1993)

39. Wolper, P., Leroy, D.: Reliable hashing without collision detection.
In: Proceedings of CAV’93, Lecture Notes in Computer Science,
vol. 697, pp. 59–70. Springer, Heidelberg (1993)

123

	Analysis of the Datagram Congestion Control Protocol'sconnection management procedures using the sweep-linemethod
	Abstract
	Introduction
	Overview of DCCP's connection management procedure
	CPN model of DCCP connection management
	Modelling assumptions
	Model structure
	The DCCP overview page
	The third and fourth level pages
	Sweep-line analysis
	Notation
	Usual sources of progress
	Sequence number variables
	Major states
	Application commands
	More subtle measures of progress
	Searching for a better progress measure
	Progress mappings for the augmented model
	Experimental results
	Initial configurations
	Analysis results
	Reduction of the peak number of stored states
	Execution time comparison
	Terminal marking classification
	Conclusions and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

