
Int J Softw Tools Technol Transfer (2007) 9:527–544
DOI 10.1007/s10009-007-0048-8

SPECIAL SECTION FASE’04/05

Tools for secure systems development with UML

Jan Jürjens · Pasha Shabalin

Published online: 25 July 2007
© Springer-Verlag 2007

Abstract For model-based development to be a success
in practice, it needs to have a convincing added-value asso-
ciated with its use. Our goal is to provide such added-value
by developing tool-support for the analysis of UML mod-
els against difficult system requirements. Towards this goal,
we describe a UML verification framework supporting the
construction of automated requirements analysis tools for
UML diagrams. The framework is connected to industrial
CASE tools using XMI and allows convenient access to this
data and to the human user. As a particular example, we
present plugins for verifying models defined using the secu-
rity extension UMLsec of UML. The verification framework
allows advanced users of the UMLsec approach to them-
selves implement verification routines for the constraints of
self-defined stereotypes. In particular, we focus on an anal-
ysis plug-in that utilizes the model-checker Spin to verify
security properties of cryptography-based systems.

Keywords Model-based development · Tool-support ·
UML · Security · Formal verification

1 Introduction

There needs to be a convincing added-value to the usage of
model-based development techniques before they will
be widely adopted in industry. Our goal is to provide such

J. Jürjens (B)
Software and Systems Engineering, TU, Munich, Germany
e-mail: j.jurjens@open.ac.uk
URL: http://www.jurjens.de/jan

P. Shabalin
Internet-based Information Systems, TU, Munich, Germany
e-mail: shabalin@in.tum.de

added-value by developing tool-support for the analysis of
UML models against system requirements which can be for-
mulated at the level of the system model, and which cannot
be manually checked in a reliable and efficient way (such
as security requirements). Here, we describe a UML verifi-
cation framework supporting the construction of automated
requirements analysis tools for UML diagrams. Its design is
influenced by experiences from long-standing efforts at our
group regarding the development of the AutoFocus CASE-
tool [19]. The framework is connected to industrial CASE
tools using data integration with XMI [50] and allows con-
venient access to this data and to the human user.

To be of interest in practice, the requirements that can
be treated, and the method we propose for handling them,
should fulfill the following constraints.

– The properties that can be specified and analyzed should
be important and sophisticated enough so that it is nec-
essary to consider them and that it would be difficult to
do so manually.

– The analysis should be as automatic as possible to reduce
usage costs.

– It should be efficient enough to be effectively and con-
veniently usable on an ongoing basis.

– It should be possible to use the approach with a modest
training effort.

As an example for such requirements, we focus on security
aspects. Data security aspects have become an increasingly
important issue in developing distributed systems, especially
in the electronic business sector. Because security attacks
may cause very high damage (e.g., loss of money through
fraud), the correctness of such systems is crucial.

Designing security-critical systems correctly is difficult.
Today implementation and verification of security aspects

123

528 J. Jürjens, P. Shabalin

of systems is done by experts with limited support from
automated tools, and often after the system is implemented.
That makes the design often error-prone. Therefore, the con-
sideration of security aspects has to be integrated into general
systems development. To facilitate analysis, it should be sup-
ported by automated tools. In order to receive broad accep-
tance, the methodology should employ common modeling
techniques used in industry tailored for that purpose.

The UML extension UMLsec [27,28] has been proposed
for modeling security properties of computer systems. It is
based on a formal semantics which allows one to formally
reason about security properties of the UMLsec model, and
provides background for automated software tools, which
can support the design of secure systems by formal veri-
fication and by model transformation preserving security-
relevant properties.

Using UML as the basis both for the development method
and for the new tools has many advantages. Many software
developers are trained in UML, which can facilitate adoption
of the technology. Existing UML models can be extended
with the UMLsec constructs and used to analyze and improve
security properties of existing systems. Many existing UML
editors support standard UML extensions (like UMLsec) and
can be readily used to edit UMLsec models. Therefore, tool
support for the new technology does not require creating
complex software suites from scratch, but allows one to add
necessary functionality using a simple plug-in architecture.

In this paper, we present verification routines for con-
straints associated with the stereotypes of the UML secu-
rity extension UMLsec. In particular, we focus on a plug-in
that utilizes the model-checker Spin to verify security prop-
erties of UMLsec models which make use of cryptography
(such as cryptographic protocols). To do so, the analysis rou-
tine extracts information from different diagram types (class,
deployment, and Statechart diagrams) that may contain addi-
tional specific cryptography-related information. With
respect to UMLsec, the goal here is thus two-fold. On the one
hand, we aim to support the usage of UMLsec in practice by
offering analysis routines connected to popular CASE tools
which allow the automated verification of the constraints
associated with the UMLsec stereotypes. On the other hand,
the verification framework should allow advanced users of
the UMLsec approach to themselves implement verification
routines for the constraints of self-defined stereotypes, in a
way that allows them to concentrate on the verification logic
(rather than on user interface issues). This verification frame-
work should then be useful beyond UMLsec, as well. For
these purposes, the framework is available as open-source.

Section 2 recalls the core of the UMLsec extension from
[28] and shortly explains how UMLsec models can be ana-
lyzed with respect to security requirements. Section 3
presents the verification framework supporting the construc-
tion of automated requirements analysis tools for UML

diagrams. We give a short overview over analysis tool plu-
gins for the framework supporting verification of UMLsec
models against security requirements. In Sect. 4, we present
one of these plug-ins, which uses the Spin model-checker for
checking data security requirements, for example of crypto-
graphic protocols (some of the ideas here were sketched in
the conference paper [28] and demonstrated in the tool paper
[29]). Using a running example, we explain the translation
from UMLsec models to Promela code and its analysis using
Spin. We close with comparisons to related work, a discus-
sion of our work and an outlook on further developments.

2 UML for security: UMLsec

2.1 Overview

The UMLsec extension [28] aims to support secure system
development, in particular through the following goals.

– Given a system model described with UML, it should
automatically evaluate it for security-related vulnerabili-
ties in the design.

– The methodology should be available to developers not
specialized in security, and allow them to ensure the nec-
essary security properties of the system under design.

– Security properties are often imprecisely defined or mis-
understood. Formulating security properties of a system
can often be a challenge by itself. Therefore we should
enable the user to define easily and unambiguously both
security features and security requirements of the system.

– The costs of correcting flaws in a software system grow
considerably in the process of development, therefore we
would like to consider security from early design phases.

– One should be able to consider security on different levels
of abstraction, and in the system context, since security
can be violated on different levels.

– Users should be enabled to make use of established rules
of prudent security engineering.

In particular, this is achieved by the following notational
features.

– Basic security requirements such as secrecy and integrity
are integrated into the language.

– Different threat scenarios are considered depending on
the adversary strengths.

– Common security concepts like tamper-resistant hard-
ware are available.

– Common security mechanisms like access control are
included in the notation.

– Cryptographic primitives are defined at an appropriate
level of abstraction, since they cannot be feasibly

123

Tools for secure systems development with UML 529

Fig. 1 UMLsec stereotypes

modeled and automatically verified at the bit-sequence
level. This relies on the assumption that the cryptographic
algorithms used are secure. The goal is to establish that
they are used securely as well, which is a main source of
security problems in practice.

– Physical security of the deployed system is taken into
account by the model and its security analysis.

– Security management such as secure workflows has been
addressed.

– Domain-specific extensions such as Java, smart cards, or
CORBA based systems are supported by the notation.

UMLsec supports these features on the technical level in the
following ways:

– It extends the language with new constructs for augment-
ing a UML model with security-relevant properties and
requirements.

– UMLsec defines a formally precise semantics for secu-
rity constructs and for the relevant UML fragment using
UML Machines, an extended version of the Abstract
State Machines [16] with explicit support for UML-style
communication and composition.
It allows construction of a single formal description for
the complete UML model (for the simplified fragment
of UML that is used), including information from all
diagrams and all abstraction layers.

An important advantage of the UMLsec approach is that it
provides the developer with notational elements that repre-
sent the most important security requirements which can be
directly used in the model, together with their formal defi-
nitions. This eliminates the need for the users to themselves
formalize these requirements. This is particularly important
to enable the approach to be widely used in the industry, also
by developers without a formal background.

UMLsec follows the UML specification [49] which intro-
duces profiles as a lightweight mechanism for extending the
language (as opposed to heavyweight extensions through
modifying the UML metamodel). A profile contains defi-
nitions for stereotypes, tagged values and constraints. Such
a lightweight extension should be “strictly additive to the

standard UML semantics. This means that such extensions
must not conflict with or contradict the standard semantics.”
[49]. In particular, this assures that UMLsec can be used to
extend any UML model without conflict with existing tools
or other UML extension.

Stereotypes define new types of modeling elements
extending the semantics of existing types in the UML
metamodel. Their notation consists of the name of the
stereotype written in double angle brackets 〈〈 〉〉, attached
to the extended model element. This model element is
then interpreted according to the meaning ascribed to the
stereotype.

Tagged values allow explicitly attaching a data value to a
model element. They are represented by a name = value
pair in curly brackets associated with model elements.
The value can be either a simple datatype value, or a
reference to another model element.

Constraints can be attached to a model element to refine its
semantics. Attached to a stereotype, constraints must be
observed by all model elements marked by that stereo-
type.

With UMLsec, stereotypes and tagged value are used to
define data security requirements on model elements, and
to define their security-relevant properties. The constraints,
which are automatically derived by our tools using the threat
model described in the next subsection, formulate rules which
must be met by the design to support the requested security
properties. Some examples for UMLsec stereotypes together
with associated tags and informal descriptions are listed in
Fig. 1.

We refer the reader to the book [28] for the complete ref-
erence on UMLsec, and describe here only the part which is
needed in this article. The Spin plugin, described in Sect. 4,
interprets and translates to Promela following UMLsec ste-
reotypes.

The stereotype 〈〈secrecy〉〉 marks data which the adversary
should not get to know in plain-text.

Stereotypes 〈〈LAN〉〉, 〈〈Internet〉〉, and 〈〈Wireless〉〉 describe
physical characteristics of communication links, and

123

530 J. Jürjens, P. Shabalin

thus define how the adversary can possibly affect the
communication performed over them.

2.2 Relevant fragment of UMLsec

We shortly recall the fragment of UMLsec needed in this
paper. To perform a formal verification of the UMLsec mod-
els, we need mathematically precise definitions of the UML-
sec models, including their dynamic behavior, which we also
explain shortly (again more details can be found in [28]). The
foundations are defined in [28] using UML Machines, which
are inspired by the Abstract State Machines (ASM) [16]. A
UML Machine is a transition system with built-in communi-
cation mechanisms, which defines the behavior of a system
component. It is defined by the initial state, transition rules
which are applied iteratively and define how the machine
state changes in time, and two multi-set buffers (output queue
and input queue). A UML Machine communicates with other
system parts by adding messages to its output queue and
retrieving messages from its input queue. All the messages
in the system compose the set Events. To build an executable
UML specification in a modular way, by combining a set of
UML Machines together with communication links connect-
ing them, one can use the notion of a UML machine system
(UMS) also defined in [28]. The intuition is that a UMS mod-
els a computer system that is divided into components that
may communicate by sending messages through communi-
cation links and whose execution is scheduled by a specified
scheduler.

We now define the fragment of UMLsec used here together
with important parts of its execution semantics, which is
extended with the adversary model in the next subsection.

Class Diagrams are used to define classes in the model
and associations between them. A class contains attributes
(local variables), which can be labeled with the tag {secrecy}
to specify that the adversary should not get to know the initial
value of the variable. Furthermore, classes may be specified
to contain operations, which define the messages accepted by
the class. Each operation can have zero or more parameters.
An association has two association ends, each connected to
a class. Two classes, connected by an association, can ref-
erence each other using the opposite association end name.
The model developer can define class attributes using any
data type available within the UML notation, and can assign
initial values to them using the UMLsec notation.

Statechart diagrams define dynamic behavior and
changes in the internal state of the UML classes in response
to incoming messages. Triggers, guards, and actions in a
Statechart diagram are formulated using the cryptography
language described in Sect. 4.2. Following the UMLsec

Fig. 2 Executing transitions in a loop

semantics from [28] and the UML specification, each
Statechart diagram is translated into a state machine with
message queues for input and output. Its functionality is mod-
eled by a loop which repeatedly dequeues a message from
the input queue and executes the transitions that are enabled
until another message is required to continue.

For the behavioral semantics of Statecharts, we follow the
one given in [28]. We shortly recall some important features.

A Statechart transition is selected for execution when the
following conditions are met:

– The source state is currently active.
– The current input message matches the trigger OR the

transition is a completion transition.
– The guard evaluates to true.

Note that several transitions can be selected for execution
simultaneously, when they all have the same trigger and
source state. Parameters of the current message are copied to
class attributes before the corresponding guard is evaluated.
The current state of a state machine is iteratively updated
following the loop presented in Fig. 2. The idea of the nested
loop is that all possible completion transitions are always
executed before the next message from the input queue Q_in
is consumed. This behavior follows the run-to-completion
semantics described in the UML specification ensuring that
a message can only be dequeued and dispatched after the
previous message has been fully completed. In case the new
current message does not cause any transition to be selected,
it is dropped and the next message from the input queue is
consumed. The execution blocks on an attempt to read from
an empty input queue until a new message arrives. After a
message causes a transition to be selected and the transition
was executed, the message is discarded and cannot be used
again.

Deployment diagrams specify the physical structure of
the system. Objects in a deployment diagram represent
instances of classes. Objects are contained in nodes which
represent physical parts of the system. A link represents
a physical communication connection between two nodes.
Physical properties of the link are defined by attaching for

123

Tools for secure systems development with UML 531

example one of the UMLsec stereotypes 〈〈LAN〉〉, 〈〈Internet〉〉,
or 〈〈Wireless〉〉. Together with the adversary type, the stereo-
type defines the adversary capabilities regarding the link, as
described in Sect. 2.3.

2.3 Security analysis of UMLsec models

To apply formal verification methods for analyzing security
properties of an open distributed system, it is necessary to
“close” it by modeling the possible interactions between the
system and the outside world. This includes behavior of the
potential adversary trying to break or compromise the sys-
tem. For that reason, reliability of the automated verification
of security properties depend on the correctness and com-
pleteness of the simulated adversary behavior. The adversary
is modeled through the basic actions that can be performed to
attack the system (see Fig. 3). The complete attack scenarios
are then automatically derived from these.

We explain the needed background on the adversary model
we use for the security verification. It is built on the adver-
sary model from [28]. More information and examples can be
found there. The extent of the possible interference with the
system execution depends on the physical properties of the
system, and on the adversary abilities. The adversary model
is thus defined through certain basic capabilities, depending
on the physical properties of the system, and on the strength
of the adversary that is considered. The UMLsec methodol-
ogy provides the possibility to specify these parameters in a
generic and modular way.

By generic, we mean that the goal is not to encode all
known possible protocol attack strategies on the whole, which
would be possibly unsound and hardly practical:

– By construction, the verification procedure will find only
attacks which we have (correctly) encoded in the tool.
We would however like to detect any cryptographically
possible attack that is detectable within our given system
model and on our level of abstraction.

– The programming task of encoding all known attack
strategies is very complex, especially because generally

memory
logic

A B

ad
ve

rs
ar

y

* use initial knowledge
* memorize message
* delete message
* insert message
* compose own message
* use cryptographic primitives

Fig. 3 Simulating adversary behavior

these strategies describe a general attack idea, which
must be tailored for an attack on the particular system.

This generic attacker model goes back to an influential
approach to security verification proposed in [10]. The adver-
sary can use all cryptographic functions defined in Sect. 4.2
to analyze and compose messages, under the assumption that
these functions are themselves secure and correctly imple-
mented (the perfect cryptography assumption; see for exam-
ple [2] for a discussion):

– The decryption key must be known in order to extract
the plaintext corresponding to a given ciphertext.

– There is enough redundancy in the cryptosystem that a
ciphertext can only be generated using encryption with
the appropriate key and message.

For example for an online banking application, a user of
the application could read and modify information on the
Internet, and access the data on the client node. A malicious
employee however could read and manipulate traffic in the
internal LAN, and access the internal servers. This is speci-
fied in UMLsec using a function mapping an adversary type
A and a stereotype s characterizing a physical property of the
system in the deployment diagram (such as 〈〈Internet 〉〉) to
a set of threats ThreatsA(s) ⊆ {delete, read, insert}. Each
of the threats is implemented by a possible adversary action
in the system model.

– read gives the adversary the capability to read the infor-
mation from the communication link and store it in the
internal variables.

– insert allows the adversary to insert his own messages
into the communication link. The message is created
from the information known to the adversary, constructed
from the initial adversary knowledge and the information
learned by the adversary from the previous communica-
tion.

– delete allows the adversary to remove a message from
the communication link.

To define the attack capabilities of an adversary type A
against a UML model element labeled with the stereotype s,
we thus define the function ThreatsA(s) returning a subset
of the set {delete, read, insert, access} of abstract threats.
The examples in Figs. 4 and 5 define the threats associated
with the default and insider adversary types for some of the
stereotypes; new adversary types can be defined in a similar
way.

From the above definitions on the stereotype-level, one
can derive how the adversary can interact with system parts
represented by concrete model elements: For a link l in a
deployment diagram contained in the subsystem S, we define

123

532 J. Jürjens, P. Shabalin

Fig. 4 Threats from the default adversary

Fig. 5 Threats from the insider adversary

the set threatsS
A(l) of concrete threats to be the smallest

set satisfying the following conditions. If each node n that
l is contained in1 carries a stereotype sn with access ∈
ThreatsA(sn) then:

– If l carries a stereotype s with delete ∈ ThreatsA(s)
then delete ∈ threatsS

A(l).
– If l carries a stereotype s with insert ∈ ThreatsA(s)

then insert ∈ threatsS
A(l).

– If l carries a stereotype s with read ∈ ThreatsA(s) then
read ∈ threatsS

A(l).
– If l is connected to a node that carries a stereotype s with

access ∈ ThreatsA(s) then {delete, read, insert} ⊆
threatsS

A(l).

The idea is that threatsS
A(x) specifies the threat scenario

against a component or link x in the subsystem S that is asso-
ciated with an adversary type A. On the one hand, the threat
scenario determines which data the adversary can obtain
by accessing components. On the other hand, it determines
which actions the adversary can apply to the links according
to the threat scenario. delete means that the adversary may
delete the messages on the corresponding link, read allows
him to read the messages on the link, and insert allows him
to insert messages into the link. The new messages can be
created by applying cryptographic primitives to the initial
knowledge of the adversary and the data that was previously
read.

To investigate the security of the system with respect to
the chosen adversary type, we build an executable specifica-
tion of the system combined with the adversary model, and
verify its security properties.

1 Note that nodes and subsystems may be mutually nested in each other.

3 Framework for UMLsec processing

3.1 Representing UML in XML

The XML Metadata Interchange (XMI) language [50] issued
by the Object Management Group (OMG) is a standard for
storing UML models into a file used by many UML tools. It
allows one to easily develop lightweight software extending
the functionality of existing UML tools. The XMI format is
compliant with the Meta Object Facility (MOF) framework
[38] for specifying meta-information (also called metamod-
els). Applications of the MOF framework include the def-
inition of modeling languages such as for example UML
and Common Warehouse Model (CWM). The framework is
defined using a four-level data abstraction model, shown in
Fig. 6. The lowest level M0 deals with data instances in the
program during execution, for example: Mr. Smith, 35 years
old, lives in New York. The level M1 describes data models,
for example a UML model of the application. To continue
with our example, this could be a class model defining the
class: Person with attributes: Name, Age, Address. The next
abstraction level M2 corresponds to the modeling language
itself, in our case the UML notation. The last abstraction level
M3 is where these modeling languages are defined using the
MOF framework. It uses three main elements: MOF Object,
MOF Association and MOF Package, and four secondary ele-
ments: Data Types, Constants, Exceptions and Constraints.

The XML Metadata Interchange then defines a mapping
from MOF to XML. It can be used to automatically produce
an XML interchange format for any language described with
MOF. For example, to produce a standardized UML inter-
change format, we need to define the UML language using
MOF, and use XMI mapping rules to derive DTDs and XML
Schemas for UML serialization. MOF itself is defined using
the MOF framework, and therefore XMI can be applied not
only for metamodel instances but for metamodels themselves
(as they are also instances of a metamodel which is MOF).

Also relevant is the Java Metadata Interface (JMI) which
defines a MOF-to-Java mapping (similarly to the MOF-
to-XML mapping provided by XMI). It is used for deriving
Java interfaces tailored for accessing instances of a particu-
lar metamodel. As MOF itself is MOF-compliant, it can be
used to access metamodels as well. The standard also defines
a set of reflective interfaces which can be used similarly to
the metamodel-specific API without prior knowledge of the
metamodel.

There are several possibilites for working with XMI files:

– XML parsing and transformation languages coupled with
the XML standard (such as XPath, XSLT).

– Any high-level language with appropriate libraries (such
as Java, C++, Perl).

– Data-binding.

123

Tools for secure systems development with UML 533

Fig. 6 MOF framework

MDRMOF

[UML 1.5] UML 1.5

MyUml

MyApp

3: generate

JMI

1: UML 1.5 Metamodel in XML format

2: instantiate

4: MyUml.xmi

Fig. 7 Using the MDR library

The first two methods, although quite flexible, require more
development effort. However, for UML processing, we are
concerned about the data contained in documents, rather than
the document itself and its structure. For this purpose, data
binding offers an approach to working with XML data which
is more specifically tailored to our goals.

There exist several libraries supporting data-binding for
XML. The widely used Castor library [5] offers the developer
a relatively generic representation of the UML model, on
the level of MOF constructs. However, there are also data-
binding libraries which provide representation of a UML
model as an XMI file on the abstraction level of a UML
model. This allows the developer to work directly with
UML concepts (such as classes, Statecharts, stereotypes,
etc.). We use the MDR (Meta Data Repository) library which
is part of the Netbeans project [39] and also used by the freely
available UML modeling tool Poseidon 1.6 Community
Edition [14]. Another such library is the Novosoft NSUML
project [40]. The MDR library implements a MOF-compliant
repository with support for XMI and JMI standards. Figure 7
illustrates how the repository is used for working with UML
models.

The XMI description of the modeling language is used to
customize the MDR for working with the particular model
type, UML in this case (step 1). The XMI description of
UML is published by the Object Management Group (OMG).
A storage (extent in the MDR terminology) customized for
the given model type is created (step 2). Additionally, based

on the XMI specification of the modeling language, MDR
creates JMI (Java Metadata Interface) definitions for
accessing the model (step 3). The interfaces are used from
the user application to manipulate the UML model on the
conceptual level of UML. A UML model is loaded into the
repository (step 4). Now it can be accessed through the JMI
interfaces from a Java application. The model can be read,
modified, and later saved into an XMI file again.

Because it allows one to use the XMI DTD files officially
released by the OMG, using MDR in a UML processing
tool promises a high standard compatibility and is hoped to
facilitate upgrading to upcoming UML versions, by replac-
ing the UML Metamodel file loaded in the first step with a
metamodel of the next UML version (and possibly making
further adjustments).

3.2 Framework architecture

The UMLsec framework was designed to support a develop-
ment and execution environment for various UML model
processing tools, including but not restricted to UMLsec
analysis plugins. The following considerations have influ-
enced its design.

– A tool developer should be able to concentrate on the
verification logic rather than on the interface or UML
processing issues. The latter two aspects should be han-
dled by the framework and be clearly separated from the
implementation of the independent tools.

– The framework is intended for use by different develop-
ers providing extensions to it, who may work indepen-
dently. Therefore, the design must be kept simple and
straightforward and easy to use and maintain.

– It should be possible to use tools through different input/
output interfaces. In particular, a traditional console
mode and a web interface mode are important and a
graphical interface would be desirable. On the other hand,
the support for different media should not significantly
increase the development effort for the tool plugins.

The architecture and basic functionality of the UMLsec
framework are presented in Fig. 8. As the first step, the
developer creates a UMLsec model and stores it in the UML
1.5/XMI 1.2 file format. The file is imported by the frame-
work into the internal MDR repository. Separate tools, such

123

534 J. Jürjens, P. Shabalin

UML Editor
(UML 1.5 / XMI 1.2 - compliant)

e.g. Poseidon 1.6

UML Model
(UML 1.5 /
XMI 1.2)

Analysis engine
MDR

JMI

Model
and

Desired
properties

Result

Text Report

Static Checker

Dynamic Checker

Analysis Suite

Modified
UML
Model

Error Analyzer

“uses"

data flow

Fig. 8 UML tools suite

as the static checkers and dynamic checkers in Fig. 8, access
the model through JMI interfaces, generated by the MDR
library. A tool can optionally request additional parameters
from the user. A static checker parses the model, verifies its
static features, and delivers verification results to the error
analyzer. A dynamic checker translates the relevant frag-
ment of the UMLsec model into an intermediate language
for processing by an external tool. Results of its execution
are delivered back to the error analyzer. The error analyzer
uses the information that is received to produce a text report
for the developer describing the problems that were found,
and a modified UMLsec model, where the problems are visu-
alized and possibly corrected.

For creating and editing UMLsec models we are using the
UML editor Poseidon 1.6 Community Edition, freely avail-
able from Gentleware [14]. However, it should be possible
to use any other UML editor, capable of storing the model in
the UML 1.5/XMI 1.2 format.

To improve usability, the user interface supports differ-
ent input/output media. To still keep tool extension develop-
ment simple and avoid redundant code, the framework allows
one to program plugins using the Console, GUI and Web
user interfaces without additional implementation effort. To
achieve this, input/output operations are handled by the
framework transparently for the tools. Tools expose their
functionality to the framework through four interfaces, as
presented in Fig. 9.

– The IToolBase interface defines the common function-
ality for all media types - Console, Gui and Web.

Framework

Tool

IToolConsole

IToolWeb

IToolGui

ToolBase

FrameworkConsole
FrameworkWeb
FrameworkGui

IToolBase

Fig. 9 Tool interfaces

MyUmlTool
IVikiToolConsole

«framework»
DefaultGuiWrapper

«framework»
DefaultWebWrapper

IVikiToolGui

IVikiToolWeb

IVikiToolBase

Fig. 10 Framework wrappers

– IToolConsole, IToolGui and IToolWeb interfaces define
additional functionality required for each particular
medium.

Each tool must implement at least the IToolBase and
IToolConsole interfaces. The framework provides default
wrappers for the GUI and Web mode, implemented in the
classes DefaultGuiWrapper and DefaultWebWrapper, as
presented in Fig. 10. Wrappers are used by the framework
automatically when the tool returns null from getGui or
getWeb functions of the IToolBase interface respectively.
The wrappers render the textual output of the tool, obtained
through the IToolConsole interface, to a TextBox control in
the GUI mode, or to an HTML page in the web mode. How-
ever, each tool can implement IToolGui and/or IToolWeb
interfaces itself to fully exploit the functionality of the corre-
sponding media, for example to use GUI mode capabilities
for displaying graphical information.

To support media-independent functionality, not only the
tool output, but also the input of necessary parameters is
handled in a generic way independently of the current input/
output medium. To support this concept, the implementation
of the IToolConsole interface for each tool conforms with
following rules:

123

Tools for secure systems development with UML 535

call
getCommands

collect
parameters

call
executeCommand

system
change

Framework
call

Initialise

Tool can create
the command list

Fig. 11 Framework life cycle

– A tool exposes a set of commands which it can execute.
– Every single command is not interactive. It receives

parameters, executes, and delivers feedback.
– The tool has its internal state which is preserved between

commands. This allows one to perform complex and
interactive operations on the UML model.

– The tool is given the UML model that it operates on. It
may load further models if necessary.

As presented in Fig. 11, the appropriate getCommands
function is called every time the list of commands is pre-
sented to the tool user. The tool developer can create the list
of commands once during the tool initialization, save it in a
tool class variable, and return the list every time the getCom-
mands function is called. Alternatively, the list of commands
can be generated anew on every function call, based on the
current tool state. The list of commands exposed by the tool
can be different for different input/output media, enabling the
tool to provide different functionality through the different
media.

3.3 UMLsec verification tools

Using the framework described in the previous section, a
number of plug-ins for UML (and in particular UMLsec)
model verification have been implemented. They fall into
several categories.

Static features: For each of the static security requirements
in UMLsec (such as 〈〈secure links 〉〉 and 〈〈secure 〉〉
〈〈dependency 〉〉), we have implemented an analysis plu-
gin which directly checks the relevant conditions in a Java
routine.

Simple dynamic features: For dynamic properties, we need
a mapping from UMLsec models to a representation of
their behavioral semantics as event histories. This is done
for Statecharts, activity diagrams, sequence diagrams,
and for subsystems containing the above diagram types
in four other plugins. The semantics is analyzed to verify
basic security requirement, defined on the behavioral level.

Complex dynamic features: For complex dynamic proper-
ties, the UMLsec model is translated into the input lan-
guage of a suitable analysis tool. As an example, we
describe an integration with the model-checker Spin to
verify the 〈〈data security 〉〉 constraints in the next sub-
section.

Runtime analysis: There are also plug-ins analyzing UML-
sec models with respect to security-critical run-time
information. An example is the analysis of security
permissions from configurations for SAP R/3 business
applications with respect to security rules and business
processes formulated in UML [18].

4 Model-checking UMLsec specifications

4.1 Overview

As an example for the verification routines implemented in
the UMLsec tool, we present an integration with the model-
checker Spin [20] for verifying crypto-based software as
defined by the 〈〈data security 〉〉 requirement from [28].
〈〈data security 〉〉 is a UMLsec stereotype for subsystems
which one can use to specify that certain attributes in the
subsystem that are marked using the {secrecy} tag are sup-
posed to remain secret given the behavior specified in the
UML model. These UML subsystems, such as cryptographic
protocols, can be specified to make use of cryptographic algo-
rithms. That the secrecy requirement is actually fulfilled (as
far as one can determine from the model), is formalized using
the constraint associated with 〈〈data security 〉〉. This is done
with respect to a formal semantics of (a restricted version of)
the subsystem and its subdiagrams, and using an adversary
model arising from the physical security specification given
in the deployment diagram contained in the subsystem. This
was shortly sketched in Sect. 2.

Many model-checkers support higher level languages like
Promela for the Spin model-checker [20] and the SMV nota-
tion [45]. These languages may describe the system as an
interleaving composition of several automata running in par-
allel. Different processes may communicate by message
passing or through shared variables. The second input to the
model-checker is a property which is checked against the
given transition system. To specify complex properties, one
can make use of temporal logic. On successful termination,
the model-checker delivers one of the following two results:

– System meets the requirement By evaluating all reach-
able states of the transition system, the model-checker
establishes that it always fulfills the desired property.

– System violates the requirement The model checker finds
a reachable system state where the specified property

123

536 J. Jürjens, P. Shabalin

does not hold. It can also provide the error trace which
illustrates how the system entered the undesired state.

Due to the notorious state explosion problem, the third
possible outcome of the model-checking (no successful ter-
mination within acceptable time limits) is not uncommon for
real life systems. In particular, components like the adversary
in security analysis, increase the complexity of the model sig-
nificantly. In our approach, we handle the complexity issue by
using the bounded model-checking approach which allows
one to obtain partial verification results without building the
complete state space of the modeled system. More concretely,
we use the model-checker Spin [20] that supports automatic
verification of finite-state reactive systems given in form of a
state-transition system against properties expressed in Linear
Time Logic (LTL).

The tool verifies a subset of dynamic security require-
ments, which can be expressed with the UMLsec profile,
by translating the model into the Promela language (follow-
ing the UML formal semantics) for further processing by
the Spin model-checker. Specifically, it checks whether the
initial value of a class attribute, marked with the 〈〈secrecy〉〉
stereotype, can be obtained in plain text by the adversary.
To check this constraint associated with 〈〈data security 〉〉

attached to a subsystem, we construct a formal model of the
system behavior. This model is extended with an adversary
model derived from the threat information in the deployment
diagram. This formal model is then verified with respect to
the security requirement contained in the class diagram. If
this requirement is violated, an attack trace is produced.

4.2 Cryptographic notation

The BNF representation of the cryptographic expressions is
given in Fig. 12. There are three top-level constructs. A guard
is used to define conditional transitions in UML Statechart
diagrams. An effect is used to define UML actions, including
assignment of new values to class attributes and the invoca-
tion of methods. An expression is used in class diagrams
to specify initial values for class attributes, and as a part
of guards and effects. Valid identifiers are names of class
attributes, other classes using named associations, various
constants, and the keyword: this. The functions SenderOf,
PublicKeyOf, SecretKeyOf, SymmetricKeyOf,
and NonceOf return the corresponding attributes of the
object. Note that the functionNonceOf relies on the assump-
tion that for protocols with symmetric session keys, at each
iteration of the protocol a new object with a fresh session
key is generated. One can modify the definition to allow each
object to have several symmetric keys.

The function ApplyKey performs the cryptographic
operations of encryption, decryption, signing, and extraction
from signatures (as formalized below). Expressions can also

Fig. 12 UMLsec Cryptography Language

include the concatenation and indexing operators :: and []
(where a concatenation of n expressions followed by [m]
evaluates to the mth of these expressions if m ≤ n). Fur-
thermore, one can use the Boolean comparison operators ==
(equal) and != (not equal) between expressions, the assign-
ment = of expressions to attributes, as well as events (which
specify incoming method calls at Statechart transitions).

For any symmetric key k, any asymmetric key pair consist-
ing of a secret key sk and a public key pk, and any message
m, the following rules apply:

– ApplyKey(ApplyKey(m, k), k) = m
(symmetric encryption)

– ApplyKey(ApplyKey(m, pk), sk) = m
(asymmetric encryption)

– ApplyKey(ApplyKey(m, sk), pk) = m
(digital signature)

The first rule axiomatizes the functional properties of any
symmetric encryption algorithm, the latter two rules the prop-
erties of the RSA asymmetric encryption algorithm [42].

The SenderOf function is given as the input argument
a message received from the communication channel and

123

Tools for secure systems development with UML 537

returns the object identifier of the message sender. For exam-
ple, the following expression returns the public key of the
sender of the message msg:

PublicKeyOf(SenderOf(msg))

Note that the adversary may be able to forge the message
sender information.

Sending a message to an object is encoded in UML actions
in Statechart diagrams using an expression of the form:

ObjectId.FunctionName(param1, param2,...)

where the ObjectId can be

– either hard-coded using a name of an association end or
the keyword: this,

– or obtained at runtime from a class attribute carrying the
value of an object identifier,

– or evaluated from a SenderOf expression.

If a message is sent to an object which does not support it, or
an invalid runtime ObjectId is used, the message is omitted
by the system.

Example We introduce a UMLsec specification of a simple
cryptographic protocol, which we use in the remainder of
this paper as a running example. In this simple (and obvi-
ously insecure) protocol, Alice (of class Initiator) wants to
receive some secret information from Bob (of class Respon-
der). Alice sends to Bob her key, and Bob returns the secret
value encrypted under the key:

Alice → Bob : k
Bob → Alice : {x}k

The UML model of the example is presented in Figs. 13
through 16. Figure 13 contains a class diagram defining the
data structure of the system consisting of the Initiator and the
Responder. Note that the attribute m of the Responder class is
marked with the 〈〈secrecy 〉〉 stereotype, which expresses the
requirement that the content of this attribute is never leaked
to the adversary. Figure 14 contains a deployment diagram
describing the physical layer underlying the protocol. The
communication link is marked with the stereotype 〈〈LAN 〉〉,
meaning that the communication link is supposed to be a
connection in a local area network, which implies that the
(internal) adversary we consider in this example is capable

+respond(in m)

-k = SymmetricKeyOf(this)
-m

Initiator

+request(in m)

«secrecy» -m = NonceOf(this)
-receivedKey

Responder-initiator -responder

Fig. 13 Example class diagram

ServerNode

 : Component1

ClientNode

 : Component1
<<lan>>

Alice:Initiator Bob:Responder

Fig. 14 Example Deployment Diagram

State1 State2 State3

respond(m) / m = ApplyKey(m, k)

/ responder.request(k)

Fig. 15 Example initiator statechart

State4 State5

request(receivedKey)

/ initiator.respond(ApplyKey(m, receivedKey))

Fig. 16 Example responder statechart

of reading and writing on the link. Figure 15 contains a State-
chart specifying the behavior of the Initiator in the protocol
sketched above, and Fig. 16 a Statechart for the Responder.

4.3 Translation to Promela: types

We explain some key points in the automatic translation of
UMLsec models to Promela code and its analysis using the
Spin model-checker at the hand of our running example.
We use the Spin model-checker since we found it particu-
larly suitable for the verification of communicating distrib-
uted systems. Also, Spin’s on-the-fly model-checking (which
allows one to partially verify a model without building the
full state space) seems suitable for verifying security require-
ments against the highly non-deterministic adversary
models.

Parameters and data types In a UML model, developers can
use a range of predefined data types, and can also define their
own data types. In contrast, model-checker notations usually
support only a very limited set of data types (in the case
of Promela: Boolean, Integer, and enumerated types [20]).
For a given UML model, we thus need to define a map-
ping of the complex UML data types onto the limited set
of data types supported by the model-checker. We discuss
two obvious approaches for constructing such a mapping and
explain why they are not suitable for our needs, which moti-
vates the solution we then propose. We use the term atomic
values for values like an encryption key k, or a message v,
which are considered to be unique and cannot be derived
from other atomic values. We use the term complex values
for data expressions constructed by applying operations (the
data transformation functions) to atomic values. An example
is the expression {v}k , which is the value v encrypted under
the key k.

123

538 J. Jürjens, P. Shabalin

We consider a model with a base data type (say, Integer)
which we assume to include the atomic values and discuss
three possibilities of representing and processing complex
values: simple enumeration, fixed types, and dynamic types.

Simple enumeration We use the Integer data type to enumer-
ate all possible data values. For the {v}k expression we assign
a new integer value to every combination of atomic values v

and k. The data transformation functions are represented by
a simple mapping function. In this approach, it is difficult to
decide which combinations of values are possible and need
to be enumerated. The translation process and the resulting
code are complex. The internal logic of different processes in
the translated code becomes mutually dependent. Detecting
and enumerating all possible combinations is in fact the task
of the model-checker. Implementing the same logic in the
translator complicates the translation process and the result-
ing model. The HUGO UML to Promela translator [44], for
example, allows using native model-checker data types in the
function parameters in the UML Model. It does not explic-
itly implement enumerating of all the possible complex data
values, but it may be possible to be extended in this way. How-
ever, taking the drawbacks discussed above into account, we
consider other possibilities.

Fixed types The UML fragment that is used explicitly
defines the data types of all variables, parameters and return
values that can be used in the model. For every data type, it
is then possible to enumerate all its values and define data
transformation functions hardcoded in the resulting model-
checker code according to the data type they process. We are
not aware of any existing tools implementing this approach.
Compared to the first solution, it would result in a better
structured code, and the translation logic would be cleaner
and easier to understand. However, we would have to limit the
developer to use only those data types known to our transla-
tor. Alternatively, one could request the developer to provide
mapping rules describing how the data types in the UML
model relate to the data types defined in the UML fragment.
Both alternatives would mean significant additional effort
which might prevent developers from using the technology.

Dynamic Types The solution we propose is the dynamic
handling of data types, where the message itself carries infor-
mation about its type. The complex data type is defined dur-
ing the translation process and holds any value which may
appear in the system during its execution. For this, the tool
builds a type graph. Starting from the root node of type
atomic, and by using all expressions which are met in the
model (namely, initial values, transition effects, and tran-
sition guards), the tool creates new vertices in the graph as
necessary. The data transformation functions are represented
as edges in the graph, and the data types as nodes.

Fig. 17 Example data graph

{ }

v

v
k

Fig. 18 Translated example - fragment

The data graph for our example is presented in Fig. 17.
It contains two vertices representing a simple variable (root)
and an encrypted variable, and two edges representing
encryption and decryption. Based on the data graph, the com-
plex data type is encoded by a structure which holds as many
atomic values as necessary to represent the most complex ver-
tex plus a variable to encode the actual value type. Then the
tool defines a set of data transformation functions which per-
form operations on the data types, for each edge in the graph.
The translation result for our example in the Promela notation
is given in Fig. 18. The MSG structure is used to represent
the complex data type. Its messageT ype field has values
of the form MT _xxx and defines which vertex in the data
graph the structure currently represents. The param1 and
param2 fields store the needed atomic values. For example,
to encode the value {v}k , the param1 field stores the value
v, param2 stores the key k, and messageT ype stores the
value MT _LvRk. The ApplyK ey function defines a trans-
formation rule for the graph: encryption on a v-type vertex
produces a {v}k vertex; decryption with a valid key on a {v}k

vertex produces a v vertex.

4.4 Translation to Promela: UMLsec semantics

We sketch how the analysis plug-in translates the UML model
into the Promela notation, following the simplified UML
semantics in [28]. The resulting model consists of a network

123

Tools for secure systems development with UML 539

of communicating objects whose structure is based on the
deployment diagram. Each object has an input queue and
an output queue for exchanging messages with other parts of
the system. To give each object a separate thread of execution
within the model, we create a Promela proctype definition for
every UML class, and instantiate it for every corresponding
object in the deployment diagram. Each object in the result-
ing code receives a unique ID. From the class diagram, the
tool collects information about the attributes of the object
and its associations with other classes; each association is
resolved to an object ID based on the deployment diagram.
The behavior of each class is encoded in a loop following the
UML run-to-completion semantics by repeatedly executing
the following two steps:

– If not in the end state, all actions that are enabled are
executed in a loop, without consuming external events.
If more than one action is enabled, the action that is exe-
cuted is selected non-deterministically.

– A single event is read from the input communication
channel, and the corresponding action is executed. The
execution of the object is blocked if the channel is empty.
The events which do not trigger any actions in the current
object state are lost.

The tool uses a simplified UML semantics. In particular,
composite and history states are not allowed, events cannot
be deferred, and only asynchronous communication is sup-
ported at present. Some of the other UML constructs can be
reduced as usual to the subset the tool supports (see [28]).

Adversary In consideration of memory complexity, we have
separated the adversary knowledge into two different classes:

– A message from the communication channel can be
captured and stored without understanding it. It can be
analyzed by the adversary later when he receives the
necessary key, or replayed to any protocol party without
changes. This complex knowledge is stored in variables
of the type MSG.

– The simple knowledge of the adversary is formed by
a set of boolean variables, one for each atomic value
not known to the adversary at the system initialisation,
named known_“atomic value name”. They are initial-
ized to false and set by the adversary procedure to true
when he can derive the corresponding plaintext value
from the data learnt by eavesdropping.

The knowledge of both categories can be used by the adver-
sary to compose new messages. In the Promela code we
implement this by starting the message composition either
from one of the known atomic values, or from a stored, com-

Fig. 19 Example adversary

posed message. Then the adversary can apply any crypto-
graphic operation up to n = T ypeGraph Diameter times.

By default all public keys in the system and all object iden-
tifiers are known to the adversary at the system initialization.
The model developer can extend the adversary model’s ini-
tial knowledge: it contains initial values of all class attributes
marked with the stereotype 〈〈public 〉〉.

The size of the data type graph and the adversary memory
capacity can be determined by the user of the tool. We plan to
investigate formal results on bounds that yield a sound anal-
ysis, based on results such as [47]. The data type graph size
is defined by most complex operations performed by legiti-
mate parties. The rationale is that for an adversary it makes
sense to produce expressions only as complex as actually
processed by the protocol parties.

The adversary behavior is modelled by a separate Promela
proctype definition and instantiated with a separate execu-
tion thread. The adversary procedure accepts as parameters
input and output channels of all other objects in the system. It
executes an infinite loop, non-deterministically selecting and
executing one of the possible actions on one of the commu-
nication channels. In our example, the adversary capabilities
are limited to the subset {read, insert}, which results into
the loop given in Fig. 19 in pseudocode. Note that in this
case, the adversary cannot delete messages, but always for-
wards them to the intended receiver, according to the missing
delete capability.

The Promela code of the analyse message functionality
for our example is shown in Fig. 20. The procedure
TweakMessage applies one of the possible data transforma-
tion functions to the message (or leaves the message
unchanged). The procedure is repeated T ypeGraph
Diameter times (four in this case). The adversary then learns
the resulting value.

Generation of a new message by the adversary is pic-
tured in Fig. 21 for our example. Firstly, the message can
be started either by using one of the stored messages, or
an intially known value. The message may be modified up
to T ypeGraph Diameter times (again four in this case).
Finally the message is sent over the specified channel (mes-
sage header including sender, recipient and Method I d are
already sent before this code fragment is executed).

123

540 J. Jürjens, P. Shabalin

Fig. 20 Adversary code for analyzing a message

if
:: rv_tmpMessage[0].messageType != MT_GARBAGE ->

rv_lastReadMessage.messageType=rv_tmpMessage[0].messageType;
rv_lastReadMessage.param1 = rv_tmpMessage[0].param1;
rv_lastReadMessage.param2 = rv_tmpMessage[0].param2;
rv_lastReadMessage.param3 = rv_tmpMessage[0].param3;
rv_lastReadMessage.param4 = rv_tmpMessage[0].param4;
rv_lastReadMessage.param5 = rv_tmpMessage[0].param5;

:: rv_lastReadMessage.messageType = MT_v;
GetKnownValue(rv_lastReadMessage.param1);

fi;

TweakMessage(rv_lastReadMessage);
TweakMessage(rv_lastReadMessage);
TweakMessage(rv_lastReadMessage);
TweakMessage(rv_lastReadMessage);

SendMessage(cho, rv_lastReadMessage);

Fig. 21 Adversary code for generating a message

Encoding the security requirement We use the Promela
never claim construct to formalize the security requirement
on the model. In particular, we capture the secrecy require-
ment by formulating the condition that the initial value of a
class attribute that is marked with the stereotype 〈〈secrecy 〉〉

is never recovered by the adversary in plain text. Technically,
a Promela model defines an asynchronous interleaving prod-
uct of concurrent behaviours of all its processes. The never
claim is then used to specify which kinds of traces should not
be produced when executing this product. The Spin model-
checker verifies this by monitoring the statement in the never
claim when calculating the possible system executions.

The security requirement from the UML model, expressed
in our example by the stereotype 〈〈secrecy 〉〉 on the vari-
able m of the Responder class, is translated into the never
claim construct in the Promela code, saying that the adver-
sary should never get to know the secret values. It defines
a process which runs in parallel with the rest of the system
and monitors this property. The never claim for our exam-
ple is presented in Fig. 22. It defines a loop which does not
terminate as long as the variable known_DV_Bob_nonce,
corresponding to the initial value of the attribute m of the
class Bob, has the value f alse. This reflects the requirement
that the value should not be known to the adversary. Any
possible system execution scenario that leads to termination
of the never claim construct is treated by Spin as a failed
verification and reported to the developer.

Fig. 22 Never claim in Promela

Fig. 23 The main procedure in Promela

Collecting objects into system For each object in the deploy-
ment diagram a separate Promela process is instantiated using
the run keyword. A separate process is started for the adver-
sary. All processes will run asynchronously and interact by
message passing over communication channels which con-
nect them according to the deployment diagram specification.
The Spin model-checker is used to verify whether the system
meets the desired properties.

The entry point procedure of the Promela program for the
running example is presented in Fig. 23. At the beginning
of the procedure, four communication channels are defined,
one input and one output for every object in the deployment
diagram. Further objects are instantiated using the Promela
keyword run. Each object is a process with its own execu-
tion thread which runs code in the proctype declaration of
the correspondent class. Parameters passed to each procedure
define the unique object identifier, the communication chan-
nels which the object uses and identifiers of other objects,
connected to it by associations, as described before. A sepa-
rate process is started for the adversary.

Verification results For space restrictions we cannot
include the full Promela code for our running example. It can
however be downloaded from [26]. Spin completes verifica-
tion of this simple example within a minute after detecting
a flaw in the protocol. Part of the Spin output is shown in
Fig. 24, the complete verification result also can be found at

123

Tools for secure systems development with UML 541

Fig. 24 Fragment of the spin
output

[26]. In the attack found in this simple example, the adversary
sends his own key to Bob, pretending to be a legitime proto-
col participant, and receives back the secret value, encrypted
under the key. The adversary can easily decrypt the mes-
sage and obtain the plain text secret value. If we restrict the
adversary from writing messages to the communication link,
another attack is still found: the adversary records the key
passed from Alice to Bob in the first protocol step, and uses
it to decipher the message in the second.

As part of the verification process, Spin produces a trail
file, which records the sequence of actions of the potential
attack. This information can be used by the system developer
to improve the protocol.

Note that as usual in bounded model checking, the user
needs to specify the search depth. This means that verifica-
tion results are only valid up to this restriction. There are
however results which establish bounds on the execution of
the system that needs to be verified in order to be complete,
see for example [47].

Evaluation From our experiments, we know that the state
space of the produced model quickly increases with increas-
ing size of the model. However, there are several approaches
to deal with this.

– The complexity of the model can be reduced by abstract-
ing from further details in the system description.

– The largest factor that contributes to the complexity of
the Spin model is the highly non-deterministic adversary
behavior. We aim to investigate ways to reduce the adver-
sary state space by defining heuristics which exclude sys-
tem traces that obviously cannot result in a successful
attack, again based on results such as [47].

Note that this means in particular, that our approach does
not currently aim to be completely automatic (because of the
manual abstraction that is currently still necessary), but to
provide as much automation as possible given the inherent
complexity of the verification problem and the limitations of
current computing technology to solve it.

In particular, the aim of the current work is not to push the
current limits in verification technology, but to demonstrate
how they can be put to use in the context of a CASE tool
environment.

In subsequent work [22,29] we have been able to improve
on the above verification run-times in orders of magnitude,
by using a more abstract approach to verification using
automated theorem provers for first-order logic, instead of
using a very concrete adversary execution model and

model-checking verification. This has been implemented as
another plugin of the verification framework that is presented
in this paper.

However, the current work still has the advantage over the
newer approach that it enables the user to actually produce a
concrete attack trace in case the system under consideration
is insecure. This is currently not possible with the automated
theorem proving approach cited above.

The two tools are therefore complementing each other in
a beneficial way as follows:

– Firstly, one can use the automated theorem proving plu-
gin to determine whether the system is indeed secure
(against the given adversary model) or not. This is done
very efficiently for industrial size systems (see e.g. [3]).

– If the automated theorem plugin determines that there
may be an attack, this still leaves the possibility of a false
positive since the automated theorem prover approxi-
mates the verification problem on the “safe” side for
efficiency reasons. Therefore, one can use the model-
checker plugin presented in the current paper to pro-
duce the actual attack sequence (and determine whether
it really is a realistic attack). Although the model-checker
plugin is less performant than the automated theorem
prover plugin, this is not a problem, since the state space
now does not have to be fully traversed (which would
be the case if the goal was to determine the absence
of an attack), but only until the attack sequence is found
(which we already know exists after using the automated
theorem proving plugin).

5 Related work

There are several existing tools for automatic verification of
UML models described in the literature. The HUGO Project
[44] checks the behavior described by a UML Collabora-
tion diagram against a transitional system comprising several
communicating objects. The functionality of each object is
specified by a UML Statechart diagram. The vUML Tool
[34] analyzes the behavior of a set of interacting objects,
defined in a similar way. The tool can verify various prop-
erties of the system, including deadlock freedom and live-
liness, and find problems like entering a forbidden state or
sending a message to a terminated object. Both tools do not
have any special features for describing the security features
of the system being modeled. [5] describes automated struc-
tural and behavioral analyzes for UML diagrams built on a
previously developed formalization framework. The paper

123

542 J. Jürjens, P. Shabalin

explains how consistency checks, simulation, and model-
checking (specifically, using Promela) can be used together
for behavioral analysis of UML diagrams. [11] presents auto-
mated verification of UML models using the model-checker
FDR. Schmidt and Varró [48] presents a tool for model-
checking dynamic consistency properties in visual models
such as UML using the model-checker SPIN. [41] presents
a tool for model-checking behavioral UML models based on
a semantics in communicating extended timed automata and
using model-checking and simulation tools. The combina-
tion of different aspects and diagrams is supported as well
as a particular semantic profile for communication, concur-
rency, and timing. UML models are imported via an XMI
repository. Feedback is given to the user in terms of the orig-
inal UML model. All of this work is relevant to ours in that
it gives alternative approaches to UML model analysis tools.
However, although there is an increasing amount of research
on advanced tool support for UML, it seems that little work
has been done to provide advanced tool support, such as
model-checkers or automated theorem provers, for verifying
particular properties included as stereotypes in application-
specific UML extensions. In particular, to our knowledge,
none of the existing bindings of UML to model-checkers
can be easily extended to analyze UMLsec models. The first
reason is the support for security constructs. The second issue
is the translation of complex data types, which is necessary
for supporting the cryptography extension.

With respect to tool frameworks in general, related work
includes [37], which offers a tool framework which goes
beyond our framework presented here in that it is open to
non-UML-based tools. This work is relevant to ours in so
far as it would be interesting to see whether it can be used
to transfer our UML-based tools presented in this paper to
non-UML-based environments.

Compared to research done using formal methods, less
work has been done more generally using software engineer-
ing techniques for computer security. For an overview of the
topic see [9].

There is an increasing interest in using UML for the devel-
opment of security-critical systems. For example, [12]
defines role-based access control rights from object-oriented
use cases. Houmb et al. [17] uses UML for the risk assessment
of an e-commerce system within the CORAS framework for
model-based risk assessment. Fernández-Medina et al. [13]
uses UML for the design of secure databases. It proposes an
extension of the use case and class models of UML using their
standard extension mechanisms designing secure databases.
[31] demonstrate how to deal with access control policies
in UML. The specification of access control policies is inte-
grated into UML. Lodderstedt et al. [33] show how UML can
be used to specify access control in an application and how
one can then generate access control mechanisms from the
specifications. The approach is based on role-based access

control and gives additional support for specifying autho-
rization constraints. Kim et al. [32] describes an approach
for specificating role-based access control policies in UML
design models. It allows developers to specify patterns of
violations against the policies. Breu et al. [4] presents an
approach for the specification of user rights using UML. The
approach is based on a first-order logic with a built-in notion
of objects and classes with an algebraic semantics and can
be realized in OCL. These approaches are relevant to ours in
that they constitute alternative approaches to treating secu-
rity requirements using UML, although tool-support similar
to the one presented here does not seem to exist for these
approaches yet. It would thus be interesting to see to what
extend the tools from the UMLsec tool suite could be used
for these other extensions, with suitable adaptations.

In other approaches to automated software engineering
for security, [30] uses the Software Cost Reduction method
(SCR) to analyze a cryptographic system called for various
security properties.

There is too much work on verifying cryptographic pro-
tocols to give a complete overview. Overviews of applica-
tions of formal methods to security protocols can be found
for example in [1,35]. Another approaches to using first-
order logic ATPs for cryptoprotocol analysis include the fol-
lowing: [43] formalizes the well-known BAN logic in first-
order logic and uses the atp SETHEO to proof statements
in the BAN logic. It is different from our approach which
is based on the knowledge of the adversary, instead of the
beliefs of the protocol participants. Cohen [8] uses first-
order invariants to verify cryptographic protocols against
safety properties. The approach is supported by the atp TAPS.
Compared to our approach, the method does not generate
counter-examples (that is, attacks) in case a protocol is found
to be insecure.

In this paper, we deal with security on the design level,
since there are many security problems apparent at that level
in practical systems. However, we find it equally important
to try to consider security already during the requirements
elicitation phase. To that aim, [7] formulates a vision for
the requirements engineering community towards providing
a “bridge between the well-ordered world of the software
project informed by conventional requirements and the unex-
pected world of anti-requirements associated with the mali-
cious user”. Giorgini et al. [15] proposes an extension of the
i*/Tropos requirements engineering framework to deal with
security requirements. Sindre and Opdahl [46] presents an
approach to eliciting security requirements using use cases
which extends traditional use cases to also cover misuse.
Mouratidis et al. [36] uses a combination of UMLsec and
Tropos to get a transition from the security requirements to
the design phase. This work is relevant to the one since the
eventual goal is to provide an integrated security engineering
approach.

123

Tools for secure systems development with UML 543

6 Conclusion

We presented work to support model-based development
using UML by providing tool-support for the analysis of
UML models against difficult system requirements. We
described a UML verification framework supporting the con-
struction of automated requirements analysis tools for UML
diagrams which is connected to industrial CASE tools using
XMI. As an example for its usage, we presented verifica-
tion routines for verifying UMLsec models. Their aim was
firstly to contribute towards usage of UMLsec in practice.
Secondly, the verification framework should allow advanced
users of the UMLsec approach to themselves implement ver-
ification routines for the constraints of self-defined stereo-
types. We focussed on an analysis plug-in that utilizes the
model-checker Spin to verify systems which may use cryp-
tographic algorithms.

The tools we presented are used in industrial projects
involving for example a car manufacturer, a bank, and a
telecommunications company. Several security design weak-
nesses could be demonstrated which have lead to changes in
the designs of the systems that are being developed.

The verification framework has proven to be sufficiently
flexible to support analysis plug-ins for a variety of checks.

In particular, the model-checking plugin presented in this
paper has proven to be very useful in producing attack
sequences for insecure systems specifications. It can be used
in particular in conjunction with more abstract verification
approaches such that those making use of automated theorem
proving [3,22,29], as explained above. The tools presented
here can be downloaded from [26] as open-source.

Acknowledgments Fruitful collaborations with the members of the
UMLsec group at TU Munich are gratefully acknowledged, as well as
constructive comments by the anonymous referees which lead to sig-
nificant improvements in the presentation of this paper.

References

1. Abadi, M.: Security protocols and their properties. In: Bauer,
F.L., Steinbrüggen, R. (eds.) Foundations of Secure Computation,
pp. 39–60. IOS Press, Amsterdam. 20th International Summer
School, Marktoberdorf, Germany (2000)

2. Abadi, M., Jürjens, J.: Formal eavesdropping and its computational
interpretation. In: Kobayashi, N., Pierce, B.C., (eds.) Theoreti-
cal Aspects of Computer Software (4th International Symposium,
TACS 2001), vol. 2215 of Lecture Notes in Computer Science,
pp. 82–94. Springer, Heidelberg (2001)

3. Best, B., Jürjens, J., Nuseibeh, B.: Model-based security engineer-
ing of distributed information systems using UMLsec. In: ICSE.
ACM (2007)

4. Breu, R., Popp, G., Alam, M.: Model based development of access
policies. Int. J. Softw. Tools Technol. Transf (STTT). Contained
in this issue (2006)

5. Castor library. Available at http://castor.exolab.org (2003)
6. Campbell, L., Cheng, B., McUmber, W., Stirewalt, K.: Automat-

ically detecting and visualising errors in UML diagrams. Requir.
Eng. 7(4), 264–287 (2002)

7. Crook, R., Ince, D.C., Lin, L., Nuseibeh, B.: Security requirements
engineering: when anti-requirements hit the fan. In: RE, pp. 203–
205. IEEE Computer Society (2002)

8. Cohen, E.: First-order verification of cryptographic protocols.
J. Comput. Secur. 11(2), 189–216 (2003)

9. Devanbu, P., Stubblebine, S.: Software engineering for security: a
roadmap. In: 22nd International Conference on Software Engi-
neering (ICSE 2000): Future of Software Engineering Track,
pp. 227–239. ACM (2000)

10. Dolev, D., Yao, A.: On the security of public key protocols. IEEE
Trans. Inf. Theory IT-29(2), 198–208 (1983)

11. Engels, G., Küster, J., Heckel, R., Lohmann, M.: Model-based ver-
ification and validation of properties. Electr. Notes Theor. Comput.
Sci. 82(7), (2003)

12. Fernandez, E.B., Hawkins, J.C.: Determining role rights from use
cases. In: Workshop on role-based access control, pp. 121–125.
ACM (1997)

13. Fernández-Medina, E., Martínez, A., Medina, C., Piattini, M.:
UML for the design of secure databases: integrating security lev-
els, user roles, and constraints in the database design process. In:
Jürjens et al. [21], pp. 93–106

14. Gentleware. http://www.gentleware.com (2003)
15. Giorgini, P., Massacci, F., Mylopoulos, J.: Requirement engineer-

ing meets security: a case study on modelling secure electronic
transactions by VISA and Mastercard. In: Song, I.-Y., Liddle, S.W.,
Ling, T.W., Scheuermann, P. (eds.) 22nd International Conference
on Conceptual Modeling (ER 2003), vol. 2813 of Lecture Notes
in Computer Science, pp. 263–276. Springer, Heidelberg (2003)

16. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Börger,
E. (ed.) Specification and Validation Methods, pp. 9–36. Oxford
University Press, Oxford (1995)

17. Houmb, S.H., den Braber, F., Lund, M.S., Stølen, K.: Towards a
UML profile for model-based risk assessment. In: Jürjens et al.
[21], pp. 79–92

18. Höhn, S., Jürjens, J.: Automated checking of SAP security per-
missions. In: 6th Working Conference on Integrity and Internal
Control in Information Systems (IICIS). International Federation
for Information Processing (IFIP). Kluwer, Academic Publishers
(2003)

19. Huber, F., Molterer, S., Rausch, A., Schätz, B., Sihling, M.,
Slotosch, O.: Tool supported specification and simulation of dis-
tributed systems. In: International Symposium on Software Engi-
neering for Parallel and Distributed Systems, pp. 155–164 (1998)

20. Holzmann, G.: The Spin Model Checker. Addison-Wesley, Read-
ing (2003)

21. Jürjens, J., Cengarle, V., Fernandez, E.B., Rumpe, B., Sandner,
R. (eds.) Critical Systems Development with UML (CSDUML
2002), TU München Technical Report TUM-I0208, 2002. UML
2002 satellite workshop proceedings

22. Jürjens, J., Fox, J.: Tools for model-based security engineering.
In: 28th International Conference on Software Engineering (ICSE
2006). ACM (2006)

23. Jézéquel, J.-M., Hußmann, H., Cook, S. (eds.) In: 5th International
Conference on the Unified Modeling Language (UML 2002),
vol. 2460 of Lecture Notes in Computer Science. Springer,
Heidelberg (2002)

24. Jürjens, J., Shabalin, P.: Automated verification of UMLsec
models for security requirements. In: Jézéquel, J.-M., Hußmann,
H., Cook, S. (eds.) UML 2004—The Unified Modeling Language,
vol. 2460 of Lecture Notes in Computer Science, pp. 412–425.
Springer, Heidelberg (2004)

123

544 J. Jürjens, P. Shabalin

25. Jürjens, J., Shabalin, P.: Tools for secure systems development
with UML. In: FASE 2005, Lecture Notes in Computer Science,
Edinburgh, 2–10 April 2005. Springer, Heidelberg

26. Jürjens, J.: UMLsec webpage, 2002–06. Accessible at
http://www.umlsec.org

27. Jürjens, J.: UMLsec: Extending UML for secure systems
development. In: Jézéquel et al. [23], pp. 412–425

28. Jürjens, J.: Secure Systems Development with UML. Springer,
Heidelberg (2004)

29. Jürjens, J.: Sound methods and effective tools for model-based
security engineering with UML. In: 27th International Conference
on Software Engineering (ICSE 2005). IEEE Computer Society
(2005)

30. Kirby, J., Archer, M., Heitmeyer, C.: Applying formal methods to
an information security device: An experience report. In: 4th IEEE
International Symposium on High Assurance Systems Engineer-
ing (HASE 1999), pp. 81–88. IEEE Computer Society (1999)

31. Koch, M., Parisi-Presicce, F.: Access control policy specification
in UML. In: Jürjens et al. [21], pp. 63–78

32. Kim, D.-K., Ray, I., France, R.B., Li, N.: Modeling role-based
access control using parameterized UML models. In: Wermelinger,
M., Margaria, T. (eds.) Fundamental Approaches to Software Engi-
neering (FASE 2004), vol. 2984 of Lecture Notes in Computer
Science, pp 180–193. Springer, Heidelberg (2004)

33. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: a UML-based
modeling language for model-driven security. In: Jézéquel et al.
[23], pp. 426–441

34. Lilius, J., Porres, I.: Formalising UML state machines for model
checking. In: France, R.B., Rumpe, B. (eds.) The Unified Modeling
Language (UML 1999), vol. 1723 of Lecture Notes in Computer
Science, pp. 430–445. Springer, Heidelberg (1999)

35. Meadows, C.: Open issues in formal methods for cryptographic
protocol analysis. In: DARPA Information Survivability Con-
ference and Exposition (DISCEX 2000), pp. 237–250. IEEE
Computer Society (2000)

36. Mouratidis, H., Jürjens, J., Fox, J.: Towards a comprehensive
framework for secure systems development. In: 18th Interna-
tional Conference on Advanced Information Systems Engineer-
ing (CAiSE 2006), Lecture Notes in Computer Science. Springer,
Heidelberg (2006)

37. Margaria, T., Nagel, R., Steffen, B.: jETI: A tool for remote tool
integration. In: Halbwachs, N., Zuck, L.D. (eds.) 11th Interna-
tional Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2005), vol. 3440 of Lecture

Notes in Computer Science, pp. 557–562. Springer, Heidelberg
(2005)

38. Object Management Group. MOF 1.4 Specification, April 2002.
Available at http://www.omg.org/technology/documents/
formal/ mof.htm

39. Netbeans project. Open source. Available from http://mdr.
netbeans.org (2003)

40. Novosoft NSUML project. Available from http://nsuml.
sourceforge.net/ (2003)

41. Ober, Iu., Graf, S., Ober, Il.: Validation of UML models via a
mapping to communicating extended timed automata. In: SPIN
2004, pp. 127–145 (2004)

42. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining
digital signatures and public-key cryptosystems. Commun. the
ACM 21, 120–126 (1978)

43. Schumann, J.: Automatic verification of cryptographic protocols
with SETHEO. In: McCune, W. (ed.) 14th International Confer-
ence on Automated Deduction (CADE-14), vol. 1249 of Lecture
Notes in Computer Science, pp. 87–100. Springer, Heidelberg
(1997)

44. Schäfer, T., Knapp, A., Merz, S.: Model checking UML state
machines and collaborations. In: Stoller, S.D., Visser, W, (eds.)
Workshop on Software Model Checking, vol. 55(3) of Electronical
Notes in Theoretical Computer Science. Elsevier, 2001. Satellite
event of the 13th International Conference on Computer-Aided
Verification (CAV 2001)

45. The SMV system. Available from http://www-2.cs.cmu.
edu/˜modelcheck/smv.html

46. Sindre, G., Opdahl, A.L.: Eliciting security requirements with mis-
use cases. Requir. Eng. 10(1), 34–44 (2005)

47. Stoller, S.D.: A bound on attacks on authentication protocols. In:
Baeza-Yates, R.A., Montanari, U., Santoro, N. (eds.) IFIP TCS,
vol. 223 of IFIP Conference Proceedings, pp. 588–600. Kluwer,
Dordrecht (2002)

48. Schmidt, Á., Varró, D.: CheckVML: a tool for model checking
visual modeling languages. In: Stevens, P. (ed.) The Unified Mod-
eling Language (UML 2003), vol. 2863 of Lecture Notes in Com-
puter Science, pp. 92–95. 6th International Conference. Springer,
Heidelberg (2003)

49. Object Management Group: OMG Unified Modeling Language
Specification v1.5. Version 1.5. OMG Document formal/03-03-01
(2003)

50. Object Management Group. OMG XML Metadata Interchange
(XMI) Specification (2002)

123

	Tools for secure systems development with UML
	Abstract
	Introduction
	UML for security: UMLsec
	Overview
	Relevant fragment of UMLsec
	Security analysis of UMLsec models
	Framework for UMLsec processing
	Representing UML in XML
	Framework architecture
	UMLsec verification tools
	Model-checking UMLsec specifications
	Overview
	Cryptographic notation
	Translation to Promela: types
	Translation to Promela: UMLsec semantics
	Related work
	Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

