
Int J Softw Tools Technol Transfer (2007) 9:169–178
DOI 10.1007/s10009-006-0015-9

S P E C I A L S E C T I O N O N F U N DA M E N TA L A P P ROAC H E S TO S O F T WA R E E N G I N E E R I N G

An ontology for software component matching

Claus Pahl

Published online: 5 July 2006
© Springer-Verlag 2006

Abstract Matching is a central activity in the discov-
ery and assembly of reusable software components. We
investigate how ontology technologies can be utilised
to support software component development. We use
description logics, which underlie Semantic Web ontol-
ogy languages, such as OWL, to develop an ontology for
matching requested and provided components. A link
between modal logic and description logics will prove
invaluable for the provision of reasoning support for
component behaviour.

1 Introduction

Component-based software engineering (CBSE)
increases the reliability and maintainability of software
through reuse [1,2]. Providing reusable software com-
ponents and plug-and-play style software deployment is
the central objective. Components are software artefacts
that can be individually developed and tested.
Constructing loosely coupled software systems by com-
posing components is a form of software development
that is ideally suited for development in distributed
environments such as the World-Wide Web. Distributed
component-based software development is based on
component selection and matching from repositories
and their integration.

Reasoning about component descriptions and com-
ponent matching is a critical activity [3]. Ontologies,
which are knowledge representation frameworks

C. Pahl (B)
Dublin City University, School of Computing
Dublin 9, Ireland
e-mail: Claus.Pahl@dcu.ie

defining concepts and properties of a domain and pro-
viding the vocabulary and facilities to reason about these,
can support this activity.

The need to create a shared understanding for an
application domain is long recognised. Client, user, and
developer of a software system need to agree on
concepts for the domain and their properties. Domain
modelling is a widely used requirements engineering
technique. However, with the emergence of distributed
software development and CBSE, the need to create
a shared understanding of software entities and devel-
opment processes also arises. We will present here a
software development ontology that provides matching
support for CBSE [4,5].

Component matching techniques are crucial in Web-
based component development. As far as matching is
concerned, Web services exhibit component character.
To provide component technology for the Web requires
adaptation to Web standards. Since semantics are par-
ticularly important, ontology languages and theories of
the Semantic Web [6] can be adopted. Formality in the
Semantic Web framework facilitates machine under-
standing and automated reasoning. The Web ontology
language OWL is equivalent to a very expressive descrip-
tion logic [7]. Description logics provide a range of class
constructors to describe concepts. Decidability and com-
plexity issues – important for the tractability of the tech-
nique – have been studied intensively [7].

Description logic is particularly interesting for the
software engineering context due to a correspondence
between description logics and modal logics [7,8]
– modal logics have been used extensively to address
temporal and behavioural aspects of state-based soft-
ware systems. The correspondence between description
logics and dynamic logic (a modal logic of programs,

170 Claus Pahl

[9] is based on a similarity between quantified construc-
tors (expressing quantified relations between concepts)
and modal constructors (expressing safety and liveness
properties of programs). We aim to facilitate the speci-
fication of state-based transition systems in description
logic. This enables us to reason about component behav-
iour. We present an approach to component matching
by encoding transitional reasoning about safety and live-
ness properties – essentially from dynamic logic – into a
description logic and ontology framework, which is Web
standards-compliant and has the benefit of tractability.

We introduce our component composition framework
in Sect. 2. We focus on the description of components in
an ontological framework in Sect. 3. Reasoning about
matching is the content of Sect. 4. We end with a discus-
sion of related work and some conclusions.

2 Component-based development

A compositional approach is important for distributed
software development. Description, matching, and
assembly are central activities in the distributed context.
Formal, ontology-based support is ideal for this context
due to its sharing and agreement aims.

2.1 The component model

A component is a set of operations provided as a reus-
able, highly context-independent software artefact. A
component model defines core properties of a compo-
nent. Different component models are suggested in the
literature [1,2]. We capture common key elements in
our component model for a distributed context:

– Explicit export and import interfaces. In particular
explicit and formal import interfaces make compo-
nents more context independent. Only properties of
required components and operations are specified.

– Semantic description of operation behaviour. In addi-
tion to syntactical information, the abstract speci-
fication of functional behaviour of operations is a
necessity for reusable software components. In a
design-by-contract style [11], abstract behaviour can
be expressed through pre- and postconditions.

– Component interaction protocols. An interaction pro-
tocol describes the ordering of operation activations
that a component user has to follow to use the com-
ponent meaningfully and consistently; for instance
an object creation might be required before any
inspection or modification can be carried out.

Syntax, operation semantics, and interaction protocols
form an extended contract notion.

2.2 An ontology-based development framework

Ontologies capture knowledge about a domain in terms
of concepts and roles. Concepts are described in terms
of their relationships to other concepts through roles.
Knowledge is divided into two forms: intensional and
extensional. Intensional knowledge is general and ab-
stract, captured through concepts and roles. Extensional
knowledge refers to application-specific individuals relat-
ing to the concepts and roles. Two aspects of ontologies
can be distinguished. Firstly, the terminological aspect
defines a description notation. Secondly, the logical as-
pect provides a reasoning framework that can, for in-
stance, support component matching.

Two types of ontologies are important in the context
of component development and deployment:

– Application domain ontologies describe the domain
of the software application under development.

– Software development ontologies describe the soft-
ware development entities and processes.

A developer selects required components from onto-
logical descriptions found in repositories, Fig. 1. Descrip-
tions of required and provided components need to be
matched. In an open, wide-area context, an accepted
ontology-based description format and matching tech-
niques are prerequisites.

2.3 Case study

The context of our case study is a document storage
service for XML-based documents – which could be
thought of as an abstraction of a database for XML-
documents.

A sample specification in a pseudocode representa-
tion that illustrates our component model, see Fig. 2. It
consists of a service requestor/user and a service pro-
vider component. The service user requires (imports)
operations from a suitable server component to create,
retrieve, and update documents. The server provides
(exports) a range of operations in form of a compo-
nent. An empty document can be created usingcrtDoc.
The operation rtrDoc retrieves a document, but does
not change the state of the server component, whereas
the update operation updDoc updates a stored docu-
ment without returning a value. Documents can also
be deleted. The update and updDoc operation s are
semantically specified through pre- and postconditions.
XML- documents can be well-formed (correct tag

An ontology for software component matching 171

Fig. 1 Web-based
Component Development
Lifecycle based on
Discovery/Matching and
Assembly

Repository

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

Component Component

Ontology

requires provides

& match

assembly the Web

Client Provider

discover

nesting) or valid (well-formed and conform to an XML
Schema definition). We have specified an import inter-
action protocol for client DocStorageUser and for
provider DocStorageServer an export protocol. The
import pattern means thatcreate is expected to be exe-
cuted first, followed by a repeated invocation of either
retrieve or update.

3 An ontology for component description

A central objective of ontologies is the definition of a
terminological framework. In this section, we define the
syntax and semantics of a component description lan-
guage in an ontological setting.

Our component description and matching ontology
is non-standard, with features that go beyond classical
knowledge representation. We will develop this ontol-
ogy now step by step, demonstrating how the ontological
features support component description.

3.1 Describing basic component properties

Ontologies formalise knowledge about a domain (inten-
sional knowledge) and its instances (extensional knowl-
edge). The starting point in defining an ontology is to
decide what the basic ontology elements – concepts and
roles – represent. Our key idea is that the ontology
formalises a software system and its specification, see
Fig. 3. Concepts represent component system proper-
ties. Importantly, component systems are dynamic, i.e.
the descriptions of properties are inherently based on
an underlying notion of state and state change. Roles
represent two different kinds of relations:

– Transitional roles address the state-transition aspect
of software systems. They are interpreted as acces-
sibility relations on states, i.e. they model behaviour
as transitions resulting in state changes.

– Descriptional roles capture knowledge about com-
ponents in form of description domains, i.e. they
represent different properties of a software system.
They cover syntax (signatures) and semantics (pre-
and postconditions) of operations; they also capture
state-dependent and invariant properties (informal
descriptions, e.g. the component author).

We develop a description logic to define the component
description and matching ontology. A description logic
consists of three types of entities. Individuals can be
thought of as constants, concepts as unary predicates,
and roles as binary predicates. Concepts are the central
entities. Roles relate concepts with another.

– Concepts are classes of objects with the same prop-
erties. Concepts are interpreted by sets of objects.

– Roles are relations between concepts. Roles allow
us to define a concept in terms of other concepts.

– Individuals are named objects.

Properties are specified as concept descriptions:

– Basic concept descriptions are formed according to
the following rules: A is an atomic concept, and if
C and D are concepts, then so are ¬C (negation),
C�D (conjunction), C�D (disjunction), and C → D
(implication).

– Value restriction and existential quantification, based
on roles, extend the set of basic concept descriptions:
– A value restriction ∀R.C restricts the value of

role R to elements that satisfy concept C.
– An existential quantification ∃R.C requires the

existence of a role value.

Quantified roles can be composed, e.g. ∀R1.∀R2.C is a
concept description since ∀R2.C is one.

Example 1 An example of a value restriction is the
expression ∀preCond.wellFormed: preconditions

172 Claus Pahl

Fig. 2 Document Storage Service Example with Client (DocStorageUser) and Provider (DocStorageServer) Components

Fig. 3 Software
Development Ontology based
on Transitional Roles
(Operation) and
Descriptional Roles
(preCond, inSign, etc.)

Operation

Cond

Sign inv Sign

Cond

postpre

outSign

postCond

inSign

preCond

opDescropName

LiteralLiteral

...

associated to a given concept (such as an operation)
using role preCond are restricted to well-formed ones.
The existential quantification ∃preCond.wellFormed
requires at least one condition preCond that is well-
formed. ��

The constructor ∀R.C is interpreted as either an acces-
sibility relation R to a new state C for transitional roles,
such as update, or as a property R satisfying a con-
straint C for descriptional roles such as postCond.

Example 2 Given the transitional roleupdate that rep-
resents a component operation and the descriptional
role postCond, the expression

∀update.∀postCond .equal(retrieve(id),doc)

means that by executing operation update a poststate
described byequal(retrieve(id),doc) as the post-
condition can be reached 1. ��

We define our language through Tarski-style model
semantics. We interpret concepts and roles in Kripke
transition systems [9]. The concepts pre, post, and inv
are interpreted as states, denoting prestates, poststates,
and invariant state properties, respectively. Transitional
roles are interpreted as accessibility relations between
pre- and poststates, while descriptional roles are inter-
preted as associations between states and description
domains.

A Kripke transition system M = (S , L, T , I) consists
of a set of states S, a set of role names L, a transition rela-
tion T ⊆ S × L × S, and an interpretation I. We write

1 We ignore here the necessary parameterisation of update –
which we will address in Sect. 3.4 and Example 7.

An ontology for software component matching 173

RT ⊆ S × S for a transition relation for role R. The
set S interprets the state domains pre, post, and inv –
see Fig. 3. We extend S by description domains Cond
(conditions/formulas), Sign (signatures), and Literal for
non-functional component properties.

For a given Kripke transition system M with interpre-
tation I, we define the model-based semantics of concept
descriptions as follows2:

(¬A)I = S\AI

(C � D)I = CI ∩ DI

(∀R.C)I = {a ∈ S|∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.C)I = {a ∈ S|∃b.(a, b) ∈ RI ∧ b ∈ CI}
An individual x defined by C(x) is interpreted by xI ∈ S
with xI ∈ CI . A notion of undefinedness or divergence
can be defined as bottom ⊥ = ∅. Some predefined roles,
e.g. the identity role id interpreted as {(x, x)|x ∈ S}, shall
be assumed.

The descriptional roles are defined as relations be-
tween states and description domains:

preCondI ⊆ preI × CondI

inSignI ⊆ preI × SignI

postCondI ⊆ postI × CondI

outSignI ⊆ postI × SignI

opNameI ⊆ invI × LiteralI

opDescrI ⊆ invI × LiteralI

Note, that, while descriptional roles are predefined, tran-
sitional roles depend on the application.

3.2 Data types and concrete domains

We have introduced a number of predefined description
domains capturing various forms of knowledge about a
component. Formally, these are concepts representing
formulas, signatures, etc. These capture only the syntac-
tical correctness of the description, i.e. whether a string
is actually a formula or signature.

In order to allow data to be modelled, we use con-
crete domains and predefined predicates [7] for these
domains to add a notion of data types that can be linked
to description domains such as formulas and signatures.

Example 3 We can introduce a numerical domain with
predicates such as ≤, ≥, or equality. These predicates
can be used in the same way as concepts – which can be
thought of as unary predicates.

A case study example is Doc�∃length. ≥100 where
the last element is a predicate {n|n ≥ 100} and length
is a descriptional role, i.e. an attribute which maps to a
concrete domain. ��
2 Combinators � and → can be defined based on � and ¬ as usual.

A special form of role constructors helps us in express-
ing n-ary predicates:

– The role expression ∃(u1, . . . , un).P is an existential
predicate restriction, if P is an n-ary predicate of a
concrete domain – concepts can only be unary – and
u1, . . . , un are roles.

– Analogously, we define the universal predicate restric-
tion ∀(u1, . . . , un).P.

Example 4 ∃(x,y).equal is a binary predicate restric-
tion requiring role instances for the two roles x and y
to be equal; for instance in- and outsignatures could be
compared through ∃(inSign,outSign).equal.

Concrete domains are interpreted by algebraic struc-
tures with a base set; predicates are interpreted as n-ary
relations on that base set. Concrete domains are impor-
tant here since they allow us to represent application
domain-specific knowledge in a component specifica-
tion. These domains will be referred to by type names.

Example 5 The update operation deals with two types
of entities:

– The document domainDoc ≡ ∃hasStatus.valid
� wellFormed with valid � wellFormed de-
fines documents, using hasStatus as a document
attribute that associates a status. Two predicates
valid and wellFormed exist, which are in a so-
called subsumption, i.e. subclass relation.

– For the identifier domain ID only the binary predi-
cate equal shall be assumed. ��

We do not integrate and axiomatise a full first-order
predicate logic here to support the data type domains.
Instead, we assume that required properties are made
available for the description logic through assertions
[7]. Ontologies capture general intensional knowledge
on a terminological level and extensional knowledge
about concrete individuals. The assertions are part of
the extensional, application-specific knowledge.

3.3 Functional behaviour and interaction protocols

Expressive role constructs are essential for our context.
Transitional roles RT represent component operations.
They are interpreted as accessibility relations on states
(RT)

I ⊆ S × S. Descriptional roles RD are used to de-
scribe properties of operations. These are interpreted
as relations between states and description domains
(RD)

I ⊆ S × D for some domain D.
An ontology for component description requires an

extension of basic description logics by composite roles

174 Claus Pahl

in order to represent interaction protocols [7]. The fol-
lowing role constructors for transitional roles shall be
introduced to model interaction protocols:

– R ; S is sequential composition with (R ; S)I = {(a, c)
∈ SI × SI |∃b.(a, b) ∈ RI ∧ (b, c) ∈ SI}; often we use
◦ instead of ; to emphasise functional composition

– !R is iteration with !RI = ⋃
i≥1(R

I)i, i.e. the transi-
tive closure of RI

– R + S is non-deterministic choice with (R + S)I =
RI ∪ SI

Expressions constructed from role names and role
constructors are composite roles. P(R1, . . . , Rn) is an
abstraction referring to a composite role P based on
basic roles R1, . . . , Rn. A role chain R1 ◦ . . . ◦ Rn is a
sequential composition of functional roles3.

Example 6 The value restriction

∀ create;!(retrieve+update) . postState

is based on the composite role

create;!(retrieve+update)

which is a required interaction protocol, see Fig. 2. ��

3.4 Names and parameterisation

A notion of parameterisation for component operations
is lacking so far in our ontological description language.

Named individuals might serve as parameter names.
Individuals are introduced in form of assertions, e.g.
Doc(D) says that individual D is a document Doc and
length(D,100) that the length of D is 100. We can
also introduce individuals on the level of concepts and
roles:

– The set constructor, written {a1, . . . , an} introduces
the individual names a1, . . . , an.

– The role filler R : a is defined by (R : a)I = {b ∈
S|(b, aI) ∈ RI}, i.e. the set of objects that have a as a
filler for R.

The difference between classical description logic and
our variant is that we need names to occur explicitly
in component descriptions. An intensional description
logic expression ∀create.valid means that valid is
a concept, or predicate, that can be applied to some
individual object; it can be thought of as ∀create(x).

3 Functional roles are transitional roles that are interpreted by
functions.

valid(x) for an individual x. In the context of parame-
terisation, x should rather be an intensional name or
variable, e.g. the document create–operation has a
parameter called id. The role filler construct provides
the central idea for our definition of names.

– We denote a name n of a domain D by a role nN –
i.e. not as an element of a concrete domain – where
nN is defined by (nN)

I = {(nI , nI)} with nI ∈ DI .
– An operation R is a parameterised role RI ⊆ D ×

S × S for domain D of a name and states S.
– A parameterised role R applied to a name nN , repre-

sented here as an identity relation, i.e. R ◦ nN , forms
a transitional role, i.e. R ◦ nN ⊆ S × S.

The name definition nN is derived from the role filler
and the identity role definition: (nN)

I(nI) = (id : n)I .
In first-order dynamic logic [9], names are identifiers

interpreted in a non-abstract state. These names have
associated values, i.e. a state is a mapping (binding of cur-
rent values). However, since we define names as roles,
an explicit state mapping is not necessary.

Example 7 The parameterised role chain

∀ update ◦ (idN ,docN);postCond.

equal(retrieve(id),doc)

specifies the component operation update.

3.5 Contractual operation and protocol specification

The original case study specification in pseudo-code
(Fig. 2) needs to be reformulated in terms of the ontol-
ogy language we have developed. Axioms are intro-
duced into description logics to capture concept and
role descriptions and to reason about these [7]:

– subconcept C1 � C2, concept equality C1 ≡ C2,
– subrole R1 � R2, role equality R1 ≡ R2, and
– individual equality {x} ≡ {y}.

The semantics of these axioms is defined based on set
inclusion of interpretations for � and equality for ≡.

We use axioms to formulate two different kinds of
component contract specifications – operation behav-
iour and interaction protocols:

– Functional behaviour and signatures form the ba-
sis of a matching notion for component operations,
which are represented by atomic roles.

Example 8 The update specification based on
description logic illustrates an operation definition
in terms of our ontology, see Fig. 4 illustrates this.

An ontology for software component matching 175

Fig. 4 Ontological specification of operation update

– Interaction protocols for components can be speci-
fied using composite, parameterised roles. They de-
scribe the interaction patterns that a component can
engage in. There is one import and one export inter-
action protocol for each component.

Example 9 The provided DocStorageServer
component is based on4

∀create ◦ id; !(retrieve ◦ id
+update ◦ (id,doc)).post

as the export interaction protocol. ��

Our ontological language allows us to specify both
safety and liveness properties of components using value
restriction and existential quantification, respectively.

Example 10 We can express that eventually (liveness)
after executing create (safety), a document is deleted:

(∀preCond.true) � (∀create.∃delete
.∀postCond.true)

which combines safety and liveness properties5. ��
Axioms in our description logic allow us to reason

about service behaviour. Questions concerning the con-
sistency and role composition with respect to pre- and
postconditions can be addressed. Selected properties of
quantified descriptions are:

1. ∀R.∀S.C ⇔ ∀R ; S.C
2. ∀R.C � D ⇔ ∀R.C � ∀R.D
3. ∀R � S.C ⇔ ∀R.C � ∀S.C

4 Note, that we often drop the N-annotation if it is clear from the
context that a name is under consideration.
5 This corresponds to a dynamic logic formula [create(id)]
〈delete(id)〉true with precondition true combining safety
([. . .]φ) and liveness (〈. . .〉ψ) properties [9].

Example 11 ∀create;update.postCond is equivalent
to ∀create.∀update.postCond, which allows us to
convert role expressions into logical representations. ��

We can apply a modal reasoning style here, e.g.

∀update ◦ (id,doc).∀postCond.
equal(retrieve(id),doc)

corresponds to a (modal) dynamic logic formula

[update(id,doc)] retrieve(id)=doc .

4 An ontology for component matching

The two problems that we are concerned with are com-
ponent description and component matching. In addi-
tion to terminological aspects to support component
description, ontologies based on description logics also
introduce an inference and reasoning framework. Key
constructs of description logics to support matching and
composition are equivalence and subsumption. In this
section, we look at component matching based on con-
tracts including operation behaviour and interaction pro-
tocols and how it relates to subsumption reasoning.

4.1 Subsumption – satisfaction and matching

Subsumption is a relationship defined by subset inclu-
sions for concepts and roles.

– A subsumption C1 � C2 between two concepts C1
and C2 is defined through set inclusion for the inter-
pretations CI

1 ⊆ CI
2.

– A subsumption R1 � R2 between two roles R1 and
R2 holds, if RI

1 ⊆ RI
2.

Subsumption is not implication. Structural subsumption
(subclass) is weaker than logical subsumption (implica-
tion), see [7]. Subsumption can be further characterised
by axioms such as the following for concepts C1 and C2:
C1 � C2 � C1 or C2 → C1 implies C2 � C1.

We use subsumption to reason about matching of two
component descriptions based on transitional roles. A
variant of subsumption is our tool to express a notion
of satisfaction to define matching, essentially capturing
refinement and simulation ideas.

The tractability of reasoning is a central issue for
description logics. The richness of our description logic
with complex roles that represent interaction protocols
and operation parameters has some potentially negative
implications for the complexity of reasoning. However,
some aspects help to reduce the complexity. We can, for

176 Claus Pahl

instance, restrict roles to functional roles. Another ben-
eficial factor is that for composite roles negation is not
required. We do not investigate these aspects in depth –
most of them have been investigated in detail [7] – only
one issue shall be addressed.

A crucial problem is the decidability of the specifica-
tion if concrete domains are added. Admissible domains
guarantee decidability. A domain D is called admissi-
ble if the set of predicate names is closed under nega-
tion, i.e. for any n-ary predicate P there is a predicate
Q such that QD = (SD)n\PD, there is a name �D for
SD, and the satisfiability problem is decidable; i.e. there
exists an assignment of elements of SD to variables such
that the conjunction ∧k

i=1Pi(x
(i)
1 , . . . , x(i)ni) of predicates

Pi becomes true in D. We can show that our chosen con-
crete domains – documents and identifiers, see Example
5 – are admissible [5].

4.2 Matching of component operation descriptions

Subsumption is the central reasoning concept of descrip-
tion logics. We now integrate matching of provided and
required operation descriptions with this concept.

An operation is functionally specified through pre-
and postconditions. Matching of operations is defined
in terms of implications on pre- and postconditions and
signature matching based on the widely accepted design-
by-contract approach [11]. The ‘consequence’ inference
rule, found in dynamic logic [9], describes the refinement
of operations by weakening preconditions and strength-
ening postconditions. A matching definition for opera-
tions shall be derived from this rule.

A provided operation P refines a requested operation
R, or P matches R, if, firstly,

∀inSign.inR � ∀R.∀outSign.outR
∀inSign.inP � ∀P.∀outSign.outP

〈 inP ≡ inR ∧
outP ≡ outR

(signatures are compatible if the types of corresponding
parameters are the same) and, secondly,

∀preCond.preR � ∀R.∀postCond.postR
∀preCond.preP � ∀P.∀postCond.postP

〈 preR � preP ∧
postP � postR

(a requested operation precondition is weakened and
the postcondition is strengthened)6.

Matching of operation descriptions is a form of refine-
ment. This contravariant inference rule captures match-
ing based on abstract functional behaviour specifica-
tions.

Example 12 The provided operationupdDocof the doc-
ument server, see Figs. 2, 4, matches theupdate require-

6 The matching rule defined here is sound, see [5].

ments. Signatures are compatible. Operation
updDoc has a weaker, less restricted precondition (we
assumevalid(doc) implieswellFormed(doc)) and
a stronger, more determining postcondition
(retrieve(id)=doc ∧ wellFormed(doc) implies
retrieve(id)=doc), i.e. the provided operation sat-
isfies the requirements. ��

Matching implies subsumption, but is not the same.
Refinement, i.e. matching of component operations, is a
sufficient criterion for subsumption (see [5] for details):

If operation P refines (matches) R, then P � R.

If the conditions are specific to an application, e.g. a
predicate valid(doc), then an underlying domain -
specific theory provided by an application domain ontol-
ogy can be integrated via concrete domains.

This refinement-based definition provides matching
foundations within a description logic framework. To
support a search engine or a directory service, these
foundations would need to be extended. The signa-
ture notion can be expanded to include subsignatures
or polymorphic signature matching [10]. Pre- and post-
condition-based matching can be realised as part of the
design-by-contract approach [11].

4.3 Matching of component interaction protocols

Together with operation matching based on functional
descriptions, interaction protocol matching is the basis
of component matching. Both client and provider com-
ponents participate in interaction processes based on the
operations described in their import and export inter-
faces. The client will show a certain import interaction
pattern, i.e. a certain ordering of requests to execute
provider operations. The provider on the other hand
will impose a constraint on the ordering of the execution
of operations that are provided through the interaction
protocol specification.

A notion of consistency of composite roles for interac-
tion protocols relates to the underlying functional oper-
ation specifications based on pre- and postconditions.

– A concept description ∀P(R1, . . . , Rn).C with tran-
sitional role P is reachable if {(a, b) ∈ PI |∃b.b ∈ CI}
is not empty.

– A composite role P(R1, . . . , Rn) is consistent, if the
last state of the P execution is reachable.

A composite role P is consistent if the following suffi-
cient conditions are satisfied:

An ontology for software component matching 177

1. For each sequence R; S in P:
∀postCond.postR � ∀preCond.preS

2. For each iteration !R in P:
∀postCond.postR � ∀preCond.preR

3. For each choice R + S in P:
∀preCond.preR � ∀preCond.preS and
∀postCond.postR � ∀postCond.postS

A component interaction protocol is a consistent com-
posite role P(R1, . . . , Rn) constructed from transitional
roles and connectors ’;’ , ’!’ , and ’+’. Interaction proto-
cols are interpreted by transition graphs for composite
transitional roles, i.e. graphs on states and transitions
that represent all possible protocol executions.

An interaction protocol describes the ordering of
observable activities of a component. Process calculi
suggest simulations and bisimulations as constructs to
address the equivalence of interaction protocols. We
use a notion of simulation between protocols to define
interaction protocol matching between requestor and
provider.

A provider interaction protocol P(S1, . . . , Sk) simu-
lates a requested interaction protocol R(T1, . . . , Tl), or
protocol P matches R, if there exists a homomorphism
μ from the transition graph of R to the transition graph

of P, i.e. if for each Rg
Ti−→Rh there is a Pk

Sj−→Pl such
that Rg = μ(Pk), Rh = μ(Pl), and Sj refines Ti.

Note, that this simulation subsumes operation match-
ing through the refinement condition at the end. The
provider component needs to be able to simulate the
request, i.e. needs to meet the expected interaction pro-
tocol of the requestor.

Example 13 The provided document server component
requires an interaction pattern7

crtDoc;!(rtrDoc+updDoc);delDoc

and the requestor component expects

create;!(retrieve+update)

as the ordering of output interactions. Assuming that
the pairs of operations crtDoc and create, rtrDoc
and retrieve, and updDoc and update, respectively,
match based on their individual operation behaviour
according to the matching definition from Sect. 4.2, the
provider matches (simulates) the required server inter-
action protocol. Service delDoc is not requested. ��

The simulation definition implies that the association
between basic roles (operations) Si and Tj in two interac-
tion protocols is not fixed, i.e. any Si such that Si refines

7 We drop parameters in protocol expressions for illustration, if,
as in this case, only the ordering is relevant.

Tj for a requested operation Tj is suitable. For a given
Tj, in principle several different provider operations Si

can provide the actual operation execution during the
execution process.

As for operation matching, interaction protocol match-
ing is not the same as subsumption. Subsumption on
roles is input/output-oriented, whereas simulation needs
to consider internal states of composite role executions.
For each request in a protocol, there needs to be a cor-
responding provided operation. However, matching is
again a sufficient condition for subsumption:

If the interaction protocol P(S1, . . . , Sk)

simulates interaction protocol R(T1, . . . , Tl),
then R � P.

Note, that the provider might support more transitions,
i.e. subsumes the requestor, whereas for operation match-
ing, the requestor subsumes the provider (the provider
needs to be more specific).

Within the service context of the Web, the focus has
recently shifted towards service coordination, i.e. com-
position and process assembly. Consequently, we have
extended design-by-contract-based matching from Sect.
4.2 to include interaction protocol matching, providing
foundations for a more expressive directory retrieval
and composition support. Most directory services are
currently based on syntactical matching, with the excep-
tion of some service ontologies [4,13].

5 Related work

While various component matching techniques exist –
e.g. [10] for matching of polymorphic signatures, [3] for
semantics-enhanced matching, and [11] for the design-
by-contract method – our aim has been to lay the foun-
dations for these aspects in an ontological framework.

Some effort has already been made to exploit ontol-
ogy technology for the software domain [4,13]. These
approaches have so far focused on individual Web ser-
vices. Service ontologies add non-functional properties
into description and matching – an approach that has
also been looked at for CBSE, see [14]. OWL-S [4]
(previously called DAML-S) is an OWL ontology for
describing properties of Web services. OWL-S repre-
sents services as concepts. We, in contrast, represent
component operations as roles and not as concepts,
giving a more process-oriented focus. Component behav-
iour and processes have been recognised as central as-
pects. In [12], a framework similar to ours, based on
a process calculus interpreted in transition systems, is
introduced. While our focus is on proces-oriented match-

178 Claus Pahl

ing, theirs is a complementary approach on deadlock and
other analyses.

OWL-S [4] relies on OWL subsumption reasoning to
match requested and provided Web services. OWL-S
provides to some extent for Web services what we aim
at for components. However, the form of reasoning and
ontology support that we provide here is not possible
in OWL-S, since services are modelled as concepts and
not rules. Only considering services as roles would make
modal reasoning about component behaviour possible.

Schild [8] points out that some description logics are
notational variants of multi-modal logics. This corre-
spondence allows us to integrate modal axioms and
inference rules about programs or processes [9] into
description logics. We have expanded Schild’s results
by representing names in the notation and by defining
a modal logic-influenced matching inference framework
in a knowledge representation setting. A few knowledge
representation issues, however, can be addressed in the
future in order to enhance the description logic devel-
oped here [7]. Assertions about data types can also be
represented as intentional knowledge. Epistemic oper-
ators have been introduced for this purpose.

6 Conclusions

Component development lends itself to development by
distributed teams in a distributed environment. Reus-
able components from repositories can be bound into
new software developments. The Web is an ideal infra-
structure to support this form of development. We have
explored Semantic Web technologies, in particular
description logics that underlie Web ontology languages,
for the context of component development. Ontolo-
gies can support application domain modelling, but we
emphasise here the importance of formalising central
development activities, such as component matching in
form of ontologies. In the Web context, service and com-
ponent technologies are moving towards each other.
Web services exhibit component character in the assem-
bly of service-oriented architectures from reusable ser-
vice components.

Our overall objective has been to provide reason-
ing support for semantically described components. We
have presented a description logic focussing on seman-
tical information of components. The behaviour of com-
ponents is essentially characterised by the component’s
interaction processes with its environment and by the
properties of the individual operations requested or
provided in these interactions. The reasoning capabil-
ities that we have obtained and represented in form of a
matching ontology go beyond current ontologies for ser-
vice or component matching. Even though description

logics have been developed to address knowledge rep-
resentation problems in general, a connection to modal
logics has allowed us to obtain a rich framework for rep-
resenting and reasoning about components. Description
logic is central for various reasons. Firstly, it is a frame-
work focusing strongly on the tractability of reasoning;
secondly, it is suitable for the integration of component
technology into the Web environment and its standards;
and, thirdly, it allows other knowledge engineering tech-
niques, such as domain modelling, to be integrated.

References

1. Szyperski, C: Component Software: Beyond Object-Oriented
Programming, 2nd edn. Addison-Wesley, Reading (2002)

2. Leavens, G.T., Sitamaran, M.: Foundations of Component-
Based Systems. Cambridge University Press, Cambridge
(2000)

3. Moorman Zaremski, A., Wing, J.M.: Specification matching
of software components. ACM Trans. Softw. Eng. Methods,
6(4), 333–369 (1997)

4. DAML-S Coalition. DAML-S: Web Services Description for
the Semantic Web. In: Horrocks, I., Hendler, J. (eds.) Proc-
cedings of the First International Semantic Web Confer-
ence ISWC 2002, pp. 279–291. LNCS 2342, Springer, Berlin
Heidelbery New York (2002)

5. Pahl, C.: An ontology for software component matching. In:
Pezzè, M. (eds.) Proccedings of the Fundamental Approaches
to Software Engineering FASE’2003, pp. 6–21. LNCS 2621,
Springer, Berlin Heidelbery New York (2003)

6. W3C Semantic Web Activity: Semantic Web Activity State-
ment. http://www.w3.org/2001/sw. (visited 06/12/2004) 2004

7. Baader, F., McGuiness, D., Nardi, D., Schneider, P.P. (eds.):
The Description Logic Handbook. Cambridge University
Press, Cambridge (2003)

8. Schild, K.: A Correspondence Theory for Terminological Log-
ics: Preliminary Report. In: Proccedings of the 12th Interna-
tional Joint Conference on Artificial Intelligence (1991)

9. Kozen, D., Tiuryn, J.: Logics of programs. In: van Leeuwen,
J. (ed.) Handbook of Theoretical Computer Science, vol. B,
pp. 789–840. Elsevier, Amsterdam (1990)

10. Gastinger, S., Hennicker, R., Stabl, R.: Design of Modular
Software Systems with Reuse. In: Broy, M., Jähnichen, S. (eds.)
KORSO – Methods, Languages, and Tools for the Construc-
tion of Correct Software, pp. 112–127. LNCS 1009, Springer,
Berlin Heidelberg New York (1995)

11. Meyer, B.: Applying design by contract. Computer 25(10),
40–51 (1992)

12. Inverardi, P., Tivoli, M.: Software Architecture for Correct
Components Assembly. In: Formal Methods for the Design of
Computer, Communication and Software Systems: Software
Architecture. LNCS Series, Springer, Berlin Heidelberg New
York (2003)

13. Lara, R., Roman, D., Polleres, A., Fensel, D.: A Conceptual
Comparison of WSMO and OWL-S. In: Zhang, L.-J., Jeckle,
M. (eds.) European Conference on Web Services ECOWS
2004, pp. 254–269, LNCS 3250, Springer, Berlin Heidelberg
New York (2004)

14. Reussner, R., Poernomo, I., Schmidt, H.: Contracts and qual-
ity attributes for software components. In: Weck, W., Bosch,
J., Szyperski, C. (eds.) Proccedings of the 8th International
Workshop on Component-Oriented Programming WCOP’03
(2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

