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Abstract In this paper, we develop a framework for
the automated verification of Web sites, which can be
used to specify integrity conditions for a given Web site,
and then automatically check whether these conditions
are fulfilled. First, we provide a rewriting-based, formal
specification language which allows us to define syntac-
tic as well as semantic properties of the Web site. Then,
we formalize a verification technique which detects both
incorrect/forbidden patterns as well as lack of informa-
tion, that is, incomplete/missing Web pages inside the
Web site. Useful information is gathered during the ver-
ification process which can be used to repair the Web
site. Our methodology is based on a novel rewriting-
based technique, called partial rewriting, in which the
traditional pattern matching mechanism is replaced by
tree simulation, a suitable technique for recognizing pat-
terns inside semistructured documents. The framework
has been implemented in the prototype GVerdi, which
is publicly available.
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1 Introduction

The increasing complexity of Web sites has turned their
design and construction into a challenging problem. Sys-
tematic, formal approaches can bring many benefits
to Web site construction, giving support for automated
Web site verification. This paper presents an approach
to Web site specification and verification based on rewrit-
ing-like machinery. We use rewriting-based technology
both to specify the integrity conditions and to formalize
a verification technique which obtains the requirements
not fulfilled by the Web site, and then is able to diagnose
errors by finding out incorrect/forbidden patterns and
missing/incomplete pages.

Although the management of Web sites has received
significant attention in recent years [10,16,21], few works
address the semantic verification of Web sites. In [21],
a declarative verification algorithm is developed which
checks a particular class of integrity constraints con-
cerning the Web site’s structure, but not the contents
of a given instance of the site. In [16], a methodol-
ogy to verify some semantic constraints concerning the
Web site contents is proposed, which consists of using
inference rules and axioms of natural semantics. The
framework XLINKIT [19,32] allows one to check the
consistency of distributed, heterogeneous documents
as well as to fix the (possibly) inconsistent informa-
tion. The specification language is a restricted form of
first order logic combined with Xpath expressions [37]
where no functions are allowed. With respect to the cor-
rectness of Web applications, a symbolic model-check-
ing approach is formalized in [17], which constructs a
finite states model of the system in the model checker in-
put language, and then checks the considered properties
which are expressed in CTL logic. For a comprehensive
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survey about the general problem of checking constraints
between multiple documents, we refer to [20,18,13].

Our idea in this paper is that term rewriting tech-
niques can support in a natural way not only intuitive,
high level Web site specification, but also efficient Web
site verification techniques. As far as we know, rewrit-
ing-based techniques have not been explored in the con-
text of Web site verification to date. We only know of
two rewriting-based approaches for Web site processing,
but they focus on transformation rather than verification
issues: a term rewriting implementation is provided in
[29] for (a fragment of) XSLT, the rule-based language
designed by W3C for the transformation of XML docu-
ments, whereas rewrite rules are used in [7] to perform
HTML transformations with the aim of improving Web
applications by cleaning up syntax, reorganizing frames,
or updating to new standards. Our rule specification lan-
guage does offer the expressiveness and computational
power of functions and is simpler than formalizations of
XML schemata based on tree automata often used in
the literature such as, e.g., the regular expression types
[26].

Our contribution

We first provide a rewriting-based, formal specification
language which allows us to define conditions on both
the structure and the contents of Web sites in a simple
and concise way. For instance, it allows us to recognize
erroneous information inside the Web site and, addi-
tionally, to enforce that some information is available at
a given Web page, including the adequate links between
pages or even the existence of the Web pages themselves.
In our formalism, web pages (HTML/XML documents)
are modeled as Herbrand terms, and, consequently, Web
sites are finite sets of terms. Then, we formalize a verifi-
cation technique in which a Web site is checked w.r.t. a
given Web specification in order to detect incorrect data
and incomplete and/or missing Web pages. Moreover,
by analyzing the error symptoms gathered during the
verification process, we are also able to (1) exactly lo-
cate the incorrect/forbidden information and (2) to find
out the missing information which the user should pro-
vide to repair the Web site. Since reasoning on the Web
calls for formal methods specifically fitting the Web con-
text, we combine a standard regular expressions meth-
odology with a novel, rewriting-based technique called
partial rewriting, in which the traditional pattern match-
ing mechanism is replaced by tree simulation [24] in
order to provide a suitable mechanism for recognizing
patterns inside semistructured documents. The notion
of simulation has been already used for dealing with
semistructured data in a number of query and transfor-

mation languages [10,12,22,14]. The reason is twofold:
on the one hand, it provides a powerful method to ex-
tract information from semistructured data; on the other
hand, there exist efficient algorithms for computing sim-
ulations [24]. To assess the feasibility and efficiency of
our approach, we have implemented the prototype sys-
tem GVerdi (Graphical VErification and Rewriting for
Debugging Internet sites), which is based on the ver-
ification methodology that we propose and is publicly
available online. Following the “tolerant” approach of
xlinkit [19,32], we do not force the immediate repair-
ing of the Web site, but simply provide the diagnosis
information that enables document owners to decide on
further actions. Some of the results in this work have
been included in Ballis’ doctoral thesis [5].

Plan of the paper

The rest of the paper is organized as follows. Section 2
summarizes some preliminary definitions and notations.
In Sect. 3, we formulate a simple method for translating
XHTML/XML documents into Herbrand terms. Sec-
tion 4 is devoted to formalize the specification language,
whereas Sect. 5 formalizes the partial rewriting mecha-
nism, which is based on tree simulation. Section 6 intro-
duces our verification technique for detecting incorrect
as well as missing/incomplete Web pages. A description
of the system GVerdi is provided in Sect. 7. Section 8
concludes. Proofs of the technical results can be found
in the appendix.

2 Preliminaries

We call a finite set of symbols as alphabet. Given the
alphabet A, A∗ denotes the set of all finite sequences of
elements over A. Syntactic equality between objects is
represented by ≡.

By V we denote a countably infinite set of variables
and � denotes a set of function symbols, or signature. We
consider varyadic signatures as in [15] (i.e., signatures in
which symbols have an unbounded arity, that is, they
may be followed by an arbitrary number of arguments).
τ(�, V) and τ(�) denote the non-ground term algebra
and the term algebra built on � ∪ V and �, respectively.

Terms are viewed as labeled trees in the following
(non-standard) way: a term in τ(�, V) is a tree (V, E, r,
label), where V is a set of vertices, E is a set of edges
(i.e., pairs of vertices), r ∈ V is the root vertex and label
is a labeling function such that label(v) ∈ (� ∪ V), for
each v ∈ V. Let us see a small example.

Example 1 Consider the term t≡ f (h(a), X) in τ({f , h, a},
{X}), which is illustrated in Fig. 1. Term t can be
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represented by the structure (V, E, r, label), where V ≡
{v0, v1, v2, v3}, E ≡ {(v0, v1), (v0, v2), (v1, v3)}, r ≡ v0, and
function label is defined as follows: label (v0) = f , label
(v1) = h, label (v2) = X, label (v3) = a.

Given two vertices v, v′ ∈ V of a term t ≡ (V, E, r,
label), by v ≥ v′ we mean that v is a descendant of v′
in t. By t|v we mean the subterm rooted at vertex v of
t. t[r]v is the term t with the subterm rooted at vertex v
replaced by term r.

We denote the depth of a vertex v in a term t, that
is the number of edges between r and v in t, as depth
(t, v). A substitution σ ≡ {X1/t1, X2/t2, . . . , Xn/tn} is a
mapping from the set of variables V into the set of terms
τ(�, V) satisfying the following conditions: (1) Xi �= Xj,
whenever i �= j, (2) Xiσ = ti, i = 1, . . . , n, and (3) Xσ =
X, for any X ∈ V \ {X1, . . . , Xn}. By Var(s) we denote
the set of variables occurring in the syntactic object s.

In the following, we consider marked terms. Given �

and V , we denote the marked version of � (V , respec-
tively) as � (V , respectively). A syntactic object o ∈
� ∪ V is called the marked version of o ∈ � ∪ V . Given
a term t ≡ (V, E, r, label) ∈ τ(�, V), a marking for t is a
(boolean) function µ : V → {yes, no}. The empty mark-
ing ε for t is a marking for t, such that ε(v) = no, for
each v ∈ V. We define the marked part of a term t as

mark(t, µ) ≡ ({v ∈ V | µ(v) = yes},
{(v1, v2) ∈ E | µ(v1) = µ(v2) = yes},
r, label ).

A valid marking µ for a term t ≡ (V, E, r, label) is the
empty marking for t or a marking for t such that the two
following conditions hold:

1. µ(r) = yes.
2. mark (t, µ) is a term in τ(�, V).

Given a term t ≡ (V, E, r, label) and a valid marking µ

for t, by slightly abusing notation, a marked term µ(t)
is a term in τ(� ∪ �, V ∪ V) such that, for each vertex
v ∈ V, the label associated with v in t is replaced by its
marked version in µ(t), whenever µ(v) = yes.

When no confusion can arise, we simply denote the
marked term ε(t) by t.

Fig. 1 Term representation
of f (h(a), X)

Example 2 Consider again the term t ≡ (f (h(a), X))

of Example 1. Let µ1 be a marking for t defined as
µ1(v0) = µ1(v2) = µ1(v3) = yes, µ1(v1) = no. Addi-
tionally, let µ2 be a marking for t such that µ2(v0) =
µ2(v1) = yes, µ2(v2) = µ2(v3) = no. Note that µ1 is not
a valid marking for t as the marked part of t is not a term
in τ({f , h, a}, {X}) [see Fig. 2a], whereas µ2 is valid for t
and µ2(t) = f (h(a), X) is a marked term [see Fig. 2b].

2.1 Term rewriting systems

Term rewriting systems provide an adequate computa-
tional model for functional languages. In the sequel, we
follow the standard framework of term rewriting (see
[4,30]). A term rewriting system (TRS for short) is a
pair (�, R), where � is a signature and R is a finite set
of reduction (or rewrite) rules of the form λ → ρ, λ,
ρ ∈ τ(�, V), λ �∈ V , and Var(ρ) ⊆ Var(λ). We will often
write just R instead of (�, R). Sometimes, we denote the
signature of a TRS (�, R) by �R.

We formalize the rewriting relation for (V, E, r, label)
terms as follows. A rewrite step is the application of a
rewrite rule to an expression. A term s ≡ (V, E, r, label)
rewrites to a term t via r ∈ R, s →r t (or s →R t), if
there exist v ∈ V, r ≡ λ → ρ, and substitution σ such
that s|v ≡ λσ and t ≡ s[ρσ ]v. When no confusion can
arise, we will omit any subscript (i.e., s → t). By →∗R,
we denote the reflexive, and transitive closure of→R. A
term s is a irreducible form (or normal form) w.r.t. R, if
there is no term t s.t. s→R t. t is the irreducible form of s
w.r.t R (in symbols s→!R t) if s→∗R t and t is irreducible.

We say that a TRS R is terminating, if there exists no
infinite rewrite sequence t1 →R t2 →R · · · A TRS R is
confluent if, for all terms s, t1, t2, s →∗R t1 and s →∗R t2
imply there exists term t s.t. t1 →∗R t and t2 →∗R t. When
R is terminating and confluent it is called canonical. In
canonical TRSs, each input term t can be univocally
reduced to an irreducible form.

Let s = t be an equation, we say that the equation s =
t holds in a canonical TRS R, if there exists z ∈ τ(�, V)

such that s→!R z and t→!R z.

Fig. 2 Examples of valid and non-valid markings for the term
f (h(a), X)
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Example 3 Let R be the following canonical TRS

sum(X,0)→ X

sum(X,s(Y))→ s(sum(X,Y))

append([ ],L1)→ L1

append([X|L1],L2)→ [X|append(L1,L2)]

≤ (0,X)→ true

≤ (s(X),0)→ false

≤ (s(X),s(Y))→ ≤ (X,Y)

In the TRS R we define three functions. Function sum
computes the sum of two naturals, function append con-
catenates two lists, and, function ≤ which defines the
“less or equal to” relation between natural numbers.
Natural numbers are represented in Peano’s notation
by means of the constant 0 and the unary operator s.
By abuse we will write n ∈ N as a shorthand for sn(0).
We use the standard notation for lists with [ ] being the
empty list. Strings are viewed as lists of characters as
usual.

3 Denotation of Web sites

In our framework, a Web page is either an XML [36]
or an XHTML [38] document, which we assumed to
be well-formed. There are already programs and online
services such as Tidy [33], which are able to validate and
correct the XHTML/XML syntax, and Doctor HTML
[28], which also performs link-checking.

Let us consider two alphabets T and Tag. We denote
the set T∗ by Text. An object t ∈ Tag is called tag ele-
ment, while an element w ∈ Text is called text element.
Since Web pages are provided with a tree-like structure,
they can be straightforwardly translated into ordinary
terms of a given term algebra τ(Text ∪ Tag) as shown
in Fig. 3. Note that XML/XHTML tag attributes can
be considered as common tagged elements, and hence
translated in the same way.

A marked Web page is defined as µ(p), where p ∈
τ(Text∪ Tag) and µ is a valid marking forp. A Web site is
a finite collection of marked Web pages {ε(p1) . . . ε(pn)}.
In the following, we will also consider terms of the non-
ground term algebra τ(Text ∪ Tag, V), which may con-
tain variables. An elements ∈ τ(Text ∪ Tag, V) is called
Web page template. µ(s) is a marked Web page template,
whens ∈ τ(Text∪ Tag, V) and µ is a valid marking fors.
In our methodology, (marked) Web page templates are
used for specifying properties on Web sites as described
in the following section.

Example 4 In the following, we present a Web siteW of a
research group, which contains information about group
members affiliation, scientific publications, research
projects, teaching and personal data.

{(1) members(member(name(mario),
surname(rossi),
status(professor)),

member(name(franca),
surname(bianchi),
status(technician)),

member(name(giulio),
surname(verdi),
status(student)),

member(name(mario),
surname(rossi),
status(professor))

),
(2) hpage(fullname(mariorossi),phone(3333),

status(professor),hobbies(
hobby(reading),
hobby(gardening))),

(3) hpage(fullname(francabianchi),
status(technician),phone(5555),

links(link(url(www.google.com),
urlname(google)),

link(url(www.sexycalculus.com),
urlname(FormalMethods))),

(4) hpage(fullname(annagialli),
status(professor),
blink(phone(4444)),
teaching(courselink(

url(http://www.algebra.math),
urlname(Algebra)))),

(5) pubs(pub(name(mario),surname(rossi),
title(blah1),year(2003)),

pub(name(anna),surname(gialli),
title(blah2),year(2002))),

(6) projects(project(pname(A1),grant1(1000),
grant2(200), total(1200), coordinator(

fullname(mariorossi))),
project(pname(B1),grant1(800),

grant2(300),
projectleader(surname(gialli),

name(anna)),
total(1000)))}

4 Web specification language

In the following, we present a term rewriting specifi-
cation language, which is helpful to express properties
about the content and the structure of a given Web
site. Roughly speaking, a Web specification is a pair of
finite set of rules. The first set of rules describes con-
straints for detecting erroneous Web pages (correctNess
rules) as well as discovering incomplete/missing Web
pages (coMpleteness rules). Diagnoses are carried out
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Fig. 3 An XML document
and its corresponding
encoding as a ground term p

by running Web specifications on Web sites. The oper-
ational mechanism, formalized in Sect. 5, is based on a
novel rewriting-based technique, which is able to extract
partial structure from a term, and then rewrite it. The
second set of rules R contains the definition of some
auxiliary functions which the user would like to provide,
such as string processing, arithmetic, boolean operators,
etc. It is formalized as a canonical term rewriting system
which is handled by standard rewriting [30].

Correctness rules allow us to recognize incorrect and
forbidden patterns in the Web site and to locate the
wrong Web pages containing these errors. We address
these problem by considering the specific nature of semi-
structured documents, that is, we combine a structured
pattern search technique with a more standard textual
search, which is based on regular expressions detection.
For the sake of simplicity, we consider an intuitive Unix-
like regular expression syntax [34]. In contrast to other
Web verification methods, we are able to deal with cor-
rectness rules containing interpreted functions, which
allow us to check whether the values that may appear in
the semistructured documents are correctly computed.

The verification process is carried out by first extract-
ing a partial structure of a (possibly incorrect) Web page,
and then checking whether the required constraints are
fulfilled. These constraints are expressed by means of
equations and regular expressions. Correctness rules are
formalized as follows.

Definition 1 (Correctness rule) Let (�, R) be a canonical
TRS. A correctness rule has the following form

l ⇀ error | C

where

1. l ∈ τ(Text ∪ Tag, V) is a Web page template and
error �∈ (Text ∪ Tag ∪�) is a new fresh constant.

2. C is a (possibly empty) sequence

X1 in rexp1, . . . , Xn in rexpn, �

with Var (C) ⊆ Var(l), rexpi a regular expression
over (Text ∪ Tag), i = 1, . . . , n, and � a sequence of
equations over τ(�, V).

When C is empty, we simply write l ⇀ error.

Given a correctness rule r ≡ (l ⇀ error | C), we call
l ⇀ error the unconditional part of r and we denote
it by ru. For the sake of expressiveness, we also allow
to write inequalities of the form s �= t in the condi-
tional part of the correctness rules. Such inequalities are
just syntactic sugar for (s = t) = false. Informally, the
meaning of a correctness rule l ⇀ error | C is the fol-
lowing. Whenever an instance lσ of l is recognized in
some Web page p, and

(1) Each structured text Xiσ , i = 1, . . . , n, is con-
tained in the language of the corresponding regu-
lar expression rexpi.

(2) Each instantiated equality (s = t)σ in � holds in
the canonical TRS R.

then, Web page p is signaled as an incorrect page.
Completeness rules of a Web specification formalize

the requirement that some information must be included
in all or some pages of the Web site. We use attributes
〈A〉 and 〈E〉 to distinguish “universal” from “existen-
tial” rules. Right-hand sides of completeness rules may
contain functions, which are defined by the user via a
canonical TRS.

Definition 2 (Completeness rule)Let (�, R) be a canoni-
cal TRS. A completeness rule is either a universal
rule of the form l ⇀ µ(r) 〈A〉 or an existential rule
of the form l ⇀ µ(r) 〈E〉, where l ∈ τ(Text ∪ Tag, V),
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r ∈ τ(Text ∪ Tag ∪ �, V), Var(r) ⊆ Var(l) and µ is a
valid marking for r.

Intuitively, the interpretation of a universal rule l ⇀

µ(r) 〈A〉 [respectively, an existential rule l ⇀ µ(r) 〈E〉]
w.r.t. a Web siteW is as follows: if (an instance of)l is rec-
ognized in W, also (an instance of) the irreducible form
of rmust be recognized in all (respectively, some) of the
Web pages which embed (an instance of) the marked
part of r. Informally, marking information provides the
“scope” of the universal/existential quantifiers of the
rule, and allows us to compute the part of the Web site
which is affected by the quantification.

Example 5 Consider the Web site

W = { f (h(g(a), t)), h(t, s(m, n), g(p)), h(n, p(r, q)),
w(s(m, n))}

and the rule r ≡ (w(X) ⇀ h(t,X)〈q〉), q ∈ {E,A}. Then,
the marked part of the right-hand side of r is h(t).

Thus, the property, which is modeled by r, will be
checked only on the set {f(h(g(a),t)),h(t,s(m,n),
g(p))}, which contains all and only the Web pages of
W embedding the term h(t).

Formally, Web specifications are as follows.

Definition 3 (Web specification) A Web specification is
a pair (I, R), where I ≡ INIM is a finite set of rules such
that IN (respectively, IM) is a set of correctness (respec-
tively, completeness) rules, and R is a canonical TRS.

In order to provide an effective, and terminating veri-
fication method, we require that the arguments of the
function calls in the right-hand sides of the completeness
rules do not contain symbols in

{f | f(t1, . . . ,tn) ⇀ µ(r) ∈ Im}
(for the technical reasons, see Lemma 3 in the appen-
dix).

Given a set of completeness rules IM, we denote the
set of all left-hand sides (right-hand sides without marks,
respectively) of rules inIM byLhsM (RhsM, respectively).
In symbols, LhsM = {l | l ⇀ µ(r) ∈ IM} and RhsM =
{r | l ⇀ µ(r) ∈ IM}.

Note that, by using the traditional encoding of bool-
ean operations by means of rewrite rules [31,23], and by
introducing non-deterministic rewriting [27], it would
also be possible to extend our framework to a richer
specification language providing non-confluent functions
such as those that express disjunctive conditions (so that
the presence of information of kind A requires informa-
tion of kind B or C to be also represented). For the sake
of simplicity, we do not deal with non-confluent TRSs in
this work.

The following example illustrates the definition of a
Web specification. Marks are introduced by the user to
select those Web pages for which she wants to check the
specified integrity conditions.

Example 6 Consider the Web specification which con-
sists of the canonical TRS R of Example 3 together with
the built-in definition of function Nat(X), which trans-
lates a string X to a natural number, and the complete-
ness and correctness rules of Fig. 4.

This Web specification models some required prop-
erties for the Web site of Example 4.

The first four rules are completeness rules, while the
remaining ones are correctness rules. First rule formal-
izes the following property: if there is a Web page con-
taining a member list, then for each member, a home
page should exist which contains (at least) the full name
and the status of this member. The full name is com-
puted by appending the name and the surname strings
by means of the standard append function whose defi-
nition is given in TRS R. The marking information estab-
lishes that the property must be checked only on home
pages (i.e., pages containing the tag “hpage”). Second
rule states that, whenever a home page of a professor
is recognized, that page must also include some teach-
ing information. The rule is universal, since it must hold
for each professor home page. Such home pages are
selected by exploiting the mark given on the tag “sta-
tus”. Third rule specifies that, whenever there exists a
Web page containing information about scientific publi-
cations, each author of a publication should be a mem-
ber of the research group. In this case, we must check
the property only in the Web page containing the group
member list. The fourth rule formalizes that, for each
link to a course, a page describing that course must exist.
The verification process is carried out only on Web pages
containing course information as described by marks.

The fifth rule forbids sexual contents from being pub-
lished in the home pages of the group members. This
is enforced by requiring that the word sex does not
occur in any home page by using the regular expression
[:TextTag:]* sex [:TextTag:]*, which identi-
fies the regular language of all the strings built over
(Text∪ Tag) containing that word. The sixth rule is pro-
vided with the aim of improving accessibility for people
with disabilities. It simply states that blinking text is for-
bidden in the whole Web site. The seventh rule states
that, for each research project, the total project budget
must be equal to the sum of the funds, which has been
granted for the first and the second research period. The
eighth rule formalizes the condition that only recent
publications are referred to in the Web site (after the
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Fig. 4 Correctness and
completeness rules of
Example 6

year 1999). Finally, the last rule forbids repetitions of
the same member entry in the group member list.

The verification of both kinds of rules is mechanized by
means of partial rewriting.

5 Partial rewriting

In order to mechanize the intended semantics of Web
specification rules, we first devise a mechanism which is
able to recognize the structure and the labeling of a given
Web page template inside a particular page of the Web
site. This is provided by page simulation. Without loss of
generality, in the following, we disregard the conditional
part of correctness rules and the existential/universal
quantification of completeness rules. In other words, a
rule is just a pair of (possibly) marked terms l ⇀ µ(r).

5.1 Page simulations

The notion of page simulation for Web pages allows us
to analyze and extract the partial structure of the Web
site which is subject to verification.

Roughly speaking, a Web page p1 is simulated by a
Web page p2, if the tree-structure of p1 is “embedded”
into the tree-structure ofp2. In other words, a simulation
of a Web page (i.e., a labeled tree) p1 in a Web page p2
can be seen as a relation among the nodes of p1 and the
nodes of p2 which preserves the edges and the labelings.
Before formalizing the idea, we illustrate it by means of
a rather intuitive example.

Example 7 Consider the following Web pages (calledp1
and p2, respectively):

hpage(name,surname,status(professor),teaching)

hpage(name(mario),surname(rossi),
status(professor),
teaching(course(logic1),

course(logic2)),
hobbies(hobby(reading),hobby(gardening)))

Looking at Fig. 5, we observe that the structure of p1
can be recognized inside the structure of p2 by consid-
ering the relation among nodes of p1 and p2, which is

described by the dashed arrows in the figure. This rela-
tion essentially provides the so-called simulation of p1
in p2. Note that vice-versa does not hold: no relations
can be found among nodes of p2 and p1, which “embed”
the structure of p2 into p1. In other words, there does
not exist a simulation of p2 in p1.

Simulations have been used in a number of works
dealing with querying and transformation of semistruc-
tured data. For instance, [1,22] propose some techniques
based on simulation for analyzing semistructured data
w.r.t. a given schema. The language Xcerpt [11,10] is
a (logic) query language for XML and semistructured
documents, which implements a sort of unification by
exploiting the notion of graph simulation. Other ap-
proaches involving simulation, or closely related no-
tions, have been employed to measure similarity among
semistructured documents [8]. To keep our framework
simple, we do not consider a semantic change/load for
labels; this would require to introduce ontologies, which
are outside the scope of the work.

In the following, we provide our notion of simulation
which is a slight adaptation of the one given in [10] to
consider Web page templates: we generalize the usual
label relation to cope with the case when variables are
used as labels, in the following definition.

Definition 4 Let s1 ≡ (V1, E1, r1, label1),
s2 ≡ (V2, E2, r2, label2) be two Web page templates in
τ(Text ∪ Tag, V). The label relation ∼⊆ V1 × V2 is de-
fined as follows:

v1 ∼ v2 iff label1(v1) = label2(v2) or label1(v1) ∈ V .

Definition 5 Let s1 ≡ (V1, E1, r1, label1),
s2 ≡ (V2, E2, r2, label2) be two Web page templates in
τ(Text ∪ Tag, V) and∼⊆ V1×V2 be the corresponding
label relation. A (page) simulation of s1 in s2 w.r.t.∼ is a
relation S ⊆ V1×V2 such that, for each v1 ∈ V1, v2 ∈ V2

1. r1 S r2.
2. v1 S v2 ⇒ v1 ∼ v2.
3. v1 S v2 ∧ (v1, v′1) ∈ E1 ⇒ ∃ v′2 ∈ V2, v′1 S v′2 ∧

(v2, v′2) ∈ E2.

We define the projection of a simulation S of s1 in s2
w.r.t ∼ as π(S) = {v2 | (v1, v2) ∈ S}.
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Fig. 5 Page simulation between p1 and p2

Roughly speaking, Definition 5 ensures two degrees
of similarity between Web page templates, not only w.r.t.
the labelings but also w.r.t. the structures of the tem-
plates. On the one hand, Condition (2) of Definition
5 formalizes the similarity w.r.t. labelings, that is, any
pair of nodes (v, v′) in a page simulation S of s1 in s2
have the same label, otherwise node v must be labeled
by a variable, which somehow means that the label of
v can be seen as a generalization of any concrete label
of v′. Finally, Conditions (1) and (3) provide a relation
between the tree structure of s1 and s2.

Note that simulations are just relations among nodes
of two given Web page templates. For our purposes, we
are interested in simulations which are injective map-
pings from nodes of a given Web page template to nodes
of another Web page template. As it will be apparent
later, those simulations allow us to project the struc-
ture of a Web page template into another one, thus per-
forming a sort of “partial” pattern matching between
templates, which will be exploited to formulate our ver-
ification technique. So, we first define a subclass of si-
mulations called minimal simulations.

Definition 6 Let s1 ≡ (V1, E1, r1, label1),
s2 ≡ (V2, E2, r2, label2) be two Web page templates in
τ(Text ∪ Tag, V). A page simulation S of s1 in s2 w.r.t.∼
is minimal if there are no page simulations S′ of s1 in s2
w.r.t. ∼ such that S′ ⊆ S.

It is straightforward to prove that minimal simulations
are mappings.

Proposition 1 Let s1 ≡ (V1, E1, r1, label1),
s2 ≡ (V2, E2, r2, label2) be two Web page templates in
τ(Text ∪ Tag, V). A minimal page simulation S of s1 in
s2 w.r.t. ∼ is a mapping S : V1 → V2 .

Let us see an example which illustrates the notion of
minimal simulation.

Example 8 Let us consider the following Web page tem-
plates s1 and s2:

hobbies(hobby(X))
hobbies(hobby(reading),hobby(gardening)).

In Fig. 6a, the dashed arrows represent a non-minimal
simulation of s1 in s2, while in Fig. 6b and c two minimal
simulations of s1 in s2 are depicted. Note that the last
two simulations are mappings.

However, minimal simulations do not guarantee that
the tree structure of a given Web page template is recog-
nized inside another template. Consider, for instance,
the page simulation of f (X, Y) in f (a) depicted in Fig. 7:
it is minimal, but the tree structures of f (X, Y) and f (a)

are distinct.
For this purpose, we need a one-to-one correspon-

dence between edges of considered Web page templates.
Therefore, we only consider minimal and injective sim-
ulations. Given two Web page templates s and t, we
denote by s ∼= t, the fact that there exists a minimal,
injective simulation of s in t w.r.t. ∼.

It is not difficult to prove that minimal injective simu-
lations are particular instances of Kruskal’s embeddings
[9] w.r.t. the relation∼. In other words, a minimal injec-
tive page simulation of s1 in s2 w.r.t. ∼ exists iff s1 is
embedded into s2 w.r.t. ∼, i.e., we are able to find out
the structure and the labeling of s1 inside s2.

5.2 Rewriting Web page templates

Definition 7 Let s1 ≡ (V1, E1, r1, label1),
s2 ≡ (V2, E2, r2, label2) ∈ τ(Text ∪ Tag, V). We say that
s2 partially matches s1 via substitution σ iff

1. There exists a minimal, injective page simulation S
of s1 in s2 w.r.t. ∼.

2. For each (v, v′) ∈ S such that label(v) = X ∈ V ,
σ(X) = (s2|v′).

In Definition 7, we consider only minimal, injective sim-
ulations between Web page templates s1 and s2 to eas-
ily compute a substitution σ such that there exists a
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hobbies hobbies

hobbyhobbyhobby

X

(a)

reading gardening

hobbies hobbies

hobbyhobbyhobby

X

(b)

reading gardening

hobbies hobbies

hobbyhobbyhobby

X

(c)

reading gardening

Fig. 6 Non-minimal and minimal simulations

simulation of s1σ in s2 w.r.t. ∼; in other words, s1σ is
embedded into s2. It is worth noting that non-minimal
simulations not always ensure the existence of such a
substitution. This is the reason why the minimal simu-
lations are also required to be injective. Let us see an
example.

Example 9 Consider again Example 8. We have that
s2 partially matches s1 via {X/reading} (see Fig. 6b)
and s2 partially matches s1 via {X/gardening} (see
Fig. 6c). Note that performing partial matching by the
non-minimal simulation of Fig. 6 a would produce
σ ≡ {X/reading,X/gardening}, which is not a
substitution.

Now we are ready to define a partial rewrite relation
between marked Web page templates, which includes a
simplification stage using the user functions of a TRS R.

Definition 8 Let R be a canonical TRS.
Let s ≡ (V, E, rs , label), t ∈ τ(Text ∪ Tag, V). Let µ1
and µ2 be two valid markings for s and t, respectively.
Then, µ1(s) partially rewrites to µ2(t) via rule rl ≡ l ⇀

µ(r) and substitution σ (in symbols, µ1(s) ⇀σ
rl µ2(t))

iff there exists v ∈ V such that

1. s|v partially matches l via σ .
2. Let r ≡ (Vr, Er, r, labelr) and rσ ≡ (Vrσ , Erσ , r,

labelrσ ). For each v ∈ Vrσ ,

µ2(v) =





µ(v) if v ∈ (Vr ∩ Vrσ )

µ(v′) if v ∈(Vrσ \ Vr) ∧ (∃ v′ ∈Vr, v ≥ v′,
labelr(v′) ∈ Var(r))

3. t = Reduce(rσ ,R), where function Reduce(x, R)

computes, by standard term rewriting, the irreducible
form of x in R ignoring the eventual marks for the
functions in R.

When rule rl and substitution σ are understood, we simply
write µ1(s) ⇀ µ2(t).

It is worth noting that we provide a notion of partial
rewriting in which the context of the selected reducible
expression s|v of the Web page template which is rewrit-
ten is disregarded after the rewrite step [see point (3) of

Definition 8]. Roughly speaking, given a Web specifica-
tion rule l ⇀ µ(r), partial rewriting allows us to extract
a subpart of a given Web page (template) s, which par-
tially matches l, and to replace s by a reduced instance
of r; namely, Reduce(rσ , R) [see points (1) and (3) of
Definition 8]. Point (2) of Definition 8 establishes that
rewritten templates inherit marks from the right-hand
sides of the applied rules. More precisely,

• Each vertex of rσ , which is not affected by substi-
tution σ , maintains the same marking of r.

• Each vertex, which belongs to a subterm of rσ

replacing a variable X of r, is marked yes.
• Each vertex, which belongs to a subterm of rσ

replacing a variable X of r, is marked no.

A partial rewrite sequence is of the form µ0(s0) ⇀
σ0
r0

µ1(s1) ⇀
σ1
r1 . . . Moreover, we denote the transitive clo-

sure (resp., the transitive and reflexive closure) of ⇀

by ⇀+ (resp., ⇀∗). By notation µ0(s0) ⇀n µ1(s1) we
denote a partial rewrite sequence of length n (i.e., a
partial rewrite sequence which is made up of n partial
rewrite steps).

Example 10 Consider the Web page p of Fig. 3 and the
first rule r1 of the Web specification of Example 6. Let
us suppose that TRS R defines the standard function
append for concatenating strings. Then, Web page tem-
plate ε(p) partially rewrites to the following Web pages
by applying r1.

ε(p) ⇀r1 Reduce(hpage(fullname(

append(mario,rossi)),status),R)

= hpage(fullname(mariorossi),status)

ε(p) ⇀r1 Reduce(hpage(fullname(append(franca,
bianchi)),status),R) =

hpage(fullname(francabianchi),status)

ε(p) ⇀r1 Reduce(hpage(fullname(append(giulio,
verdi)),status),R) =

hpage(fullname(giulioverdi),status)

Roughly speaking, marks in the right-hand sides of the
rules allow us to find sets of Web pages, which might
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Fig. 7 Minimal,
non-injective simulation f

YX

f

a

be incomplete or missing. Then, real buggy pages are
detected inside these sets. We formalize the idea in the
following section.

6 The verification framework

In the following, we show how simulation and partial
rewriting can be applied to verify a given Web site w.r.t.
a Web specification. As we have seen in Sect. 5.1, simu-
lation allows us to identify the structure of a given Web
page (possibly, a template) into another one. By taking
advantage of this fact, we can develop a methodology,
which is able to discover correctness as well as complete-
ness errors in a given Web site w.r.t. a Web specification.

More precisely, our analysis allows us to discover the
following kinds of errors:

• Erroneous/forbidden information in the Web site
(correctness errors).

• Web pages which are missing in a Web site or Web
pages which are incomplete w.r.t. a given Web spec-
ification (completeness errors).

6.1 Detecting correctness errors

In this section, we provide a simple mechanism based on
partial rewriting which can detect erroneous or unde-
sirable data included in a Web site. Our methodology
allows us to precisely locate which part of a Web page
does not fulfill the Web specification. We apply correct-
ness rules to the Web pages of the Web site in order
to discover incorrect patterns. More precisely, given a
Web page p, we first try to recognize a given Web page
template l into p by partially rewriting p via the (uncon-
ditional part of a) correctness rule l ⇀ error |C. Then,
we analyze the values taken by the variables of C, which
are obtained as a by-product of the partial rewrite step.
If the structured text, which is bound to each variable in
C, belongs to the language of the corresponding regular
expression, and all the instantiated equations in C hold,
the faulty Web page p and an incorrectness symptom
are supplied to the user.

Definition 9 Let W be a Web site, (IN  IM, R) be a Web
specification. Given p ∈ W, we say that p is incorrect w.r.t.
(INIM, R), if there exists a rule r ≡ (l ⇀ error|X1 in
rexp1, . . . , Xn in rexpn, �) ∈ IN such that

1. p ⇀σ
ru
error, where ru is the unconditional part of r.

2. For i = 1, . . . , n, Xiσ ∈ L(rexpi), where L(rexpi)
is the regular language described by rexpi.

3. Each instantiated equation of �, (s=t)σ , holds in R.

We say that lσ is an incorrectness symptom for p.

Let us see an example which illustrates the above defi-
nition.

Example 11 Let (IN  IM, R) be the Web specification
of Example 6 and W be the Web site of Example 4.

Now, consider the correctness rule

r ≡ hpage(X)⇀ error | X in
[:TextTag :] ∗ sex[:TextTag :] ∗ .

Note that the only Web page in W which can yield a cor-
rectness error by using r is Web page (3), since (3) can
be partially rewritten to error via ru by means of the
following substitution σ

{X/links(link(url(www.google.com),
urlname(google)),

link(url(www.sexycalculus.com),
urlname(FormalMethods)))}

and Xσ belongs to

L([:TextTag:]* sex [:TextTag:]*).

The corresponding incorrectness symptom is

hp(links(link(url(www.google.com),
urlname(google)),

link(url(www.sexycalculus.com),
urlname(FormalMethods)))).

Web page (4) is incorrect w.r.t (IN  IM, R),
as it rewrites to error by rule blink(X) ⇀ error
and gives rise to the incorrectness symptom
blink(phone(4444)). Moreover, we can also discover
that the total budget of project B1 is wrongly computed
by applying rule

project(grant1(X), grant2(Y),
total(Z)) ⇀ error| sum(Nat(X),Nat(Y)) �= Nat(Z).

Indeed, Web page (6) is incorrect, since the equation

sum(Nat(800),Nat(300)) �= Nat(1000)

hold in R. The associated incorrectness symptom is

project(grant1(800),grant2(300),total(1000)).
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Finally, Rule
r′ ≡ members( member(name(X),surname(Y)),

member(name(X),surname(Y))) ⇀ error

detects that the entry for Mario Rossi in Web page
(1) is repeated twice, since it derives error by using
r′ via substitution {X/mario,Y/rossi}. The respective
incorrectness symptom is:
members(member(name(mario),surname(rossi)),

member(name(mario),surname(rossi))).

The example above points out the usefulness of incor-
rectness symptoms: they allow us to precisely locate
which erroneous piece of information must be modified
by the user in order to repair the faulty Web site.

Algorithm 1 outlines a procedure for the detection
of correctness errors, which takes as input a Web site
W, a set of correctness rules IN, and a canonical TRS
R. Basically, the procedure repeatedly applies the test
of Definition 9 for recognizing incorrect and forbidden
patterns. More precisely, for every Web page in W, we
verify whether (1) p reduces to the constant error via
the unconditional part of some correctness rule r, and
(2) the constraints in the condition of r are fulfilled. In
the case that an error is found in a Web page p by using
a rule l ⇀ r | C, the pair (p,lσ) is returned, which con-
sists of the wrong page together with the corresponding
incorrectness symptom.

Algorithm 1 An algorithm for detecting correctness
errors in a Web site.
1: procedure Correctness-errors(W,IN, R)
2: for all p ∈ W do
3: for all r ≡ (l ⇀ error |

X1 in rexp1, . . . ,Xn in rexpn,
s1 = t1, . . . ,sm = tm) ∈ IN do

4: if (p ⇀σ
ru
error) then

5: If (Xiσ ∈ L(rexpi), i = 1, . . . , n) and
((sj = tj)σ , j = 1, . . . , m, holds in R) then

6: output(“Error: (p,lσ )”) end if
7: end if
8: end for
9: end for

10: end procedure

Proposition 2 Let W be a Web site, and (IN  IM, R) be
a Web specification. Then, the procedure Correctness-
errors(W,IN, R) terminates, and for each pair (p,lσ),
which is returned, p is an incorrect Web page w.r.t. (IN 
IM, R) and lσ is the corresponding incorrectness symp-
tom.

6.2 Detecting completeness errors

Essentially, the main idea to diagnose completeness
errors is to compute the set of all possible marked

expressions that can be derived from W via the
completeness rules of a Web specification (IN  IM, R)

by means of partial rewriting. These marked terms can
be thought of as requirements to be fulfilled by W. Then,
we check whether the computed requirements are sat-
isfied by W using simulation and marking/quantification
information.

In summary, the method works in two steps, as
described below.

1. Compute the set of requirements ReqM,W for W
w.r.t. IM.

2. Check ReqM,W in W.

Formally, a requirement is a pair 〈µ(e),q〉, where µ(e)

is a marked term and q ∈ {A,E, _}. A requirement is
called universal whenever q = A, while it is called exis-
tential when q = E. Requirements of the form 〈µ(e), _ 〉
are called non-quantified requirements.

In order to formalize step 1, we define the following
operator.

Definition 10 Let T be a set of marked terms and (IN 
IM, R) be a Web specification. Then, the immediate com-
pleteness requirements operator

JM(T) = T ∪ {〈µ2(s2),q〉 | ∃ 〈µ1(s1),q1〉 ∈ T,
r ≡ (l ⇀ µ(r) 〈q〉) ∈ IM s.t.
µ1(s1) ⇀r µ2(s2)}

where T = {〈s, _ 〉 | s ∈ T}.
Roughly speaking, the operator in Definition 10 com-
putes all the requirements which are obtained by par-
tially rewriting the marked expressions in T using the
completeness rules of IM, and returns the union of the
resulting set and T. By repeatedly applying this opera-
tor, it is possible to compute all marked terms that can
be derived from an initial Web site after an arbitrary
number of partial rewriting steps. For this purpose, we
formalize the ordinal powers of the operator JM w.r.t. a
Web site W as follows: JM ↑W 0 = W, JM ↑W n = JM(JM ↑W
(n− 1)), n > 0.

It is immediate to prove that the operator JM is con-
tinuous on the lattice consisting of the powerset of the
requirements ordered by set inclusion. This ensures that
a least fixpoint of JM exists and can be reached after ω

applications of JM, that is, JM ↑W ω where ω is the first
infinite ordinal. The least fixpoint of JM contains all the
marked expressions derivable from W via IM along with
their quantification information.

Now, recalling the interpretation of the complete-
ness rules of the Web site specification given in Sect. 4,
marked terms derived by the application of a complete-
ness rule must be recognized as (part of) some Web page
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in the Web site. Therefore, the expressions in the least
fixpoint of JM provide information that must occur in W.
Thus, since the pages in W trivially occur in the Web site
W, we define the set of requirements for W w.r.t. IM as

ReqM,W = lfp(JM) \ W
where lfp(JM) is the least fixpoint of the operator JM.
Observe that the set ReqM,W does not contain any non-
quantified requirement.

Example 12 Consider the Web specification (INIM, R)

of Example 6 and the Web site W of Example 4. Then,
the set of computed requirements ReqM,W is

{ 〈hpage(fullname(mariorossi),status),E〉,
〈hpage(fullname(francabianchi),status),E〉,
〈hpage(fullname(giulioverdi),status),E〉,
〈hpage(status(professor),teaching),A〉,
〈member(name(mario),surname(rossi)),E〉,
〈member(name(anna),surname(gialli)),E〉,
〈hpage(fullname(annagialli),status),E〉,
〈cpage(title(Algebra)),E〉 }
Clearly, the fixpoint of JM (and hence ReqM,W) for an

arbitrary Web specification might be infinite. Consider
for instance the following example.

Example 13 Let W ≡ {h(g(0),f(0))} be a Web site and

IM ≡ {h(g(X)) ⇀ h(g(g(X)))〈q〉}
be a set of completeness rules of a Web specification S.
Then,

ReqM,W = {〈h(g(g(0))), q〉, 〈h(g(g(g(0)))), q〉,
〈h(g(g(g(g(0))))), q〉, . . .}

is an infinite set of requirements.

Fortunately, the computation of the set of require-
ments is finite for some interesting classes of Web spec-
ifications. Trivially, non-recursive specifications allow to
reach lfp(JM) after a finite number of applications of JM,
i.e., lfp(JM) = JM ↑W k, k ∈ N. However, non-recur-
sive definitions are not expressive enough for verifica-
tion purposes, since some relevant conditions about Web
sites cannot be formalized without resorting to recur-
sion; e.g., some properties stated in Example 6 cannot
be formulated by using a non-recursive specification.

In the following, we ascertain two important classes
of recursive Web specifications whose set of require-
ments is finite. Basically, the idea is to consider those
specifications in which the computation of the least fix-
point only generates marked expressions whose size is
bounded [2]. We believe that such classes are expressive
enough, since they can model the most common com-
pleteness as well as correctness requirements that one

can desire for a given Web site. Moreover, these clas-
ses allow us to generate only finite sets of conditions
to be verified, which is crucial for the effectiveness of
the whole method and reasonable in this context as Web
sites are finite collections of semistructured data with an
associated finite semantics.

The following definition formalizes the class of the
bounded Web specifications.

Definition 11 A Web specification (IN  IM, R) is
bounded iff, for each l ≡ (V1, E1, r1, label1) ∈ LhsM,
r ≡ (V2, E2, r2, label2) ∈ RhsM and each minimal injec-
tive simulation S of l in r|v w.r.t.∼, v ∈ V2, the following
properties hold

1. if v2 ∈ π(S) and label2(v2) ∈ Var(r|v), then for all
v1 ∈ V1 s.t. label1(v1) ∈ Var(l),
depth(r|v, v2) = depth(l, v1).

2. For each r ∈ RhsM, r does not contain any symbol
of �R.

Roughly speaking, Definition 11 states that, whenever
the left-hand side l of a rule is simulated by (a subterm
of) the right-hand side r of a (possibly different) rule,
then no variables in the recognized substructure of r
must be located at positions which are deeper than all
the positions of the variables in l. Moreover, bounded
Web specifications do not allow function calls in the
completeness rules. Let us see an example.

Example 14 Consider again the set of completeness
rules IM of Web specification S in Example 13. The
left-hand side of the rule h(g(X)) ⇀ h(g(g(X)))〈q〉 is
simulated by its own right-hand side. Moreover, vari-
able X in the right-hand side is located at depth 3, while
the unique variable in the left-hand side is at depth 2.
Thus, S is not bounded.

Now, take into account the Web specification S′ ≡
(I′N  I′M,∅), whose set of completeness rules is

I′M ≡ { m(n(X)) ⇀ h(n(X),s(s(X)))〈q′〉,
h(n(X)) ⇀ m(n(X),t)〈q′′〉}, q′,q′′ ∈ {A,E}.

Then, m(n(X)) is simulated by m(n(X),t) and h(n(X))

is simulated by the term h(n(X),s(s(X))). In both cases,
variables occurring in the substructures of the right-hand
sides which are recognized by simulation and variables
of the respective left-hand sides are located at the same
depth. Therefore, the Web specification S′ is bounded.

For bounded Web specifications, the least fixpoint of
the operator JM is finite as stated by the next proposition.
This provides an effective method for computing the set
of requirements ReqM,W for this class of specifications.
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Proposition 3 Let (IN IM, R) be a bounded Web speci-
fication and W be a Web site. Then, there exists k ∈ N such
that lfp(JM) = JM ↑W k.

Let us now introduce a more general class of Web
specifications in which defined functions can be invoked
in the rhs’s of the completeness rules. In order to keep
the size of the derived terms bounded, the key idea is to
ensure that function calls do not generate infinite data
structures.

Given a Web specification (IN  IM, R), we say that
the completeness rule (l ⇀ µ(r) 〈q〉) ∈ IM is func-
tion-dependent w.r.t. R iff a function call f(t1, . . . ,tn) ∈
τ(�R, V) occurs in r. Otherwise we say that rule r is
function-independent w.r.t. R. Given a function-depen-
dent rule r, we obtain the function-independent version
of r w.r.t. R, and we denote it by r∗, by replacing all
the function calls in the right-hand side of r with fresh
variables not occurring in the rule.

Example 15 Consider the function-dependent rule of
Example 6

member(name(X),surname(Y)) ⇀ hpage(fullname(

append(X,Y)),status) 〈E〉.
The function-independent version of the considered

rule is

member(name(X),surname(Y)) ⇀ hpage( fullname(Z),
status) 〈E〉.

Definition 12 A Web specification (IN  IM, R) is
bounded∗ iff

1. (IN{r ∈ IM | r is function-independent w.r.t.R}, R)

is bounded.
2. For each function-dependent rule r ∈ IM w.r.t. R and

l ∈ LhsM
(a) There exists no minimal, injective simulation of

l in any subterm of the right-hand side of r∗
w.r.t. ∼.

(b) There exists no minimal, injective simulation of
any subterm of the right-hand side of r∗ in l
w.r.t. ∼.

3. {f | f(t1, . . . ,tn) ⇀ µ(r) ∈ Im} ∩�R = ∅.

Roughly speaking, by Definition 12, the rhs’s of function-
dependent completeness rules do not introduce terms
which can be partially rewritten in a subsequent step.
This suffices to ensure the finiteness of all partial rewrit-
ing sequences. Now, it is immediate to prove the finite-
ness of the least fixpoint of the JM operator for bounded∗
Web specifications.

The following proposition generalizes Proposition 3
for bounded∗ Web specifications.

Proposition 4 Let (INIM, R) be a bounded∗Web spec-
ification and W be a Web site. Then, there exists k ∈ N

such that lfp(JM) = JM ↑W k.

Let us see an example.

Example 16 Let us consider the Web specification of
Example 6. Then, we can easily check that it is bounded∗.
Moreover, the least fixpoint of JM is finite as witnessed
by Example 12.

Example 17 Consider now the following Web specifica-
tion.

IN = ∅
IM = {h(c(X)) ⇀ h(g(X))}
R = {g(0)→ c(c(0)),g(c(X))→ c(g(X))}
The function-independent version ofh(c(X)) ⇀ h(g(X))

is h(c(X)) ⇀ h(Z), and there exists a minimal, injective
simulation of h(Z) in h(c(X)) w.r.t. ∼. Therefore, the
considered Web specification is not bounded∗. Actually,
we can generate the following infinite partial rewrite
sequence:

h(c(0)) ⇀ h(c(c(0))) ⇀ h(c(c(c(0)))) . . .

Now, we are ready to formalize step 2, that is, check-
ing the computed completeness requirements in a given
Web site. To accomplish this task, we first use simulation
for checking whether (the marked part of) a require-
ment is embedded into some Web page of the consid-
ered site, and then consider the quantification attributes
in order to diagnose completeness errors.

Definition 13 Let W be a Web site, (IN  IM, R) be a Web
specification and ReqM,W be the set of requirements for
W w.r.t. IM. Let 〈µ(e),q〉 ∈ ReqM,W. The test set w.r.t.
〈µ(e),q〉 is defined as

TEST〈µ(e),q〉={p ≡ (V, E, r, label) ∈ W | ∃ a minimal
injective simulation of mark(e, µ) in p|vw.r.t. ∼,
with v ∈ V}.

Roughly speaking, this definition allows us to compute
a subset of the Web site containing all the Web pages
which simulate the marked part of a given requirement.
These Web pages might be incomplete w.r.t. the Web
specification, since they may not contain the considered
requirement. Let us see an example.

Example 18 Let us consider the completeness rule r

hpage(status(professor)) ⇀ hpage(status(

professor),
teaching)

and the Web site W of Example 4. Rule r allows us
to check whether Web pages of the professors contain
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some teaching information. In order to do this, we use
the marking information in the rhs of r to select the
professor Web pages. Let us consider the requirement
〈µ1(e1),A〉 ≡ 〈hpage(status(professor,
teaching),A〉, which can be derived from W by means
of r. By applying Definition 13, we get the following test
set TEST〈µ1(e1),A〉
{(2) hpage(fullname(mariorossi),phone(3333),

status(professor),
hobbies(hobby(reading),

hobby(gardening))),
(4) hpage(fullname(annagialli),

status(professor),
blink(phone(4444)),
teaching(courselink(

url(http://www.algebra.org),
urlname(Algebra))))}

which contains the two professor Web pages where
the computed completeness requirement must be
checked.

In the following, we consider completeness errors
which refer to incomplete and/or missing Web pages.
We distinguish two cases: the former allows us to dis-
cover whether a universal requirement is not fulfilled
by a given Web site, while the latter recognizes unsatis-
fied existential requirements. In both cases, our analysis
provides the missing/incomplete Web pages which are
associated with those requirements.

Definition 14 Let W be a Web site, (IN  IM, R) be a Web
specification and ReqM,W be the set of requirements for
W w.r.t. IM. Let re ≡ 〈µ(e),A〉 ∈ ReqM,W be a universal
requirement. Then, re is not satisfied in W if one of the
following conditions hold:

1. TEST〈µ(e),A〉 = ∅.
2. There exists p ≡ (V, E, r, label) ∈ TEST〈µ(e),A〉 s.t. no

minimal, injective simulation of e in p|v w.r.t.∼, with
v ∈ V, exists.

Vice versa, a universal requirement re is satisfied
whenever it is possible to recognize re inside any Web
page of the corresponding test set TESTre. Let us clarify
Definition 14 by an example.

Example 19 Consider the Web site W of Example 4 and
the universal requirement

〈µ1(e1),A〉 ≡ 〈(hpage(status(professor),teaching)),A〉
belonging to the set of requirements ReqM,W of Example
12. The requirement simply states that all professor’s
home pages must contain teaching information.

The test set associated with 〈µ1(e1),A〉,TEST〈µ1(e1),A〉,
was computed in Example 18 and contains all the

professor’s Web pages of the considered site. Now, by
applying Definition 14, we detect that 〈µ1(e1),A〉 is not
satisfied by W, since there does not exist any minimal,
injective simulation of e1 in (a subterm of) Web page
(2) w.r.t. ∼.

In fact, Web page (2) lacks teaching information.

Finally, an existential requirement re is fulfilled, if it
is recognized inside (at least) a Web page which belongs
to the test set TESTre.

Definition 15 Let W be a Web site, (IN  IM, R) be a Web
specification and ReqM,W be the set of requirements for W
w.r.t. IM. Let re ≡ 〈µ(e),E〉 ∈ ReqM,W be an existential
requirement. Then, re is not satisfied in W if one of the
following conditions hold:

1. TEST〈µ(e),E〉 = ∅.
2. For each p ≡ (V, E, r, label) ∈ TEST〈µ(e),E〉 no min-

imal, injective simulation of e in p|v w.r.t. ∼, with
v ∈ V, exists.

Example 20 Consider the Web site W of Example 4 and
the existential requirement

〈µ2(e2),E〉 ≡ 〈cpage(title(Algebra)),E〉
belonging to the set of requirements ReqM,W of Example
12. Since TEST〈µ2(e2),E〉 is empty, by Definition 15, re is
not satisfied in W. This implies that a Web page contain-
ing some information about the Algebra course should
be provided.

Consider now the following existential requirements
in ReqM,W

〈µ3(e3),E〉 ≡ 〈member(name(anna),surname(gialli)),E〉
〈µ4(e4),E〉 ≡ 〈hpage(fullname(giulioverdi),status),E〉.
We have that TEST〈µ3(e3),E〉 just includes Web page (1)

of W, while TEST〈µ4(e4),E〉 contains Web pages (2), (3)

and (4). For both requirements, there is no Web page
p in the test sets such that a minimal, injective simu-
lation of e3 (respectively, e4) in (a subterm of) p w.r.t
∼ exists. Therefore, the Web site W does not meet the
given requirements. More precisely, the former unsat-
isfied requirement states that an entry for Anna Gialli
must be introduced in the group member list, and the lat-
ter detects that the home page of Giulio Verdi is missing.

The requirements which are not fulfilled can be con-
sidered as incompleteness symptoms. This allows us not
only to locate bugs and inconsistencies w.r.t. a given
specification, but also to easily repair them by compar-
ing incomplete pages to unsatisfied requirements, since
the latter ones provide the missing information which is
needed to complete the erroneous Web pages.
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An algorithm for detecting incomplete information
can be defined as follows. First of all, we generate the
requirements to be checked by computing the fixpoint
of the operator JM. Next, for each (universal/existen-
tial) requirement, the corresponding test set is produced
and then checked in order to analyze which require-
ments are not fulfilled. The analysis is based on Defini-
tion 14 (resp., Definition 15) which formalizes the notion
of universal (resp., existential) requirement satisfiability.
Finally, incompleteness symptoms are returned, which
are needed to help the user to locate the missing/incom-
plete pages, whenever a requirement is not verified.

The basic procedure is sketched in Algorithm 2, which
takes as input a Web site W, a set of completeness rules
IM, and a canonical TRS R.

Algorithm 2 An algorithm for detecting completeness
errors.
1: procedure Completeness-errors(W,IM, R)
2: ReqM,W ← lfp(JM) \ W
3: for all 〈µ(e),q〉 ∈ ReqM,W do
4: TEST〈µ(e),q〉 ← {p ≡ (V, E, r, label) ∈ W |

mark(e, µ) ∼= p|v, v ∈ V}
5: if TEST〈µ(e),q〉 = ∅ then
6: output(“Error: A Web page containing emust occur

in Web site W!")
7: end if
8: case q
9: q = A :

10: if ∃p ≡ (V, E, r, label) ∈ TEST〈µ(e),A〉 s.t. e �∼= p|v,
with v ∈ V then

11: output(“Error: e must occur in all Web pages
of TEST〈µ(e),A〉!")

12: end if
13: q = E :
14: if ∀p ≡ (V, E, r, label) ∈ TEST〈µ(e),E〉, e �∼= p|v,

with v ∈ V then
15: output(“Error: e must occur in at least one

Web page of TEST〈µ(e),E〉!")
16: end if
17: end case
18: end for
19: end procedure

Proposition 5 Let W be a Web site, (IN  IM, R) be a
bounded∗ Web specification, and ReqM,W be the set of
requirements for W w.r.t. IM. Then, the procedure
Completeness-errors(W,IM, R) terminates. Moreover, for
each error message regarding term e, which is returned
by the procedure, there exists 〈µ(e),q〉 ∈ ReqM,W, with
q ∈ {A,E}, which is not satisfied in W.

7 The GVerdi system

The basic methodology presented so far has been imple-
mented in the prototype system GVerdi (VErification

and Rewriting for Debugging Internet sites) which has
been written in Haskell (GHC v6.2.2) and is publicly
available together with a set of tests at

http://www.dsic.upv.es/users/elp/GVerdi/

A short system description can be found in [3,6], while
a thorough user’s manual of the tool can be retrieved at
the URL mentioned above.

The implementation consists of approximately 1,100
lines of source code. It includes a parser for semistruc-
tured expressions (i.e., XML/XHTML documents) and
Web specifications, and several modules implementing
the partial rewriting mechanism, the verification tech-
nique, and the graphical user interface. A snapshot of
the running system is shown in Fig. 8.

The system allows the user to load a Web site to-
gether with a Web specification. Additionally, he/she
can inspect the loaded data and finally check the Web
pages w.r.t. the Web site specification. We have tested
the system on several XHTML Web sites and XML data
collections which can be found at the URL address men-
tioned above. For instance, we checked the Web site of
the Computational Logic Group of the University of
Udine which is available at http://www.dimi.uni-
ud.it/clg. It contains about 20 Web pages concerning
publications, people, and projects of the group. In each
considered test case, we have been able to detect the
errors (i.e., missing and incomplete Web pages)
efficiently.

8 Conclusions

Conceiving and maintaining Web sites is a difficult task.
In this paper, we provide a rewriting-based, formal

Fig. 8 A screenshot of the system
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specification language which can be used to impose
properties both on the structure (syntactic properties)
and on the contents (semantic properties) of Web sites.
Some XML schema languages such as xlinkit [19] and
Schematron [35] can express some of the semantic
constraints we consider; however, our rule specifica-
tion language, which offers the expressiveness and com-
putational power of functions, is richer and can be
appreciated much by users who prefer to avoid the
encumbrances of DTDs and XML rule languages. The
computation mechanism underlying our language is
based on a novel rewriting-like technique, called par-
tial rewriting, in which the traditional pattern matching
mechanism is replaced by tree simulation [24]. In our
methodology, Web sites are automatically checked w.r.t.
a given Web specification in order to detect incorrect,
incomplete, and missing Web pages. Moreover, by ana-
lyzing the error symptoms, we are also able to find out
the missing information needed to repair the Web site
and the wrong information we have to remove or to fix.
We have also discussed some implementation details of
the system GVerdi, a prototype implementation of the
verification framework which can help Web administra-
tors to design, check, and maintain their Web sites.

Let us conclude by mentioning some directions for
future work. We are currently extending our frame-
work in order to provide a method for synthesizing
the marking information semi-automatically (currently,
marks are provided by the user). Besides, we plan to
extend the GVerdi system with a graphical, high-level
language for the specification of the conditions to be
checked in order to make the system easy to use and
intuitive even for the users who have no expertise in
formal methods. Finally, in order to consider semistruc-
tured documents containing cycles, which could be
easily generated —-for instance—- by using ID and ID-
REF XML attributes, a graph rewriting extension of
our framework is also envisaged. In fact, trees are not
enough to model loops, we believe that graph structures
and the associated rewriting framework are essential to
deal with such circular documents and to enhance the
expressiveness of our specification language.
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Appendix: Proofs of the technical results

In this appendix we provide the proofs of the main tech-
nical results of the paper.

Proposition 1 Let s1 ≡ (V1, E1, r1, label1),
s2 ≡ (V2, E2, r2, label2) be two Web page templates in
τ(Text ∪ Tag, V). A minimal page simulation S of s1 in
s2 w.r.t. ∼ is a mapping S : V1 → V2 .

Proof Let s1 ≡ (V1, E1, r1, label1),
s2 ≡ (V2, E2, r2, label2) ∈ τ(Text ∪ Tag, V). By Condi-
tions 1 and 3 of Definition 5, and by using the fact that
s1 has an underlying tree structure (in particular, it is a
connected graph), we have that

∀ v1 ∈ V1, ∃ v2 ∈ V2 such that (v1, v2) ∈ S.

Moreover, the minimality of S ensures that

∀ v1 ∈ V1, ∃ a unique v2 ∈ V2 such that (v1, v2) ∈ S

which implies that S is a mapping from V1 to V2.

Proposition 2 Let W be a Web site, and (IN  IM, R) be
a Web specification. Then, the procedure Correctness-
-errors(W,IN, R) terminates, and for each pair (p,lσ),
which is returned, p is an incorrect Web page w.r.t.
(IN  IM, R) and lσ is the corresponding incorrectness
symptom.

Proof First of all, let us prove the termination of the
algorithm. The outer loop (lines 2–9) is executed |W|
times. The inner loop (lines 3–8) is executed |IN| times.
As for the partial rewrite step p ⇀σ

ru
error in line 4, it

terminates, because it is just an application of the simu-
lation algorithm [24], which terminates. The evaluation
of the condition in line 5 terminates, since:

1. The problem of evaluating Xiσ ∈ L(rexpi), i =
1, . . . , n boils down to the membership problem in reg-
ular languages, which is decidable (see [25]), so there
exists an effective procedure which tests (Xiσ ∈ L
(rexpi), i = 1, . . . , n) in finite time.
2. Evaluating the condition [(sj = tj)σ , j = 1, . . . , m,
holds in R] trivially terminates, since R is canonical (in
particular, it is terminating).

The output command in line 6 clearly terminates.
Summing up, we execute the block of terminating
instructions, which is included in lines 4–7, |W| ∗ |IN|
times, so the whole procedure terminates.

Let us prove the partial correctness of the algorithm,
that is, if the procedure terminates producing the out-
come (p,lσ), then p ∈ W is incorrect w.r.t. (IN  IM, R)

and lσ is an incorrect symptom for p.
Let (p,lσ) be an output of the procedure. This implies

that (1) p ⇀σ
ru

error for some r ≡ (l ⇀ error |
X1 in rexp1, . . . ,Xn in rexpn,s1 = t1, . . . ,sm=tm) ∈
IN (see line 4); (2) for each i= 1, . . . , n, (Xiσ ∈L(rexpi),
i = 1, . . . , n) (see line 5); and (3) for each j = 1, . . . , m,
(sj = tj)σ holds in R (see line 5). Now, by simply apply-
ing Definition 9 , we get that p ∈ W is incorrect w.r.t.
(IN  IM, R) and lσ is an incorrect symptom for p.
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In order to prove Proposition 3, we need the following
auxiliary definitions and results.

Definition 16 Given a term t ∈ τ(�, V), the height of t,
height(t), is defined as follows.

height(t) =





0 if t ≡ X ∈ V or t ≡ c ∈ τ(�, V)

1+max{height(ti)|i = 1, . . . , n}
if t ≡ f (t1, . . . , tn) ∈ τ(�, V)

We can lift the notion of height to substitutions in the
following way.

Definition 17 Given a substitution
σ = {X1/t1, . . . , Xn/tn}, the height of σ , height(σ ), is
defined as follows.

height(σ ) = max{height(ti) | i = 1, . . . , n}
Now we can prove two useful technical results.

Proposition 6 Let (IN  IM, R) be a bounded Web spec-
ification and

µ0(s0) ⇀σ0
r0

µ1(s1) ⇀
σ1
r1 µ2(s2) ⇀σ2

r2
. . .

be a partial rewrite sequence, where ri ∈ IM, i = 0, 1, 2, . . .
Then, for each si, i = 1, 2, . . .,

si ≡ ri−1σi−1

where ri−1 is the right-hand side of the rule ri−1.

Proof It directly comes from Definition 8 and by the fact
that Reduce(rσ , R) = rσ when considering bounded
Web specification, since no function of R can appear in
the right-hand sides of the completeness rules.

In other words, Proposition 6 states that each term
occurring in a partial rewrite sequence is an instance of
the right-hand side of some completeness rule.

Proposition 7 Let (IN  IM, R) be a bounded Web spec-
ification and

µ0(s0) ⇀σ0
r0

µ1(s1) ⇀
σ1
r1 µ2(s2) ⇀σ2

r2
. . .

be a partial rewrite sequence, where ri ∈ IM, i = 0, 1, 2, . . .
Then, for each si, i = 1, 2, . . .,

height(si) ≤ height(ri−1)+ height(σi−1)

where ri−1 is the right-hand side of the rule ri−1.

Proof It is a direct consequence of Proposition 6 Defi-
nition 16 and Definition 17.

Lemma 1 Let (IN  IM, R) be a bounded Web specifica-
tion and

µ0(s0) ⇀σ0
r0

µ1(s1) ⇀
σ1
r1 µ2(s2) ⇀σ2

r2
. . .

be a (possibly infinite) partial rewrite sequence, where
ri ∈ IM, i = 0, 1, 2, . . . Then, for each si, i = 1, 2, . . . ,

height(si) ≤ height(ri−1)+ height(σ0)

where ri−1 is the right-hand side of rule ri−1.

Proof By contradiction, let sk′ be the first term appear-
ing in the partial rewrite sequence such that

height(sk′) > height(rk′−1)+ height(σ0),

where rk′−1 is the right-hand side of the rule rk′−1.
Clearly, k′ > 1, as the claim trivially holds for k′ = 1.
Moreover, for each j = 1, . . . k′ − 1, we have

height(sj) ≤ height(rj−1)+ height(σ0).

Now, let us focus on the partial rewrite step

sk′−1 ⇀
σk′−1
rk′−1

sk′ .

By Proposition 6, sk′−1 ≡ rk′−2σk′−2. So, we have

height(sk′−1) ≤ height(rk′−2)+ height(σk′−2).

And, also height(σk′−2) ≤ height(σ0).
Again, by Proposition 6,sk′ ≡ rk′−1σk′−1. And, hence,

height(sk′) ≤ height(rk′−1)+ height(σk′−1)

by Proposition 7.

Here, we distinguish two cases.
Since sk′−1 ≡ rk′−2σk′−2, the partial rewrite step
sk′−1 ⇀

σk′−1
rk′−1

sk′ can be given on a vertex in rk′−1 (Case
1) or on a vertex belonging to a term in {t | X/t ∈ σk′−2)}
(Case 2).

Case 1. Since the Web specification is bounded, no vari-
ables in the substructure of rk′−1, which is simulated by
the left-hand side of rule rk′−1, can be located at posi-
tions which are deeper than all the positions of the vari-
ables in the considered left-hand side. So, we must have
height(σk′−1) = height(σk′−2). Therefore,

height(sk′) ≤ height(rk′−1)+ height(σk′−1)

= height(rk′−1)+ height(σk′−2)

≤ height(rk′−1)+ height(σ0)

which is a contradiction.
Case 2. Trivially, height(σk′−1) ≤ height(σk′−2).
Hence,

height(sk′) ≤ height(rk′−1)+ height(σk′−1)

≤ height(rk′−1)+ height(σk′−2)

≤ height(rk′−1)+ height(σ0)

which also leads to a contradiction.

Thus, there cannot exist a termsk′ such that height(sk′)>
height(rk′−1)+ height(σ0) and the claim is proven.

Proposition 8 Let W be a Web site, (IN IM, R) be a Web
specification. Then,

{µ(s) | ε(p) ⇀m µ(s), 0 ≤ m ≤ k, ε(p) ∈ W}
= {µ(s) | 〈µ(s),q〉 ∈ JM ↑W k}
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Proof
(⊇) Simple induction on the ordinal power k.
(⊆) Simple induction on the length m of the rewrite
sequence.

Corollary 1 Let W be a Web site, (IN  IM, R) be a Web
specification. Then,

{µ(s) |ε(p) ⇀∗µ(s), ε(p) ∈ W}={µ(s) | 〈µ(s),q〉
∈ lfp(JM)}

Now, we are ready to prove Proposition 3.

Proposition 3 Let (INIM, R) be a bounded Web specifi-
cation and W be a Web site. Then, there exists k ∈ N such
that lfp(JM) = JM ↑W k.

Proof First, let us show that each µ(s), s.t. 〈µ(s),q〉 ∈
lfp(JM), has a bounded height.

By Corollary 1, {µ(s) | ε(p) ⇀∗ µ(s), ε(p) ∈ W} =
{µ(s) | 〈µ(s),q〉 ∈ lfp(JM)}.

Thus, for each µ(s), such that 〈µ(s),q〉 ∈ lfp(JM),
there exists a Web page ε(p) ∈ W such that ε(p) ⇀∗ µ(s).
Here, we distinguish two cases.

Case (ε(p) ⇀0 µ(s)). Let

HW = max{height(p) | ε(p) ∈ W)}.
In this case, µ(s) ≡ ε(p), hence

height(µ(s)) = height(ε(p)) ≤ HW .

Case (ε(p) ⇀+ µ(s)). Let

HI = max{height(r) | r ∈ RhsM}
HS = max{height(σ ′) | ε(p) ⇀σ ′

r′ µ(s), ε(p) ∈ W, r′ ∈ IM}.
Now, we have ε(p) ⇀

σ0
r0 µ(s1) ⇀∗ µ(s). By Lemma 1,

there exists r ∈ RhsM such that

height(s) ≤ height(r)+ height(σ0) ≤ HI +HS.

Thus, for each µ(s), such that 〈µ(s),q〉 ∈ lfp(JM), we
get

height(µ(s)) ≤ max{HW , HI +HS}.
Since we have only a finite number of marked terms

whose height is less than or equal to max{HW , HI+HS},
lfp(JM) must be a finite set. Finally, since the operator
JM is continuous (in particular, monotonic) and lfp(JM)

is a finite set, then there exists a natural number k such
that lfp(JM) = JM ↑W k.

In order to prove Proposition 4, we first give some
auxiliary results.

Lemma 2 Let s1 and s2 be two Web page templates in
τ(Text ∪ Tag, V). Then, s1 ∼= s2 and s2 ∼= s1 iff there
exists a substitution σ

s2σ partially matches s1 via some substitution σ ′.

Proof

(⇒) Let us assume that

s1 ∼= s2 or s2 ∼= s1.

Case s1 ∼= s2. By Definition 5, we also have s1 ∼= s2σ ,
for every σ . Directly, by Definition 7, there exists a
substitution σ ′ s.t. s2σ partially matches s1 via σ ′.

Case s2 ∼= s1. s1 partially matches s2 via σ ′′. By Defi-
nition 5, we also have s2σ

′′ ∼= s1. Indeed, s2σ
′′ is

embedded into s1. Therefore, s1 ∼= s2σ
′′, and s2σ

′′
partially matches s1 via the empty substitution ε. So,
if we take σ ′ = ε and σ = σ ′′, then there exists σ and
σ ′ such that s2σ partially matches s1 via σ ′.

(⇐) Since there exists a substitution σ s.t. s2σ partially
matches s1 via some substitution σ ′, we have that s1 ∼=
s2σ . Here we can distinguish two cases: (1) there is a
minimal, injective simulation of s1 in a subterm of s2
w.r.t.∼ and hence s1 ∼= s2; (2) there is a minimal, injec-
tive simulation of s1 in s2σ w.r.t.∼, which also involves
some terms occurring in σ . In this case, we have that, for
some X/t ∈ σ , t is simulated by some subterm of s1. It
is not difficult to see that, by Definitions 4 and 5, there
always exists a minimal, injective simulation between a
variable and an arbitrary term. Exploiting this fact, we
can state that each variable in s2, which is replaced by
some term in s2σ , simulates the corresponding subterm
in s1, thus s2 ∼= s1.

Lemma 3 Let (INIM, R) be a bounded∗Web specifica-
tion and r ≡ (l ⇀ r 〈q〉) ∈ IM be a function-dependent
rule w.r.t. R. Let µ1(s1) and µ2(s2) be two marked Web
page templates. If µ1(s1) ⇀σ

r µ2(s2), then there do not
exist a Web page template µ3(s3) and substitution σ ′ s.t.
µ2(s2) ⇀σ ′

r′ µ3(s3), with r′ ∈ IM.

Proof Let us consider µ1(s1) ⇀σ
r µ2(s2). Then, by

Definition 8,

s2 = Reduce(rσ , R).

We consider two cases.

Case s2 ∈ τ(�R, V). s2 = Reduce(rσ , R) is just an irre-
ducible form computed by the canonical TRS R. No
partial rewriting steps can be applied to s2, because (1)

{f | f(t1, . . . ,tn) ⇀ µ(r) ∈ Im} ∩�R = ∅,
since (IN  IM, R) is bounded∗; (2) the function calls
cannot be applied to arguments containing symbols in

{f | f(t1, . . . ,tn) ⇀ µ(r) ∈ Im}.
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Case s2 ∈ τ(Text ∪ Tag ∪�R, V) \ τ(�R, V).
s2 = Reduce(rσ , R) = r∗σ ∗, where r∗ is the right-
hand side of the function-independent version of r w.r.t.
R, and σ ∗ is a suitable substitution. Since (IN  IM, R)

is bounded∗, condition 2 of Definition 12 holds. Thus,
by applying Lemma 2, we can ensure that the subterms
that occur at positions coming from r∗ cannot be par-
tially rewritten in a subsequent step. Moreover, for each
X/t ∈ σ ∗, t does not contain any subterm which can be
partially rewritten, because (1)

{f | f(t1, . . . ,tn) ⇀ µ(r) ∈ Im} ∩�R = ∅,
since (IN  IM, R) is bounded∗; (2) the function calls
are never applied to arguments containing symbols in
{f | f(t1, . . . ,tn) ⇀ µ(r) ∈ Im}. Therefore, there are
no subterms in s2 = r∗σ ∗ which can be partially rewrit-
ten any longer.

Lemma 4 Let (IN  IM, R) be a bounded∗ Web specifi-
cation and

µ0(s0) ⇀σ0
r0

µ1(s1) ⇀
σ1
r1 µ2(s2) ⇀σ2

r2
. . .

be a (possibly infinite) partial rewrite sequence, where
ri ∈ IM, i = 0, 1, 2, . . . Then, there exists k ∈ N s.t. for
each si, i = 0, 1, 2, . . . ,

height(si) ≤ k.

Proof Let us consider the partial rewrite sequence

µ0(s0) ⇀σ0
r0

µ1(s1) ⇀
σ1
r1 µ2(s2) ⇀σ2

r2
. . .

We distinguish two cases.

Case 1. First consider that the partial rewrite sequence
only contains function-independent rules. Since, (IN 
{r∈IM | r is function-independent w.r.t.R}, R) is bound-
ed, we can simply apply Lemma 1. So,

height(si) ≤ height(ri−1)+ height(σ0)

where ri−1 is the right-hand side of rule ri−1, i = 1, 2, . . .
Let k′ = max{height(r) | r ∈ RhsM}. By taking k =
max{height(s0), k′ + height(σ0)}, we prove the claim.
Case 2. Now, assume that function-dependent com-
pleteness rules are also used in the sequence. Let us
suppose that µj(sj) ⇀

σj
rj µj+1(sj+1) is the first partial

rewrite step of the sequence in which a function-depen-
dent rule ri occurs. By Lemma 3, µj+1(sj+1) cannot be
partially rewritten any longer, therefore the sequence
must be finite. So, by inspecting the heights of every term
appearing in the sequence, we can find the one with the
maximum height h. Finally, it is enough to choose k = h
and the claim in proven.

Proposition 4 Let (INIM, R) be a bounded∗Web speci-
fication and W be a Web site. Then, there exists k ∈ N such
that lfp(JM) = JM ↑W k.

Proof Similarly to the proof of Proposition 3, by Cor-
ollary 1, {µ(s) | ε(p) ⇀∗ µ(s), ε(p) ∈ W} = {µ(s) |
〈µ(s),q〉 ∈ lfp(JM)}.

Thus, for each µ(s), such that 〈µ(s),q〉 ∈ lfp(JM),
there exists a partial rewrite sequence ε(p) ⇀∗ µ(s),
where ε(p) ∈ W. As (IN  IM, R) is bounded∗, every
marked term appearing in the partial rewrite sequence
ε(p) ⇀∗ µ(s) has a bounded height by Lemma 4 and
hence lfp(JM) is a finite set.

Finally, since the operator JM is continuous (in partic-
ular, monotonic) and the set lfp(JM) is finite, then there
exists a natural number k such that lfp(JM) = JM ↑W k.

Proposition 5 Let W be a Web site, (IN  IM, R) be a
bounded∗ Web specification, and ReqM,W be the set of
requirements for W w.r.t. IM. Then, the procedure
Completeness–errors(W,IM, R) terminates. Moreover,
for each error message regarding term e, which is re-
turned by the procedure, there exists 〈µ(e),q〉 ∈ ReqM,W,
with q ∈ {A,E}, which is not satisfied in W.

Proof First of all, let us prove the termination of proce-
dure Completeness–errors(W,IM, R). Line 2 computes
the sets of requirements ReqM,W. Since W is a bounded∗
Web specification, by Proposition 4, the lfp(JM) is a
finite set which is computed in finite time. Therefore,
ReqM,W← lfp(JM) \ W is also computed in finite time.

The loop within lines 3–18 is executed |ReqM,W| times.
It simply takes every single requirement belonging to
ReqM,W and analyzes it in order to discover whether it is
satisfied.

The assignment in line 4 computes the test set
TEST〈µ(e),q〉 which terminates by Definition 13: actually,
it is just an application of the simulation algorithm [24]
to a finite set of (marked) terms, i.e., the Web site W.

The emptiness test in lines 5–7 trivially terminates as
well as the case statement in lines 8–17, which includes
some checks based on the simulation algorithm [24].

Now, let us prove the partial correctness of the algo-
rithm: that is, if an error message regarding e (incom-
pleteness symptom) is returned by the procedure, then
〈µ(e),q〉, where q ∈ {A,E}, is not satisfied in W.

If an error message regarding e (incompleteness
symptom) is returned by the procedure, then it refers
to a requirement 〈µ(e),q〉. Let us consider the itera-
tion of the loop in lines 3–18 which checks 〈µ(e),q〉.
Note that an error message can be risen in three cases.
Whenever

1. TEST〈µ(e),q〉 = ∅.
2. There exists p ≡ (V, E, r, label) ∈ TEST〈µ(e),A〉 s.t.

e �∼= p|v , with v ∈ V.
3. For each p ≡ (V, E, r, label) ∈ TEST〈µ(e),E〉, e �∼= p|v,

with v ∈ V.
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In case 1, requirement 〈µ(e),q〉 is not satisfied in W di-
rectly by Definition 14 (see point 1) [resp., Definition 15
(see point 1)] when q = A (resp., q = E).

In case 2, requirement 〈µ(e),q〉, where q = A, is not
satisfied in W by Definition 14 (see point 2).

In case 3, requirement 〈µ(e),q〉, where q = E, is not
satisfied in W by Definition 15 (see point 2).
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