
Int J Softw Tools Technol Transfer (2007) 9:5–24
DOI 10.1007/s10009-006-0001-2

REGULAR CONTRIBUTIONS

The FSAP/NuSMV-SA safety analysis platform

Marco Bozzano · Adolfo Villafiorita

Published online: 29 June 2006
© Springer-Verlag 2006

Abstract Safety-critical systems are becoming more
complex, both in the type of functionality they provide and in
the way they are demanded to interact with the environment.
Such a growing complexity requires an adequate increase
in the capability of safety engineers to assess system safety,
including analyzing the behavior of a system in degraded sit-
uations. Formal verification techniques, like symbolic model
checking, have the potential of dealing with such a complex-
ity and are now being used more often. However, existing
techniques have little tool support and therefore their use
for safety analysis remains limited. In this paper, we pres-
ent FSAP/NuSMV-SA, a platform which aims to improve
the development cycle of complex systems by providing a
uniform environment that can be used both at design time
and for safety assessment. The platform makes the modeling
and safety assessment of complex systems easier by provid-
ing a facility for automatically augmenting a system model
with failure modes, whose definitions are retrieved from a
predefined library. In this way, it is possible to assess the
system safety both in nominal conditions and in user-speci-
fied degraded situations, i.e., in the presence of faults. Fur-
thermore, the platform provides a pattern-based definition
of temporal logic formulas, which simplifies the definition
of safety requirements. The platform consists of a graphical
user interface (FSAP) and an engine (NuSMV-SA) which is
based on the NuSMV model checker. The model checking

This work has been developed within the European-sponsored
projects ESACS, contract no. G4RD-CT-2000-00361, and ISAAC,
contract no. AST3-CT-2003-501848.

M. Bozzano (B) · A. Villafiorita
ITC-IRST, Via Sommarive 18, 38050 Trento, Italy
e-mail: bozzano@irst.itc.it

A. Villafiorita
e-mail: adolfo@irst.itc.it

engine provides a support for system simulation and standard
model checking capabilities, like property verification and
the generation of counterexamples. Furthermore, algorithms
have been implemented to automate the generation of arti-
facts that are typical of reliability analysis, e.g., fault trees.
The platform can derive fault trees automatically (for both
monotonic and non-monotonic systems) from the definition
of the system model and of the possible faults. The interface
of the platform has been designed to improve usability for
people who are not expert in formal verification. The plat-
form has been evaluated in collaboration with an industrial
partner and tested on some industrial case studies.

1 Introduction

Safety-critical systems are typically required to operate not
only in nominal conditions — i.e., when all of the (sub)com-
ponents of the system work as expected — but also in
degraded situations, i.e., when some of the system are not
working properly. Guaranteeing this property typically re-
quires systems to be engineered using development processes
in which safety is considered from the early stages of devel-
opment. In aeronautics for instance, safety requirements stat-
ing the (degraded) conditions under which systems must
remain operational are defined along with the other sys-
tem requirements. During system development, the devel-
opment activities are conducted in parallel with a set of
safety analysis activities that have the specific goal of iden-
tifying all possible hazards. The identification of hazards,
together with their relevant causes, is necessary to assess
whether the system behaves as required in all operational
conditions. These activities are crucial for system certifica-
tion to ensure that the development process is able to guaran-
tee the specific safety level assigned to the system. In order
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to certify the system — a necessary step for its deployment
and use — the safety requirements must be demonstrated
to hold. Safety analysis activities produce artifacts, such as
fault trees and failure mode and effect tables, that represent
the combinations of failures causing the violation of safety
requirements, the effect of failures on the system, and the
computation of the probability relevant to the violation of
the safety requirements.

Safety-critical systems are becoming more complex, both
in the type of functionality they provide and in the way they
are demanded to interact with their environment. Such grow-
ing complexity requires an adequate increase in the capability
of safety engineers to assess system safety. Current infor-
mal methodologies, like manual fault tree analysis (FTA)
and failure mode and effect analysis (FMEA) [67], rely on
the ability of the safety engineer to understand and to fore-
see the system behavior. As a consequence, these tasks are
becoming more time consuming and complex to perform.
Emerging techniques like formal methods [68], and in par-
ticular model checking [25], are increasingly being used for
the verification of real-world safety-critical industrial appli-
cations (see, e.g., [18,21,24,42]). These methods allow a
more thorough verification of the system’s correctness with
respect to the requirements, by using automated and (hope-
fully) exhaustive verification procedures. The use of model
checking techniques for reliability and safety analysis, how-
ever, is still in its infancy. Very often, existing techniques
have little tool support. Moreover, even when these methods
are applied, the information linking the design and the safety
assessment phases is often carried out informally. The link
between design and safety analysis may be seen as an “over
the wall process” [38].

In this paper, we present the FSAP/NuSMV-SA platform1,
which is being developed at ITC-IRST. The platform con-
sists of two main components: FSAP (Formal Safety Anal-
ysis Platform), which provides a graphical front-end to the
user, and NuSMV-SA, based on the NuSMV [22,23] model
checker2, which provides the safety assessment capabilities.

FSAP/NuSMV-SA provides a uniform environment that
can be used for the design and safety assessment of com-
plex systems. The platform provides a facility for automati-
cally augmenting a system model with failure modes, whose
definition is retrieved from a predefined library. In this way,
it is possible to assess the system safety both in nominal
conditions and in user-specified degraded situations, i.e., in
presence of faults. Furthermore, the platform provides a
pattern-based definition of temporal logic formulas, which
simplifies the definition of safety requirements.

1 http://sra.itc.it/tools/FSAP.
2 http://nusmv.itc.it.

The NuSMV-SA engine provides support for user-guided
or random simulation, as well as standard model check-
ing capabilities like property verification and counterexam-
ple trace generation. Furthermore, NuSMV-SA implements
algorithms that automate the generation of artifacts that are
typical of reliability analysis, like fault trees. The fault tree
construction can be performed automatically both for mono-
tonic systems and for non-monotonic ones (the difference
being that in the case of non-monotonic systems, events
requiring that system components do not fail can be part
of the results of the analysis). Additionally, NuSMV-SA can
perform the so-called failure ordering analysis [15]. The plat-
form also provides a simple repository, which links the anal-
yses that have been performed to the model, thus helping the
development and safety analysis process in case of system
changes.

The basic functions of the platform can be combined in
different ways. The possibility of using the same models for
design and safety analysis and the use of standard notations
to present safety analysis results (e.g., fault trees) provide a
high degree of flexibility in integrating the platform in differ-
ent development and safety analysis processes. It is possible,
for instance, to support an incremental approach, based on
iterative releases of a given system model at different lev-
els of detail. Increasing the level of detail means refining the
model, or adding further failure modes and/or safety require-
ments (see Sect. 5 for an example).

FSAP/NuSMV-SA provides a flexible environment that
can be used both by design engineers for the formal verifica-
tion of a system and by safety engineers to automate certain
phases of safety assessment. The major benefits are a tighter
integration between the design and the safety analysis teams,
and (partial) automation of the activities related to both ver-
ification and safety assessment. This, in turn, provides the
opportunity to perform safety analyses faster and at the early
stages of the development process, thereby providing useful
feedback to drive the design/refinement process.

The FSAP/NuSMV-SA platform has been developed
within the ESACS3 project [16] (Enhanced Safety Assess-
ment for Complex Systems), a European-Union-sponsored
project in the area of safety analysis, involving several re-
search institutions and leading companies in the fields of
avionics and aerospace. Within the project, the industrial and
research partners have devised a methodology for guiding
the integration of formal techniques in the safety analysis
process. This methodology is supported by the state-of-the-
art and commercial tools for system modeling and safety
analysis. The tools can be combined in (a limited set of)
different configurations that are tailored to the needs of the
industrial partners participating in the project. The different

3 http://www.esacs.org.
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configurations are collectively referred to by the name
“ESACS platform”. Both the methodology and the ESACS
platform have been tested on a set of industrial case stud-
ies. The FSAP/NuSMV-SA platform has been evaluated in
collaboration with Alenia Aeronautica (the leading Italian
company in the avionics field), and Società Italiana Avionica
(SIA).

The rest of the paper is structured as follows. In Sect. 2
we give an overview of the ESACS methodology. In Sect. 3
we present the architecture of the system and in Sect. 4 we
provide a more detailed description of the functions and use
of FSAP/NuSMV-SA. In Sect. 5 we discuss our experience
on the use of the platform for safety assessment of systems
of industrial relevance. In Sect. 6 we discuss some related
work. Finally, in Sect. 7 we outline our future work and in
Sect. 8 we draw some conclusions.

2 The ESACS methodology

In order to understand the typical scenario of use of FSAP/
NuSMV-SA we present, in this section, the ESACS method-
ology. The main characteristic of the ESACS methodology,
which is strongly tool-based, is the capability of integrating
the system design and the system safety assessment processes
by providing an environment in which formal notations are
the common and shared language between design and safety
analysis. The methodology, sketched in Fig. 1, is based on
the steps described in the following subsections.

2.1 Model capturing

The starting point of the ESACS methodology is a formal
model, i.e., a model written in some formal language. The
formal model can be either written by the design engineer
or by the safety engineer. This alternative gives rise to two
different scenarios. In the first scenario, the formal model is
called system model (SM), it is written by the design engi-

Fig. 1 ESACS methodology steps

neer, and it includes only the nominal behavior of the system.
This model is used by the design engineer to verify the
functional requirements, and it is then passed to the safety
engineer for safety assessment. In order to validate the sys-
tem with respect to the safety requirements, the safety engi-
neers will enrich the behaviour of the SM by injecting failure
modes on the SM, as described in more details below4.

In the second scenario, the formal model is built directly
by the safety engineer and it is called formal safety model
(FoSaM). This model represents a formal view of the system
highlighting its safety characteristics. To write a FoSAM, the
safety engineer can browse a library of system components
(including both nominal and faulty behaviours) and a library
of architectural safety patterns. This second scenario occurs
during the early phases of the system life cycle, when there
are still no design models available, but only some system
specification. In this second scenario, the main goal is to
assess the system architecture.

2.2 Failure mode capturing and model extension

The second step of the methodology includes the failure
modes (FMs) capturing and the model extension phases.
When the system model (SM) is written by the design engi-
neer, it must be extended by injecting the failure modes, i.e.,
a specification of how the various components of the system
can fail. This step yields a model that we call extended system
model (ESM), in which all the components of the SM can fail
according to the specified failure modes. The failure mode
types to be injected into a SM can be stored and retrieved
from a library of generic failure modes, the Generic Failure
Modes Library (GFML) and then automatically injected into
the formal system model through an extension facility.

2.3 Safety requirements capturing

As long as a SM/ESM or a FoSaM is available, it is possible
to verify its behavior with respect to the desired functional
(nominal behavior) and safety requirements (degraded behav-
ior). During the safety requirements capturing phase, design
and safety engineers define functional and safety require-
ments that will be used at a later stage to assess the behavior
of the system. In particular, the design engineer and/or the
safety engineer will verify the system either by writing the
system requirements using some formal notation (e.g., tem-
poral logic [36]) or by loading the basic safety requirements
from a Generic Safety Requirement Library (GSRL).

4 Note that by fault injection we mean the extension of the system
model with a specification of the possible failure modes. We use this
terminology, which is standard in the ESACS project, even though it
may not be fully appropriate.
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2.4 Model analysis

This is the phase in which the behavior of a system is assessed
against the functional and safety requirements. The model
analysis phase is performed by running formal verification
tools (e.g., the NuSMV-SA model checker) on the given sys-
tem properties.

Model analysis includes two main verification tasks. In
the case of a system property, the model checking engine can
test validity of the property, and generate a counterexample
in case the system property is not verified. For instance, if we
consider a property that is required to hold for every possible
path of the system, the model checking engine will generate
a counterexample showing one particular path along which
the property has failed.

In case of a safety requirement, the model checking engine
generates all possible minimal combinations of components
failures, called Minimal Cut Sets (MCS), that violate the
safety requirements. MCS can be arranged in the fault tree
representation [67]. Fault trees provide a convenient repre-
sentation of the combination of events resulting in the vio-
lation of a given top level event, and are usually represented
in a graphical way, as a parallel or sequential combination of
AND/OR logical gates.

2.5 Result extraction and analysis

During this phase, the results produced by the model anal-
ysis phase are processed and presented in human-readable
format. In particular, the result extraction phase is respon-
sible for displaying all the outputs automatically generated
by the model checking engine (e.g., simulation traces and
minimal cut sets) and to present results of safety analyses in
formats that are compatible with traditional fault tree analysis
tools used by safety engineers.

After discussing the ESACS methodology, in Sect. 3 we
will describe the FSAP/NuSMV-SA architecture, whereas in
Sect. 4 we will explain how the tool can be used in the context
of this methodology.

3 The FSAP/NuSMV-SA architecture

FSAP/NuSMV-SA consists of two main components:

• FSAP (Formal Safety Analysis Platform) provides a
graphical user interface and a repository that can be used
by safety engineers and design engineers to share infor-
mation related to the system under development and the
analyses performed;

• NuSMV-SA, based on the NuSMV model checker, pro-
vides the core algorithms for formal verification.

FSAP/NuSMV-SA is implemented in C++ as a cross-plat-
form tool. As a result, it currently runs on Windows and Linux
platforms. FSAP, the graphical user interface, is based on the
FLTK5 cross-platform toolkit. All the data produced by the
platform are stored in XML format, and the corresponding
parser is based on the cross-platform Expat6 library.

NuSMV-SA, the engine, is an extension of the model
checking tool NuSMV [22], a symbolic model-checker devel-
oped at ITC-IRST. It originated from a re-engineering and
re-implementation of SMV [52]. NuSMV is a well structured,
open, flexible, and well-documented platform for model
checking, and it has been designed to be robust and close
to industrial standards.

NuSMV offers a textual input language to describe finite-
state machines. One can specify a system as a synchronous
Mealy machine, or as an asynchronous network of nonde-
terministic processes. The language provides for modular
hierarchical descriptions, and for the definition of reusable
components. The data types in the language are booleans,
integer subsets, scalars, and fixed arrays (the integration of
the word and real data type is planned for future releases —
see also Sect. 7). System specifications are typically written
in NuSMV as temporal logic formulas, and efficient sym-
bolic algorithms (based on data structures like BDDs [17] or
satisfiability-based techniques [9]) are used to traverse the
model and check whether the specification holds or not.

Figure 2 shows the components of FSAP/NuSMV-SA (the
solid lines represent the data flow, whereas the dotted ones
represent the control flow, i.e., the dialoges which can be
activated). The different blocks composing the platform are
described in more detail below.

The SAT (Safety Analysis Task) manager is the central
module of the platform. It is used to store all the information
relevant to verification and safety assessment. It contains ref-
erences to the system model, failure modes, location of the
extended system model, safety requirements, and analyses.
From the SAT manager, it is possible to call all the other
components of the platform.

Model capturing: System models are written using the
textual NuSMV input language. FSAP/NuSMV-SA provides
users with the possibility of using their preferred text editor
for editing the system model.

Failure mode editor and fault injector: These are the
modules for defining failure modes and generating an ex-
tended system model, respectively.

Safety requirements editor: This is the module for enter-
ing safety requirements. Safety requirements are expressed
in temporal logic [36] (either LTL or CTL) and can be defined

5 http://www.fltk.org.
6 http://expat.sourceforge.net.
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Fig. 2 The FSAP/NuSMV-SA components

by the user by choosing and instantiating patterns taken from
a library of requirements.

Analysis task manager: This is the module to define
analysis tasks. Analysis tasks are a convenient way to store
the specification of the analyses. They are saved in the SAT
manager and can be retrieved across different sessions.

NuSMV-SA: The safety analysis and verification capa-
bilities of NuSMV-SA are based on model checking tech-
niques. Model checking [25] is a well-established method
for the formal verification of temporal properties of finite-
state concurrent systems [22,39,43,46].

Result extraction and displayers: All the results pro-
duced by the platform can be viewed using the result extrac-
tion interface and the displayers. In particular, it is possible to
view counterexamples in textual, structured (XML), graphi-
cal, or tabular fashion. Fault trees generated by the platform
can be viewed using commercial tools (e.g., FaultTree+7) or
using a displayer, we especially developed within the project,
and can be exported into XML format.

7 http://www.isograph-software.com.
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4 Safety analysis with FSAP/NuSMV-SA

In this section, we give an overview of the FSAP/NuSMV-
SA environment, and, in particular, we discuss how the var-
ious steps of the ESACS methodology, described in Sect. 2,
are supported and implemented by the different architectural
components of FSAP/NuSMV-SA, described in the previous
section. Being an extension of NuSMV, FSAP/NuSMV-SA
provides all the functionalities of NuSMV. Below, however,
we will focus on the safety assessment capabilities which are
specific to FSAP/NuSMV-SA. In order to describe a typical
usage scenario of the platform, we will use a simple example,
namely a two-bit adder. The example is deliberately simple
for illustration purposes. A discussion on more realistic case
studies can be found in Sect. 5.

4.1 Model capturing

The system model definition provides an executable speci-
fication (at a given level of abstraction) of the model of the
system under development. In particular, in the following
example, we will focus on the scenario in which the system
model is built by the design engineer (see Sect. 2.1 for a dis-
cussion). Currently, the system model can be entered using
a text editor (see Sect. 7 for a discussion on future improve-
ments).

Let us consider the simple example, written in the syntax
of NuSMV [22], in Fig. 3. It is composed of three modules.
The bit module models a component which takes an input
variable representing the value of a bit, and simply copies
it to an output variable. The adder module takes in input
the outputs of two bit module instances, and computes their
sum (modulo two). Finally, the main module defines the
overall system by instantiating an adder and two different bit
components whose inputs are random Boolean variables.

4.2 Failure mode capturing and model extension

In order to study the behavior of the adder circuit in the
presence of degraded situations, failure mode definitions can
be added to the previous specification. In FSAP/NuSMV-
SA, failure modes are defined using a graphical user inter-
face, in which the safety engineer specifies which nodes of
the system model can fail, in what ways, and according to
what parameters. Figure 4 shows an example of the inter-
face currently provided by FSAP/NuSMV-SA for defining
failure modes. Failure modes are retrieved from a library,
called GFML. The library contains the specification of the

behaviours induced by the failures and the specification of
the parameters (whose values must be set by the user) that
characterize the failures. The standard GFML provides spec-
ification of failures like stuck-at, random output, glitch, and
inverted. The library can also be extended to include user-
defined failure modes.

Failure modes can be associated with variables defined
inside modules of the NuSMV input model. In the adder
case, for instance, failure modes may include the adder output
being stuck at a given value (zero or one), and an input bit cor-
ruption (inverted failure mode). Editing of a failure mode is
made easier by means of the data dictionary (see Fig. 5) which
allows the user to select the variable and the corresponding
NuSMV module to which the failure must be attached.

Once the failure modes have been defined, they can be
automatically injected by FSAP/NuSMV-SA into the system
model. The result is the so-called extended system model, i.e,
a model in which some of the nodes can fail according to the
specification of the failure modes. As an example, consider
the inverted failure mode for the output of the bit module
in Fig. 3. Injection of this failure mode produces the exten-
sion of the system model with a new piece of NuSMV code
(instantiated from the GFML) that is automatically inserted
into the extended system model. The new piece of code (see
Fig. 6) replaces the old definition of the output variable of
the bitmodule by taking into account a possible corruption
of the input bit. Specifically, the new piece of code defines a
variable output_FailureMode, which models the fail-
ure mode (either there is no failure, or the bit is corrupted).
Depending on the value of this variable, the code defines the
new output of the circuit as being the nominal one (variable
output_nominal, which is the same as the old output)
or the corrupted one (variable output_inverted, which
is simply the negation of the nominal output). The failure is
assumed to be permanent, that is, once the bit is corrupted,
it remains corrupted forever.

4.3 Safety requirement capturing

System model definition, failure mode definition and model
extension are just a part of the verification and safety assess-
ment process. Formal verification is carried out by defining
properties in the form of temporal specifications. The plat-
form supports Computation Tree Logic (CTL), Linear Tem-
poral Logic (LTL) and real-time Computation Tree Logic
(RTCTL) [36,37]. As an example, the following CTL prop-
erties may be specified for the adder example:
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MODULE bit(input) MODULE main
VAR VAR

output : {0,1}; random1 : {0,1};
ASSIGN random2 : {0,1};

output := input; bit1 : bit(random1);
bit2 : bit(random2);

MODULE adder(bit1,bit2) adder : adder(bit1.output,bit2.output);
VAR

output : {0,1};
ASSIGN

output := (bit1 + bit2) mod 2;

Fig. 3 A NuSMV model for a two-bit adder

Fig. 4 Input of failure modes in FSAP

The first one states that the output of the adder must be
zero whenever both input bits are zero (this is clearly not the
case in degraded situations), whereas the second one states
that whenever the sum of two zero input bits yields one,
it is the case that at least one of the two input bits is cor-
rupted. Requirements defined in this way can subsequently
be verified via the underlying model checking verification
engine provided by NuSMV. Properties in FSAP/NuSMV-
SA are defined via a graphical user interface, in which users
can enter information such as type and severity of the safety
requirement. Figure 7 shows how safety requirements are
specified by the user.

The input of safety requirements is simplified by the safety
pattern dialogue, which allows users to enter safety require-
ments by choosing and instantiating formulas from a set of
predefined patterns. To start with, we introduced a set of basic
patterns (see Fig. 8). This set of patterns includes basic safety
and liveness temporal properties which are frequently used

in verification. An extended and more structured set of pat-
terns will be integrated in future releases of the platform (see
Sect. 7 for a discussion).

Pattern instantiation is simplified by a data dictionary (see
Fig. 5) and by a “keypad” that simplifies the input of data.
The safety pattern dialogue implements the concept of the
GSRL library (see Sect. 2.3) of the ESACS methodology.
For instance, the safety requirements described above are
instances of the pattern called “Safety” in the GSRL. Accord-
ing to our experience, the GSRL is an important (if not essen-
tial) feature to help safety engineers, who may not be experts
in temporal logic, acquire confidence using LTL/CTL nota-
tions to write safety requirements.

4.4 Model analysis

During this phase, formal verification and safety assessment
of the model are performed. The model under development
is tested against the safety requirements, and the results of
the analysis are conveniently displayed. Using the facilities
provided by the NuSMV engine, it is possible to perform con-
strained or random simulation, and several kinds of formal
verification analyses. Every analysis task performed on the
system is stored by the SAT manager, and can subsequently
be accessed by the user at any time in order to view the cor-
responding results of the analysis. The user can also decide
to re-run an analysis task from scratch, if the results are not
up-to-date. The different kinds of analysis tasks supported
by the platform are discussed in more detail below.

4.4.1 Simulation

The FSAP/NuSMV-SA platform allows one to perform ran-
dom simulation of both the system model and the extended
system model, for a given number of steps. The simulation
may be guided by providing an additional set of constraints
on the system execution. The result of the simulation is a trace
that may be displayed either in textual format, imported in a
commercial spreadsheet, or displayed in graphical form.
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Fig. 5 Data dictionary

Fig. 6 Injecting a fault in the
bit module

VAR output_nominal : {0,1};
output_FailureMode : {no_failure, inverted};

ASSIGN output_nominal := input;
DEFINE output_inverted := ! output_nominal;
DEFINE output := case

output_FailureMode = no_failure : output_nominal;
output_FailureMode = inverted : output_inverted;

esac;
ASSIGN next(output_FailureMode) := case

output_FailureMode = no_failure : {no_failure, inverted};
output_FailureMode = inverted : inverted;

esac;

4.4.2 Property verification

Exhaustive property verification capabilities of the platform
are based on the underlying model checking engine. Both
CTL and LTL temporal logic formulas can be checked against
the (extended) system model. In addition, each property ver-
ification task may be equipped with a set of invariants which
may be added to the model in order to verify a given property
under particular hypotheses. The result of a property verifica-
tion task is either a system message stating that the property
does hold, or a counterexample trace, which may be dis-
played in the same way as simulation traces. At the moment,
the engine uses BDD-based model checking, but the inte-
gration of satisfiability-based model checking is ongoing, as
discussed in Sect. 7.

4.4.3 Fault tree construction

FTA [47,56,67] is a safety assessment strategy that com-
plements exhaustive property verification. It is a deductive,

Fig. 7 Input of safety requirements in FSAP
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top-down method to analyze system design and robustness.
It usually involves specifying a top level event (TLE here-
after) for the analysis (e.g., a failure state), and identifying
all possible sets of basic events (e.g., basic faults) that may
cause that TLE to occur. FTA allows one to identify possible
system reliability or safety problems and find out root causes
of equipment failures. Fault trees provide a convenient sym-
bolic representation of the combination of events resulting in
the occurrence of the top event. They are usually represented
in a graphical way, as a parallel or sequential combination of
AND/OR gates.

The FSAP/NuSMV-SA platform can be used for the auto-
matic generation of fault trees starting from a given model
and TLE. Specifically, it is possibile to extract automatically
all collections of basic events (called minimal cut sets) which
can trigger the TLE. The extraction of minimal cut sets is
based on procedures for computing prime implicants of Bool-
ean functions [27,28,57,58] that internally use BDD data
structures.

More in detail, the procedure for generating a fault tree
works as follows. First, a forward reachability analysis of
the system model is performed. This amounts to performing
a fixpoint computation, starting from the set of initial states of
the system. Each iteration produces a new set of states which
is obtained by accumulating the states reachable using one
transition step, to the current set of states. In symbols, the
expression

Reach
def= R∗(I)

is computed, where I is a symbolic representation of the set
of initial states, and R∗ is the reflexive and transitive closure
of the transition relation R. Once the reachability set is com-
puted, it is conjoined with a symbolic representation of the
states satisfying the TLE. The outcome of this computation
is the set of reachable states of the system in which the TLE
occurs. Finally, all the system variables except the failure
variables are existentially quantified away. In symbols, the
expression

∃v̄ (Reach ∧ Tle)

is computed, where Tle is a symbolic representation of the
set of states satisfying the TLE, and v̄ is the set of non-failure
variables of the model. The resulting expression is minimized
using the procedures for minimizations of Boolean functions
previously mentioned. After a final step of simplification, we
obtain the set of minimal cut sets. Some statistics on the total
number of minimal cut sets and their order (i.e., the num-
ber of basic events composing a cut set) are also computed
by FSAP/NuSMV-SA. The generated cut sets are minimal,in

the sense that only failure events that are strictly necessary
for the top level event to occur are retained.

Each cut set produced by FSAP/NuSMV-SA represents a
situation in which the top level event has been violated owing
to the occurrence of some failures. Under the hypothesis that
the system model does not violate the top level event, such
failures are the cause of the violation. The cut sets are a static
representation of the causes of the violation. However, the
starting model to which the fault tree computation algorithms
are applied, is a dynamic model. As a consequence, the viola-
tion of the TLE can be due to complex interactions caused by
the various failing and non-failing components of the system.
The model checking algorithms (i.e., the ones for reachability
analysis) take care of the dynamic part of the model, whereas
the algorithms for extraction of the minimal cut sets are based
on combinatorial routines.

There are two ways in which NuSMV-SA can present
dynamic information that is not visible within standard fault
trees. First, NuSMV-SA associates, to each cut set, a coun-
terexample trace that shows, step by step, how the top level
event is violated by the failures represented in the cut set.
Second, it is possible to perform the so-called failure order-
ing analysis (discussed in Sect. 4.4.4), in order to investigate
the possible ordering (if any) between basic events inside a
minimal cut set. We refer the reader to Sect. 7 for a discussion
of the ongoing work on this topic.

Figure 9 shows an example of fault tree computed for
the adder model. It has been generated for the top level
event

specifying a failure state in which both input bits are zero and
the output of the adder is different from zero. The fault tree
comprises three cut sets (the first one of them is a single fail-
ure, whereas the remaining two include three basic events).
The fault tree states that the top level event may occur, if and
only if either the output of the adder is stuck at one, or one
of the input bits (and only one) is corrupted (with the adder
working properly). We note that minimality of the generated
cut sets implies that the case in which both input bits and
the adder are failed is not considered (though causing the top
level event as well).

Finally, we note that the fault tree in Fig. 9 shows an exam-
ple of non-monotonic (also known as non-coherent) fault tree
analysis, i.e., basic events requiring system components not
to fail can be part of the results of the analysis. The tradi-
tional monotonic (coherent) analysis (i.e., where only failure
events are considered) is also supported by FSAP/NuSMV-
SA (in this case, the resulting fault tree would be the same
as the one in Fig. 9, except that all events labeled as non-
failure are removed). The choice between the different kinds
of analyses is left to the user.
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Fig. 8 Safety pattern dialogue

Fig. 9 A fault tree generated
for the adder model

4.4.4 Failure ordering analysis

In this section, we briefly discuss an additional capability of
the FSAP/NuSMV-SA platform, namely the so-called fail-
ure ordering analysis. The algorithm for ordering analysis is
based on the same procedures for minimizations of Boolean
functions [27,28,57,58] used for fault tree computation. A
detailed description of the algorithm for ordering analysis is
beyond the scope of this paper. We refer the reader to [15]
for a description of the algorithm, its implementation and
possible applications, whereas in the following we informally
recall the main concepts.

In traditional FTA, cut sets are simply flat collections (i.e,
conjunctions) of events which can trigger a given TLE. How-
ever, there might be timing constraints enforcing a particular

event to happen before or after another one, in order for
the TLE to be triggered (i.e., the TLE would not show if
the order of the two events were swapped). Ordering con-
straints can be due to a causality relation or a functional
dependency between events, e.g., or caused by more com-
plex interactions involving the dynamics of a system. What-
ever the reason, failure ordering analysis can provide useful
information which can be used by the design and safety engi-
neers to fully understand the ultimate causes of a given sys-
tem malfunction, so that adequate countermeasures can be
taken.

The ordering analysis phase can be tightly integrated with
fault tree analysis, as described below. Given a system model,
the verification process consists of the following phases. First
of all, a top level event to analyze is chosen (clearly, the anal-



The FSAP/NuSMV-SA safety analysis platform 15

ysis can be repeated for different top level events). Then, fault
tree analysis is run in order to compute the minimal cut sets
relative to the top level event. For each cut set, the ordering
analysis module of the platform generates a so-called order-
ing information model and performs ordering analysis on it.

The outcome of the ordering analysis is currently dis-
played as a precedence graph, which shows the order among
events (if any) which must be fulfiled in order for the top level
event to occur. In the future, we plan to integrate the order-
ing analysis into the fault tree generation routines and use a
uniform notation based on dynamic fault trees (see Sect. 7
for more details).

4.5 Result extraction and analysis

During the result extraction analysis phase the results of the
analyses are displayed in a human-readable form and us-
ing standard notations used by safety engineers. They are
produced using formats that are compatible with traditional
commercial tools (e.g., fault tree analysis tools used by safety
engineers).

Every trace (either obtained as a result of a simulation task
or as a counterexample trace bound to the verification of a
system property or to a minimal cut set) can be displayed
in textual, structured (XML), graphical (using the gnuplot
utility), or in tabular fashion (the trace can be imported into
commercial spreadsheets). Fault trees generated by the plat-
form can be viewed using commercial tools (FaultTree+7) or

Fig. 10 The result displayer

using a displayer we especially developed within the project
(see an example in Fig. 9) and can be exported into XML
format. The result displayer (see Fig. 10) allows the user to
select the results of an analysis task and display them in the
desired form.

5 Industrial application of FSAP/NuSMV-SA

Within the ESACS project, FSAP/NuSMV-SA has been tested
on two industrial real-world case studies, chosen by the indus-
trial partners, to test the applicability of the techniques de-
scribed above in an industrial environment. Both case studies
share the following characteristics:

• They are of industrial interest.
• They are heterogeneous systems comprising various types

of components like electromechanical components
(e.g., control valves, relays), mechanical components
(e.g., shafts, gearboxes, freewheels), electronic transduc-
ers (e.g., speed sensors, pressure sensors), and electronic
controllers.

• They were considered of the right level of complexity
(medium/high) for the project purposes.

The first case study is derived from work by ONERA8

on the Hydraulic Boolean System of the Airbus A320 [8].
The model of the system, originally written in the Altarica
language [4], has been automatically translated into the NuS-
MV language and verified, for the purposes of evaluating the
FSAP/NuSMV-SA capabilities, with the FSAP/NuSMV-SA
platform. The results obtained were in accordance with the
ones obtained by ONERA.

The second case study is the Secondary Power System,
described in [14]. It consists of a subsystem that drives the
hydraulic and electrical utilities of an aircraft. It is a safety-
critical system, in that it must prevent any power loss of the
utilities, even in presence of failures. To this aim, the default
lines driving the utilities are coupled with auxiliary lines.
Two computers are responsible for carrying out a recovery
procedure consisting of driving the utilities using the auxil-
iary lines, in case of failure of some component in the default
lines.

In the rest of this section, we will focus on the Second-
ary Power System case study, whereas we refer the reader
to [8] for more details on the other case study, studied by
ONERA. Modeling and testing of the case study have been
conducted as a joint collaboration between ITC-IRST, Ale-
nia Aeronautica (the owner of the case study), and Società
Italiana Avionica (SIA). Alenia Aeronautica is the leading

8 http://www.cert.fr.
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Italian company in the avionics field, and is among the major
industrial complexes in the world. Additional details on the
case study can be found in [14], a joint paper written with
people from Alenia and SIA. However, we note that, given
the nature of the case study and the non-disclosure agreement
with the industrial partner, it is not possible to provide any
further details regarding how the system works and its actual
implementation in NuSMV.

As a general comment, we would like to remark that the
collaboration with Alenia/SIA was also intended as a way
to investigate and assess the use of techniques based on for-
mal methods in the industry. Although the introduction of
these techniques in the actual development cycle was not a
realistic goal for the ESACS project, we encouraged the use
of the platform in a way as similar as possible to the indus-
trial practice. To this aim, we invited some people from Ale-
nia/SIA to “play” the role of the design or safety engineers,
and we had them use the platform in a way as close as possi-
ble to the actual work practice. As discussed in Sect. 7, ITC-
IRST is currently taking part in a further EU-funded project,
called ISAAC9 (basically a continuation of the ESACS pro-
ject, involving a superset of the partners of ESACS), hence
the aspects related to the impact on the actual work practice
will be further pushed and investigated in ISAAC.

The rest of this section is structured as follows. In Sect. 5.1,
we illustrate some issues related to modeling and to the inter-
action with the industrial partners. In Sect. 5.2 we discuss
some issues related to verification of the model and present
some experimental results. Finally, in Sect. 5.3 we sketch the
resulting set of “lessons learned”.

5.1 Modeling

The modeling activity was an iterative (and interactive) pro-
cess, involving people from ITC-IRST and people from Ale-
nia/SIA. Alenia provided the written documentation related
to the case study. ITC-IRST was responsible for the actual
modeling in the NuSMV language, whereas some people
from Alenia/SIA, after an initial training period, were invited
to use the platform for checking the models. The role of
the people from Alenia/SIA was to provide feedback on the
results obtained from the models, and also to use the case
study to assess the platform and provide a wish list of possi-
ble improvements and extensions.

The way we conceived the modeling activity was by pro-
ducing a set of models, described at different levels of detail,
from the less to the more detailed. As a result, the overall
set of models form a hierarchy in which each model has a
higher level of detail and complexity with respect to the pre-
vious ones. The advantage of using a hierarchy of models is

9 http://www.cert.fr/isaac.

twofold. First, it can ease the modeling process: we model the
interaction between the different components, and then we
model the actual behavior of each component in an increas-
ingly realistic way. Second, it can be seen as a way to cope
with the model scalability issues, that is, the inability of the
model checker to analyze the more detailed models.

The set of models we developed can be summarized as
follows:

• Model-1: this is the simplest model and is a sort of block
diagram. It is also representative of the first specification
that the safety engineer receives from the design engi-
neer in the standard development process. In our case,
this model included both the left and right hand side
of the system and a simplified model of the computers.
The variables used in the model are all Boolean and the
components were blocks which may be either working or
not working. This model was used to perform a so-called
block reliability analysis of the case study, in order to
analyze the functional interactions between the compo-
nents;

• Model-2: in this model, the behaviour of the components
was modeled in a more realistic manner, although the
computers were still simplified. The model included only
one side of the system (we exploited the symmetry of the
system to reason on the other side). The variables repre-
senting physical quantities were discretized, i.e., encoded
by means of integer variables in a suitable range;

• Model-3: this model is the same as “model-2”, except
that the computers are modeled in a realistic manner;

• Model-4: this is the same as “model-3”, with a more
realistic modeling of the mechanical components. In par-
ticular, we modeled mechanical forces that must be prop-
agated in reverse (e.g., in case of an engine failure, the
fault can affect components that are further up in the
functional chain);

• Model-5: this model is the same as “model-2”, except
that both sides of the system are modeled;

• Model-6: this model is the same as “model-4”, except
that both sides of the system are modeled.

5.2 Verification

In this section, we discuss some issues related to the verifi-
cation of the models outlined in the previous section and we
present some experimental results.

The models of Sect. 5.1 have been enriched automati-
cally with the definition of the relevant failure modes. Typ-
ically, failure modes were attached to each component of
the model. The definition of the failure modes was retrieved
from the GFML library available in FSAP. For instance, the
list of failure modes included stuck-at failures(for valves)
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Fig. 11 Experimental results
MODEL COMP FT PROP1 PROP2

TIME MEM TIME MEM TIME MEM TIME MEM

model-1 0.01 1 0.01 1 0.01 1 0.01 1
model-2 8 10 107 13 6 10 6 10
model-3 119 20 205 25 177576 28 174052 28
model-4 1356 63 6 63 1716 109 1695 109
model-5 760 52 - 21603 52 21787 52
model-6 637 29 - - -

and ramp-down failures to model the speed of mechanical
components (the speed can decrease down to a given value
because of a fault).

The safety analysis tasks consisted of the generation of
two fault trees for different propositional properties, and in
the verification of two safety properties, expressed in CTL
temporal logic. The purpose of the analyses was to verify
whether the recovery procedure was carried out correctly.

In Fig. 11, we report some experimental results. For fair-
ness, we ran each experiment (fault tree generation or prop-
erty verification) with a different invocation of the model
checker (the execution of a verification task may in fact
benefit from the successful completion of a previous task).
For each of the models of Sect. 5.1, we report the time
(in seconds) and memory (in Mb) used for compiling the
model (column COMP), generating one of the two fault trees
(column FT) and verifying the two safety properties (col-
umns PROP1 and PROP2). The memory used for completing
a verification task includes the memory used for compila-
tion. We do not report the results on the second fault tree,
given that they marginally differ from the results obtained
for the first one.

The experiments have been run on a two-processor
machine equipped with Intel Xeon 3.00 GHz, with 4 Gb of
memory, running Linux RedHat 7.1 (only one processor was
allowed to run for each experiment). The time limit was set
to 72 h and the memory limit to 1 Gb. In Fig. 11, a ‘↑’ in the
time or memory columns stands for a time-out or memory-
out, respectively. We ran NuSMV-SA version 2.3.0, with the
following command-line options: -reorder -dynamic
-thresh 500000 -coi. That is, we enabled dynamic
variable re-ordering, cone-of-influence reduction, and thresh-
old conjunctive partitioning.

We ran some further experiments after enabling the com-
putation of reachable states (option -f on the NuSMV-SA
command-line) for the verification of safety properties (the
computation of reachable states is used by default for the
generation of fault trees). The results are given in Fig. 12.
Although the results are not always consistent, it is evident
that enabling the computation of reachable states may in
some cases significantly improve the performance (e.g., in the
case of “model-3”). As a drawback, the computation of the
reachable states may sometimes be unfeasible due to mem-
ory exhaustion (e.g, for “model-5”). The outcome of this set

MODEL PROP1 PROP2
TIME MEM TIME MEM

model-1 0.01 1 0.01 1
model-2 149 18 148 18
model-3 944 45 940 45
model-4 1620 109 1598 109
model-5 - -
model-6 - -

Fig. 12 Additional experimental results, with computation of reach-
able states enabled

of experiments suggests that there is room for improving the
performance of the model checker with proper tuning.

5.3 Results and experience

In this section, we discuss some results and experiences aris-
ing from the modeling activity and the interaction with the
people from Alenia/SIA. For each case study, the various
models were tested in order to highlight pros and cons of
our approach and to devise possible methodology and tool
platform improvements. The main criteria of the evaluation
were the effectiveness of the methodology to improve the
integration of the design and safety activities on the system,
and the effectiveness of the tool in the implementation of the
different steps defined by the methodology. In the following,
we briefly summarize the results of our evaluation.

Representational issues: One interesting aspect of the
case studies concerned the modeling of the various (sub)-
components. In particular, one of the most challenging
modeling issues has been the modeling of hydraulic and
mechanical components. For such systems, in fact, when rea-
soning about degraded situations, the standard input/output
modeling with functional blocks may be particularly difficult.
For instance, a leakage in a pipe may cause loss of pressure
in the whole pipe. As a second example, in certain situations
(e.g., in case of an engine failure) mechanical forces have
to be propagated in reverse, therefore affecting functional
blocks that are further up in the functional chain. Particular
care had to be taken to address these issues. More generally,
we think that the use of hybrid system modeling tools may
be very effective for such kind of models (see Sect. 7).
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Integration of the design and safety activities: We expe-
rienced that the ESACS approach effectively improves and
encourages the interaction between design and safety engi-
neers as they, for instance, can speak the same unambiguous
language and share the same formal system model. In addi-
tion, the safety evaluation of the system architecture could
be performed in the very early phases of system design, by
simulating and proving properties of the system model.

Failure mode definition and injection: The facility for
failure mode injection and system model extension experi-
mented during the different test cycles of the platform worked
well, but it is based on a library of generic failure modes spe-
cifically created for the ESACS purpose. As a consequence,
the library needs to be enriched in the future to include a
taxonomy of the failure modes typical of the main kinds of
components (electronic, electric, mechanical, pneumatic
components and so on), tailored to the specific industrial
needs.

System property definition: The ESACS approach en-
ables the definition of different types of verification tasks
on system models, like reachability of a given state (e.g.,
component failure) or the fulfillment of a given condition
(e.g., output from one component being a certain percentage
under its nominal value). The system properties can be writ-
ten in LTL or CTL temporal logic. Such formalisms may be
difficult to understand, especially by people who are not ex-
pert in formal verification. The possibility of defining system
properties by instantiating a class of general-purpose safety
patterns was included in the platform as a response to the
industrial partners needs, and was particularly appreciated.

System property verification: Performing model check-
ing of functional requirements on the system model often
leads to the state explosion problem. As a consequence, it was
sometimes necessary to scale the model down, for instance by
abstracting away certain characteristics of the design model.
As previously explained, one way was to cut the model by
exploiting inherent symmetries in it. However, this approach
was not feasible for the most detailed models.

In order to mitigate the problem of state explosion, the
definition of a set of different models was particularly helpful,
as it has been possible to define specialised models for certain
properties. On the other hand, at the moment we are working
on improvements for the model checking tools which will
hopefully be able to ameliorate this problem (we discuss this
point further in Sect. 7).

Finally, from an industrial point of view, the possibility
of using simulation and exhaustive techniques to drive the
system into a particular state was particularly useful, for in-
stance, in order to show that a safety-critical state cannot be
reachable when failure modes are disabled.

Fault tree generation: Automatic generation of fault trees
has been possible with satisfactory results only for the less
complex models, whereas with the more complex ones we
encountered difficulties due to the state explosion problem.
Nonetheless, the safety engineers judged the fault trees gen-
erated for the less complex models to be informative enough.

6 Related work

The ESACS methodology: The FSAP/NuSMV-SA plat-
form has been developed within the ESACS3 project (En-
hanced Safety Assessment for Complex Systems), a
European-Union-sponsored project involving various
research centers and industries from the avionics sector. For a
more detailed description of the project goals and the indus-
trial case studies which have been investigated we refer the
reader to [14,16]. Within the project, the ESACS methodol-
ogy has been also implemented in other platforms. We men-
tion [8] for the platform based on Altarica [4]; [1,30] for the
platform based on SCADE10; [55] for the platform based on
STATEMATE11.

The works recently presented in [44,45] have a close sim-
ilarity with the present work and, more in general, with the
ESACS methodology. In particular, the idea of integrating
the traditional development activities with the safety anal-
ysis activities, based on a formal model of the system, and
the idea of clearly separating the nominal model from the
fault model, using an automatic extension facility for merg-
ing them, are ideas that have been pioneered by ESACS [16].
The authors call this approach model-based safety analysis
and present a proposal for integrating it into the traditional
“V” safety assessment process. The approach is exemplified
on a case study modeled and analyzed using SCADE10 and
Simulink [29]. We also mention [53,65,66], which discuss
the specification and validation of a Flight Guidance System
and a Flight Management System. This work shares with us
and the ESACS project the application field (i.e., avionics),
and the use of NuSMV as a target verification language (the
paper also considers the PVS theorem prover as alternative
verification tool). An automatic translator from a specifica-
tion language called RSML to NuSMV is also provided.

Algorithms: The safety analysis capabilities provided by
the platform include traditional fault tree generation [47,
56,67] together with formal verification capabilities typi-
cal of model checking [22,25,39,43,46,52]. The algorithms
for cut set and prime implicant computation described in
Sect. 4.4.3 are based on classical procedures for minimization

10 http://www.esterel-technologies.com.
11 http://www.ilogix.com.
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of Boolean functions, specifically on the implicit-search pro-
cedure described in [27,28,57,58], which is based on Binary
Decision Diagrams (BDDs) [17]. This choice was quite natu-
ral, given that the NuSMV model checker makes a pervasive
use of BDD data structures. The ordering analysis procedure
described in Sect. 4.4.4 also makes use of these algorithms
(we refer the reader to [15] for a full description of the proce-
dure and of the related literature). Explicit-search and satisfi-
ability-based techniques for computation of prime implicants
are described for instance in [50].

Fault tree construction: Our work shares some similari-
ties with the work in [59,64], which are both concerned with
automatically proving the consistency of fault trees using
model checking techniques. The paper [64] presents a fault
tree semantics based on Clocked CTL (CCTL) and uses timed
automata for system specification, whereas [59] presents a
fault tree semantics based on the Duration Calculus with
Liveness (DCL) and uses Phase Automata as an operational
model. The focus of both papers is on using model checking
to validate manually constructed fault trees (e.g., to detect
incompleteness of a fault tree due to an omitted cause for
an hazard). On the contrary, our approach is concerned with
using model checking for the automatic generation of a fault
tree starting from a formal specification of the system model.

Probabilistic safety assessment and dynamic fault trees:
A large amount of work has been done in the area of probabi-
listic safety assessment (PSA) and in particular on dynamic
reliability [60]. Dynamic reliability is concerned with extend-
ing the classical event or fault tree approaches to PSA by
taking into consideration the mutual interactions between the
hardware components of a plant and the physical evolution
of its process variables [51]. Examples of scenarios taken
into consideration are, e.g., human intervention, expert judg-
ment, the role of control/protection systems, the so-called
failures on demand (i.e., failure of a component to inter-
vene), and also the ordering of events during accident prop-
agation. Different approaches to dynamic reliability include,
e.g., state transitions or Markov models [3,54], the dynamic
event tree methodology and the TRETA package of [26],
and direct simulation via Monte Carlo analysis [51,61]. Our
approach, which is concerned with the automatic generation
of fault trees, differs from the works cited above that are
mostly concerned with the evaluation of a given fault tree.
Furthermore, we use model checking to support automatic
verification of arbitrary CTL and LTL properties (in particu-
lar, both safety and liveness properties).

Concerning ordering analysis, the work which is probably
closer to ours is [26], which describes dynamic event trees
as a convenient means to represent the timingand order of

intervention of sub-systems and their eventual failures. Our
approach can support simultaneous failures, whereas, at the
moment, we are working under the hypothesis of persistent
failures (i.e., no repair is possible).

Concerning fault tree evaluation, we mention DIFTree
(Dynamic Innovative Fault Tree) [49], a methodology for
the analysis of dynamic fault trees. It is implemented in the
Galileo tool [62]. The methodology is able to identify inde-
pendent sub-trees, translate them into suitable models, ana-
lyze them and integrate the results of the evaluation. Different
techniques can be used for the evaluation, e.g., BDD-based
techniques for the evaluation of static fault trees, and Mar-
kov techniques or Monte Carlo simulation for dynamic fault
trees. The DIFTree methodology also includes techniques to
model coverage, i.e., the probability that a system can auto-
matically recover from a fault, given that a failure occurs.
Techniques for incorporating coverage modeling [33] into a
BDD-based fault tree solution have been studied in [32].

Tools: The Galileo12 tool [62], already mentioned, is a
tool for modeling and analysis of fault trees. It allows the
user to edit a fault tree in a textual or graphical format, and to
evaluate the fault tree using different techniques. In addition,
it supports different probability distributions for component
failures. Both the support for probability distributions and the
notation for dynamic gates used in Galileo [48] are features
that we would like to integrate into the FSAP/NuSMV-SA
platform (we refer the reader to Sect. 7 for more details).

Finally, we mention the SMART13 tool [19]. SMART is
a software package integrating various modeling formalisms
(e.g., stochastic Petri nets) into a single environment. The
analysis of the models can be performed using a variety
of evaluation techniques, ranging from CTL-based symbolic
model checking, for the computation of the state space and
for solving temporal logic queries, to numerical methods and
simulation, for performance and reliability measures. The
implementation of CTL-based model checking techniques
relies on multi-valued decision diagrams (MDDs) to store
the state space, and makes use of advanced techniques based
on Kronecker encoding for the next state function and an
efficient saturation algorithm. These techniques have been
shown to be very effective, both in terms of time and space,
for model checking asynchronous systems (with loosely con-
nected components) [20]. Although the models used in ES-
ACS are typically synchronous systems, it could be worth
evaluating the performance of the SMART tool on them.

12 http://www.cs.virginia.edu/∼ftree.
13 http://www.cs.ucr.edu/∼ciardo/SMART.
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7 Future work

At the moment, the platform is undergoing further develop-
ment, both at the level of the implementation and at the level
of provided functionalities. This further development is being
carried out as contribution to the ISAAC9 project (Improve-
ment of Safety Activities on Aeronautical Complex systems),
in which ITC-IRST is involved (the set of partners involved
in ISAAC is a superset of the ESACS partners). The goals of
ISAAC are, on the one hand, the investigation of some new
thematic areas, and on the other hand, the consolidation and
the further push of the ESACS experience and methodology
into the industrial practice [2]. In particular, future extensions
and improvements of the FSAP/NuSMV-SA platform will be
based on the feedback from the industrial partners. A list of
improvements and extensions to be addressed are discussed
below.

Failure modes: At the moment, all failures are assumed
to be permanent, that is, once a component fails, it remains
failed forever (once failed, always failed). In the future, we
want to overcome this limitation and be able to deal, for
instance, with transient failures. This extension may have an
impact on the failure mode definition, the analysis routines,
and also the result presentation aspects.

Furthermore, we are currently working on extending the
failure model with common cause failures. By common cause
failures we mean either simultaneous or cascading failures
which are due to a common cause, and therefore are not
independent. Future releases of the platform will enable the
possibility to declare failure sets grouping common cause
failures and to generate the corresponding fault tree in a suit-
able format. Common cause analysis is one of the topics of
the ISAAC project.

Furthermore, we plan to enrich the GFML. First, we want
to include a richer taxonomy of failure modes (see discus-
sion in Sect. 5.3), tailored to the industrial needs. Second, we
would also like to support probabilistic evaluation of fault
trees (see paragraph on quantitative analysis below). One
possibility to achieve this goal would be to create a com-
ponent library associating stochastic failure distributions to
components, together with failure modes.

Failure ordering analysis: Concerning failure ordering
analysis, we want to improve the current notation of the out-
come of the analysis, which is presented in the form of pre-
cedence graphs. We would like to use notations for dynamic
gates and integrate the results of ordering analysis into the
displayed fault tree. In this way, a uniform notation would
be used throughout the platform. An example of notation for
dynamic gates and their formal semantics is the one used in
the Galileo tool (see [48]).

Hierarchical fault trees: At the moment, the fault trees
generated by our platform are flat, i.e., they simply collect
the cut sets (or prime implicants). This might be a concern,
especially when the number of computed cut sets is large
(for instance, in the Hydraulic Boolean System case study,
mentioned in Sect. 5, the prime implicants for one of the
safety requirements are more than 200). In order to improve
readability, we are investigating techniques for restructuring
the fault tree. By restructuring, we mean the possibility to
group common parts of the tree by introducing intermedi-
ate levels (gates). We call these trees hierarchical fault trees.
Different techniques will be considered, for instance user-
guided restructuring or automatic restructuring based on log-
ical equivalences.

Safety patterns: Regarding the safety patterns described
in Sect. 4.3, we plan to include a more comprehensive and
structured set of patterns in future releases of the platform.
In particular, we are considering the structure described in
[35]14). The intent is to support a comprehensive set of
patterns that occur frequently in the specification of con-
current and reactive systems.

Quantitative analysis: We plan to extend our framework
to deal with probabilistic assessment. Although not illus-
trated in this paper, associating fixed probabilistic estimates
to basic events and evaluating the resulting fault tree is straight-
forward (see, e.g., [28]). Evaluation of probabilities also al-
lows one to exclude minimal cut sets below a certain proba-
bility threshold, if desired. However, more work needs to be
done in order to support more complex probabilistic dynam-
ics (see, e.g., [31]). A possibility would be to include sample
probabilistic distributions like the ones used in DIFTree [49]
(see also the paragraph on failures modes above). Concerning
common cause failures (see again the paragraph on failures
modes) techniques for evaluating the fault tree using BDD-
based methods have been investigated in [63].

Usability/expressiveness: An important issue which is
related to usability of the platform is the enhancement of the
input language. We plan to design and implement a graphical
input language, which could serve as an interface between
the underlying, textual, NuSMV input language, and the final
user. This feature is considered of primary importance by the
industrial partners.

Second, as mentioned in Sect. 3, the input language sup-
ported by NuSMV will be enriched in the near future, by
including the real data type as a primitive type. This exten-
sion will increase the level of expressiveness of the language,
and will enable a more faithful modeling of the dynamics of

14 See also http://patterns.projects.cis.ksu.edu.
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a complex system. Namely, it would be possible to model
the physical quantities of a given system using real func-
tions (e.g., to model the mechanical forces, as mentioned
in Sect. 5.3). Furthermore, we might have a more realistic
modeling of time, which, at the moment, is modeled by an
abstract transition step. One possibility we are considering
is to model systems as hybrid automata [40,41]. An alterna-
tive possibility is to use the model of time based on calendar
automata described in [34].

Given that having real variables makes the resulting mod-
els infinite state, a way is needed to deal with this additional
complexity. Specifically, we are planning to use satisfiabili-
ty-based techniques. In our experience, these techniques can
also help relieve the state explosion problem. This is ex-
plained in more detail in the next paragraph.

Efficiency: As discussed in Sect. 5, the state explosion
problem may prevent the completion of the analysis tasks on
the most complex models. In order to alleviate this problem,
we are currently integrating the possibility of using satisfi-
ability-based techniques [9] inside the platform. The possi-
bility of using a satisfiability engine for property verification
is already supported by the NuSMV model checker, whereas
the satisfiability-based algorithms for generating fault trees
are currently under development. Satisfiability-based tech-
niques are useful for exploring an initial segment of the
state space. BDD-based techniques work by saturating sets of
states, as opposed to satisfiability-based techniques that are
tipically used to find single traces of bounded lenght. Further
traces can be found after ruling out the already discovered
ones, by properly modifying the temporal formula to be veri-
fied. Typically, satisfiability-based techniques are very effec-
tive for incomplete verification (bug hunting). However, the
use of induction techniques can make their use competitive
also for exhaustive verification. In the future, we also plan to
combine BDD-based and satisfiability-based techniques for
computing fault trees. The idea is to use satisfiability-based
techniques to find a subset of the minimal cut sets, use them
to simplify the model, and finally use BDD-based techniques
to find the remaining cut sets.

An additional way to alleviate the state-explosion problem
is to modify the system model. According to our experience
(see Sect. 5.3) the state explosion problem was mainly due
to the use of discretized integer variables, which we used to
implement the dynamics of physical variables. An alterna-
tive to discretization is to model physical quantities directly
as real functions, and model systems as hybrid automata. This
is not only a way to increase the expressiveness of the model
(as explained in the previous paragraph), but it is also a way to
deal with the state explosion problem. In fact, verification of
systems modeled as hybrid automata can be efficiently per-
formed using decision procedures for combinations of Bool-
ean and mathematical reasoning. In particular, we plan to

experiment with MathSAT [5,7,10–13]. MathSAT is a sat-
isfiability-based decision procedure, developed at ITC-IRST,
which is able to combine Boolean reasoning with reasoning
on more complex theories like (integer or real) linear arith-
metic, equality and uninterpreted functions, and their com-
binations. The integration of MathSAT into NuSMV is part
of the current tool development plan. Preliminary results of
the application of MathSAT to the verification of hybrid
systems (see [6]) suggest that this approach is promising.

8 Conclusions

In this paper, we have presented the FSAP/NuSMV-SA safety
analysis platform. The verification engine of the platform is
based on the NuSMV model checker [22]. FSAP/NuSMV-
SA can be used as a tool to assist the safety analysis process
from the early phases of system design to the safety assess-
ment phase. It provides a uniform environment that can be
used both by design engineers for the formal verification of a
system and by safety engineers to automate certain phases of
safety assessment. The major benefits are a tight integration
between the design and the safety teams, and the mechani-
zation of (some of) the activities related to verification and
safety analysis.

The main functionalities provided by FSAP/NuSMV-SA
include model construction facilities (e.g., automatic fail-
ure injection based on a library of predefined failure modes),
exhaustive property verification capabilities typical of model
checking, and automatic fault tree generation. Fault tree gen-
eration can be performed both in the case of monotonic sys-
tems (computation of minimal cut sets) and in the case of
non-monotonic ones (computation of prime implicants). Fur-
thermore, the results provided by fault tree generation can
be conveniently integrated by the so-called failure ordering
analysis that allows the user to extract ordering constraints
which hold between basic events in a given cut set.

At the moment, the platform is undergoing further devel-
opment as a contribution to the ISAAC project. The industrial
evaluation of the platform will be carried on, in collaboration
with Alenia Aeronautica and SIA. A particular emphasis will
be put on aspects related to the usability for people that are
not expert in formal verification, and to the introduction of
the tool in the actual work practice.

The FSAP/NuSMV-SA platform is available for evalu-
ation from http://sra.itc.it/tools/FSAP. The
download is currently password protected; the password can
be obtained by contacting the authors.

Acknowledgements The work presented in this paper would have not
been possible without the help of Paolo Traverso, Alessandro Cimatti,
and Gabriele Zacco. We would also like to thank the anonymous review-
ers for their helpful and pertinent comments, and Charles Jochim for a
careful reading of a preliminary draft of this paper. Finally, we would



22 M. Bozzano, A. Villafiorita

like to thank the following people working in the ESACS project and,
in particular: Ove Åkerlund (Prover), Pierre Bieber (ONERA), Chris-
tian Bougnol (AIRBUS-F), E. Böde (OFFIS), Matthias Bretschneider
(AIRBUS-D), Antonella Cavallo (Alenia Aeronautica), Charles Castel
(ONERA), Massimo Cifaldi (SIA), Alain Griffault (LaBri, Université
de Bordeaux), C. Kehren (ONERA), Benita Lawrence (AIRBUS-UK),
Andreas Lüdtke (OFFIS), Silvayn Metge (AIRBUS-F), Chris Papado-
poulos (AIRBUS-UK), Renata Passarello (SIA), Thomas Peikenkamp
(OFFIS), Per Persson (Saab), Christel Seguin (ONERA), Luigi Trotta
(Alenia Aeronautica), and Laura Valacca (SIA).

References

1. Abdulla, P.A., Deneux, J., Stålmarck, G., Ågren, H., Åkerlund, O.:
Designing safe, reliable systems using scade. In: Symposium on
Leveraging Applications of Formal Methods ISoLA 2004 (2004)

2. Åkerlund, O., Bieber, P., Böede, E., Bozzano, M., Bretschneider,
M., Castel, C., Cavallo, A., Cifaldi, M., Gauthier, J., Griffault, A.,
Lisagor, O., Lüdtke, A., Metge, S., Papadopoulos, C., Peikenk-
amp, T., Sagaspe, L., Seguin, C., Trivedi, H., Valacca, L.: ISAAC, a
framework for integrated safety analysis of functional, geometrical
and human aspects. In: Proceedings of the European Congress on
Embedded Real Time Software (ERTS 2006) (2006)

3. Aldemir, T.: Computer-assisted Markov Failure Modeling of Pro-
cess Control Systems. IEEE Trans. Reliab. R-36, 133–144 (1987)

4. Arnold, A., Griffault, A., Point, G., Rauzy, A.: The AltaRica for-
malism for describing concurrent systems. Fundam. Inform. 40,
109–124 (2000)

5. Audemard, G., Bertoli, P., Cimatti, A., Korniłowicz, A., Sebastiani,
R.: A SAT based approach for solving formulas over boolean and
linear mathematical propositions. In: Voronkov, A. (ed.) Proceed-
ings Conference on Automated Deduction (CADE-18), vol. 2392 of
LNAI, pp. 195–210. Springer, Berlin Heidelberg New York (2002)

6. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying
Industrial Hybrid Systems with MathSAT. Electron. Notes Theor.
Comp. Sci. 119(2), 17–32 (2005)

7. Audemard, G., Cimatti, A., Korniłowicz, A., Sebastiani, R.:
Bounded Model Checking for Timed Systems. In: Peled, D.A.,
Vardi, M.Y. (eds.) Proceedings Conference on Formal Techniques
for Networked and Distributed Systems (FORTE 2002), vol. 2529
of LNCS, pp. 243–259. Springer, Berlin Heidelberg New York
(2002)

8. Bieber, P., Castel, C., Seguin, C.: Combination of fault tree anal-
ysis and model checking for safety assessment of complex sys-
tem. In: Grandoni, F., Thévenod-Fosse, P. (eds.) Proceedings of
the European Dependable Computing Conference (EDCC-4), vol.
2485 LNCS, pp. 19–31. Springer, Berlin Heidelberg New York
(2002)

9. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model
Checking without BDDs. In: Cleaveland, R. (ed.) Proceedings Con-
ference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS 1999), vol. 1579 of LNCS, pp. 193–207.
Springer, Berlin Heidelberg New York (1999)

10. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Ranise, S.,
van Rossum, P., Sebastiani, R.: Efficient satisfiability modulo the-
ories via delayed theory combination. In: Etessami, K., Rajamani,
S.K. (eds.) Proceedings Conference on Computer Aided Verifica-
tion (CAV 2005), vol. 3576 of LNCS, pp. 335–349. Springer, Berlin
Heidelberg New York (2005)

11. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Ranise, S.,
van Rossum, P., Sebastiani, R.: Efficient theory combination via
boolean search. In: Information and Computation, Special Issue on
Combining Logical Systems (2006) (in press)

12. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Ros-
sum, P., Schulz, S., Sebastiani, R.: An incremental and Layered
Procedure for the satisfiability of linear arithmetic logic. In: Hal-
bwachs, N., Zuck, L.D. (eds.) Proceedings Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS
2005), vol. 3440 of LNCS, pp. 317–333. Springer, Berlin Heidel-
berg New York (2005)

13. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Ros-
sum, P., Schulz, S., Sebastiani, R.: Mathsat: tight integration of
SAT and mathematical decision procedures. J. Autom. Reasoning,
Special Issue on SAT (2006) (in press)

14. Bozzano, M., Cavallo, A., Cifaldi, M., Valacca, L., Villafiorita, A.:
Improving safety assessment of complex systems: an industrial case
study. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) Proceedings of
the Formal Methods Europe Symposium (FM 2003), vol. 2805 of
LNCS, pp. 208–222. Springer, Berlin Heidelbreg New York (2003)

15. Bozzano, M., Villafiorita, A.: Integrating fault tree analysis with
event ordering information. In: Proceedings of the European Safety
and Reliability Conference (ESREL 2003), pp. 247–254. Balkema,
Rotterdam (2003)

16. Bozzano, M., Villafiorita, A., Åkerlund, O., Bieber, P., Bougnol,
C., Böde, E., Bretschneider, M., Cavallo, A., Castel, C., Cifaldi,
M., Cimatti, A., Griffault, A., Kehren, C., Lawrence, B., Lüdtke,
A., Metge, S., Papadopoulos, C., Passarello, R., Peikenkamp, T.,
Persson, P., Seguin, C., Trotta, L., Valacca, L., Zacco, G.: ESACS:
an integrated methodology for design and safety analysis of com-
plex systems. In: Proceedings of the European Safety and Reliabil-
ity Conference (ESREL 2003), pp. 237–245. Balkema, Rotterdam
(2003)

17. Bryant, R.E.: Symbolic boolean manipulation with ordered binary
decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)

18. Chiappini, A., Cimatti, A., Porzia, C., Rotondo, G., Sebastiani, R.,
Traverso, P., Villafiorita, A.: Formal specification and development
of a safety-critical train management system. In: Felici, M., Ka-
noun, K., Pasquini, A. (eds.) Proceedings Conference on Computer
Safety, Reliability and Security (SAFECOMP 1999), vol. 1698 of
LNCS, pp. 410–419. Springer, Berlin Heidelberg New York (1999)

19. Ciardo, G., Jones, R.L., Miner, A.S., Siminiceanu, R.: SMART: Sto-
chastic model analyzer for reliability and timing. In: Proceedings
of the Multiconference on Measurement, Modelling and Evaluation
of Computer-Communication Systems, pp. 29–34 (2001)

20. Ciardo, G., Siminiceanu, R.: Structural symbolic CTL model check-
ing of asynchronous systems. In: Hunt Jr, W.A., Somenzi, F. (eds.)
Proceedings Conference on Computer Aided Verification (CAV
2003), vol. 2725 of LNCS, pp. 40–53. Springer, Berlin Heidelberg
New York (2003)

21. Cimatti, A.: Industrial applications of model checking. In: Cas-
sez, F., Jard, C., Rozoy, B.. Ryan, M.D. (eds.) Proceedings of the
Modeling and Verification of Parallel Processes (MOVEP 2000),
vol. 2067 of LNCS, pp. 153–168. Springer, Berlin Heidelberg New
York (2001)

22. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore,
M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV2: An open-
Source tool for symbolic model checking. In: Brinksma, E., Larsen,
K.G. (eds.) Proceedings Conference on Computer Aided Verifica-
tion (CAV 2002), vol. 2404 of LNCS, pp. 359–364. Springer, Berlin
Heidelberg New York (2002)

23. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: a
new symbolic model checker. Softw. Tools Technol. Transf. 2(4),
410–425 (2000)

24. Cimatti, A., Pieraccini, P.L., Sebastiani, R., Traverso, P., Villafiori-
ta, A.: Formal specification and validation of a vital communication
protocol. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) Proceed-
ings of the World Congress on Formal Methods, (FM 1999), Vol.
II, vol. 1709 of LNCS, pp. 1584–1604. Springer, Berlin Heidelberg
New York (1999)



The FSAP/NuSMV-SA safety analysis platform 23

25. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT
Press, Cambridge (2000)

26. Cojazzi, G., Izquierdo, J.M., Meléndez, E., Perea, M.S.: The Reli-
ability and safety assessment of protection systems by the use of
dynamic event trees. The DYLAM-TRETA Package. In: Proceed-
ings of the XVIII Annual Meeting Spanish Nucl. Soc. (1992)

27. Coudert, O., Madre, J.C.: Implicit and incremental computation of
primes and essential primes of boolean functions. In: Proceedings of
the Design Automation Conference (DAC 1992), pp. 36–39. IEEE
Computer Society Press, (1992)

28. Coudert, O., Madre, J.C.: Fault tree analysis: 1020 prime impli-
cants and beyond. In: Proceedings of the Annual Reliability and
Maintainability Symposium (RAMS 1993), (1993)

29. Dabney, J.B., Harman, T.L.: Mastering Simulink. Prentice Hall,
Englewood Cliffs, NJ (2003)

30. Deneux, J., Åkerlund, O.: A common framework for design and
safety analyses using formal methods. In: Proceedings Conference
on Probabilistic Safety Assessment and Management (PSAM7/ES-
REL’04), (2004)

31. Devooght, J., Smidts, C.: Probabilistic dynamics: the mathemat-
ical and computing problems ahead. In: Aldemir, T., Siu, N.O.,
Mosleh, A., Cacciabue, P.C., Göktepe, B.G. (eds.) Reliability and
Safety Assessment of Dynamic Process Systems, vol. 120 of NATO
ASI Series F, pp. 85–100. Springer, Berlin Heidelberg New York
(1994)

32. Doyle, S.A., Dugan, J.B.: Dependability assessment using binary
decision diagrams (BDDs). In: Proceedings Symposium on Fault-
Tolerant Computing (FTCS 1995), pp. 249–258. IEEE Computer
Society Press (1995)

33. Dugan, J.B., Trivedi, K.S.: Coverage modeling for dependability
analysis of fault-tolerant systems. IEEE Trans. Comput. 38(6), 775–
787 (1989)

34. Dutertre, B., Sorea, M.: Modeling and verification of a fault-tolerant
real-time startup protocol using calendar automata. In: Lakhnech,
Y., Yovine, S. (eds.) Proceedings of the Joint Conference on Formal
Modeling and Analysis of Timed Systems and Formal Techniques in
Real-Time and Fault Tolerant System (FORMATS/FTRTFT 2004),
vol. 3253 of LNCS, pp. 199–214. Springer, Berlin Heidelberg New
York (2004)

35. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property
specifications for finite-state verification. In: Proceedings Confer-
ence on Software Engineering (ICSE 1999), pp. 411–420. ACM
Press (1999)

36. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science, vol. B, pp. 995–1072.
Elsevier, Amsterdam (1990)

37. Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative
temporal reasoning. Real-Time Syst. 4(4), 331–352 (1992)

38. Fenelon, P., McDermid, J.A., Nicholson, M., Pumfrey, D.J.: To-
wards integrated integrated safety analysis and design. Appl. Com-
put. Rev. 2(1), 21–32 (1994)

39. The VIS Group. VIS: a system for verification and synthesis. In:
Alur, R., Henzinger, T.A. (eds.) Proceedings Conference on Com-
puter Aided Verification (CAV 1996), vol. 1102 of LNCS, pp. 428–
432. Springer, Berlin Heidelberg New York (1996)

40. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings
Symposium on Logic in Computer Science (LICS 1996), pp. 278–
292. IEEE Computer Society Press (1996)

41. Henzinger, T.A.: HyTech: A model checker for hybrid systems.
Softw. Tools Technol. Transf. 1, 110–122 (1997)

42. Hinchey, M.G., Bowen, J.P.: (eds.) Industrial Strength Formal
Methods in Practice. Formal Approaches to Computing and Infor-
mation Technology. Springer, Berlin Heidelberg New York (1999)

43. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng.
23(5), 279–295 (1997)

44. Joshi, A., Heimdahl, M.P.E.: Model-based safety analysis of sim-
ulink models using SCADE design verifier. In: Winther, R., Gran,
B.A., Dahll, G. (eds.) Proceedings Conference on Computer Safety,
Reliability and Security (SAFECOMP 2005), vol. 3688 of LNCS,
pp. 122–135. Springer, Berlin Heidelberg New York (2005)

45. Joshi, A., Miller, S.P., Whalen, M., Heimdahl, M.P.E.: A Pro-
posal for Model-Based Safety Analysis. In: Proceedings of the
AIAA/IEEE Digital Avionics Systems Conference (2005)

46. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Softw.
Tools Technol. Transf. 1(1-2), 134–152 (1997)

47. Liggesmeyer, P., Rothfelder, M.: Improving System Reliability with
Automatic Fault Tree Generation. In: Proceedings Symposium on
Fault-Tolerant Computing (FTCS 1998), pp. 90–99. IEEE Com-
puter Society Press (1998)

48. Manian, R., Coppit, D.W., Sullivan, K.J., Dugan, J.B.: Bridging
the gap between fault tree analysis modeling tools and the sys-
tems being modeled. In: Proceedings of the Annual Reliability and
Maintainability Symposium (RAMS 1999), pp. 105–111 (1999)

49. Manian, R., Dugan, J.B., Coppit, D., Sullivan, K.J.: Combining var-
ious solution techniques for dynamic fault tree analysis of computer
systems. In: Proceedings of the High-Assurance Systems Engineer-
ing Symposium (HASE 1998), pp. 21–28. IEEE Computer Society
Press (1998)

50. Manquinho, V.M., Oliveira, A.L., Marques-Silva, J.P.: models and
algorithms for computing minimum-size prime implicants. In: Pro-
ceedings of the International Workshop on Boolean Problems
(IWBP 1998) (1998)

51. Marseguerra, M., Zio, E., Devooght, J., Labeau, P.E.: A concept
paper on dynamic reliability via Monte Carlo simulation. Math.
Comput. Simulat. 47, 371–382 (1998)

52. McMillan, K.L.: Symbolic Model Checking. Kluwer, Netherlands
(1993)

53. Miller, S.P., Tribble, A.C., Heimdahl, M.P.E.: Proving the Shalls.
In: Proceedings of the Formal Methods Europe (FM 2003), vol.
2805 of LNCS, pp. 75–93. Springer, Berlin Heidelberg New York
(2003)

54. Papazoglou, I.A.: Markovian reliability analysis of dynamic sys-
tems. In: Aldemir, T., Siu, N.O., Mosleh, A., Cacciabue, P.C., Gök-
tepe, B.G. (eds.) Reliability and Safety Assessment of Dynamic
Process Systems, vol. 120 of NATO ASI Series F, pp. 24–43.
Springer, Berlin Heidelberg New York (1994)

55. Peikenkamp, T., Böede, E., Brückner, I., Spenke, H., Bretschneider,
M., Holberg, H.-J.: Model-based safety analysis of a flap control
system. In: Proceedings of the International Symposium INCOSE
2004 (2004)

56. Rae, A.: Automatic fault tree generation - missile defence system
case study. Technical Report 00-36, Software Verification Research
Centre, University of Queensland (2000)

57. Rauzy, A.: New algorithms for fault trees analysis. Reliab. Eng.
Syst. Safe. 40(3), 203–211 (1993)

58. Rauzy, A., Dutuit, Y.: Exact and truncated computations of prime
implicants of coherent and non-coherent fault trees within Aralia.
Reliab. Eng. Syst. Safe. 58(2), 127–144 (1997)

59. Schäfer, A.: Combining real-time model-checking and fault tree
analysis. In: Proceedings of the Formal Methods Europe (FM 2003),
vol. 2805 of LNCS, pp. 522–541. Springer, Berlin Heidelberg New
York (2003)

60. Siu, N.O.: Risk assessment for dynamic systems: an overview. Re-
liab. Eng. Syst. Safe. 43, 43–74 (1994)

61. Smidts, C., Devooght, J.: Probabilistic reactor dynamics II. A
Monte-Carlo study of a fast reactor transient. Nucl. Sci. Eng. 111(3),
241–256 (1992)

62. Sullivan, K.J., Dugan, J.B., Coppit, D.: The Galileo fault tree analy-
sis tool. In: Proceedings Symposium on Fault-Tolerant Computing
(FTCS 1999), pp. 232–235. IEEE Computer Society Press (1999)



24 M. Bozzano, A. Villafiorita

63. Tang, Z., Dugan, J.B.: An integrated method for incorporating com-
mon cause failures in system analysis. In: Proceedings of the Annual
Reliability and Maintainability Symposium (2004)

64. Thums, A., Schellhorn, G.: Model checking FTA. In: Proceedings
of the Formal Methods Europe (FM 2003), vol. 2805 of LNCS, pp.
739–757. Springer, Berlin Heidelberg New York (2003)

65. Tribble, A.C., Lempia, D.L., Miller, S.P.: Software safety analysis
of a flight guidance system. In: Proceedings AIAA/IEEE Digital
Avionics Systems Conference (2002)

66. Tribble, A.C., Miller, S.P.: Software safety analysis of a flight man-
agement system vertical navigation function — a status report.
In: Proceedings AIAA/IEEE Digital Avionics Systems Conference
(2003)

67. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree
Handbook. Technical Report NUREG-0492, Systems and Reliabil-
ity Research Office of Nuclear Regulatory Research U.S. Nuclear
Regulatory Commission (1981)

68. Wing, J.M.: A specifier’s introduction to formal methods. IEEE
Comput. 23(9), 8–24 (1990)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


