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Abstract. Insight into the global structure of a state
space is of great help in the analysis of the underlying
process. We advocate the use of visualization for this
purpose and present a method to visualize the structure
of very large state spaces with millions of nodes. The
method uses a clustering based on an equivalence rela-
tion to obtain a simplified representation, which is used
as a backbone for the display of the entire state space.
With this visualization we are able to answer questions
about the global structure of a state space that cannot
easily be answered by conventional methods. We show
this by presenting a number of visualizations of real-world
protocols.
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1 Introduction

In the last decade, advances in computer hardware and
software have made it possible to effectively analyze the
behavior of complex software systems by means of state
transition systems. Techniques based on explicit state
enumeration can now deal with systems consisting of sev-
eral million states and have reached a scale at which they
become sufficiently effective to assist in the design and
testing of real-world software systems. However, they also
confront us with state transition graphs [1] of enormous
dimensions, of which the internal structure is generally
a mystery.
The most common approach to obtaining insight into

the structure of large state spaces is by abstracting from
actions and/or state information and by reducing the
state spacemodulo a suitable equivalence. Suitable equiv-
alences are trace, weak, branching, or strong bisimula-
tion, for example. Although this approach maintains the

behavioral aspect of state spaces, it destroys their struc-
ture. Typical questions that cannot be answered by using
such techniques are:

– How many states are in each phase of a protocol?
– Howmany loosely connected parts, i.e., parts with few
paths between them, does the state space have? This
question might be relevant to determine the effective-
ness of different testing approaches.
– Are there hot spots, i.e., groups of states that are
visited relatively often when randomly traversing the
state space? Are there parts of the state space that
have extremely low probability to be visited?

On top of that, in many cases the reductionist approach
mentioned above does not help in getting insight into the
behavioral aspect of state spaces either. This is simply be-
cause even after abstraction, state spaces are often larger
than a few hundred states, which is well above the limit
of current generic graph drawing packages such as dot [6]
or neato [6], where each state and each transition is ex-
plicitly drawn. Other approaches such as [3, 12], although
targeted specifically at finite automata, suffer from the
same scalability problem.
The images these methods produce suffer from infor-

mation overload, cluttering, and generally take too long
to generate. A recent method by [13] is able to layout
graphs of millions of nodes in a matter of minutes but is
only effective for highly regular gridlike graphs.
This leaves us with analysis techniques like simula-

tion, testing, model checking, and the verification of be-
havioral equivalences. Although such techniques are very
suitable to answer all kinds of questions about state
spaces, they do not provide insight into the structure of
the state space itself.
It is important to realize the vagueness of the prob-

lem we are dealing with here. When trying to apply state
space techniques to real-world cases, researchers initially
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do not have any insight into the structure of this state
space. Not having any insight into the structure of a prob-
lem makes it very hard to formulate concrete questions
about a problem in general. A visualization should there-
fore focus foremost on answering the question: What is
the global structure of this state space? The answers to
more concrete questions, such as how many deadlocks
there are or how many distinct paths there are between
states X and Y, can also be found by using other special-
ized tools and subsequently mapped to the image of the
global state space.
In this paper, which is an extended version of [9],

we present a number of applications of a novel tech-
nique [10] that can effectively display state transition
systems consisting of millions of states and clarify their
structure in this way. Essentially, the scalability of the
technique is limited by the capacities of the graphics
hardware. With the fast development of graphics hard-
ware (a scene that took 20min to render in 1998 can now
be displayed at 60 Hz), our visualization technique will
soon be suitable for much larger state spaces. Besides
being scalable, this technique is also computationally in-
expensive and very predictable (that is, local changes
in structure usually do not lead to global changes in
visualization). A prototype version is freely available
at http://www.win.tue.nl/∼fvham/fsm/.
Input state spaces are generated on the basis of behav-

ioral specifications in µCRL [4] fromwhich state spaces in
SVC format [14] are produced, although the tool also ac-
cepts different formats (such as BCG) through the use of
conversion tools. In these state spaces transitions are la-
beled with an action’s name and states are labeled with
a vector of data values. The basic idea underlying the vi-
sualization technique is to use a simplified representation
in the form of a tree as a backbone for the entire struc-
ture. First, the state space is layered using the shortest
path distance of each node to the root. Then, the tree
structure is obtained by clustering sets of states in each
layer such that for each set a unique path to the root
is obtained. Each set of states is subsequently modeled
using a disk shape in a 3D space. Finally, all disks are
connected in a manner resembling cone trees [17], form-
ing the shapes such as the ones in Figs. 8, 9, and 13.
Note that visual cues such as interactive motion, color,
lighting, and transparency all add strongly to the 3D per-
ception of the shapes; the black-and-white still pictures
in this print are by no means comparable to the on-
screen images. After visualizing the state space as a tree-
shaped 3D object we can use coloring to stress particu-
lar aspects of the state space. Typically, coloring can
be induced by intrinsic properties, such as the value of
the transition label or statevector, or derived properties,
such as the probability to visit a state during a random
walk.
In the next section we elaborate on the clustering

method mentioned above. Section 3 presents visualiza-
tions of real-world examples, and we conclude in Sect. 4.

2 The visualization algorithm

As mentioned in the previous section, we are aiming for
a visualization that will help us understand the global
structure of the state space. More concretely, the struc-
tural aspects that we would like the visualization to pre-
serve are:

– Distances: we would like the visualization to preserve
the graph theoretic distance from a state to the initial
state. That is, states that can be reached from the ini-
tial state in a few steps should be positioned close to
the initial state and vice versa.
– Symmetries: since (mathematically generated) state
spaces are often highly symmetrical, we would like the
visualization to reflect these symmetries.
– Size: larger groups of nodes at equal distance from
the initial state should be represented by larger visual
elements.

Note that we do not claim that any visualization that
addresses these points is the visualization of the global
structure of the graph. In fact, creating a visualization
that shows all structural properties of a large state tran-
sition graph and is invariant to algebraic reductions of
the state space might well be an impossible task. We are
merely trying to create a picture of a particular state
transition graph that shows a number of its structural as-
pects. The next sections will discuss the construction of
our visualization in detail.

2.1 Formal graph structure

Since it is impossible for a human to cope with pictures
containing hundreds of thousands of data elements, no
matter what visualization method we use, it is unavoid-
able to bring a state space back to a manageable number
of elements if we wish to visualize it. Where conventional
methods generally reduce a state space to a smaller one
based on behavioral information, we do not apply any
reduction and use only structural information to cluster
states together.A state transition systemcanbedefinedas
a 4-tuple (S,Act, T, s), where S is the set of states, Act is
a set ofpossible actions, the relationT ∈ S×Act×S is a la-
beled transition relation, and s ∈ S is the system’s initial
state. Each state consists of a vector of parameter values.
We can represent the corresponding state transition graph
by a graph (V,E, s) where a node x ∈ V represents a state
and axy ∈ (E ⊆ V ×V ) represents a directed edge (or arc)
between the nodes x and y. An arc exists for every transi-
tion in the corresponding state transition system.
The first step in the reduction process is to assign

each individual node a nonnegative layer or rank. The
most common method is to assign each node x a rank
Rank(x) depending on its distance from the start node,
taking edge direction into account. But other ranking al-
gorithms are also possible, such as using a similar layer-
ing that ignores edge direction. In the remainder of this
paper we refer to arcs running from a low-ranked node
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to a higher-ranked node as arcs pointing downward and
draw these accordingly. In our ranking, all connections
between consecutive ranks point downward, but unde-
sirable long up-arcs spanning more than one rank (we
call these backpointers) are frequent. These backpointers
tend to spoil the resulting visualization because their end-
points can potentially be very far apart, resulting in long
edges, so in our application we can interactively choose to
display or hide them.
In a second step we cluster nodes based on an equiva-

lence relation. To facilitate the definition of this relation,
we define a new edge set E′ by slightly modifying our
original edge set E. We remove all backpointers and re-
verse the direction of all other up-arcs in E (if any). Note
that in the final visualization, we display the original edge
set E, but we base the layout on E′. We shall refer to
the graph induced by the vertex set V and the modified
edge set E′ as graph G′. In our modified edge set E′, all
arcs are now either down-arcs or arcs connecting equally
ranked nodes. Let D(x) be the set of all nodes that can
be reached from node x via zero or more arcs in E. We
now define two nodes x and y to be equivalent if and only
if there exists a sequence x= z1, z2, . . . , zN = y of nodes
with equal rank such that for all 1≤ i < N it holds that
D(zi)∩D(zi+1) �= ∅ (Fig. 1).
We use the resulting equivalence classes as clusters

and define a relation between clusters by extending the
concept of rank from nodes to clusters, that is, the rank
of a cluster C is equal to the rank of any node in C (since
all nodes in C have equal rank). We now define a clus-
ter C1 to be an ancestor of a cluster C2 iff Rank(C1) =
Rank(C2)− 1 and there exists an arc in E′ connecting
a node in C1 with a node in C2. A cluster C2 is defined
to be a descendant of C1 if and only if C1 is an ances-
tor of C2. The resulting cluster structure forms a tree
with the cluster containing the start node at the root.
Figure 3 shows a small input graph and its resulting back-
bone structure.
Of course, in a usable application the implementation

of this clustering process will have to be linear. Instead

Fig. 1. Nodes x and y are equivalent, whereas
nodes x and a are not

of using the naive approach of storingD(x) for each node
x and subsequently checking for nonempty intersections,
we used a recursive algorithm that clusters all nodes in
linear time. We will outline the algorithm for comput-
ing the backbone tree of a graph G = (V,E) below. As-
sume that each node n has already been given a rank
R(n) and the reduced graphG′ has been computed. Con-
sider the nodes v and x with avx an arc in G

′. According
to the definition of G′, there are two cases for x, either
R(x) = R(v) or R(x) = R(v)+1. In the first case, node
x is equivalent with node v since D(x) and D(v) have
a nonempty intersection containing at least x. So x and v
are in the same cluster.
The second case is more complicated. If the ranks of

v and x differ, they are not in the same cluster. However,
arcs crossing ranks can induce that v has to be merged
with other nodes without a direct connection with v. We
therefore first compute the cluster of x. For all nodes y
in the cluster of x we can state that D(x)∩D(y) is not
empty. Hence, for all these nodes y we have to add all
nodes w with an arc awy ∈E′ and a rank equal to R(v) to
the cluster of v, since D(v)∩D(w) is not empty (Fig. 2).
These two cases form the heart of the recursive pro-

cedure ClusterTree(v:Node,c:ClusterNode) given in

Fig. 2. Cluster algorithm case analysis

Fig. 3. Applying the cluster algorithm to a small graph
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Fig. 5. The precondition of this procedure is that all
nodes in c.Nodes are in the same cluster as node v and
v.Cluster = nil, that is, v has not yet been assigned to
a cluster. A postcondition for the procedure is that the
subtree of the backbone tree with its root at the cluster
of v has been fully computed. The cluster algorithm has
a time complexity linear in both the number of edges and
the number of vertices of G′ since each edge is traveled at
most once and each vertex is at most once a parameter for
the procedure.

2.2 Backbone construction

Since the tree structure of clusters we obtained is much
less complex than our original graph, we use it as a back-
bone for visualizing the entire graph. Before describing
the visualization method in detail, we state our general
requirements for the visualization.

– Symmetry is important, and therefore a visualization
that produces a more symmetrical picture is to be fa-
vored. Clusters and nodes with the same structural
properties should be treated in the same way.
– There has to be a clear visual relationship between
the backbone structure and the actual graph. It is eas-
ier for the user to maintain context when inspecting
a small section in detail if it looks approximately the
same in closeup view as it did in the global overview.
– The size of the clusters has to be related to the number
of nodes in a cluster to prevent nodes from cluttering
together on the display. Clusters with a larger num-
ber of nodes have to be visualized by larger visual
elements.

Although classical 2D tree layouts are very pre-
dictable, familiar, and easy to use, the lack of visual-
ization space quickly becomes a problem when dealing
with larger graphs, especially when considering that we
want to visualize larger clusters as larger nodes in the
tree. A popular technique to deal with this problem is to
move from a 2D to a 3D layout, which gives us an extra
dimension to increase the cluster size. We aim for a vi-
sualization that depicts clusters as circles in a horizontal
plane. A plane is reserved for each rank, with the topmost
plane containing clusters with rank 0. The backbone tree
is laid out in a manner resembling cone trees [17], with
ancestor clusters positioned at the apex of an imaginary
cone and their descendant clusters distributed over the
base of this cone. To emphasize the hierarchy in the clus-
ter structure, truncated cones are drawn between related
clusters. The overall process adheres to the basic concepts
of cone trees but with a few alterations: A. Clusters (the
nodes in the cone tree) are visualized as circles of different
sizes. B. Symmetry is improved by also allowing clusters
to be positioned in the center of the cone’s base. C. The
final resulting structure is given more “body,” and extra
visual cues are added.
Ad A. Normal cone trees consist of a collection of

similar looking nodes. The tree nodes in our modified

cone tree, however, are the clusters we defined in the
previous section. Since each cluster contains a different
number of nodes, we represent them by different sized cir-
cles. Nodes will be placed on the circle boundary, so we
choose to keep the circle’s circumference proportional to
the number of nodes in the cluster, which results in the
same amount of visualization space for each node.

Ad B. We present a heuristic for creating symmetrical
layouts and discern the following cases for the positioning
of the N descendant clusters of a cluster A:
If N = 1, the descendant cluster is positioned directly
below A. If N > 1 we space the clusters evenly over the
base of a cone with its apex at the center of A. The base
diameter of this cone can be computed by using a recur-
sive method similar to the one used by [5]. However, since
positioning all N descendant clusters over the base may
not always yield a symmetrical solution, we make the fol-
lowing three exceptions:

– If there is a unique largest cluster among the descen-
dant clusters, we position this cluster directly below
A in the center of the cone’s base (Fig. 4a).
– If there is one unique smallest cluster among the de-
scendant clusters, we center this cluster when there
are no largest clusters centered (Fig. 4b) or when there
is a largest cluster centered and the smallest cluster
has no descendants. This prevents clusters from po-
tentially overlapping each other.
– If after centering clusters based on the above excep-
tions only one noncentered cluster remains, we choose
not to center the largest cluster. This produces a more
balanced layout (Fig. 4c).

Ad C. Since nodes are positioned on the circle bound-
aries, most edges between nodes in a cluster and nodes
in a descendant cluster will typically run within a section
of space bounded by a truncated cone. A simple but ef-
fective way to reduce the visual complexity of the graph,
then, is to visualize these two clusters as a truncated cone.
The cone’s top radius is set equal to the radius of the
ancestor cluster, and the cone’s bottom radius is equal
to the radius of the descendant cluster. If we are deal-
ing with multiple descendant clusters, the cone’s bottom
radius is equal to the radius of the base of the (imagi-
nary) cone the clusters are positioned on and we draw
the cone with higher transparency. Although this method
provides a good overview of the graph’s global structural

Fig. 4. Distributing clusters over cone base (top view)
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Fig. 5. Algorithm pseudocode

properties, it suffers from some problems inherent to 3D
visualizations, the most notable being the problem of ob-
jects occluding each other. To overcome this problem and
at the same time improve use of available visualization
space, we rotate noncentered clusters (and their descen-
dants) slightly outward.

2.3 Node positioning

The previous two subsections presented a method to re-
duce visual detail by clustering nodes and described how
to visualize this reduced structure. The next step is to as-
sign an optimal position to the individual nodes in the
graph given the fact that nodes are positioned on the cir-
cle edge. An optimal positioning of nodes satisfies the
following requirements:

– Short edges between nodes. A visualization is more ef-
fective if a node is kept close to its neighbors.
– Maximum possible distance between nodes in the
same cluster. Nodes are to be kept as far apart as pos-
sible to reduce cluttering and may not coincide.
– Emphasis on symmetry. Where possible, emphasize
symmetry in the structure by positioning nodes with
the same properties in the same way.

Clearly the first two requirements contradict, since posi-
tioning two nodes in the same cluster that have the same
parent node further apart leads to a greater total edge
length. Another problem is the computational complex-
ity. Although positions can be calculated by minimizing
an error function or using a force-directed approach, the
number of nodes we are dealing with is generally too large
to provide visualization at an interactive level. We there-
fore select a rule-based approach in which the position of

a node is governed by local structural node properties.We
use a two-step heuristic to position the nodes. First, we
assign initial positions, based on the positions of nodes in
ancestor clusters, similar to [18]. That is, nodes are po-
sitioned at the barycenter of their parents’ position. To
enforce some regularity on the resulting layout, each clus-
ter is subdivided into a number of slots, after which nodes
are rounded to the nearest slot. In a second step, we ad-
just these positions to increase the internode distance by
dividing nodes sharing a slot symmetrically over a section
of the cluster. The size of this section is governed by the
occupancy of neighboring slots. A more detailed descrip-
tion of the layout method can be found in [10].
Given the positions of the nodes, the edges between

them can be visualized. The standard way to show edges
is simply to draw a straight line between two nodes. Edge
direction is then usually depicted with a small arrowhead,
or with transparency or edge thickness. We found that
such subtle cues are not effective here because of the huge
number of edges. Also, the use of color is not the most in-
tuitive cue. To show direction more effectively, we used
the shape of an edge to indicate whether we are deal-
ing with a downward or backward edge. Straight lines
indicate downward edges, while curved lines denote up-
ward edges (Fig. 8). This cue is very effective and provides
a more natural way to emphasize cycles in the graph and
also prevents backward edges from being obscured be-
cause they are now shown outside the cluster structure.

3 Examples

Where the previous sections were concerned with the
construction of the visualization itself, this section will
present the application of the technique.

3.1 Capabilities

Although the main purpose of the visualization is to give
insight into the global structure of the entire state space,
we can also use the image of the state space to make state-
ments on specific aspects of the state space. Currently the
tool can show:

– (a) Symmetries: Since the layout method maintains
symmetries in the input graph, symmetries in the
graph can be spotted by simply looking for symmetri-
cal sections in the image.
– (b) Parallelism: During parallel execution of pro-
cesses the number of possible program states expands
rapidly. When more and more processes finish execu-
tion, the number of possible states decreases over time
(see also Fig. 6). This behavior can generally be spot-
ted by looking for expanding and contracting bulks in
the image. Figure 9 shows that iterative parallel deliv-
ery of data causes the many consecutive bulges that
can be observed, especially in the figures for five and
seven jacks.
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Fig. 6. Parallel composition of linear processes a1 ·a2 ·a3
and b1 · b2 · b3 illustrating expansion
in the number of possible states

– (c) Probabilities:When given probabilistic informa-
tion on each transition, we can assign a probability to
each state by simulating a random walk originating at
the initial state. If we have no probabilistic informa-
tion, we can distribute probabilities evenly over the
outgoing edges of each node. We can then use the
global overview of the graph to visualize this informa-
tion by coloring the clusters based on average proba-
bility, with high-probability sections in a darker color,
helping us to spot live locks for example.
– (d) Deadlocks: We can easily mark deadlocks by
having the system color clusters that contain dead-
locks. Deadlocks can be identified in linear time by the
system by checking all states in the graph.
– (e) Initialization phases: Initialization phases can
be spotted by visualizing all backpointers and check-
ing whether some of them return to the initial state. If
they do not, this means that the initial state cannot be
reached for a second time after execution commences.
– (f) Semantics: To allow a user to relate the image
of the state space to the specification of that state
space, we can mark states that have a specific value
for a state parameter. This allows the user to pin be-
havioral aspects to different sections of the graph. To
keep the user from having to select each possible state
parameter/value combination to see which one is the
best match for a given section, we also implemented
a reverse mapping. That is, the user can select a spe-
cific section, and the tool gives a list of parameter
value pairs with the best correlation.

The rest of this section contains some examples of sit-
uations in which a visualization of a finite automaton
provides useful information that would be very hard to
extract using conventional methods. Where possible, we
refer back to the list above to indicate which tool capa-
bilities we used to make a given observation. The first
example consists of two simple, similar automata and is
meant to illustrate the algorithm outlined in the previous

section. The second and third are examples of real-world
industrial protocols. The last paragraph describes some
observations that we made when applying this method to
systems in the VLTS Benchmark [7] set.

3.2 The alternating bit protocol and the PAR protocol

The alternating bit protocol (ABP) is a communica-
tion protocol concerned with data transmission between
a sender S and a receiver R over unreliable channels K
and L [2]. When sending a datum d, S appends a bit 0
to the datum and sends it to R over K. Upon correct re-
ceipt of this datum, R sends an acknowledgement bit 0
back to S over L. S then transmits a new datum with
bit 1 appended if the acknowledgement is correctly re-
ceived or resends the original datum with bit 0 if not.
Both channels K and L can corrupt the data, resulting
in the delivery of an error indication ⊥ instead of the ori-
ginal datum. The formal specification of the ABP is given
in Table 1.
In this section we present visualizations of the ABP

and one of its variations, the positive acknowledgement
with retransmission (PAR) protocol [16]. Figure 7 shows
different visualizations of models of both protocols using
two different data elements in the transmission. Individ-
ual states are depicted as spheres, transitions between
states as lines, while backpointers as arcs. A truncated
cone between a cluster and its multiple descendants is
rendered more transparent and shows up lighter than the
other cones. The start node is always located at the top of
the visualization.
All visualizations depicted in Fig. 7 show a high de-

gree of left–right symmetry (a) in the vertical axis, since

Table 1. ABP formal specification and schematic

Sender

S = S0 ·S1 ·S
Sn=

∑
d∈D r1(d) ·Snd

Snd = s2(dn) ·Tnd
Tnd = (r6(1−n)+ r6(⊥)) ·Snd+ r6(n)

Receiver

R=R1 ·R0 ·R
Rn= (

∑
d∈D r3(dn)+ r3(⊥)) ·s5(n) ·Rn

+
∑
d∈D r3(d(1−n)) ·s4(d) ·s5(1−n)

Channels

K =
∑
x∈D r2(x)(s3(x)+ s3(⊥)) ·K

L=
∑
n=0,1 r5(n)(s6(n)+ s6(⊥)) ·L
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Fig. 7a,b. Communication protocols: ABP reduced modulo
strong bisimulation with manual annotations (a) and
PAR reduced modulo strong bisimulation (b)

the behavior for both data elements is identical. This vi-
sualization clearly displays regularities in the alternating
bit protocol. The behavior in the top half is identical to
the behavior in the bottom part, with the distinguish-
ing factor being the control bit sent with the data. The
four protrusions on both sides of the visualization repre-
sent sections of the protocol where it handles errors in the
transmission of the datum (first and third from the top)
and errors in the acknowledgement of a transmission (sec-
ond and fourth from the top). The protocol handles the
error and then loops back to the state immediately before
the failed transmission to retry.
The PAR protocol globally resembles the ABP but

differs in the way errors are handled. Where the ABP as-
sumes nonlossy channels, the communication channels in

PAR can lose data. To cope with this additional prob-
lem, a timer is integrated into the protocol, which gener-
ates a timeout on loss or corruption of a message. This
explains why the first and third protrusions are much
smaller since PAR deals with errors in transmission more
efficiently than ABP: on loss or corruption a timeout is
delivered directly to the sender, which can then immedi-
ately retransmit. The ABP has to use the acknowledge-
ment channel to communicate this. The handling of er-
rors in acknowledgement transmission (second and fourth
protrusion) is very similar, except that PAR has an addi-
tional possibility of message loss, accounting for the wider
section in the visualization, and that errors arising while
resending the data can be dealt with quicker thanks to the
timeout (accounting for the shorter loop inside the PAR
error handling).

3.3 A modular jack system

This section deals with the communication protocol for
a modular jack system. The protocol regulates the com-
munication between an expandable set of industrial jack
platforms, allowing the entire set of jacks to be operated
from the controls of any one jack. All jacks communicate
via a ring-shaped shared bus. The protocol was formally
modeled and analyzed in [8], and the exact formulation
of the protocol that we visualize is distributed with the
µCRL toolset [4]. Figure 8 shows the visualization of the
protocol when it has to synchronize two separate jack
platforms. One of the immediate features is the existence
of two separate but symmetric legs (a). Although this fea-
ture is very apparent from the picture, the researchers
involved did not realize this until they observed the pic-
ture. Generally, the protocol for k jacks has k independent
legs.
Another feature that is hard to extract using conven-

tional analysis is the fact that the protocol clearly starts
with an initialization phase (Fig. 8e), the end of which is
marked by a large number of returning backpointers (see
arrows in Fig. 8). Looking at the formal description the
initialization phase assigns a consecutive global number-
ing to all jacks, with each jack having equal opportunity
to become the first. This also explains why the two sec-
tions are symmetrical; after all, the observable behavior
of the entire setup should be insensitive to the number-
ing scheme used. To illustrate this in Fig. 8, we marked
those states in the system in which a jack has been num-
bered 1 (dark area in the right leg). This implies that
in the remaining states this jack has been numbered 0,
and that, during the initialization, both jacks are num-
bered 0 (f).
Another interesting observation is that the general be-

havior of a system of two platforms is visually very similar
to the behavior of a system of three platforms, consist-
ing of approximately 3000 states. Figure 9 shows such
a behavior. Notice the three identical sections and how
different subsections of the graph visually correspond to
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Fig. 8. Modular jack communication protocol for 2 jacks

sections of the two-platform graph. The fact that simi-
lar graphs give similar pictures is a major advantage of
this method, allowing the application of insight gained
into simplified versions of behavior to more complex be-
haviors. Figure 9 also depicts the full state spaces of five
and seven communicating jack platforms, the latter con-
sisting of over one million states. This visualization also
shows a bug in the protocol: the small encircled section
that splits off during the initialization phase of the pro-
tocol has no returning backpointers, which means that
states at the end of this appendix are deadlock states (d).
This was not the case in the two-jack version. Note that
these features can also easily be spotted by conventional
analysis (actually, in this case they have been, see [8]);
nevertheless a picture in which you can actually point out
the bug is a great asset in communication.
We can also use this visualization method to inspect

sections of the protocol in detail. Figure 10a shows a sec-
tion that deals with the bus communication of the three-
jack system. When one of the jacks is instructed to per-

form a common action (i.e., move all jack platforms up
synchronously), all jacks are first brought into standby
mode. From the top two states (which are actually bisim-
ilar) the first jack broadcasts a “ready for standby” mes-
sage to all other jacks (1). These messages can be re-
ceived by the other jacks in any order in which is ex-
plained the branching at (2). In the two (bisimilar) top
states at (3), both of the other jacks have received the
message. The next jack in line broadcasts its “ready for
standby” message at (3), and this process repeats itself
for every jack in the system. Finally, at (4) the origi-
nating jack broadcasts an “all move up” message to the
other jacks. In the five- and seven-jack systems in Fig. 9,
this typical communication pattern (b) is also abun-
dant, which leads us to estimate that in these graphs
at least 50% of the states is related to communication
activities.
Another interesting feature is the ability to perform

stochastic analysis (c) on different automata. Assuming
each transition has an equal probability of occurring, we
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Fig. 9. Protocols for a setup of 3 jacks (2860 states), 5 jacks (70926 states), and 7 jacks (1025844 states), respectively.
Backpointers are hidden for the latter two

can gain insight into which states in the process have
a relatively high probability of being visited by simulating
a random walk. We can then visualize this information by
coloring clusters based on these probabilities. Figure 10b
shows such a visualization, based on one part of the two-
leg-jack protocol. In this case high-probability (dark) sec-
tions are located directly behind incoming backpointers
and in the two small extrusions on the left of the picture
due to the large number of short cycles there. These types
of pictures are even more useful if real-world probability
data are used. This would make it possible to make a clear
distinction between states that are in those parts of the
automaton that deal with, for example, error handling
and states that are part of the main body of the process.

3.4 The link layer of IEEE 1394

The final example deals with the link layer of the IEEE
1394-1995 [11] (also known as FireWire or I. Link) com-
munication protocol. FireWire is a widely used high-
speed serial protocol. Some effort was put into formally
analyzing FireWire, resulting in a formal model of the
link layer, which provides an interface between the high-
level transaction layer and the physical layer [15]. Based
on this model, the state transition system of two FireWire
nodes sharing a common databus was generated, in which
we abstracted from the data being transferred. We ended
up with a state space of approximately 25000 nodes,
which is shown in Fig. 11.
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Fig. 10a,b. Detail section of three-jack protocol (a) and stochastic analysis
of two-jack protocol (b)

One of the most notable features of this visualization
is the similarity between the two disk-shaped “bulks” at
the top and bottom. These are communication phases
(b), since the number of states locally expands and then
converges again. Both are separated by a relatively thin
funnel, consisting of a comparatively small number of
states. This type of information is not easily extracted by
conventional methods yet can be very useful for testing
purposes. During a test run it makes sense to flag states
in the funnel to see if these are reached, which indicates
the lower bulk is being tested, too. Also, testing in general
lends itself well to visualization, since it probably would
be desirable to run test traces that cover as much of the
state space as possible. A visualization technique such as
this one could make it much easier to see what parts of the
state space are already covered by tests, for example by
rendering a trace in the actual visualization (Fig. 11).

Another question that comes to mind is why we are
seeing two similar bulks (Fig. 11a). Although the general
behavior for both is almost identical, their state vectors
differ. If we could determine a value of a state variable
that is unique for the bottom bulk, we could pin a seman-
tic meaning to that specific part of the graph. A naive way
of doing this would be to color states based on a specific
value for a state variable. If we do this for all possible com-
binations of variables and values, we can visually deter-
mine which variable/value combination might be unique
for that part (f). Unfortunately in this case we are dealing
with 50 state variables each having a number of possible
values. A more efficient way to accomplish this is to select
a part of the visualization and subsequently correlating
states in this part with the set of states with a particular
value for a parameter. The correlation between the two
properties x and y over N samples can be given by the
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Fig. 11. Rendering a test trace in the visualization of IEEE 1394

Pearson correlation coefficient r:

r =
N
∑
xy−

∑
x
∑
y

√
(N
∑
x2− (

∑
y)2)(N

∑
y2− (

∑
y)2)

.

Suppose we wish to know the correlation between the
two properties x and y, informally specified, respectively,
as “a node has value v for state parameter pi” and “a node
is an element of a selected set of nodes S.” If we substi-

tute a numeric value of 1 for true and 0 for false, we obtain
a binary value pair (x, y) for each of theN nodes. The cor-
relation coefficient can then be computed by substituting:
∑
x2 =

∑
x= |n ∈ V : n.pi = v| ,

∑
y2 =

∑
y = |S| ,

∑
xy = |(n ∈ V : n.pi = v)∩S| .
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Computing r for all possible combinations of pi and v
yields a list of correlation factors between −1 and 1.
A value close to 1 indicates that a property pi = v is typ-
ical for the selected region. A value of −1 indicates that
none of the nodes in S has the property pi = v, while all
other nodes do. If we do this for all possible combinations
of state parameters and values, we end up with a list of
correlation factors, of which the ones closest to 1 indicate
the best match.
Applying this method on the nodes in the bottom part

of Fig. 12 gives us one parameter/value combination that
is an almost perfect match. These states are marked in
Fig. 12a. Looking back at the formal specification we ob-
served that the parameter in question was a Boolean ar-
ray b of length two that keeps track of which nodes have
already requested use of the bus during a so-called fair-
ness interval. A fairness interval is a fixed amount of time
during which all connected nodes should have had the
opportunity to use the shared bus if they needed to. All
nodes in the marked (darker) set in Fig. 12a have a value
of [true, true] for b, indicating that in the bottom bulk
both nodes have already requested the bus during the
current fairness interval. From this information we can
deduce that in the top part a single node has requested
use. To illustrate this, Fig. 12b shows the collection of
states where b= [false, true].
Although we expected the top bulk to be symmetri-

cal, in fact it is not. The fanlike marked section in Fig. 8b,
for example, is not repeated in the top section. There
are subtle differences in symmetry, which means that the
simulated behavior of the system differs slightly based
on which one of the two nodes requests the bus first
in the upper bulk of the protocol. Whether this differ-
ence lies in the protocol itself or in the formal descrip-
tion of the protocol turns out to be a question that nei-

Fig. 12a,b. States where state variable b= [true, true] (a) and states where b= [false, true] (b)

ther we nor the author of [15] has been able to answer
yet.

3.5 The VLTS Benchmark set

The Very Large Transition System (VLTS) Benchmark
set [7] is a recent set of currently 40 real-world la-
beled transition systems, meant to serve as a test set
for scientific tools and algorithms dealing with transi-
tion systems. Sizes of the transition systems in the set
vary from a few hundred nodes to 33 million nodes.
We applied our visualization algorithm to the tran-
sition systems in the set, up to the point where we
ran out of physical memory. Figure 13 shows a sub-
set of this collection; the full version can be viewed
at http://www.win.tue.nl/∼fvham/fsm/. Visual rep-
resentation of these large graphs allows for a number of
hypotheses that can be made almost immediately. Firstly,
it seems like vasy_25_25 and vasy_40_60 are both very
regular graphs, although the fact that vasy_25_25 is
a line graph could also be deduced from both the num-
ber of nodes and edges and the fact that it is connected.
Secondly, cwi_371_641 bears a strong resemblance to
the state space of the FireWire protocol in the previous
section and is in fact generated from the same formal
description [15]. Such strong global similarities between
a graph of 25k and a graph of 371k nodes could not
have been found with any conventional tool, or even by
comparing these graphs computationally node by node.
A closer inspection of the visualizations reveals that
vasy_83_325 and vasy_166_651 have very similar rep-
resentations; they also happen to have come from the
same industrial application. Apart from these observa-
tions, minor observations such as the fact that vasy_8_38
is symmetrical and has a large number of deadlocks, con-
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Fig. 13. A number of visualizations of transition systems taken from the VLTS benchmark set
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sidering the relatively small number of backpointers, or
the fact that cwi_214_648 has a strong branching struc-
ture can prove very valuable when trying to understand
the global structure of a state space.

4 Conclusions

In this paper we have made a case for the use of a new vi-
sualization technique to gain more understanding of large
state spaces. Its main advantages over the few existing vi-
sualization techniques are:

– High scalability: By not displaying each individ-
ual state and transition we can effectively visualize
a number of nodes that is at least two orders of magni-
tude larger than the best conventional techniques. On
a medium desktop PC with a high-end graphics card
we were able to display visualizations of graphs con-
sisting of over a million nodes. At the same time, the
user is still able to interactively zoom in on parts of
interest and view individual transitions if needed.
– Predictability: In contrast to some other popular
graph layout approaches (e.g., force-directed methods
or simulated annealing) this method is highly pre-
dictable. As a consequence, similar input graphs also
lead to similar looking visualizations. This allows us
to compare graphs that are generated from similar for-
mal descriptions but have widely differing sizes.
– Speed: The performance of the method for large
graphs is currently limited by available memory and
the speed of the graphics card. The algorithm that
generates the global layouts has a time complexity
that is linear in both the number of states and the
number of edges. See Table 2 for details. The visualiza-
tion itself is instantaneous.
– Interactivity: Since it is impossible to display all in-
formation related to a state transition graph in a sin-
gle picture, interaction is critical. In our application,
the user is enabled to zoom into subsections of inter-

Table 2. Timing and memory results on a number of real-world
graphs, measured on a 2.4-GHz Pentium IV

Nodes Edges Time (s) Memory (MB)

191 244 0.016 0.2
429 592 0.016 0.4
2860 4485 0.047 2
15409 27152 0.203 10
18746 73043 0.29 16
70926 145915 1.187 51
157604 297000 11.31 111
164865 1619204 26.34 236
166464 651168 13.18 125
214202 684419 3.19 167
386496 1171872 16.04 310
1025844 2932909 93.68 750

est, color parts of the system based on state vector
values or transition label values, query state variables,
perform stochastic analysis, and much more.

This does not mean, however, that this technique is the
ultimate answer to every question one might have for
a specific state transition graph. As with any visualiza-
tion technique it is simply meant as a support tool, to
complement other techniques. Nevertheless, a tool that
is capable of producing a meaningful image of very large
state spaces greatly enhances one’s general understand-
ing of these state spaces.
Unfortunately, the method also has its weak points

(see also Fig. 14). Firstly, it does not deal well with large
graphs that are highly connected, that is, graphs in which
the average shortest path length between states is small.
In this case, nodes tend to group together in a very small
number of clusters, which gives no information on the in-
ternal structure of the graph. Secondly, the method is not
stable in the sense that in worst-case scenarios, adding
a single state to the graph might radically change the
global layout if this state connects two previously un-
connected sections. Thirdly, the layout algorithm used to
position individual nodes in a cluster does not always pro-
duce an optimal layout. Finally, we found that researchers
whom confronted with visualization of their own state
spaces generally had a hard time interpreting the pic-
tures because in most cases they had no reference as to
what the state space they were analyzing should look like.
The option to mark sections of the visualization based
on a specific state parameter or transition label proved
a great help in relating the original specification to the
shape of the visualization.
Future work on this method will focus on integrat-

ing state reduction techniques such as abstraction and
bisimulation into the visualization. One can think of the
possibility of interactively collapsing similar looking sub-
sections or a visualization of a large state space morphing
into a smaller version. We also plan to look into recur-
sively applying this method to more complex sections of
graphs, which may split large clusters into a number of
smaller ones. Finally, the method currently has a rather
large memory footprint, and we are working to improve
this.

Fig. 14a,b. Situations in which the visualiza-
tion does not perform well: (a) adding a new
state to two previously unconnected states and
(b) graphs with a small average path length
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Summarizing, we have not seen any technique that
even remotely resembles ours, and we sincerely believe
that this visualization technique is a great step forward
in understanding the global structure of state transition
diagrams. Actually, by looking at and interacting with
the visualization tool we became aware of many proper-
ties of state spaces that, although sometimes obvious and
sometimes more obscure, we had not realized until we saw
them.
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