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Abstract The method of invisible invariants was developed
originally in order to verify safety properties of parame-
terized systems in a fully automatic manner. The method
is based on (1) a project&generalize heuristic to generate
auxiliary constructs for parameterized systems and (2) a
small-model theorem, implying that it is sufficient to check
the validity of logical assertions of a certain syntactic form
on small instantiations of a parameterized system. The
approach can be generalized to any deductive proof rule
that (1) requires auxiliary constructs that can be generated
by project&generalize, and (2) the premises resulting
when using the constructs are of the form covered by the
small-model theorem.

The method of invisible ranking, presented here, gener-
alizes the approach to liveness properties of parameterized
systems. Starting with a proof rule and cases where the
method can be applied almost “as is,” the paper progresses
to develop deductive proof rules for liveness and extend the
small-model theorem to cover many intricate families of
parameterized systems.
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1 Introduction

Uniform verification of parameterized systems is one of the
most challenging problems in verification. Given a parame-
terized system S(N) : P[1]||---]|| P[N] and a property p,
uniform verification attempts to verify that S(V) satisfies p
for every N > 1. One of the most powerful approaches to
verification that is not restricted to finite-state systems is de-
ductive verification. This approach is based on a set of proof
rules in which the user has to establish the validity of a list
of premises in order to validate a given temporal property of
the system. The two tasks that the user has to perform are:

1. Provide some auxiliary constructs that appear in the
premises of the rule;

2. Use the auxiliary constructs to establish the logical
validity of the premises.

When performing manual deductive verification, the first
task is usually the more difficult one, requiring ingenuity,
expertise, and a good understanding of the behavior of the
program and the techniques for formalizing these insights.
The second task is often performed using theorem provers
such as PVS [19] or STeP [3], which require user guidance
and interaction and place additional burden on the user. The
difficulties in the execution of these two tasks are the main
reasons why deductive verification is not used more widely.

A representative case is the verification of invariance
properties using the proof rule INV of [18]: in order to prove
that assertion r is an invariant of the program P, the rule re-
quires coming up with an auxiliary assertion ¢ that is induc-
tive (i.e., implied by the initial condition and preserved under
every computation step) and that strengthens (implies) r.

In [2, 20], we introduced the method of invisible in-
variants, which offers a method for automatic generation
of the auxiliary assertion ¢ for parameterized systems, as
well as an efficient algorithm for checking the validity of the
premises of INV.

The generation of invisible auxiliary constructs is based
on the following idea: it is often the case that an auxiliary
assertion ¢ for a parameterized system S(N) has the form
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Vi : [1---Nlg(i) or, more generally, Vi # jq(i, j). We
construct an instance of the parameterized system taking a
fixed value Ny for the parameter N. For the finite-state in-
stantiation S(Np), we compute, using BDD s, some assertion
Y that we wish to generalize to an assertion in the required
form. Let r| be the projection of ¥ on process P[1], ob-
tained by discarding references to variables that are local to
all processes other than P[1]. We take ¢ (i) to be the gen-
eralization of 7 obtained by replacing each reference to a
local variable P[1].x by a reference to P[i].x. The obtained
q (i) is our candidate for the body of the inductive asser-
tion ¢ : Vi.gq(i). We refer to this generalization procedure
as project&generalize. For example, when computing invis-
ible invariants, v is the set of reachable states of S(Ng). The
procedure can be easily generalized to generate assertions of
the type Viy, ..., ir.p(@i).

Having obtained a candidate for assertion ¢, we still have
to check the validity of the premises of the proof rule we
wish to employ. Under the assumption that our assertional
language is restricted to the predicates of equality and in-
equality between bounded-range integer variables (which is
adequate for many of the parameterized systems we con-
sidered), we proved a small-model theorem, according to
which, for certain type of assertions, there exists a (small)
bound Ny such that an assertion is valid for every N iff it is
valid for all N < Ny. This enables using BDD techniques to
check the validity of such an assertion. The cases covered by
the theorem are those whose premises can be written in the
form Viﬂf.w(f, j), where ¥ (i, ;’) is a quantifier-free asser-
tion that may refer only to the global variables and the local
variables of P[i] and P[] (V3-assertions for short).

Being able to validate the premises on S[No] has the ad-
ditional important advantage that the user never sees the au-
tomatically generated auxiliary assertion ¢. This assertion is
produced as part of the procedure and is immediately con-
sumed in order to validate the premises of the rule. Being
generated by symbolic BDD techniques, the representation
of the auxiliary assertions is often extremely unreadable and
nonintuitive, and it usually does not contribute to a better
understanding of the program or its proof. Because the user
never gets to see it, we refer to this method as the “method
of invisible invariants.” L.

As shown in [2, 20], embedding a Vi.q (i) candidate in-
ductive invariant in INV results in premises that fall under the
small-model theorem. In this paper, we extend the method
of invisible invariants to apply to proofs of the second most
important class of properties — the class of response proper-
ties. Response properties are liveness properties that can be
specified by the temporal formula ¢ (g — &) (also written
as ¢ =¢r) and guarantee that every g-state is eventually
followed by an r-state. To handle response properties, we
consider a certain variant of rule WELL [17], which estab-
lishes the validity of response properties under the assump-
tion of justice (weak fairness). As is well known to users of
this and similar rules, such a proof requires the generation of
two kinds of auxiliary constructs: helpful assertions h; that
characterize, for transition 7;, the states from which the

transition is helpful in promoting progress toward the goal
(r), and ranking functions, which measure progress toward
the goal.

To apply project& generalize to the automatic generation
of the ranking functions, we propose a variant of rule WELL.
In this variant rule, called DISTRANK, we associate, with
each potentially helpful transition 7;, an individual ranking
function §; : ¥ +— [0...c], mapping states to integers in
a small range [0. .. c] for some fixed small constant c. The
global ranking function can be obtained by forming the mul-
tiset {§;}. In most of the examples we consider, it suffices to
take ¢ = 1, which allows us to view each §; as an assertion
and generate it automatically using project&generalize.

If, when applying rule DISTRANK, the auxiliary con-
structs h; and §; have no quantifiers, all the resulting
premises are V3 premises, and the small-model theorem can
be used. One of the constructs required to be quantifier free
are the helpful assertions that characterize the set of states
from which a given transition is helpful. Many simple proto-
cols have helpful assertions that are quantifier free (or, with
the addition of some auxiliary variables, can be transformed
into protocols that have quantifier-free helpful assertions).
Some protocols, however, cannot be proven with such re-
stricted assertions. To deal with such protocols, we extend
the method of invisible ranking in two directions:

e Allowing expressions such as i &= 1 to appear both in the
transition relation as well as the auxiliary constructs; this
is especially useful for ring algorithms, where many of the
assertions have a p(i,i + 1) or p(i, i — 1) component.

e Allowing helpful assertions (and ranking functions)
belonging to transitions of process i to be of the form
h(i) = Vj.H(i, j), where H(i, j) is a quantifier-free
assertion; such helpful assertions are common in “unstruc-
tured” systems where whether a transition of one process
is helpful depends on the states of all its neighbors. Sub-
stituted in the standard proof rules for progress properties,
these assertions lead to premises that do not conform to
the required V3 form, and therefore cannot be validated
using the small-model theorem.

To handle the first extension we prove, in Sect. 6.1, a modest-
model theorem. The modest-model theorem establishes that
V3 premises containing i =1 subexpressions can be validated
on relatively small models. The size of the models, however,
is larger when compared to the small-model theorem of [20].

To handle the second extension, we introduce a novel
proof rule, PRERANK: the main difficulty with helpful
assertions of the form A(i) = Vj.H (i, j) is in the premise
that claims that every “pending” state has some helpful
transition enabled on it (D3 of rule DISTRANK in Sect. 2).
Identifying such a helpful transition is the hardest step when
applying the rule. The new rule, PRERANK (introduced
in Sect. 7), implements a new mechanism for selecting a
helpful transition based on the establishment of a preorder
among transitions in each state. The “helpful” transitions
are identified as the transitions that are minimal according
to this preorder.



Liveness with invisible ranking

263

We emphasize that the two extensions are part of the
same method, so that we can handle systems that both use
+1 and require universal helpful assertions. For simplicity
of exposition, we separate the extensions here.

1.1 Overview of paper

In Sect. 2 we present the general computational model of
FTS and the restrictions that enable the application of the
invisible auxiliary construct methods. We also review the
small-model theorem, which enables automatic validation
of the premises of the various proof rules. In addition, we
outline a procedure that replaces compassion requirements
by justice requirements, which justifies our focus on proof
rules that assume justice only. Section 3 introduces the new
DISTRANK proof rule and explains how we automatically
generate ranking and helpful assertions for the parame-
terized case. We refer to the new method as the method
of invisible ranking. We use a version of the token ring
protocol for an ongoing example in this section. Section 4
shows how to enhance the project&generalize method to
enable the generation of invariants in the form of Boolean
combinations of universal assertions. This is demonstrated
on a (different) version of the token ring protocol. In Sect. 5
we study a version of the Bakery algorithm, which seems
beyond the scope of the invisible ranking method, and show
how enhancing a protocol with some auxiliary variables can
make it a suitable candidate for the method.

The method studied in Sects. 3-5 is adequate for cases
where the set of reachable states can be satisfactorily over-
approximated by Boolean combinations of V assertions, and
the helpful assertions as well as individual ranking functions
8; can be represented by quantifier-free assertions. Not all
examples can be handled by assertions that depend on a
single parameter. In Sect. 6 we describe the modest-model
theorem, which allows handling of i & 1 expressions within
assertions, and demonstrate these techniques on the dining
philosopher problem. In Sect. 7 we present the PRERANK
proof rule that uses preorder among transitions, discuss
how to automatically obtain the preorder, and demonstrate
the technique on the Bakery algorithm. Finally, we discuss
the advantages of combining several preorder relations
and demonstrate it on Szymanski’s protocol for mutual
exclusion [23].

All our examples have been run on TLV [22]. The inter-
ested reader may find the code, proof files, and output of all
our examples at: http://cs.nyu.edulacsys/Tlv/assertions.

1.2 Related work

This is the full version of [9, 10]. See [25] for a survey on
the method of invisible constructs and an earlier version of
invisible ranking.

The problem of uniform verification of parameterized
systems is undecidable [1]. One approach to remedy this sit-
uation, pursued, e.g., in [7], is to look for restricted families
of parameterized systems for which the problem becomes

decidable. Unfortunately, the proposed restrictions are very
severe and exclude many useful systems such as asyn-
chronous systems where processes communicate by shared
variables.

Another approach is to look for sound but incomplete
methods. Representative works of this approach include
methods based on explicit induction [8], network invariants
that can be viewed as implicit induction [15], abstraction and
approximation of network invariants [4], and other methods
based on abstraction [12]. Other methods include those rely-
ing on “regular model checking” (e.g., [13]) that overcome
some of the complexity issues by employing acceleration
procedures, methods based on symmetry reduction (e.g.,
[11]), or compositional methods (e.g., ([16]), combining au-
tomatic abstraction with finite instantiation due to symme-
try. Some of these approaches (such as the “regular model
checking” approach) are restricted to particular architectures
and may, occasionally, fail to terminate. Others require the
user to provide auxiliary constructs and thus do not provide
for fully automatic verification of parameterized systems.

Most of the mentioned methods deal only with safety
properties. Among the methods dealing with liveness prop-
erties, we mention [6], which handles termination of sequen-
tial programs, network invariants [15], and counter abstrac-
tion [21].

2 Preliminaries

In this section we present our computational model, the
small-model theorem, and the procedure that allows one to
remove compassion (strong fairness). We assume that the
reader is familiar with LTL, CTL, first-order logic, and fix-
point operators.

2.1 Fair transition systems

As our computational model, we take a fair transition system
(FTS) [18] S =(V, 0,7, J,C), with:

e V = {uy,...,u,} — a finite set of typed system vari-
ables. A state s of the system provides a type-consistent
interpretation of the system variables V', assigning to each
variable v € V a value s[v] in its domain. Let ¥ denote
the set of all states over V. An assertion over V is a first-
order formula over V. A state s satisfies an assertion ¢,
denoted s = ¢, if ¢ evaluates to T by assigning s[v] to
every variable v appearing in ¢. We say that s is a p-state
if s = o.

e O — the initial condition: an assertion characterizing the
initial states. A state is called initial if it is a ®-state.

e 7 —afinite set of transitions. Every transition 7 € 7 is an
assertion 7(V, V') relating the values V of the variables
in state s € X to the values V' in an S-successor state
s’ € X. Given a state s € X, we say that s’ € T is a
T-successor of s if (s, s’y &= 7(V,V’) where, for each
v € V, we interpret v as s[v] and v as s'[v]. We say
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that transition 7 is enabled in state s if it has some 7-
successor; otherwise, we say that 7 is disabled in s. Let
En(t) denote the assertion 3V’.7(V, V') characterizing
the set of states in which 7 is enabled, and let p denote
the disjunction of all transitions, i.e., p = \/rer 7. The
assertion p represents the total transition relation of S.

e J C T — aset of just transitions (also called weakly fair
transitions). Informally, 7 € J rules out computations
where 7 is continuously enabled but taken only finitely
many times.

e C C T — a set of compassionate transitions (also called
strongly fair transitions). Informally, 7 € C rules out com-
putations where 7 is enabled infinitely many times but
taken only finitely many times.

For technical reasons, and with no loss of generality, we as-
sume that 7 always contains the idling transition 7o : V' =
V', which preserves the values of all system variables. Tak-
ing such a transition is often described as a stuttering step.
We also require that the idling transition be taken to be a just
transition.

Let o : s0, 51,52, ... be an infinite sequence of states.
We say that transition 7 € 7T is enabled at position k of o if
T is enabled on s;. We say that 7 is taken at position k if si41
is a 7-successor of s;. Note that several different transitions
can be considered as taken at the same position.

We say that o is a computation of an FTS S if it satisfies
the following requirements:

e [nitiality — 5o is initial, i.e., 5o &= ©.

e Consecution — for each £ = 0,1, ..
p-successor of s.

e Justice — for every 7 € 7, it is not the case that 7 is
continuously enabled beyond some point j in o (i.e., 7 is
enabled at every position k£ > j) but not taken beyond ;.

e Compassion — for every 7 € C, it is not the case that 7 is
enabled at infinitely many positions in o but taken at only
finitely many positions.

., state sg4+1 is a

Note the fact that the idling transition is just implies that
every computation contains infinitely many stuttering steps.

2.2 Bounded fair transition systems

To allow the application of the invisible constructs methods,
we further restrict the systems we study, leading to the model
of bounded fair transition systems (BFTS), which is essen-
tially the model of bounded discrete systems of [2] aug-
mented with fairness. For brevity, we describe here a simpli-
fied two-type model; the extension for the general multitype
case is straightforward.

Let N € N7 be the system’s parameter. We allow the
following data types:

1. bool: the set of Boolean and finite-range scalars;

2. index: a scalar data type that includes integers in the
range [1..N];

3. data: a scalar data type that includes integers in the range
[0..N];

in N :natural where N >1
tloc : [1..N]
loop forever do
0 : if tloc =i then tloc:=i®, 1
go to {0,1}
: await tloc =1
2 : Critical

Fig.1 Program TOKEN-RING

4. Any number of arrays of the type index — bool. We
refer to these arrays as Boolean arrays; and

5. At most one array of the type b : index — data. We
refer to this array as the data array.

Atomic formulas may compare two variables of the same
type. For example, if y and y’ are index variables, and z is an
index — data array, then y = y" and z[y] < z[y’] are both
atomic formulas. For z : index — data and y : index, we
also allow the special atomic formula z[y] > 0. We refer to
quantifier-free formulas obtained by Boolean combinations
of such atomic formulas as restricted assertions.

As the initial condition ®, we allow assertions of the
form Vi.u(i), where u(i) is a restricted assertion.

_ As the transitions 7 € T, we allow assertions of the form
7(@{) : Yj.(i, j) for a restricted assqrti(in (i ,_}j). This re-
sults in total transition relatin p : 3.V .1//(7, J). For sim-
plicity, we assume that all quantified and free variables are
of type index.

Example 1 (The token ring algorithm) Consider the pro-
gram TOKEN-RING in Fig. 1, which is a mutual exclusion
algorithm for any N processes.

In this version of the algorithm, the global variable t/oc
represents the index of the process currently holding the to-
ken. Location O constitutes the noncritical section that may
nondeterministically exit to the trying section at location 1.
While being in the noncritical section, a process guarantees
to move the token to its right neighbor whenever it receives
it. This is done by incrementing tloc by 1, modulo N. At
the trying section, a process P[i] waits until it receives the
token, which is signaled by the condition tloc = i.

Figure 2 describes the BFTS corresponding to the pro-
gram TOKEN-RING, where for a variable v € V, pres(v)
denotes vV = v and for a set U C V, pres(U) denotes
Nyep pres(v). When there is no danger of confusion, we
use pres(ay, ..., ar) instead of pres({ay, . .., ar}). Note that
tloc is an index variable, while the program counter 7 is
an index — bool array. Actually, 7 is of type index +—
[0...2], butit can be encoded by two Boolean arrays, hence
we are justified in referring to it here and in future examples
as an index — bool array.

Strictly speaking, the transition relation as presented
above does not conform to the definition of a Boolean as-
sertion since it contains the atomic formula rloc’ =i @, 1.
However, this can be rectified by a two-stage reduction.
First, we replace tloc’ = i @, 1by (i < N A tloc =
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Ve tloc : [1..N]
" | m: array[l.N] of [0..2]
O : Vi.rw[i] =0
(16(i) :Vj#i. w[i] =0Atloc=iAtlod =i®, 1
Ar'li] € {0, 1} Apres(rj])
16(3) 1 Vj #4. w[i] =0 Atloc #iAn'[i] = 1A
T. pres(m[j], tloc)
") (@) Vi # i w[i) = 1 Atloc =i AT[i] = 2A
pres(m[j], tloc)
T2(2) : Vi #4. w[i] = 2 Ax'[i] = 0 A pres(n[j], tloc)
\ Tia: V7. pres(m[j], tloc)

J {75 (i), (), 72(d), ia | i € [1.N]}

Fig. 2 BFTS for program TOKEN-RING

i+1) Vv (i =N A tloc = 1). Then, we replace the
formula 7(i) : Vj # i.(...tloc’ =i+ 1..) by 7(i,iy) :
Vj 75 I, ]1(]1 <i Vi < ]1) A (. ..tloc' = i1...), which
guarantees thati; =i + 1

Note that transition 7 2(i) is not listed as a just transition.
This allows a process to remaln forever in its noncritical lo-
cation (0) as long as it diligently transfers any incoming to-
ken to its right neighbor. Also note that this system has an
empty set of compassion transitions, which we omitted from
the presentation in Fig. 2.

Example 2 (The bakery algorithm) Consider the program
BAKERY in Fig. 3, which is a variant of Lamport’s original
bakery algorithm that offers a solution to the mutual exclu-
sion problem for any N processes.

In this version of the algorithm, location O constitutes
the noncritical section which a process may nondeterministi-
cally exit to the trying section at location 1. Location 1 is the
ticket assignment location. Location 2 is the waiting phase,
where a process waits until it holds the minimal ticket. Lo-
cation 3 is the critical section, and location 4 is the exit sec-
tion. Note that y, the ticket array, is of type index — data,
and the program location array (which we denote by ) is
of type index — bool. Note also that the ticket assignment
statement at 1 is nondeterministic and may modify the val-
ues of all tickets. Figure A.1 in Appendix A.1 describes the
BFTS corresponding to the program BAKERY.

Let o be an assertion over V, and R be an assertion over
V U V', which can be viewed as a transition relation. We

in N : natural where N > 1
local y : array [1..N] of [0..N]

where y =0
loop forever do
0 : NonCritical ]
N 1: y := maximal value to y[i] while
preserving order of elements

P[i] = | =
i|=|1 2 : await Vj # . [?Z[f]]];oy[\z/] ]
3 : Critical
L L4:y[i]:=0 S

Fig. 3 Program BAKERY

denote by avo R the assertion characterizing all states that
are R-successors of a-states. We denote by avo R* the states
reachable by an R-path of length zero or more from an a-
state. In a symmetric way, we denote by R o « the asser-
tion characterizing all the states that are R-predecessors of
o-states.

2.3 The small-model theorem

Let ¢ : V?Hf.R(?, f) be an V3-formula, where R(;, f) is a
restricted assertion that refers to the state variables of a pa-
rameterlzed BFTS S(N) in addition to the quantified (index)
variables i and j We show that if there exists some model
that does not satisfy this assertion, then there exists a model
smaller than a certain bound that does not satisfy it. It fol-
lows that, in order to check the validity of this formula, it
is enough to check all models up to the given bound. The
proof follows by contracting a model that does not satisfy
@ in to a smaller model that does not satisfy ¢. In order to
decrease the size of the model, we consider the existentially
quantified variables in the negation of ¢. These variables re-
fer to processes in the model that not satisfy ¢. We keep the
processes referred to by these variables and throw away the
rest.

For simplicity, we assume that the only data vari-
able/constant that may appear in R is the data constant O.
Let No be the number of universally quantified variables,
free index variables, and index constants appearing in R.
The following theorem, stated first in [20] and extended in
[2], provides the basis for the automatic validation of the
premises in the proof rules.

Theorem 1 (Small-model property) Let ¢ be an V3-
formula as above. Then ¢ is valid over S(N) for every
N > 2 iff ¢ is valid over S(N) for every N < Nj.

For completeness of presentation we include the proof.

Proof We denote by ¥ the formula 3iVj.—R(, j), which
is the negation of ¢. Assume v is satisfiable in state s of a
system S(Np) for Ny > Ny. We show that it is satisfiable in
a state s’ of a system S(N) for some N < Nj.

Let V5 be the set of index variables that appear existen-
tially quantified in 1. Let F be the set of index constants
(including 1) and variables that appear free in yr. Note that
state s provides an interpretation for all the variables in F
and all the arrays that appear in s. Similarly, let W be the set
of index variables that appear universally quantified in ¥,
1.e., the fvariables. o .

The fact that ¢ : 3iVj.—R(i, j) is satisfiable in s means
that there exists an assignment « that interprets all vari-
ables of V3 by values in the domaln [1...N1] such that
(s,a) = x, where x V] —-R(z ]) and (s, ) is the joint
interpretation that interprets all system variables according
to state s and all V3-variables according to the assignment ov.

LetU = {uy < ur < --- < uy} be asorted list of values
assigned to the V3 U F-variables by « and s. Obviously,
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k < No. Let f: U — [1...k] be the bijection such that
fu) =iiffu =u,.

Similarly, let D = {0 =dy < dy <dr» < --- < d,} be
a sorted list of all the values assigned by s to the elements
blu;] for the data array b and i € [l...k]. We always
include O in D, even if it is not obtained as the value of
some b[u;]. Obviously, r < k.Let g: D — [1...r] be the
bijection such that g(d) = j iff d = d;.

We construct a state s” of system S (k) and an assignment
o : V3 — [1...k] such that (s',a’) = x. The state s’
is an interpretation defined as follows: for each variable
v € F, s interprets v as s'[v] = f(s[v]). Thatis, s[v] = u;
iff s'[v] = i. For every Boolean array « : index — bool,
we have s'[a[i]] = s[a[u;]], i.e., the value of a[i] in state
s’ equals the value of a[u;] in state s. For the data array
b : index — data, we take s'[b[i]] = g(s[b[u;]]), for each
i €[1...k]. Thatis, s'[b[i]] = jiff s[b[u;]] = d;. Next, we
define the interpretation o’ as follows: for each variable v €
Vi,  interprets v as o/ [v] = f(a[v]). That is, a[v] = u; iff
odv]=1i.

We proceed to show that (s, @) = x. To do so, consider
an arbitrary assignment 8’ assigning to each variable v € ;
a Valueqﬂ’[v] € [1...k]. We will show that (s', o/, B) =
—R (17, j). As we show this for an arbitrary assignment
B/, it follows that (s, o) = ¥j.—~R(, j). That is, (s, o)
Ex. .

Consider the assignment 8 interpreting each v € j as
u; iff ,61/ [v] = i. It follows that B interprets each variable
v € j by a value in [1...NJ]._} Since (s,a) E yx, it
follows that (s, o, B) = —R(i, j). By induction on the
structure of the formula —|R(z7, f), we can show that every
subformula y € —-R(?, ]') evaluates to T under the joint
interpretation (s, o, B) iff y evaluates to T under the
interpretation (s’, o/, B).

We conclude that (s, o) = x, which leads to the result
that ¢ is satisfied in the state s’ of system S (k). (Il

The small-model theorem allows one to check the va-
lidity of V3-assertions on small models. In [2, 20] we ob-
tain, using project&generalize, candidate inductive asser-
tions for the set of reachable states that are V-formulas,
checking their inductiveness required checking validity
of V3-formulae, which can be accomplished using BDD
techniques.

2.4 Removing compassion

The proof rule we are employing to prove progress proper-
ties assumes an noncompassionate system (system with no
compassionate transitions). As outlined in [14],! every FTS
S can be converted into an noncompassionate FTS S; =

I The proof in [14] is an adaptation of the proofs in [5, 24] to the
case of transition systems.

(v,,0,,7,,7,,9), where

V, : V. U {nvr; : boolean | 7 € C},

0,:0,

7, : |J Amul A0,
reT\C reC

J U noul rm.
TeJ\C 7eC

where fi, fo: 7 — 7, are defined by:

fi(t) =7 A pres(Nvr),

T A pres(Nvr) vV |
fa(r) = , ) ,
—nvry A v A pres(V; \ {nvr;})
Nvr ={mvr; | T €C}.

This transformation adds to the system variables, for each
compassionate transition 7, a new Boolean variable nvr;.
The intended role of nvr; is, nondeterministically, to identify
a point in the computation beyond which 7 is never enabled.
The new transition relation includes two types of transitions:
for each original noncompassionate transition 7, a transition
f1(7) that behaves like 7 while preserving the values of all
nvr; variables. For each original compassionate transition
7 € C, 7, contains a transition f>(7) that either takes 7 and
preserves all nvr variables or changes nvr, from F to T and
preserves all other variables. Intuitively, as long as nvr; = F,
f2(7) is enabled and, to comply with the justice requirement
associated with f>(7), either 7 is taken infinitely often or
nvr; eventually set to T. Once nvr; is set to T, T is not ex-
pected to be enabled (and therefore taken) ever again.

Let Err denote the assertion \/__-(En(t) A nvry),
describing states where both 7 is enabled and nvr; holds,
which indicates that the prediction that 7 will never be en-
abled is premature. For a computation o, of §;, denote by
o, {v the sequence obtained from o, by projecting away the
nvr variables. The relation between S and its compassion-
free version S is stated by the following claim.

Claim Let o be an infinite sequence of S-states. Then o is
an S-computation iff there exists an Err-free computation o,
of §; such thato, yy=o.

Proof In one direction, let o = sp, 51, . .. be a computation
of S. We will show how to define the values of nvr; at each
position of the computation, such the resulting sequence of
S§,-states ¢ = S, 51, ... is an Err-free computation of .

The intention is to guarantee that transition 7 € C is con-
tinuously disabled beyond some position j of o iff nvr; is
set to T at some position beyond j. For simplicity, assume
that the compassionate transitions are 7 = {7y, ..., 7¢} and
that we may refer to nvr;, simply as nvr;.

The initial values are determined as follows: for each i =
1, ..., k, the initial value of nvr; is taken to be T iff 7; is
disabled at all positions of o.

Next, we consider a step from position j to position
JHLIEs;[V]#s;01[V], then we let 54 [Nvr] = §;[Nvr].
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That is, if at least one system variable of system S is mod-
ified in step j, then all the Nvr variables preserve their
values.

On the other hand, if step j is a stuttering step, i.e.,
s;i[V] = sj41[V], we search for a transition 7; € C such
that §;[nvr;] = F but 7; is disabled at all positions beyond
j. If there exists such a transition, let m be such a transi-
tion with the minimal index. We set §;,1[nvry,] = T and
Sip1lnvre]l = §5j[nvre], for all £ # m.

If there does not exist a 7; such as described above, we
let again s ([Nvr] = §;[Nvr].

Since, as was previously observed, all computations con-
tain infinitely many stuttering steps, the above definition
guarantees that nvr; eventually turns T iff 7; eventually be-
comes continuously disabled. Furthermore, we never have a
state in which 7; is enabled while nvr; = T.

In the other direction, consider an Err-free computation
o, of §;,. We claim that 0 = 0,y is a computation of S.
Suppose, by contradiction, that some 7 € C is enabled in-
finitely often but taken only finitely often in o. Then it must
be the case that f>(7) is enabled infinitely often in o;. As 7
is taken finitely often in o, it must be the case that nvr;, is
set in o, so as not to violate J,. Since 7 is enabled infinitely
often, it is enabled after nvr; is increased and o is not Err
free. O

We can therefore conclude that for every ¢ and r,
SEqg=0r

which allows us to assume that all BFTSs we consider here
have an empty compassion set.

iff S, =(@A—Ermr)y=o0 VEMT),

3 The method of invisible ranking

In this section we present a new proof rule that allows, in
some cases, to obtain an automatic verification of liveness
properties for a BFTS of any size. We first describe the new
proof rule and then present methods for the automatic gen-
eration of the auxiliary constructs required by the rule using
TOKEN-RING as an ongoing example.

3.1 A distributed ranking proof rule

In Fig. 4 we present proof rule DISTRANK (short for
DisTributed RANKing) for verifying response properties for
BFTSs whose only fair transitions are just. The rule is config-
ured to deal directly with parameterized systems. As in other
rules for verifying response properties (e.g., [17]), progress
is accomplished by the actions of helpful transitions in the
system. In a parameterized system, the set of transitions has
the structure 7 (N) = {m[i]|€ € [0..m]andi € [1 .. N]}
for some fixed m. Typically, [0 . . m] enumerates the lo-
cations within each process. For example, in the program
TOKEN-RING, 7(N) = {mlill¢ € [0..2]andi €
[1..N]}, where each transition 7¢[i] is associated with loca-
tion £ € [0 . . 2] within process i € [1 .. N]. Requiring that
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For a parameterized system with

transitions 7 (N) where p = \/,cr(n) T,

set of states X (IV),

just transitions J C T (N),

invariant assertion ¢,

assertions q,r, pend and {h, | 7 € J}, and

ranking functions {§-: ¥ — {0,1} | 7 € J}
Di. g AN o — r V pend
D2. pend A p — 'V pend’
D3.  pend — \/TEJ hr
D4. pend A p — "V N\ e 00 > 00
For every 7 € J
D5. hr A p — r VvV hL VvV 6 >4
D6. h- AT — 'V 8, >
D7. h- — En(T)

q = <>r

Fig. 4 The liveness rule DISTRANK

T¢[i] be just guarantees that it is taken or disabled infinitely
often, thus that 74[i] is not continuously enabled and never
taken beyond some point.

Assertion ¢ is an invariant assertion characterizing all
the reachable states. Assertion pend characterizes the states
that can be reached from a reachable g-state by an r-
free path. For each transition 7, assertion h, character-
izes the states at which 7 is helpful. These are the states
s that have a 7-successor s’, and the transition from s
to s’ leads to a progress toward the goal. This progress
is observed by immediately reaching the goal or a de-
crease in the ranking function &, as stated in premises D5
and D6. The ranking functions §, measure progress toward
the goal. The disabling of 7 is often caused by 7 being taken
(D6), but it may also be caused by some condition turn-
ing false (D5). We require a decrease in ranking in both
cases.

Premise D1 guarantees that any reachable g-state satis-
fies r or pend. Premise D2 guarantees that any successor of
a pend-state also satisfy r or pend. Premise D3 guarantees
that any pend-state has at least one transition that is help-
ful in this state. Premise D4 guarantees that ranking never
increases on transitions between two pend-states. Note that,
due to D2, every p-successor of a pend-state that has not
reached the goal is also a pend-state. Premise D5 guaran-
tees that taking a step from an /-state leads into a state that
either already satisfies the goal r or causes the rank 4 to de-
crease, or is again an /,-state. Premise D6 guarantees that
taking a 7-transition from an A -state either reaches the goal
r or decreases the rank . Premise D7 guarantees that in all
h-states T is enabled. Together, premises D5—-D7 imply that
the computation cannot stay in 4, forever, otherwise justice
w.r.t 7 is violated. Therefore, the computation must eventu-
ally decrease §.. Since there are only finitely many 8., and
until the goal is reached they monotonically decrease, we
can conclude that eventually an r-state is reached.
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3.2 Automatic generation of the auxiliary constructs

We now proceed to show how the auxiliary constructs neces-
sary for the application of rule DISTRANK can be automati-
cally generated. Recall that we have to construct a symbolic
version of each construct so that the rule can be applied to a
generic N. We consider each auxiliary construct, provide a
method for its generation, and illustrate it on the case of the
program TOKEN-RING.

In TOKEN-RING, the progress property we wish to check
is:

nlzl=1= Om[z] =2.
For simplicity, as all processes are symmetric we choose

z = 1; thus we check

a[ll=1= Ox[1]=2.
This property claims that every state in which process P[1]

is at location 1 is eventually followed by a state in which
process P[1] is at location 2.

The construction uses the instantiation S(Ng) for the
cutoff value Ng required in Theorem 1. For TOKEN-RING,
as explained in Sect. 3.3, No = 6. We denote by ®. and
P the initial condition and transition relation for S(Np).
The construction begins by computing the concrete auxil-
iary constructs for S(No), denoted by ¢, pend .. We then
compute the concrete /4§ [j]’s and 8¢ [j]’s. Next, we apply
project&generalize to derive the symbolic (abstract) ver-
sions of these constructs: ¢, , pend ,, hj![j1’s, and 8 [j]’s.

Since we focus on process 1, we would expect the con-
structs to have the symbolic forms ¢ : Vi.g, (i) and pend :
pend? | A Vi;él.pend;*él(i). Foreach k € [0 .. m], we need
to compute 4 [1], 8;'[1], and the generic 4 [i], 8;[i], which
should be symbolic in i and apply for alli, 1 <i < N. All
generic constructs are allowed to refer to the global variables
and to the variables local to P[1] and P[i].

3.2.1 Computing concrete and abstract ¢

All concrete assertions are computed on S(No). We set ¢, to
be reach. = © o pf, the assertion characterizing all states
reachable within S(Ng). Compute ¢, (i) = reach.[3 +— i]
by projecting reach,. on index 3 and then generalizing 3 to
i, that is, maintaining only variables pertaining to process 3
and then replacing every reference to index 3 by a reference
to index i.
For example, in TOKEN-RING(6),

6

oo = \(at_Lo1lj1V tloc = j)
j=1

where at_€¢ 1[j] is an abbreviation for [ j] € {0, 1}.
The projection of ¢ on j = 3 yields

(at—Lp1[3] V tloc = 3).

The generalization of 3 to i yields
@, ) rat_Lo1li] Vv tloc =i .

The assertion ¢, is Vi.g, (i).

Note that when we generalize, we should generalize not
only the values of the variables local to P[3] but also the
case that the global variable, such as #loc, has the value 3.
The choice of 3 as the generic value is arbitrary. Any other
value would do as well, but we prefer indices different from
land N.

In this part we computed ¢, (i) as the generalization of
3 into i in ¢, which is denoted by ¢, (i) = ¢.[3 = i]. In
later parts we may need to generalize two indices, such as
o, = 0.2 — i,4 — j], where o, and o, are concrete
and abstract versions of some assertion «.. The way we com-
pute such abstractions over the state variables t/oc and 7 of
system TOKEN-RING is given by

o (tloc', ") A
a,(tloc,m) =i < j A Htloc/,n/.< o )

map(2,1,4, j)
where
nlil=7'12] A w[j1=7"[4] A
tloc =i <= tlocd =2 A
map(2,i, 4, j) = | tloc = j <= tloc’ =4 A
tloc <i <= tloc' <2 A

tloc < j <= tloc’ <4

Note that this computation is very similar to the sym-
bolic computation of the predecessor of an assertion, where
map(2,1i,4, j) serves as a transition relation. Indeed, we use
the same module used by a symbolic model checker for car-
rying out this computation.

3.2.2 Computing concrete and abstract pend.:

Compute the assertion
pend,. = (po Aq A=r)o(p. A—r')*

characterizing all the states that can be reached from a reach-

able (¢ A—r)-state by an r-free path. Then we take pend? | =

pend 1+ 1] andpend;‘él(i) =pend [l 1,3 i].
Thus, for TOKEN-RING(6),

pend,. =@, N at_£i[1].

We therefore take

pend? | :at_£[1]

and

pend;‘él(i) cat_L[1] A (at—£o1li] Vv tloc =1).
Finally, pend, = pend* | A Vi ;él.pend;‘él(i ), yielding

pendA =at_Li[1] N Vi#l.(at_Lo 1[i]V toc =1).
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3.2.3 Computing concrete and abstract h[i]'s

We compute the concrete helpful assertions A [i]. This is
based on the following analysis. Assume that set is an as-
sertion characterizing a set of states, and let 7 be some just
transition. We wish to identify the subset of states ¢ within
set for which the transition 7 is an escape transition. That is,
any application of this transition to a ¢-state takes us out of
set. Consider the fix-point equation:

¢ = (D

The equation states that every ¢-state must satisfy ser A

set N En(t) N AX (¢ Vv —set) N AX (—set) .

En(T), every p-successor of a ¢-state is either a ¢-state or
lies outside of set, and every T-successor of a ¢-state lies
outside of set. Note that the expressions AXv and AX v
can be computed by —(p o(—¥)) and —(7 o(—)), respec-
tively.

By taking the maximal solution of the fix-point
equation (1), denoted v (set A En(17) A AX (¢ V —set) A
AX ,(—set)), we compute the subset of states within set for
which 7 is helpful.

Following is an algorithm that computes the concrete
helpful assertions {A{ [i]} corresponding to the just transi-
tions {rx[i]} of system S(Np). For simplicity, we will use
7 € T (Np) as a single parameter. Let

set N En(T) A
AX (¢ V —set) A
AX(—ser)

maxfix(sez, 7) : vo

for each ™ € 7(Ng)do /i :=0
set := pend,.
for all 7 € 7 (Ng) s.t. maxfix(ser, 7) # 0 do

hr :=h; v maxfix(set, 7)
set := set N —h;

The “for all 7 € 7 (Ny)” iteration terminates when it is no
longer possible to find a 7 € 7 (Ny) that satisfies the non-
emptiness requirement. The iteration may choose the same
7 more than once. When the iteration terminates, set is 0,
i.e., for each of the states covered under pend,, there exists a
helpful justice requirement that causes it to progress.

Having found the concrete hi [i], we compute the ab-
stract h;g [i]1 by using project& generalize as follows: for each
k € [0...m], we let h{[1] = A{[1][1 — 1] and A}[i] =
R BI = 1,3 - .

Applying this procedure to TOKEN-RING(6), we obtain
the symbolic helpful assertions described in Appendix A.2.

3.2.4 Computing concrete and abstract §¢[i]’s

As before, we begin by computing the concrete ranking
functions 8¢ [i]. We observe that §; [i] should equal 1 on
every state for which 7[i] is helpful and should decrease
from 1 to O on any transition that causes a helpful 7¢[i] to

become unhelpful. Furthermore, 6,5 [i] can never increase.
It follows that 8¢ [i] should equal 1 on every pending state
from which there exists a pending path to a pending state
satisfying A [i]. Thus, we compute §; [i] = pend,. A
(=rYEU hi [i]), where E U is the “existential-until” CTL
operator. This formula identifies all states from which there
exists an r-free path to an (hi [i])-state.

Having found the concrete (Slf [i], we obtain the ab-
stract 8;' [i] by using project&generalize as follows: for each
k € [0...m], we let §[1] = 8 [1][1 + 1] and §}[i] =
SE B3I = 1,3 .

The abstract ranking function obtained by apply-
ing this procedure to TOKEN-RING(6) are described in
Appendix A.2.

3.3 Validating the premises

Having computed internally the necessary auxiliary con-
structs, and checking the invariance of ¢, it only remains
to check that the six premises of rule DISTRANK are all
valid for any value of N. Here we use the small-model the-
orem stated in Theorem 1, which allows us to check their
validity for all values of N < Ny for the cutoff value of
Ny specified in the theorem. First, we have to ascertain that
all premises have the required V3 form. For auxiliary con-
structs of the form we have stipulated in this section, this is
straightforward. Next, we consider the value of Ny required
in each of the premises and take the maximum. Note that
once ¢ is known to be inductive, we can freely add it to the
left-hand side of each premise, which we do for the case of
premises D5—-D7, which, unlike others, do not include any
inductive component.

Usually, the most complicated premise is D2, and this
is the one that determines the value of Ny. For the program
TOKEN-RING, this premise has the form (where we renamed
the quantified variables to remove any naming conflicts):

(Va.pend(a)) A
3, i1V ), 1y G, i, gy 1)

which is logically equivalent to

] — 1’ v (Ye.pend(c)),

. . pend(a) A ,
Vi, iy, c3da, j, j1. VG i i) — 1’ Vvpend(c) ).

The index variables, which are universally quantified or ap-
pear free in the formula above, are {i, i1, ¢, tloc, 1, N} whose
count is 6. It is therefore sufficient to take No = 6. Having
determined the size of Ny, it is straightforward to compute
the premises of S(N) for all N < Ny and check that they are
valid, using BDD symbolic methods.

We cannot use the same form of auxiliary constructs to
automatically verify algorithm BAKERY(N), for every N. In-
deed, it is straightforward to see that in order to conclude that
72[2] is helpful, one has to consider helpful assertions of the
form Vj. ¥ (i, j). In Sect. 7 we show how to obtain helpful
assertions that relate to all processes and how to change the
proof rule for such a case. We can still use the simple proof
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in N :natural where N >1
chan : array[l..N] of boolean
where chan[i] = (i = 2)
loop forever do
N 0 : if chan[i] then
. (chanli], chan[i @ 1]) := (0,1)
7] | o roo)
= : await chanli|
2 : Critical

Fig. 5 Program CHANNEL-RING

rule in order to automatically verify algorithm BAKERY(N).
However, this requires the introduction of an auxiliary vari-
able minid into the system, which is the index of the process
that holds the ticket with minimal value. This is explained in
detail in Sect. 5.

We emphasize that the generation of all assertions is
completely invisible, as is the checking of the premises on
the instantiated model. While the user may see the asser-
tions, there is no need for the user to comprehend them. In
fact, being generated using BDD techniques, they are often
incomprehensible.

4 Cases requiring an existential invariant

In some cases, V-assertions, i.e., assertions of the form
Vi.u(i), are insufficient for capturing all the relevant features
of the constructs ¢, and pend,, and we need to consider
assertions of the form Vi.u(i) A 3j.e(j). In this section
we describe how to obtain constructs that are Boolean com-
binations of V-assertions, illustrating the procedure and its
applications on the program CHANNEL-RING, presented in
Fig. 5.

In this program the location of the token is identified by
the index i such that chan[i] = 1. Computing the universal
invariant according to the previous methods we obtain ¢, :
Vi.(at—£p,1 V chanli]), which is inductive but insufficient
to establish the existence of a helpful transition for every
pending state.

4.1 Generalizing project& generalize

We provide a sketch of the extension that enables computa-
tion of a (V A 3) construct by obtaining a Vi.u(i) A 3j.e(j)
invisible invariant. As before, we pick a value Ny, instanti-
ate S(Np), and use the project&generalize procedure to de-
rive an inductive V-assertion ¢ : Vi.u(i). As a byproduct of
project& generalize, we compute reach,. — the set of states
reachable in S(Np). Being inductive and implied by the ini-
tial condition, the assertion ¢ is an overapproximation of
reach, . In order to isolate the (anticipated) assertion e(),
we first compute the difference between the concrete reach-
able set and ¢, denoted here by «y. Obviously, we proceed

only if o is nonempty. Then, we project&generalize oy by
replacing index 1 by k (a2 below). Finally, we negate the
result to get the proposed existential invariant (a3 below).

Algorithm
oy = /\lN:ol u@i) A —reach,
o = oq[l — k]

o = o
We use 3k.o3 (k) as the candidate for an existential invariant.
Below we list the results of these computations for the case
that reach, equals precisely the conjunction /\f\]:‘)1 w(@) A
\/Zlvi1 e(j) and the application of project&generalize to
reach,. yields precisely u(i) = reach.[1 — i] = w().

Results when reach,. = /\; w(i) A \/j e())
ap = /\;w@) A /\j —e())

ap = wk) A —e(k)

a3 = w(k) — e(k)

Note that, while we did not succeed in precisely isolating
e(k), we computed instead the implication w(k) — e(k).
However, the conjunction Yi.w (i) A Fk.(w(k) — e(k)) is
logically equivalent to the conjunction Vi.w (i) A Jk.e(k).

This technique of obtaining an existential conjunct to
an auxiliary assertion can be used for other auxiliary
constructs.

4.2 Verifying progress of CHANNEL-RING
Applying the extended project&generalize to CHANNEL-

RING we obtain, for the set of reachable states, the auxiliary
construct

. (at_€o1 V chanli]) A
VTR Schantil A chanti) ]A] .
3j.chan| ]

Using this extended form of an invariant for both ¢,
and pend,, we can complete the proof of the program
CHANNEL-RING using the methods of Sect. 3.

Applying the method of invisible ranking, with the new
addition, to the program CHANNEL-RING and the response
property at_£1[1]=={at_€;[1], we obtain, for example,
pendA sat_£y[1] N ¢,,and fori > 1, halil :at—€4[11 A
at_£,[i] N chan[j]. Thus, premise D3 becomes:

at_€q[1]
A\
Vi#k.(at—£o.1 V chanli]) A —(chan[i] A chanlk]) | —
AN
dj.chan| ]
at_L1[1] A 3Fj.chan[j],

which is obviously valid and has the V3 form.
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in N
local vy

: natural where N > 1
: array [1..N] of [0..N]

where y =0

minid : natural
where minid =1

[loop forever do
0 : NonCritical T

1: y := maximal value to yl]
while preserving order

ooy [ylil=0V ]

2 : await Vg : . :
Atk T [ y[g] > yli]

! 3 : Critical

L4:y[i] =0 i

yljl =0V ]
0 < y[minid] < y[j] J |

maintain Vj : [

Fig. 6 Program BAKERY with auxiliary variable minid

5 The bakery algorithm

As another example of the application of the invisible rank-
ing method, we consider the modified version of the program
BAKERY, presented in Fig. 6.

As previously explained, in order to be able to use the
rule in its current form, we introduce the variable minid. The
variable minid is expected to hold the index of a process
whose y value is minimal among all the positive y-values.
The maintain construct implies that this variable is updated,
if necessary, whenever some y variables change their values.
Already in [20] we pointed out that in some cases, it is nec-
essary to add auxiliary variables in order to find inductive
assertions with fewer indices. This version of BAKERY il-
lustrates the case that such auxiliary variables may also be
needed in the case of the invisible ranking method.

The property we wish to verify for this parameterized
system is at_{£1[z] = { at_£3[z], which implies accessi-
bility for an arbitrary process P[z].

Having the auxiliary variable minid as part of the system
variables, we can proceed with the computation of the aux-
iliary constructs as explained in Sect. 3: after some simplifi-
cations, we can present the automatically derived constructs
as detailed in Appendix A.l. Using these derived auxiliary
constructs we can verify the validity of the premises of rule
DISTRANK over S(5) and conclude that for every value of
N the property of accessibility holds.

6 Protocols with p(i, i + 1) assertions

In algorithms for ring architectures, the auxiliary assertions
for a process often depend, in addition to the process itself,
on its immediate neighbors. Assume a ring of size N. For
every j = 1, .. ,N,denote j 1 = (jmod N) + 1
and j © 1 = ((j —2) mod N) + 1. Assertions of the type
p@,i @& 1) and p(i,i © 1) can be replaced by equivalent

+-less V3-assertions.” Unfortunately, this often results in
formulae not covered by our small-model theorem. We by-
pass the problem by establishing a new small-model theo-
rem that allows us to prove validity of Vap(i,i & 1) asser-
tions. The size of the model in the new theorem is larger
than the one indicated by the small-model theorem, which is
why we refer to it as “modest.” We state the modest-model
theorem and prove it in Sect. 6.1, describe how to fine-tune
the bounds in Sect. 6.2, and demonstrate its application in
Sect. 6.3.

6.1 Modest-model theorem

Consider a parameterized BFTS S(N) with no data vari-
ables or arrays.? Let the formula ¢ : V?Eif.R(?, ]’) be an V3-
formula, where R(?, f) is a restricted assertion (augmented
by operators @1 and ©1) that refers to quantified index vari-
ables i and ] We show that if there exists some model that
does not satisfy this assertion, then there exists a model
smaller than a certain bound that does not satisfy it. The
proof follows by contracting a model that does not satisfy
¢ to a smaller model that does not satisfy ¢. In order to de-
crease the size of the model, again, we count the number of
existentially quantified variables in the negation of ¢. This
time, as R may contain @1 and &1, we ensure that in the
smaller model each of these variables refers to a different
process and, in addition, also pay attention to the way we
handle the chain of processes between every two “existen-
tially quantified processes.”

Let K be the number of universally quantified index
variables, index constants (including 1 and N), and free
index variables appearing in R. Assume there are ¢
index — bool arrays in S, and let L = 2¢ je., L is the num-
ber of different values that can be assigned to all variables in-
dexed by a single process. Define Ny = (K — D(L*+1D)+K.

Theorem 2 (Modest-model theorem) Let ¢ be an V3-
formula as above. Then ¢ is valid over S(N) for every
N > 2 iff ¢ is valid over S(N) for every N < Ny.

Proof We denote by ¥ the formula 3V j.—R (i, j), which is
the negation of ¢. Assume V¥ is satisfiable in state s of sys-
tem S(Np) for N; > No. We show that v is also satisfiable
in a state s” of a system S(N) for some N < Ny.

Let V3 be the set of index variables that appear exis-
tentially quantified in . Let F be the set of index constants
(including 1 and N) and variables that appear free in 1. Note
that state s provides an interpretation for all the variables in
F.Observe that |V3U F| = K. Similarly, let Wy be the set of
index variables that appear universally quantified in ¥, i.e.,

the 7 variables.

2 This is, in fact, the way assertions containing +1 and @1 are han-
dled in [2]. A simple conversion of this type is given in Example 1.

3 This assumption is here for simplicity’s sake and can be removed
at the cost of increasing the bound.
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The fact that ¢ : EI?V}.—-R(?, f) is satisfiable in s means
that there exists an assignment « that interprets all vari-
ables of V3 by values in_the domain [1...N1] such that
(s,) E x, where x : Vj.=R(, j), and (s, «) is the joint
interpretation that interprets all system variables according
to state s and all V3-variables according to the assignment cv.

LetU = {1 = u; <uy <.s < ur = N} be asorted
list of values assigned to the V3 U F-variables by the joint
interpretation (s, o).

Since N; > Ny, there exist some i < k such that
Ujy1—Uui > L? + 1. We construct a state s/, in an in-
stantiation S(N'), N’ < Ny, such that s = . The
process is repeated until we obtain an instantiation that
satisfies ¥ where the us are at most L>+1 apart from one
another.

Since ujy1 — u; > L?* + 1, there exist two pairs of
adjacent indices between u; and u;4; that agree on their
local array values, i.e., there exist some m and n such
that u; <m <n <n+ 1 < u;j4+1 and, for every Boolean
array a: index +— bool, we have a[m] = a[n] and
alm + 1] = a[n + 1]. Intuitively, removing all processes
m + 1,...,n does not impact any of the other processes
whose indices are in U since the array values of their
immediate neighbors remain the same. In particular, since
m+1 and n+ 1 are identical, processes m and n 41 maintain
the same neighbors after the removal. Once the processes
are removed, the remaining processes are renumbered.

Formally, let N = N; — (n — m), and define the
function g: [1 .. N;] — [1.. N’] such that g(i) = i for
i < m,and g(i) = i—(n—m) fori > n+1. It is easy to
see that g is injective and onto, hence g~ ! is well defined.
Consider the state s” of system S(N’) such that for every
array a : index — bool we have s'[a[i]] = s[a[g_l(i)]],
i.e., the value of a in state s’ at index i is the value of a in
state s at index g’1 ().

We proceed to show that (s’, o) = x. To do so, conside£
an arbitrary assignment 8’ assigning to each variable v € j
a Valﬁueqﬂ/[v] € [1..N']. We will show that (s', o/, ) =
—R(i, j).If this can be shown f0£ every aabitrary assignment
B’, it follows that (s’, /) = VYj.—R(i, j). That is, (s', &)
Ex. .

Consider the assignment S interpreting each v €
asr,r € [1..Np]iff B'[v] = gﬁrl. Since (s, a) &= x,
it follows that (s,, 8) E —R(i, j). By induction on
the structure of the formulaﬁ—!?(l?, f), we can show that
every subformula y € —R(i, j) evaluates to T under the
joint interpretation (s, o, §) iff y evaluates to T under the
interpretation (s, o/, B).

We conclude that (s’, /) = x, which leads to the result
that v is satisfied in the state s” of system S(N').

Thus s’ is obtained from s by leaving the values of the
index variables in the range 1, . ., m intact, reducing the
index variables larger than n by n —m while maintaining the
assignments of their index > bool variables. Obviously, s’
is a state of S(N1 — (n — m)) that satisfies . (I

6.2 Calibrating Ng

The bound computed in Theorem 2 may be quite large. In
some cases it can be reduced significantly, as we explain
below.

General bool’s: if there are index — bool arrays for arbi-
trary (finite) bool, L in the bound should be replaced by the
product of the sizes of ranges of all index — bool variables.

Primed occurrences: when a variable appears both un-
primed and primed in R(.), both occurrences add to the
count (unless equal). This is in general the case with the tran-
sition relation p (that appears on the 1-h-s of several impli-
cants in our proof rules). While it may seem that each addi-
tional variable that can be modified doubles the count, only
a single step is to be considered at a time, which is further
restricted by reach (reach appears explicitly in all the impli-
cants; moreover, it can always be added since it is shown to
be an invariant). Hence, in practice, the bound can often be
reduced so as to be manageable.

Restricted use of =: Assume that for each Vy variable under
a £ operator, all occurrences of the operator are of the same
kind (only € or © for each variable). Then, when reducing
a large model into a smaller one, instead of finding two pro-
cesses at the endpoint of a chain that agree on values of both
their neighbors, it suffices to find a pair that agrees on one
neighbor, which implies a chain of length L. Consequently,
in this case the cutoff value is No = (K — 1)L+K . Further
analysis reveals that if only one operator (¢ or ©) is applied
to V5 variables, then the bound can be further reduced to
No=(K -1)(L-1)+K.

Restricting to “observable” states: suppose that a process
only has a “partial” view of its neighbor, i.e., can access
some, but not all, of its neighbor index +— bool array en-
tries. Then, it suffices to find processes that agree on the part
of the state observable by their neighbors, and not the com-
plete state.

Chains of consecutive free variables: if, in addition to
1 and N, there are longer, or other, chains of consecutive val-
ues, the bound is reduced accordingly, since there are fewer
“gaps” to collapse. For example, when thereisa N —1, N, 1
combination, the (K — 1) in the bound can be replaced by
(K —2).

6.3 Example: dining philosophers

We demonstrate the use of the modest-model theorem by
validating accessibility for a classical solution to the dining
philosophers problem, using rule DISTRANK.

Consider the program DINE which offers a solution to
the dining philosophers problem for any N philosophers.
The program uses semaphores for forks. In this the program,
N — 1 philosophers (processes P[1], ..., P[N — 1]) reach
first for their left forks and then for their right forks, while
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loop forever do
0 : NonCritical

N-1
. 1: request yli]
‘ Pf] = 2 : request y[i+1]
=1 3 : Critical
4 : release yli], y[i+1]

in N : natural where N > 1
local y : array [1..N] of bool where y =1

loop forever do
0 : NonCritical
: request y[1]
: request y[N]
: Critical
: release y[1], y[N]

I PN

AW N =

Fig. 7 Program DINE: solution to the dining philosophers problem

P[N] reaches first for its right fork and only then for its left
fork. Program DINE is presented in Fig. 7.

The semaphore instructions “request x” and ‘“re-
lease x” appearing in the program stand, respectively, for
“(when x = 1 do x :=0)” and “x := 1.” Consequently, the
transition associated with “request x” is compassionate, in-
dicating that if a process is requesting a semaphore that is
available infinitely often, it obtains it infinitely many times.

As outlined in Sect. 2.4, we transform the BFTS into a
compassion-free BFTS by adding two new Boolean arrays,
nvry and nvry, each nvre[i] corresponding to the request of
process i at location £. Appendix A.3 describes the BFTS we
associate with the program DINE.

The progress property of the original system is

(mlz] = D =-0(r[z] =3),

29

which is proved in two steps, the first establishing that
(m[z] = 1) =0 (z[z] = 2) and the second establishing that
(m[z] = 2) = O(rr[z] = 3). For simplicity of presentation,
we restrict discussion to the latter progress property.

Since P[N] differs from P[1],..., P[N — 1], and since
it accesses y[1], which is also accessed by P[1], and y[N],
which is also accessed by P[N — 1], we choose some z
in the range 2, ..., N — 2 and prove the progress of P|[z].
The progress property of the other three processes can be
established separately (and similarly.) Taking into account
the translation into a compassion-free system, the property
we attempt to prove is

(r[z]1 =2) = O(n[z] =3 v Err) (2<z<N —2),
where

VI @il =1 A ylil A nvrli]) v
o VN @li=11=2 A ylil A mvrali—1]) v

([N]1=1 A y[1] A nvri[N]) v
(@[N] =2 A yIN] A nvra[N])

6.4 Automatic generation of symbolic assertions

Following the guidelines in Sect. 3, we instantiate the pro-
gram DINE according to the small-model theorem, compute
the auxiliary concrete constructs for the instantiation, and
abstract them. Here, we chose an instantiation of No = 6
(obviously, we need Ng > 4; it seems safer to allow at least

a chain of three that does not depend on the “special” three,
hence we obtained 6). For the progress property, we choose
z = 3 and attempt to prove (7[3] = 2)=0(x[3] = 3).
Due to the structure of the the program DINE, process P[i]
depends only on its neighbors; thus we expect the auxiliary
constructs to include only assertions that refer to two neigh-
boring process at the same time. We choose to focus on pairs
of the form (i,i © 1).

We first compute ¢, (i,7 © 1), which is the abstrac-
tion of the set of reachable states. We distinguish between
three cases,i = 1,i = N,andi = 2,..., N—1. For the
first case, we take <pi] = reach.[1 — 1,6 — N] (e,
project the concrete reach. on 1 and 6 and generalize to 1
and N); for the second case, we take e, = reach.[6 +—
N,5 — N-1] (i.e., project the concrete reach. on 6 and
5 and generalize to N and N —1); and for the third case,
we take (p;‘w =reach.[3 +— i,2 — i — 1] (i.e., project the
concrete reach. on 3 and 2 and generalize to i and i—1).
The abstract pending sets we obtain are in Appendix A.3.
We then define:

Q=92 ANty AVEE{L N}l (i)

and define pend, = ¢, N —Err A w[3] = 2.

For the helpful sets, and the §s, we obtain, as expected,
assertions of the type p(i, i©1). The assertions are described
in Appendix A.3.

Thus, the proof of inductiveness of ¢, as well as all
premises of DISTRANK, are now of the form covered by
the modest-model theorem.

We now compute the size of the instantiation needed.
Premises D1, D3, and D7 relate only to unprimed copies of
the variables. Other premises relate to both unprimed and
primed copies of the variables. When we use the modest-
model theorem “as is,” the resulting figures are L = 407 =
1600 (five possible locations, one fork, two nvr variables, all
counted as current and next), L24+1 ~25 % 106, which re-
sults in a bound of about 107 processes. To get a reasonable
figure, we use the following reductions.

— We syntactically analyze all the resulting assertions and
find that only variables in V5 are referenced by both @1
and ©1. Variables in Vy are referenced only by &1. Thus
we have to search only for two identical processes and not
for two pairs of adjacent processes.

— The transition p is on the left-hand side of the implica-
tion in all the premises that include primed variables (D2,
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Table 1 Run time and space results for DINE

Construct BDD nodes  Premise Time to validate

10 1,779 ¢ (inductiveness) 0.39 s

pend 3,024 DI <0.01s

0 10,778 D2 0.42s

he’s <10 D3 0.01s

8¢’s <10 D4 163.74 s
D5+D6 138.59 s
D7 0.02 s

D4, D5, and D6). This implies that all possible coun-
terexamples to these premises satisfy p. According to p,
all primed variables for every j & {i,i®1} are equal to
their unprimed versions. Thus, if we treat i,i®1 as an-
other two-element long chain of universally quantified
variables, we do not have to consider different values of
the primed variables. It follows that we can use L = 40
for our search for duplicate entries.

As a result, the value L above (the maximal length of chain
with no “equivalent” processes) is 40. There are three free
variables in the system, 1, N, and N —1. (The reason we in-
clude N—11is, e.g., its explicit mention in ¢ , ). Following the
remarks on the modest-model theorem, since the three vari-
ables are consecutive, and since with all universally quan-
tified variables we use only i & 1, the size of the (modest)
model we need to take is 40(u+1)+u—+4, where u is the
number of universally quantified variables. Since u < 2 for
each of premises D1-D7 (it is O for D4, 1 for D1, and 2 for
D2, ?3, and DY), it is sufficient to choose an instantiation of
128.

In Table 1, we present the number of BDD nodes com-
puted for each auxiliary construct and the time it took to val-
idate the inductiveness of ¢ and each of the premises (D1-
D7) on the largest instantiation (128 philosophers). Check-
ing all instantiations (2—128) took less than 8 h.

7 Imposing ordering on transitions

Sections 3 and 4 dealt with helpful transitions A[i] (and
ranking functions) that depended only on the single index i.
In the previous section we showed how to extend this ap-
proach to the case in which /4 [i] may also depend on indices
i©landi @ 1. In this section we study helpful assertions
that depend on all j # i. Such multiple-index helpful asser-
tions appear quite frequently. As a matter of fact, most help-
ful assertions seem to be of the type 4(i) : Vj.p(i, j), where
i is the index of the process that can take a helpful step,
and all other processes (j) satisfy some supporting condi-
tions. However, such a helpful assertion presents a problem
when trying to verify premise D4 of rule DISTRANK, since
we obtain an 3V-disjunct in the premise. In this section we
show a new proof rule for progress that allows us to order the
helpful assertions in terms of the precedence of their help-
fulness. “The helpful” assertion is then the minimal in the

4 By modifying project&generalize to include only part of the vari-
ables of a process and not all variables, this can be further reduced to
83 processes.

ordering, so that we can avoid the disjunction in the r-h-s of
premise D4.

7.1 Preordering transitions

A binary relation < is a preorder over domain D if it is re-
flexive, transitive, and total.

Consider a BFTS S with set of transitions
T(N) = [0 .. m] x N (as in Sect. 3.1). For every
state in S(N), define a preorder < over 7. From the totality
of <, every S(N)-state has some 7¢[i] € 7 that is minimal
according to <. We replace premise D4 in DISTRANK with
a premise stating that for every pending state s, the transition
that is minimal in s is also helpful at s. We call the new
rule PRERANK and, to avoid confusion, name its premises
R1-R7. Thus, PRERANK is exactly like DISTRANK, with
the addition of a preorder <: ¥ — ZTXT, premises
ascertaining that the relation < is a preorder (R8-R10), and
replacement of D4 by R4 (Fig. 8).

In order to automate the application of PRERANK, we
need to be able to automatically generate the preorder re-
lation <. As usual, we first instantiate S(Np), compute
concrete <., and then use the method project&generalize
to compute an abstract <,. The main problem is the
computation of the concrete =<.. We define s

1 X mif s E &(r,m) for the following CTL
formula:

A((=h, A )W h;) VvV
O (1. 7) : (( ™ N\ pen ) 7'1) @)

—~A((=hs Apend) Why) )’

where W is the weak-until or unless operator.

The intuition behind the first disjunct is that for a
state s, transition 71 is “helpful earlier” than 7 if none of
the pathes departing from s reaches /., before it reaches
h7,. The role of the second disjunct is to guarantee the
totality of <, so that when 71 becomes helpful earlier

For a parameterized system with a transition 7 = 7 (N)
set of states X(N), just transitions J C 7 (N),
invariant assertion ¢,
assertions ¢, 7, pend and {h, | 7 € J},
ranking functions {6-: X — {0,1} | 7 € J},
and a pre-order <: X — 27*7

R1. q AN — r V pend
R2. pend A p — 'V pend’
R3. pend A p — Vv /\7&76, > 0L

For every 7 € J

R4. pend A (/\ T -<7'1> — hr
T1ET
R5. h: A p — 'V R,V & >
R6. hr N T — 'V 6 > 0L
R7.  h: — En(T)
R8. pend — TT
For every 11,2 € J
R9. pend N 7171 AN 11 XT2 - 7T
R10. pend — 711 V1T

g== O

Fig. 8 The liveness rule PRERANK
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than 7 in some computations, and 7 precedes 7| in
others, we obtain both 71 < 7 and 7 < 7. To abstract a
formula A(p(h{ [i1) W ¥ (hz[j1)), we compute the asser-
tion A(@(hy [2]) W ¥ (hf,[3])) over S(No) (2 and 3 being
chosen arbitrarily to represent two generic indices), and
then generalize 2 to i and 3 to j. To abstract the negation
of such a formula, we first abstract the formula and then
negate the result. Therefore, to abstract Eq. (2), we abstract
each A W -formula separately and then take the disjunction
of the first abstract assertion with the negation of the second
abstract assertion.

7.2 Case study: BAKERY

Consider the the program BAKERY of Example 2 (Fig. 3).
Suppose we want to verify (7[z] = 1) == O(@r[z] = 3).
We instantiate the system to No = 3 and obtain the aux-
iliary assertions ¢ and pend and the ks and ds. After ap-
plying project& generalize, we obtain for hg[i] two types
of assertions. One is for the case that i = z, and then, as
expected, h3[z] is the most interesting one, having an V-
construct claiming that z’s ticket is the minimal among ticket
holders. The other case is for j # z, and there we have a sim-
ilar V-construct (for j’s ticket minimality) for £ = 2, 3, 4.
For the preorder, one must consider 7¢,[i] =< 7¢,[j] for
every {1, = 1,...,4andi = z # j,i = j #
z,i,j # z for (£1,i) # (L2, j). The results for 74, [i] <
Te,[j] for i # z that are not trivially T are described in
Appendix A.1

Using the above preorder, we succeeded in validating
premises R1-R9 of PRERANK, thus establishing the live-
ness property of the program BAKERY.

8 Multiple preorder relations

In the previous section we described how to compute the
preorder relation. Eq. (2) is one alternative for computing
the preorder. We can view rule DISTRANK as a special case
of rule PRERANK, with a trivial preorder defined by s =
71 XM if s &= W (7, ™), where

lII(Tls 7—2) : hT] \% _'hTz . (3)

Obviously, other definitions are also possible. In fact, by al-
lowing different schemes of computing preorder on different
states, the rule PRERANK can be applied to a wider range of
protocols. In this section we demonstrate this idea on a ver-
sion of SZYMANSKI’s mutual exclusion protocol described
in Fig. 9.

The progress property we would ideally like to verify
is (m[z] = 1==0(x[z] = 7). This property, however, is
beyond the scope of the methods and rules described here
since it requires some just transition to be helpful twice. It is
not difficult, but rather tedious, to extend our technique for
generating ranking so as to deal with cases where transitions
may be helpful up to & times, for any bounded k. We bypass

in N : natural where N > 1
[loop forever do
[0 : NonCritical
1: await Vj.at_lo1,2,4[j]
2 : skip
3:If 35 : at_t1,2]j]
then go-to Iy
1 else go-to Is
: await 35 : at_{ls56,7[]]
: await V7§ : —~at_f3.4[]]
cawait V5 : j < i: at_Lo,1,2[]]
: Critical

~N O Ot i~

Fig. 9 Program SZYMANSKI

this difficulty here by restricting ourselves to a “smaller”
progress property to which the proof applies, namely, to the
progress property

(Tlzl=1 AVYi:xw[i] <4)=0@[z]=T7). @)

An inspection of the protocol reveals that 7¢[i] is the
only transition whose enabling condition is of the form
Vj.p(i, j), which is an obvious candidate for preordering
of the type we used in Sect. 7. The other transitions all have
enabling conditions of the form p(i) A Vj.q(j) (or sim-
pler) that can be easily handled by the trivial preorder that
we implicitly use when applying DISTR ANK. Consequently,
we partition the concrete pending states into pend, =
3i. \/E§Z{O,6} En(r¢[i]) and pend, = pend A —pend,.
The (concrete) preorder is now defined for pend-states
by

W(reli], 7 [i'])  if€, € #6
Tli] < Tpli'l= | T if ¢ =6

F otherwise
and for pend,-states by

O(rgli), e [i']) ifl=0=6
mli] < pli'l=43 T if¢ £6

F otherwise ,

where W is defined in Eq. (3) and & is defined in Eq. (2).

These definitions allow us to use project&generalize on
the concrete preorder (as described in Sect. 7) and success-
fully prove Eq. (4) for the program SZYMANSKI.

9 Discussion

We have presented a method for automatically verifying
liveness properties of parameterized systems. The method
is based on automatic computation of the assertions needed
by a deductive rule according to the analysis of a small
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instance of the problem. Then, using a small-model theo-
rem, the verification conditions of the deductive rule are
discharged using BDD techniques on a (sometimes not so)
small instance of the parameterized system. Being able to
discharge the verification conditions on a finite model has
the additional advantage that the user never gets to see the
assertions, which is why we termed the method “invisible
constructs.”

Deductive proofs for liveness require the identification
of helpful transitions and, in addition, a ranking function
that measures the progress toward the goal. The deductive
proof rule we are using is similar. To facilitate the gener-
ation of the ranking function, we partition it and include
one ranking function per helpful transition. The range of
these ranking functions is usually {0, 1}. There are cases
where a single transition must be helpful more than once
before other helpful transitions can be taken. In such cases
the restricted range of {0, 1} (i.e., the helpful transition was
or was not taken) is not sufficient. We would have to con-
sider ranking functions with a larger-range set. In general,
we believe that it is best to use the smallest range possi-
ble for the ranking functions. The main burden in using our
method is in devising the method to compute the explicit
ranking functions and in deciding how to generalize these
explicit assertions. Thus having a larger range for the rank-
ing functions would make the method harder to use and is
inadvisable.

A key feature of our method is generalizing a con-
crete set of states into a universal assertion. In the pa-
per, we explain briefly how to obtain existential auxiliary
assertions in the case that our approximation of the con-
crete set is too abstract. This process can be iterated as
follows. When the assertion we have is too abstract, we
can add an existential conjunct that tightens the abstrac-
tion. When the assertion does not capture the entire con-
crete set, we can generalize the difference and add a uni-
versal disjunct. Thus, we can get assertions of the general
form ((--- (VAT)VV)A3T)---). Note that the quantifiers are
not nested, hence using these assertions we can still employ
the small-model theorem. We have studied examples where
this iterative computation of the generalization is necessary
in order to get assertions that fulfill the requirements of the
deductive rule. This, however, is beyond the scope of this
paper.

Finally, we recall that the problem of uniform verifi-
cation of parameterized systems is undecidable; thus we
cannot hope that our method, or other methods, will al-
ways succeed. When the method does not work immedi-
ately, it may help to obtain tighter abstractions. It may
help to increase the size of the small model on which
we compute the concrete assertions. The cornerstone of
our method is a deductive rule, so manual intervention of
the user may help push a proof forward. Sometimes, un-
fortunately, it would be best to try something completely
different.
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Appendix 1

A BFTS and auxiliary constructs

A.1 Program BAKERY

BFTS. See Fig. A.1.

Auxiliary constructs: The auxiliary constructs for the program
BAKERYwith minid are:

(at—Lo,1li] < y[i1=0) A

@ Vi (ar_t3.41i] — minid = i)
oy (minid # i v y[j]1> yUIA Y] #0V
“LLUT=0) A0 =y0] = yi1=0)
pend , 0, N at_tys[z]
t| Forj=z: For j # z
1|at_£[z] 0
2lat_lr[z] A |at_lr[z] A at_L3]]]
BeliDa = | | minid = z | A minid = |
310 at_[z] A at_t3]j]
410 at_lr[z] N at_L4]j]
v y : array[l..N] of [0..N]
" | 7 : array[l..N] of [0..4]
O. ‘v’z w[i] =0 A y[i] =0
(10(i) : Vj#4. i) =0A7'[i] € {0,1}A
pres(w[j], yli, y[j])
71(2) : Vi, k#i.w[i] = 1AT[H] =2AY'[j] < Y'[i]
yil=0—y [J = 0/\
(y[ ] < ylk] < y'[5] < y'[K]
Apres(r[j])
T:qm():Vi#i. 7] =2A(yl]=0Vyls] >yl
Ar'[i] = 3 A pres(n[j], yi], y[5])
73(i) : Vi #i. wi] =3An[i] =4A
pres(w[j], yli, y[j])
7a(i) :Vj#i. 7] =4A7[i]=0AY[i] =0A
pres(m[j],y[j])
(Tia: V. pres(w[j], y[j])

J : {11(4), 72(3), 73(4), 74(4), 7ia | 4 € [1..N]}

C: 0

Fig. A.1 BFTS for program BAKERY
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t| Forj=z Forj#:z A.2 Program TOKEN-RING

1|at_¢,[z] [0
GeljDy | 2]at—li2l2] ¢ (2, j, {2)) Symbolic assertions:
3(0 ¢(z, j,{2,3}) k=0 k=1 k=2
410 (2, j,{2,3,4) h 0 at_0i[1] A tloc=1 0
h;j[i],i > 1 at_L1[1] AN at_Lli] A tloc =i
where {(z, j, A) = at_{[z] Vv at_L3[z] A ylz] > y[j] A at—€alj].
Symbolic ranking:
80111:0

Preorder relation for non-minid-version: Let a: n[j] =2 — 111z ar—t4[1]
ylz] < yljl, B: wlil = 2 A yli] < y[jl, and y(L): w[j] € L —

A .
y[z] < y[j]. The preorder is described in Fig. A.3. 8{%8[[11.]] ': (LLﬁ (1] A
(1 <tloc <i N at_Lo;li] Vv tloc =1)
8{‘[1’] rat_l[1] A
v . Jy,nory, mors - array [1..N] of bool 1 <tloc <i AN at_Lo1li]Vv for
R array [1..N] of [0..4] tloc =i A at_q[i]) i>1
O :Vi. (x[] =0 A yli 831i1: ar_€4[1] A

To(d): Vj#i: I <tloc <i N at_Ly[i]V
7li] = 0 A7'[i] € {0,1} A tdoc =i A at_ty[i]
pres(yli], nury[i], nora[i]) A
pres(w[j], ylj], nor1[5], nor2[3])

n@): Vig1ii®1):

n[i] = L A7'[i] = 2 A pres(nor1[i], nora[i]) A
(i <N — (yli] A —~y'[i] Apres(yli+ 1)) A
(i = N = (y[t] A~y/[1] Apres(y[NT)) A A.3 Program DINE
pres(m[i @ 1], nori[i @ 1], nora[i @ 1]) A )
pres(xi],yljl, nora[j], norali])) BFTS: SeeTig. A.2
V
—nori[i] A nori[i] A pres(ri], y[i], nura[i]) A
pres(wi @ 1],y @ 1], nor1[i @ 1], nora[i & 1]) /\] .
pres(xjl, ylj], nors ], nora]j) Abstract pending sets:
nG): Vig1ii®1):
w[i] = 2 A7'[i] = 3 A pres(nvrii], nora[i]) A (y[N] = w[N] < 2)
. (i< N — (y[i + 1) A=y'[i + 1] A pres(y[i]))) A
T |a=N = eayiN Apresll) A e = | N T AN
pres(n[i ® 1], nor1[i ® 1], nora[i & 1]) A N (y[l] - (Tt[ 1<2 A ))
pres(w[j], ylj], nor1 (5], nora[j])) w1 <2
V
—nora[i] A norsli] A pres(rli], y[i], norii]) A
pres(n[i @ 1], y[i & 1], nur1[i @ 1], nurz[i & 1]) A
pres(x[j], ylj], nora[j], nor[4])

T3(1): Vj#i: [_[nh] 72[j] 7314] 7alj]
W[i]:3/\7r/[i]:4 A 71[d) VZ;JZ jiéZAWEf]:ZAa V{WTZ]Z:Z/\Q Vfr[:z]zz2/\oz
pres(yli], nora[i], norafd]) A a2zl =1 Al £3) Anlj] < 3
pres(w[j], y[j], nor1[5], nor2[]) i=j j=zVal]=1 j=2VaR =1

r(): Vig (i1} - KM vieinmilAs o |viejac<s
wli] = 4 A mli] = 0 A pres(norfi], norafd) A BRI N ST POOE| M et Nl M A s
Yl Ay'li@1] A S N G=j A =2)
pres(ﬂ[i‘ea 1}', yli @ 11, nor [t EB 1], nora[i @ 1]) A il 1A% ) (:ffz]_:.; 1—\/;2}/\ , ;;;EZ{]J:_; v ﬁ\; 7;[1‘] =3
pres(n(jl, ylj], nor1[j], nora[j]) V=2 e =svae)  |vae3) Ve

mia: Vj:pres(n[j], y[il, nor1[f], nura[j]) 2. | Goi=A T=2vp i=jVji=z

7a[3) V] =2 (rlz] =1V Vi#jAar[i]>2 V BV r[i] > 2
J: {7'1(7:),Tz(i),T3(’i),T4(i),T—;d ‘ S [].N]} Vil > 2V a) V 7(2,3) V v(2.4)

Fig. A.2 BFTS for program DINE Fig. A.3 Preorder for Program BAKERY
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Oli—-11 = n[i—-1]1 < 2) 7
A (r[i=1]>2 = n[i] <2)

. mli—1]1<3 A
A (y[’] < <n[i] <2 )) N

yIN—-1] >[N —-1] <2 9
A m[N—-1]>2—>7[N] <3
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