
International Journal on Software Tools for Technology (2006) 8(3): 180–194
DOI 10.1007/s10009-005-0191-z

SPECIAL SECTION ON TOOLS AND ALGORITHMS FOR
THE CONSTRUCTION AND ANALYSIS OF SYSTEMS

Antti Valmari

What the small Rubik’s cube taught me about data structures,
information theory, and randomisation

Published online: 16 February 2006
c© Springer-Verlag 2006

Abstract This article discusses observations made when the
state space of the 2×2×2 Rubik’s cube was constructed with
various programs based on various data structures, gives the-
oretical explanations for the observations, and uses them to
develop more memory-efficient data structures. The cube
has 3,674,160 reachable states. The fastest program runs in
20 s and uses 11.1 million bytes of memory for the state set
structure. It uses a 31-bit representation of the state and also
stores the rotation through which each state was first found.
Its memory consumption is remarkably small, considering
that 3,674,160 × 31 bits is about 14.2 million bytes. Getting
below this number was made possible by sharing common
parts of states. Obviously, it is not possible to reduce mem-
ory consumption without limit. We derive an information-
theoretic hard average lower bound of 6.07 million bytes that
applies in this setting. We introduce a general-purpose vari-
ant of the data structure and end up with 8.9 million bytes
and 48 s. We also discuss the performance of BDDs and per-
fect state packing in this application.

Keywords Explicit state spaces

1 Introduction

In spring 2001 I was looking for an example with which to
teach state space construction algorithms without first hav-
ing to give a series of lectures on the background of the ex-
ample. The traditional ‘dining philosophers’ seemed neither
motivating nor challenging enough.

It occurred to me that the 2 × 2 × 2 version of the famil-
iar Rubik’s cube1 might have a suitable number of states. I
will soon show that it has 3,674,160 states. This number is

A. Valmari (B)
Tampere University of Technology, Institute of Software Systems,
PO Box 553, 33101 Tampere, Finland
E-mail: Antti.Valmari@tut.fi

1 Rubik’s cube is a trademark of Seven Towns Ltd.

low enough that I expected its state space to fit in the main
memory of cheap computers of the time yet high enough that
differences between bad and good state space construction
algorithms would become clear.

The 2 × 2 × 2 Rubik’s cube proved to be a more fruit-
ful example than I could ever have guessed. Working with it
provided surprises about the C++ standard library as well as
information-theoretical lower limits and led to the develop-
ment of a very tight hash table data structure. In this paper I
will present some highlights of that enterprise.

Lower limits we are discussing can be used for answer-
ing questions like ‘The computer has 1 GiB memory, and
100 bits are needed to store a state. What is the largest num-
ber of different states that fits in the memory?’ Perhaps sur-
prisingly, the answer is not 1 GiB/100 bits ≈ 86,000,000,
but roughly 115,000,000. This is a theoretical figure that is
probably not obtainable in practice. On the other hand, the
very tight hash table is usable in practice, and with it one can
make about 100,000,000 states fit in.

2 The state space of the cube

The 2 × 2 × 2 Rubik’s cube is illustrated in Fig. 1. Thanks
to an ingenious internal structure, any half of the cube – top,
bottom, left, right, front, back – can be rotated relative to
the opposite half. Thus each of the eight corners is actu-
ally a moving piece. Figure 1 shows a rotation of the top
half.

Each face of the cube is painted in a unique colour. When
the faces are rotated, the colours get mixed. Getting the
colours back to their original positions requires some expe-
rience, although is not extremely difficult with the 2 × 2 × 2
cube. The ‘standard size’ of the cube is 3 × 3 × 3.

To construct the state space of the cube, it helps to nor-
malise the orientation of the cube in space. One might, for
instance, always let the red-blue-yellow piece be the right
back bottom corner with the red face down. Then the states
of the cube consist of the other seven pieces changing their
positions and orientations.

Rubik’s cube’s state space and information theory 181

Fig. 1 Rotation of top face of 2 × 2 × 2 Rubik’s cube

The corners have altogether 7! = 5,040 different or-
ders. Because each corner can be in three different orienta-
tions, the number of states of the cube has the upper limit
7! × 37. Everyone with enough experience with the cube
knows, however, that it is not possible to rotate the cube into
a state where everything is as in the original state with the
exception of one corner with the wrong orientation. Because
of this, the cube has only 7! × 36 = 3,674,160 states.

The state of the cube can be represented on a computer
in several different ways. For instance, one might encode the
colour with three bits and list the colours of the four quarters
of the front face, top face, and so on. Because the right back
bottom piece does not move, its colours need not be listed.
Thus this representation would take 21 × 3 = 63 bits.

There are 263 ≈ 1019 bit combinations in 63 bits. This
is vastly more than the 3,674,160 states that are possible in
reality. Some of the ‘extra’ bit combinations have a mean-
ingful interpretation. For instance, about 7 million of them
can be produced by breaking the cube into pieces and assem-
bling it again, and many more are obtained by repainting the
faces of pieces.

The interpretation of the extra bit combinations is not
essential, however. What is important is that there are many
of them, many more than of ‘real’ states. This is common
in state space applications. As will become clear by the end
of Sect. 9, this fact has a great effect on the choice of data
structures for representing state spaces.

The bit combinations that the system in question can get
into are often called reachable states. The set of all bit com-
binations does not have an established name, but it can be
called the set of syntactic (or syntactically possible) states.

The set of syntactically possible states depends on the
representation of the states. The state of the 2 × 2 × 2
Rubik’s cube can be represented much more densely than
was described above. The possible positions of the mov-
ing pieces can be numbered 0, . . . , 6 and the orientations
0, . . . , 2. These can be combined into a code that ranges
from 0 to 20 with the expression 3 × position + orientation.
We shall call this the pos-or code.

The left-hand side of Fig. 2 shows the numbering of the
positions that I used. The encoding of the orientations is
more difficult to explain. In the original state, each piece is
in orientation number 0. The right-hand side of Fig. 2 shows
how the orientation code changes when the piece moves in
an anticlockwise rotation. ‘+’ means increment modulo 3,

Fig. 2 Left: Numbering of positions of pieces. Right: Changes in
orientations due to rotation

and ‘−’ denotes decrement. When rotating clockwise, ‘+’
is replaced by ‘−’ and vice versa.

Because each basic rotation increments the orientations
of two pieces and decrements those of two other pieces, the
sum of orientations modulo 3 stays constant. This proves the
fact mentioned earlier that it is impossible to rotate just one
corner into a wrong orientation.

The pos-or codes for the seven moving pieces can
be combined into a single number with the expres-
sion

∑6
i=0 ci × 21i . We will denote this operation by

pack(〈c0, c1, . . . , c6〉). The resulting number is at most
approximately 1.8 × 109 and fits in 31 bits. With this
representation, there are only 231 ≈ 2.1 × 109 syntactically
possible states. We will also need an unpacking operation
unpack(p) = 〈c0, . . . , c6〉 such that ci = �p/21i� mod 21
for 0 ≤ i ≤ 6.

This representation of states has advantages over the 63-
bit representation. It requires less memory, and it is handy
that a state fits in the 32-bit word of typical inexpensive
computers. Furthermore, we will next see that it facilitates
very efficient computation of the effects of rotations. This
is important because over 22 million rotations are computed
when constructing the state space.

There are six different rotations: one can rotate the top,
front or left-hand side face of the cube, and do that either
clockwise or anticlockwise. One can reason from Fig. 2
how the position and orientation of any corner piece will
change in a given rotation. For instance, rotating the front
face anticlockwise moves the piece that is in position 1 and
orientation 2 to position 3 orientation 1. Thus the rotation
changes the pos-or code of the piece from (3 × 1) + 2 to
(3 × 3) + 1, that is from 5 to 10.

Because there are 21 different pos-or codes, any rotation
corresponds to a permutation of the set {0, . . . , 20}. Table 1
shows these permutations for the anticlockwise rotations as
three 21-element look-up arrays. Because, as we saw above,
rotating the front face anticlockwise changes the pos-or
code from 5 to 10, the ‘F’ row of the table contains 10 in
the column labelled ‘5’. The clockwise rotations can be
obtained as the inverses of the permutations in the table.

182 A. Valmari

Table 1 The three anticlockwise rotation arrays: Front, Left and Top face

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F 4 5 3 11 9 10 1 2 0 8 6 7 12 13 14 15 16 17 18 19 20
L 13 14 12 1 2 0 6 7 8 9 10 11 17 15 16 5 3 4 18 19 20
T 7 8 6 3 4 5 20 18 19 9 10 11 1 2 0 15 16 17 14 12 13

The total effect of a rotation can be computed by extract-
ing the pos-or codes of each of the seven moving corners
from the 31-bit state representation, applying the table seven
times to get the new pos-or codes, and packing the results.

3 The first program

My goal was to write a program that would construct
the 3,674,160 states of the 2 × 2 × 2 Rubik’s cube in
breadth-first order. Associated with each state there should
be information on the rotation via which the state was
first found. Then, given any mixed state of the cube, one
can reorder the cube with the smallest possible number of
rotations by repeatedly finding the rotation that led to the
current state and applying its inverse. The data structure
can also be used for investigating the structure of the state
space. There will be an example of this in Sect. 11.

The basic principle of such a program is shown in
Fig. 3. The ‘initial state’ is the one where the cube is in
order. The program uses two data structures: an ordinary
queue and a state structure that stores packed states and
associates a number with each stored packed state. The
number indicates the rotation by which the state was found.
For the initial state, its value does not matter. R0, . . . , R5 are
the 21-element look-up arrays that represent the rotations.

It is common in state space tools to save memory by
inserting in queues pointers to states instead of states proper.
However, because a state now fits in one 4-byte word, it
uses as little memory as a typical pointer, so no savings
would be obtained. On the other hand, storing states as such
is quicker. Therefore, the program does it.

I knew that the maximum length of the queue would
be less than the number of states, so less than 15 million
bytes suffice for the queue. Afterwards I found out that
the maximum length was 1,499,111, so a good queue
implementation uses less than 6 million bytes.

Fig. 3 Construction of the reachable states in breadth-first order

The C++ standard library2 offers the queue as a ready-
made data structure. (To be precise, it offers several queues
that have the same interface but different implementations.)
In the first version of the program I utilised C++ standard
library services wherever possible. An efficient queue that
meets the needs of my program would have been easy to
implement, but I never found a reason to do so.

The situation was different with the state structure. In
the first version of my program I used the C++ standard
library map. The standard does not fix its implementation,
but in practice it is a red-black binary search tree. When
I ran the first version of the program on my laptop, the
hard disk soon started to rattle, and the printing of inter-
mediate results slowed down. The amount of payload was
3,674,160 × 5 ≈ 18.4 million bytes (the fifth byte was the
rotation information). Leaving the rotation information out,
reducing the payload to 14.7 million bytes, did not help. The
laptop I had at that time had 42 million bytes (40 × 220, to
be more precise) of main memory. Was that not sufficient?

Each node of a red-black tree contains, in addition to the
payload, three pointers to other nodes (two children and the
parent) and one bit which denotes its colour (red or black).
The colour bit is used to maintain the balance of the tree and
thus to ensure that tree operations obey the O(log n) time
bound. Each pointer uses 4 bytes of memory. These make
up 12 bytes plus one bit. It is customary in some computer
architectures to align multibyte data items to addresses that
are multiples of two, four, or eight because that speeds up the
processing. Because the C++ map is generic, its implemen-
tor had probably prepared for the worst and used multiples
of eight for the payload. As a consequence, the 31-bit
payload expanded to 8 bytes, and then the node expanded
to a multiple of 8 bytes, making the total size of a node
24 bytes.

So the state structure needed 3,674,160 × 24 bytes, that
is more than 88 million bytes of memory. That was too much
even for the workstation back at the office. I felt that that was
quite a lot for storing a payload of less than 15 million bytes,
so I started to think about a more efficient data structure.

4 An optimised hash table for the 2 × 2 × 2 cube

A chained hash table is an efficient and often-used way of
representing sets and mappings in a computer. It consists
of a fairly large number of linked lists. Each list record

2 For historical reasons, the data structures that are part of the C++
standard library are often called ‘STL’. The abbreviation is misleading,
and the C++ standard never mentions it.

Rubik’s cube’s state space and information theory 183

typically contains one element, its associated data, and a
link to the next record. The list that an element belongs
to is determined by the hash function. The number of lists
is much smaller than the number of syntactically possible
elements. (If the number of syntactically possible elements
is so small that one can use an array of that size, then better
data structures are available than hash tables. We shall
return to this in Sect. 9.)

An element is usually stored in its entirety in its list
record. Even so, Knuth had already pointed out that, in
principle, that is not necessary. All elements in the same list
have some information in common, and that information
need not necessarily be stored [5, Sect. 6.4, Problem 13,
p. 543]. Isolating and leaving out the shared information is,
however, somewhat clumsy, and the savings obtainable are
often insignificant compared to the rest of the record. That
is, if there are n hash lists, then the savings per record can
be at most log2 n bits, while already the link to the next
record spends more bits, and the record also contains the
remaining part of the payload.

The amount of the payload is, however, small in the case
of the 2×2×2 Rubik’s cube, making it worthwhile to leave
out shared information. One can reduce the memory occu-
pied by the links by putting several elements into each record
and by using numbers instead of pointers as links. I even-
tually ended up with the data structure that is illustrated in
Fig. 4. I will call it the Rubik hash table and describe it next.

A major requirement of a hash function is that it
distribute the elements over the lists as evenly as possible.
To ensure this, it is often recommended that the value of
the hash function be made dependent on every bit of the
element. Therefore, the Rubik hash table starts the process-
ing of an element by randomising its 31-bit representation
with simple arithmetic and bit operations. I used the C++
code shown in Fig. 5. I ensured that it never maps two
different states into the same mixed state and that every bit
affects the least significant bit, but other than that it has not
been designed, just written. In Sect. 7 the quality of this
algorithm is analysed.

The Rubik hash table uses the 18 least significant bits
of the randomised state for choosing a hash list. I will call
these bits the index. There are thus 218 = 262,144 lists. The
remaining 13 bits of the element make up the entry that will

Fig. 4 A hash table optimised for the 2 × 2 × 2 Rubik’s cube

Fig. 5 Randomisation of the state

be stored in the list record. The reason for the choices 18
and 13 will become clear after I have described the structure
of records.

To keep the number of links down, a list consists of
blocks of two kinds: basic blocks containing 21 entries each
and overflow blocks with 6 entries each. As I will discuss
later, I chose the sizes by experimenting. There is precisely
one basic block per list. The number of overflow blocks is
8,192, because that is the greatest number allowed by the
structure described below. A slightly smaller number would
suffice, but optimising it would not help much because
the memory consumed by overflow blocks is insignificant
compared to the basic blocks.

To reduce the size of a link, the blocks are stored in an
array. The array consists of (262,144 × 21) + (8,192 × 6),
that is 5,554,176 two-byte slots. A basic block is stored
in 21 successive slots, and an overflow block occupies 6
slots. The first slot of the basic block that corresponds to
an index value is found by simply multiplying the index
by 21. Numbers from 0 to 8,191 are used as links, and the
corresponding overflow block is found by multiplying the
link by 6 and then adding the total size of the basic blocks.

Each slot consists of 16 bits, three of which are used
to denote the status of the slot. The status may be ‘empty’,
‘overflow’, or ‘in use x’, where 0 ≤ x ≤ 5. If it is ‘in use’,
then the remaining 13 bits of the slot store the entry of
some state, and the value x tells the basic rotation via which
the state was first found. In the case of an empty slot, the
contents of the remaining 13 bits have no significance. The
13 bits of an overflow slot contain a link; thus the link can
obtain at most 213 different values, which is why there are
that many overflow blocks.

When new states are added to a hash list, they are stored
in the basic block starting from its beginning until it fills up.
If still another state has to be stored in the list, then the first
free overflow block is used. The last entry of the basic block
is moved to the first slot of the overflow block, and the new
state is stored in the second slot. The last slot of the basic
block is marked ‘overflow’, and the number of the overflow
block is written into its entry field. If necessary, the list is
continued into another overflow block, and so on.

Now one can see the reason for the ‘magic’ numbers
18, 13, and 8,192. To ensure that entries, links, and status
data can be easily manipulated, the size of a slot must be an
integral multiple of bytes. Three bits suffice for representing
the rotation information and handily offer two extra values
that can be used to denote ‘empty’ and ‘overflow’. A
one-byte slot would leave 5 bits for the entry. The number of

184 A. Valmari

lists would be 226 ≈ 6.7×107, resulting in the consumption
of a lot of memory. Three bytes in a slot would make the
lists very long on the average (namely 3,588 states), which
would make the scanning of the lists slow and reduce the
savings obtained from not storing the index bits. Two-byte
slots yield 262,144 lists with an average length of about 14,
which are good numbers.

The Rubik hash table uses slightly more than 11 million
bytes of memory. The improvement compared to the 88
million bytes used by the C++ map is very good. The
program that uses the Rubik hash table runs on my now-
ancient laptop with no problems at all. It needs about 105 s
to construct and store all 3,674,160 reachable states. The
workstation I have at work has changed since the first exper-
iments, so I can no longer take measurements with it. Later
on the C++ compiler also changed, speeding the programs
up. The workstation I have now can run the program based
on the C++ map. It needs 98 s with the current compiler
(106 s with the previous one). The same machine runs
the Rubik hash table version of the program in about 20 s
(23 s).

As mentioned above, I chose the sizes of the basic block
and overflow block by experimenting. I do not remember
how long it took, but it did not take long. The average length
of a list was known in advance: it is the number of states
divided by the number of lists, that is about 14. If we make
the size of a basic block twice that much, then most of the
lists fit in their basic blocks. There are so few overflow
blocks that their memory consumption does not matter
much. Let us fix their size to be 28, the same as that of the
basic blocks. With these values the memory consumption is
not much more than 15 million bytes. That fits my ancient
laptop well: the program runs in 106 s.

One can then find the optimal size for the basic block by
reducing the size until the capacity of the Rubik hash table
becomes too small and then do the same for the overflow
blocks. Alternatively, after succeeding in generating all
reachable states for the first time, one can make the program
print the number of lists for each length. The optimal sizes
can be computed from these data. We will return to this
topic in Sect. 7.

5 An analysis of the memory consumption

When computing the memory consumption of the Rubik
hash table I made a startling observation. Although the data
structure uses only 11.1 million bytes, it stores 3,674,160
elements of 31 bits, making a total of 14.2 million bytes.
What is more, it also stores the rotation information within
the 11.1 million bytes. It thus copes with much less memory
than what might at first seem to be the amount of informa-
tion in the data. Unexpectedly small memory consumption
is often caused by some regularity in the stored set, but
this explanation does not apply here because the states are
randomised before storing.

The real explanation is that a set contains less informa-
tion than the number n of elements in it times the width w
of an element, except when n ≤ 1. This is because a set
does not specify an ordering for its contents, and it cannot
contain the same element twice. If some elements of a set
are already known, learning another one conveys less than
w bits of new information, because it was clear beforehand
that it cannot be any of the known elements. In a similar
fashion, if the order in which the set is listed is known in
advance, then the next element cannot be just anything;
it must be larger (in that order) than the already listed
elements. If the order is not known in advance, then one
learns from the list more than just the set: one also learns the
order.

Indeed, it is well known that one can store any subset
of a set of u elements (the universe) in u bits by associating
one bit to each element of the set and making it 1 for
precisely those elements that are in the subset. When the
elements are w bits wide, u = 2w. For large values of n
this is less than nw. This bit array representation is optimal
for arbitrary sets because it uses just as much memory as is
needed to give each set a unique bit combination.

However, in addition to being less than nw, the amount
of memory used by the Rubik hash table is also far less than
2w. What is a valid information-theoretic lower bound in
this setting?

Before answering this question, let me point out that
there is a meaningful sense in which the 14.2 million bytes
is a valid point of comparison. Any data structure that stores
each element separately as such uses that much memory
for the elements, and perhaps also additional memory for
pointers and other things used to maintain the data structure.
This applies to ordinary hash tables, binary search trees,
etc., so one cannot get below 14.2 million bytes with them.

To derive an information-theoretic lower bound that
is relevant for the 2 × 2 × 2 Rubik’s cube, let us recall
Shannon’s definition of the information content of an event:
−log2 p, where p is the a priori probability of the event.
Probabilities depend on earlier information. In this case,
there is one potential event for each possible set of states,
namely that the program constructs precisely that set.
There are 22w

different sets of w-bit elements. If each of
them were equally likely, then any of them would bring
−log2 2−2w = 2w bits of information. The weighted average
would then be

∑ −pi log2 pi = 2w. This is precisely the
memory consumption of the bit array representation.

In the case of the 2 × 2 × 2 Rubik’s cube, not every
set has the same probability. This is because the number
of reachable states is known in advance. Any set of the
wrong size has probability 0. On the other hand, every set
of the correct size is assumed to be equally likely (and that
assumption was enforced by randomisation). The number
of n-element sets drawn from a universe of u elements is

u!
n!(u−n)! . This yields the information-theoretic lower bound

log2
u!

n!(u − n)! (1)

Rubik’s cube’s state space and information theory 185

bits, where u = 2w = 231 = 2,147,483,648 is the number
of all possible 31-bit elements and n = 3,674,160 is the size
of the set.

Theorem 1 Let the universe be a fixed set with u elements.
For any data structure for storing subsets of the universe,
the expected amount of memory needed to store an arbitrary
subset is at least u bits. For any data structure for storing
subsets of size n, the expected amount of memory needed to
store an arbitrary subset of that size is at least log2

u!
n!(u−n)!

bits.

It would perhaps be a good idea to discuss the nature of
the lower bound (Eq. (1)) a bit. (Similar comments apply to
Eq. (5), which will be presented soon.) It says that if we first
fix u, n, and the data structure, and then pick an arbitrary
set of size n, the expected memory consumption will be at
least what the formula says. In other words, if we store each
subset of size n in turn and compute the average memory
consumption, the result will be at least the bound. The theo-
rem does not claim that no set can be stored in less memory.
There may be individual sets which use much less memory.
However, such sets must be rare. No matter what the data
structure is, if the set is picked at random, then the memory
consumption is at least the bound with high probability.

To illustrate this, consider interval list representations
of sets. The universe can be thought of as consisting of the
numbers 0, 1, . . . , u − 1. An interval list 〈a1, a2, . . . , ak〉 is
a sequence of elements of the universe in strictly increasing
order. a1 is the smallest element of the universe that is in
the set. Any pair (a2i−1, a2i) indicates that all x such that
a2i−1 ≤ x < a2i are in the set, while elements between a2i
(inclusive) and a2i+1 (exclusive) are not in the set. If k is
odd, then every x such that ak ≤ x is in the set.

The interval list 〈0, 3,674,160〉 represents a 3,674,160-
element set of the 2 × 2 × 2 Rubik’s cube universe with
very little memory. So do, for instance, 〈1,996,325,840,
2,000,000,000〉, and 〈2,143,809,488〉. However, the inter-
val list representation of the set {0, 2, 4, . . . , 7,348,318}
is 〈0, 1, 2, . . . , 7,348,319〉 and takes a lot of memory.
In general, the interval list representation of a random
3,674,160-element set of the 2 × 2 × 2 Rubik’s cube uni-
verse consumes a lot of memory. This is because 3,674,160
is small compared to 231, implying that the successor of
an element in the set is rarely in the set. So most elements
require the listing of two numbers.

Let us apply our formula to the 2 × 2 × 2 Rubik’s cube.
2,147,483,648! is quite unpleasant to evaluate, but we can
derive the following approximation for Eq. (1):

Theorem 2 Let w′ = log2 u − log2 n. If n ≥ 1, then

nw′ ≤ log2
u!

n!(u − n)! < nw′ + 1.443n. (2)

Proof Formula 6.1.38 in [1] (a version of Stirling’s formula)
says that if x > 0, then

x ! = √
2πx x+ 1

2 e−x+ θ
12x , (3)

where 0 < θ < 1. Therefore, log2 n! > n log2 n − n log2 e,
and, furthermore,

log2
u!

n!(u − n)!
= log2

u!
(u − n)! − log2 n!

< log2 un − n log2 n + n log2 e (4)

= n(log2 u − log2 n) + n log2 e

= nw′ + n log2 e < nw′ + 1.443n.

On the other hand,

log2
u!

n!(u − n)! = log2

(
u

n
× u − 1

n − 1
× · · · ×u − n + 1

n − n + 1

)

≥ log2

(u

n

)n = n(log2 u − log2 n) = nw′. �

The use of w′ makes Eq. (2) look simple. More inter-
estingly, w′ has a meaningful interpretation. The number of
bits in an element is w = log2 u. A set can be at most as big
as the universe whose subset it is, so n ≤ u or, equivalently,
w ≥ log2 n. Thus each element contains log2 n ‘obligatory’
and w − log2 n = w′ ‘additional’ bits. The formula says
that for each element, it is necessary to store at least its
additional bits plus at most 1.443 bits.

When analysing memory consumption, w′ is a more
useful parameter than w. This is because n and w′ may
get values and approach infinity independently of each
other, whereas n cannot grow without limit unless w grows
without limit at the same time. Therefore, the meaning
of such formulas as O(nw) is unclear. The formula
O(nw′ + n log n) does not suffer from this problem.

The lower bound given by Eq. (2) is precise when n = 1
or w′ = 0. (The case w′ = 0 will be discussed in Sect. 9.)
When n and w′ grow, Eq. (1) approaches the upper bound
given in Eq. (2) so that, for instance, Eq. (1) > nw′ + 1.0n
when w′ ≥ 2 and n ≥ 12, and Eq. (1) > nw′ + 1.4n when
w′ ≥ 5 and n ≥ 268.

In the case of the 2 × 2 × 2 Rubik’s cube we have
n = 3,674,160, u = 231, and w′ ≈ 9.191, so the upper
bound yields 4.884 million bytes. With some more effort
we can verify that the precise value is between 4.8826 and
4.8835 million bytes. The upper bound is tightened by
approximating u!/(u − n)! with un/2(u − n

2)n/2 instead
of un . The lower bound is obtained by first noticing
that the until now ignored terms log2

√
2π , 1

2 log2 n, and
θ

12n log2 e in Eq. (3) contribute less than 13 bits and then
replacing (u − n + 1)n for un in Eq. (4). As a consequence,
the value 4.883 million bytes is precise in all shown
digits.

The rotations comprise log2 63,674,160 bits ≈ 1.187
million bytes of information, so altogether at least 6.070
million bytes are needed. This is the real, hard information-
theoretic lower bound, to which the 11.1 million bytes that
were actually used should be compared.

186 A. Valmari

To be very precise, one should also take into account
the fact that the complete set of reachable states does
not emerge all at once but is constructed by adding one
state at a time. One should thus count how many sets of
at most n elements exist and take the logarithm of that
number:

log2

n∑

k=0

u!
k!(u − k)! . (5)

However, when n is at most one third of u – as is the case

with the 2 × 2 × 2 Rubik’s cube – the resulting number
differs from Eq. (1) by less than one bit.

Theorem 3 If n ≤ u+1
3 , then

log2

n∑

k=0

u!
k!(u − k)! < log2

u!
n!(u − n)! + 1.

Proof Because n ≤ u+1
3 , we have 3k ≤ u + 1 and

2k ≤ u − k + 1 when 1 ≤ k ≤ n, so

u!
(k − 1)!(u − (k − 1))!

= k

u − k + 1
× u!

k!(u − k)!
≤ 1

2
× u!

k!(u − k)! .

Thus
n∑

k=0

u!
k!(u − k)!

<

(

· · · + 1

22
+ 1

21
+ 1

20

)

× u!
n!(u − n)!

= 2 × u!
n!(u − n)! . �

One should keep in mind that the 4.883-million-byte
and 6.070-million-byte bounds for the 2 × 2 × 2 Rubik’s
cube were derived assuming that states are represented with
31 bits. If some other number of bits is used, the bounds
will be different.

6 Close to the lower bound, in theory

Let us mention as a curiosity that there is a very simple but
woefully slow data structure with which one can get quite
close to the theoretical lower bound.

Theorem 4 When n ≥ 1, there is a data structure for
storing n-element subsets of a universe of u elements whose
memory consumption is less than nw′ + 2n bits, where
w′ = log2 u − log2 n.

Proof The element is divided into an index and an entry
just like with the Rubik hash table. The size of the entry is
�w′� bits. Let us define c as w′ − �w′�. Thus 0 ≤ c < 1 and
c + �w′� = w′.

The data structure is a long sequence of bits that consists
of units of two kinds: ‘1’ and ‘0b1b2 · · · b�w′�’, where
the bi are bits. When the sequence is scanned from the
beginning, the kind of each unit – and thus also its length
– can be recognised from its first bit. A unit of the form
0b1b2 · · · b�w′� means that the data structure contains the

element x2�w′� + b, where b = ∑�w′�
i=1 bi 2�w′�−i and x is

the number of 1-units encountered so far. The end of the
sequence is distinguished by keeping track of the number
of units that start with zero: there are altogether n of
them.

Let us count the number of bits that the data structure
uses. The 0-units contain altogether n starter zeroes and
n�w′� bi -bits. No more than �n2c − 1� 1-units are needed
because that suffices up to the number (n2c − 1)2�w′� +
2�w′� − 1 = n2w′ − 1 = u − 1, which is the largest number
in the universe. Thus, altogether n�w′� + n + �n2c − 1� <
nw′+n(1+2c−c) bits are needed. The expression 1+2c−c
evaluates to the value 2 at the ends of the interval 0 ≤ c ≤ 1.
Within the interval it evaluates to a smaller value. �

One can make this data structure capable of storing any
set of at most n elements by adding so many 1-units to its
end that their total number becomes �n2c�. Then the end
is distinguished by the number of 1-units. The memory
consumption is less than nw′ + 2n + 1 bits.

7 Distribution of list lengths

Despite its great success in the 2 × 2 × 2 Rubik’s cube
application, my Rubik hash table seems quite inefficient in
one respect. It has room for more than 5.5 million elements,
so almost 1.9 million – or one third – of its slots are empty.

The majority of the empty slots are in the basic blocks.
Because there are 3,674,160 states and 262,144 lists, the
average list length is about 14.02. Even so, I mentioned in
Sect. 4 that, despite the overflow mechanism, the reachable
states do not fit in the data structure unless the size of the
basic block is at least 21. Why must the basic block be so
big?

The answer becomes apparent if we investigate the
first two columns in Table 2. The number in the column
labelled ‘len.’ indicates the length of a list, and the next
number ‘meas.’ (measured) tells how many lists of that
length the data structure contains when all reachable
states of the cube have been constructed. We observe that
4,971 + 3,162 + · · · + 1 = 12,574 > 8,192 lists are longer
than 20 states. Therefore, no matter how big the overflow
blocks are, the data structure will run out of them if the size
of the basic blocks is 20 or less.

One can see from Table 2 that quite a few lists are
much longer than the average length. The longest list has

Rubik’s cube’s state space and information theory 187

Table 2 Some list length distributions

Len. Meas. Theor. No r. Len. Meas. Theor. No r. Len. Meas. Theor. No r.

0 0 0.2 7,621 15 26,055 25,983.5 3,444 30 18 20.0 4,734
1 3 3.0 16,878 16 22,399 22,758.5 4,425 31 9 9.0 4,110
2 22 20.9 20,427 17 18,753 18,758.9 5,441 32 1 3.9 3,396
3 82 97.7 19,144 18 14,783 14,601.4 6,305 33 1 1.7 2,887
4 344 343.0 16,106 19 10,810 10,765.8 6,948 34 0.7 2,327
5 969 962.6 13,740 20 7,489 7,540.0 7,492 35 0.3 1,928
6 2,247 2,251.0 11,556 21 4,971 5,028.6 8,119 36 0.1 1,403
7 4,404 4,511.5 9,132 22 3,162 3,200.9 8,387 37 0.0 1,047
8 7,948 7,910.9 6,682 23 1,997 1,948.7 8,420 38 779
9 12,297 12,328.8 4,498 24 1,156 1,136.8 7,972 39 559

10 17,436 17,290.5 3,005 25 600 636.5 7,617 40 421
11 22,088 22,041.7 2,038 26 360 342.7 7,470 41 306
12 25,380 25,753.9 1,864 27 168 177.6 6,742 42 221
13 28,057 27,773.2 2,022 28 89 88.8 6,149 43 97
14 28,004 27,808.0 2,622 29 42 42.8 5,442 44 83

33 entries, more than twice the average. This observation
might entice us to conclude that the algorithm in Fig. 5 does
not randomise states well. This is not the problem, however.

The real reason can be illustrated with a small thought
experiment. For the sake of argument, assume that the num-
ber of lists was 367,416. Then the average list length would
be precisely 10. The only way the states could be distributed
perfectly evenly on the lists would be if, just before the last
state is added, one list contained nine states and the others
contained ten each, and the last state fell into the only partly
filled list. The probability that the last state will fall into the
right list is quite small, namely 1

367,416 ≈ 0.0003%. It is thus
almost certain that the distribution will not be perfectly flat.

Of course, this phenomenon occurs when inserting
any state, not just the last one. It has a strong effect on
the distribution of the list lengths. The precise distribution
(given below as Eq. (7)) is somewhat clumsy to use, but it
can be approximated with the Poisson distribution:

mk ≈ n

h

hk

k! e−h . (6)

In the equation, n is the number of elements, h is the
average length of the lists, and mk tells how many lists are
of length k.

Only small values of k are interesting because with large
values both sides of Eq. (6) are close to 0. We will use l to
denote the number of elements of the universe that would
go to the same list if the whole universe were added to the
data structure. Thus l = uh

n . In our case, n = 3,674,160,
h ≈ 14.02, u = 231, and l = 8,192. So the assumptions of
the following theorem hold.

Theorem 5 If k n u and k l u, then Eq. (6)
holds.

Proof If i elements have fallen into some list and altogether
j elements into the other lists, then the next element goes
to the list in question with probability l−i

u−i− j and elsewhere
with probability u−l− j

u−i− j . There are n!
k!(n−k)! ways to throw n

elements to the lists such that precisely k elements fall into

the list in question. The probability of any one such way is
given by a division whose numerator is a product of the num-
bers l, l−1, . . . , l−k+1, u−l, u−l−1, . . . , u−l−(n−k)+1
in some order and denominator of the numbers u, u − 1, . . . ,
u − n + 1. Therefore, the precise value of the number mk is

n

h
× n!

k!(n − k)! × l!
(l − k)! × (u − l)!

(u − l − n + k)! × (u − n)!
u! .

(7)

We have n!
(n−k)! ≈ nk, l!

(l−k)! ≈ lk,
(u−l)!

u! ≈ u−l , and
(u−n)!

(u−l−n+k)! ≈ (u − n)l−k = (u − n)lu−k(1 − n
u)−k . Let

x = (nl
u)k(1 − nl/u

l)l(1 − n
u)−k . Thus mk ≈ n

h
1
k! x . Because

h = nl
u , we get x = hk(1 − h

l)l(1 − n
u)−k ≈ hke−h because

(1 − n
u)−k ≈ 1 and (1 − h

l)l ≈ e−h . �

The column ‘theor.’ (theoretical) of Table 2 contains
an estimation of the list length distribution that has been
numerically computed with the precise formula (Eq. (7)).
The numbers given by the approximate formula (Eq. (6))
differ from the precise numbers by less than 2.3% when
length < 35. Judging from the table, the measured numbers
seem to be in very good agreement with the theoretical
ones.

Figure 6 shows the same data as Table 2, plus some ad-
ditional data. The curve ‘double randomisation’ is the same
as the column ‘Meas.’ of the table (the name ‘double . . . ’
will be explained shortly). The Poisson distribution has
been drawn into the figure as horizontal lines, but it differs
so little from the precise theoretical distribution that it is
almost impossible to see.

No doubt there is some statistical test with which one
could verify the conclusion that the measured distribution
matches the theory. There is an easier and perhaps even
more useful thing to do, however: compute the memory con-
sumption that results from the theoretical distribution and
compare it to the measured memory consumption. It is easy
to compute from the list length distribution how big the ba-
sic and overflow blocks must be to make all reachable states
fit in the data structure. (One must take into account that

188 A. Valmari

Fig. 6 Some list length distributions

one slot is wasted per overflow block to store the overflow
link.) I rounded the theoretical numbers to integers in such
a way that the total numbers of lists and states are as close
to the true numbers as possible despite the rounding errors.

The theory recommends the block sizes that were
actually used and predicts a memory consumption of
11.106 million bytes. The measured figure is 11.105 million
bytes. When computing these numbers, I did not include
those overflow blocks that were not used. If all 8,192
overflow blocks are taken into account in the figures, as
I did earlier, then there is no difference at all between the
theoretical and measured memory consumption.

The measured memory consumption is thus very
precisely what the theory predicts. This does not quite
prove that the measured list length distribution matches
the theoretical one, but it does show that it is at least as
good: one cannot reduce memory consumption further by
using the theoretical distribution. As a consequence, the
randomisation algorithm in Fig. 5 need not be thrown away.

Out of curiosity, I also computed the distribution and
memory consumption without randomisation of states
and with some variants of the randomisation algorithm.
The distribution obtained without randomisation is in the
column ‘No r.’ (no randomisation) of Table 2, and it is also
shown in Fig. 6. List lengths between 45 and 57 have been
omitted to save space. It is manifestly different from the
theoretical distribution. The size of the basic block would
be 34, the overflow block 7, and the memory consumption
17.9 million bytes.

If the randomisation algorithm did only once what the
algorithm in Fig. 5 does twice, the memory consumption
would still be 11.9 million bytes. Three repetitions would
imply memory usage of 11.1 million bytes, and the same
holds for four repetitions. We see that one randomisation
step is imperfect, but two or more randomise perfectly – at
least from the point of view of the 2 × 2 × 2 Rubik’s cube
application.

I also tested what would happen if the bit representation
of the state were reversed before storing. The index then
consists of the originally most significant bits instead of the
least significant ones. The distribution without randomisa-
tion became weirder still and led to memory consumption
of more than 28 million bytes. For instance, there were
178,400 empty lists, the second and third highest peaks

were 28,062 at 54 and 8,764 at 42, and the greatest list
length was 60. With double randomisation the distribution
was again very close to the theoretical distribution, yielding
11.1 million bytes as the memory consumption.

Sometimes one can exploit the skewness of the distri-
bution to save memory. For instance, if the length of the
longest list were 16, then one could avoid overflow blocks
and cope with about 8.4 million bytes by choosing 16 as the
basic block size. Skewness can be exploited only if one can
find suitable regularity in the structure of the state space.
Sometimes this works out, but often it does not, and when
it fails, the result may be dramatically bad, as we can see
from the above results on non-randomised distributions.
On the other hand, techniques that use randomisation work
independently of the nature of the original distribution.

8 Very tight hashing

It is obvious from Table 2 that memory consumption could
be reduced further by making the basic blocks smaller
and increasing the number of overflow blocks. The size
of the overflow link should then be increased. This can be
implemented by introducing a new array which is indexed
by a block number and returns the extra bits of the overflow
link that possibly resides at the end of the block.

I did not implement this kind of program because it
would have liberated my data structure of only one artificial
restriction caused by the word lengths of contemporary
computers. Another restriction is the location of the border-
line between the index and the entry: nothing guarantees
that the division 18:13 will be the best. It was chosen only
because it facilitated handy storage of the data in 8-bit bytes.
Instead, I introduced the data structure to my post-graduate
student Jaco Geldenhuys and asked if he could develop a
general-purpose data structure on the basis of it.

After trying a couple of designs, Jaco and I ended
up with the following design, which we call ‘very tight
hash table’ or ‘VTH’ [4]. That a slot is empty or stores an
overflow link is no longer expressed with unused values
of the data that are associated with the key because there
are no longer necessarily any associated data, and even if
there were, they would not necessarily have unused values.
Instead, a counter is attached to each block which indicates
how many elements the block contains, and it has one extra

Rubik’s cube’s state space and information theory 189

Table 3 Measurements with very tight hash table

Bits in index List length Memory (106 bytes) Time (s) laptop Time (s) workstation

15 112.13 9.2 1160 125
16 56.06 9.0 664 74
17 28.03 8.9 410 48
18 14.02 9.0 286 36
19 7.01 9.4 229 30

value to indicate that the block has overflowed. The counter
of an overflow block need not be able to represent the value
zero because an overflow block is not used unless it contains
something.

Memory for overflow links is reserved in overflow
blocks, but not in basic blocks. If a basic block overflows,
its overflow link is stored at the start of the data area of the
block, and bits that it overwrites are moved to the overflow
link field of the last block in the overflow list. In this way
the otherwise useless overflow link field of the last block
can be exploited.

To find out how big the basic and overflow blocks
should be and where the element should be divided into the
index and the entry, we first did a large number of different
simulation experiments and then measurements with a
prototype implemented by Jaco. A good rule of thumb
proved to be to use the average list length as the size of
the basic block and make the size of the overflow block be
three. The average length of the lists should not be too big
because scanning long lists takes a long time. Furthermore,
the longer the lists are, the shorter the index and the smaller
are the savings obtained by not storing the index bits. On
the other hand, if the lists are very short, then there are
very many of them, which means that the links and unused
slots take up a lot of memory. A good average list length is
somewhere between 10 and 100.

We analysed the memory consumption of the VTH
theoretically and computed values for the constants
in the theoretical formula numerically. Among other
things, we found that if the average list length is 20,
then the memory consumption with a random set is
below

1.13nw′ + 0.04n log2 n + 5.05n

bits and with an average length of 50 below

1.07nw′ + 0.02n log2 n + 6.12n.

These might be compared to the bound (Eq. (2))
1.00nw′ + 1.443n.

By experimenting with different values for n and w′
one can see that unless the number of elements to be stored
is very small compared to the number of syntactically
possible elements, the memory consumption of the data
structure stays below nw, that is the number of elements
multiplied by the size of the element, and thus clearly below
the memory consumption of the ordinary hash table. For
instance, the latter formula gives the result mentioned in

the introduction, namely that 1 GiB suffices if n = 108

and u = 2100 (yielding w′ ≈ 73.4). If n is rather small
compared to the number of syntactically possible elements
(≤ 5%, if n ≤ 109), the memory consumption stays below
twice the information-theoretic lower bound.

The VTH is thus clearly an improvement over the
ordinary hash table, for instance. On the other hand, it does
not leave much room for dramatic further improvements
because of the information-theoretic lower bound.

One cannot compute from the formulas how much
memory the VTH would use in the case of the 2 × 2 × 2
Rubik’s cube because they do not take into account the
memory consumption of the rotation information. By
extending the element by 3 bits to cover the rotation bits as
well, both formulas yield about 9.0 million bytes.

We tested the 2 × 2 × 2 Rubik’s cube program with
the VTH with the number of bits in the index ranging
from 15 to 19. Rotation bits were stored as associated data,
not as a part of the element. That is, they did not affect
the distribution of elements to lists but were included in
memory consumption figures. The results are shown in
Table 3. They match the theoretical estimation given above.
When the index size grows, memory consumption first
decreases and then increases, as was predicted above. Time
consumption grows along with the list length. Regarding
time consumption, the VTH cannot compete with the Rubik
hash table, but it wins in memory consumption.

The VTH and theoretical, simulation, and measured
results associated with it have been presented in [4].

9 Perfect packing

By perfect packing or indexing any compression method is
meant whose outputs can be read as numbers in the range
0, . . . , n − 1, where n is the number of reachable states.
That is, a packed state consumes just enough memory to
give every state a unique packed representation. If states can
be packed perfectly, then the set of reachable states can be
represented with a very simple, fast, and memory-efficient
data structure: a bit array that is indexed with the packed
representation of a state and that tells whether the state
has been reached. If the states have any associated data,
then these data must be stored in a separate array. If the
associated data have any unused value, as is the case with
the 2 × 2 × 2 Rubik’s cube, then it can be used to denote
that the state has not been reached, so that the original bit
array is no longer needed.

190 A. Valmari

This design needs only 459,270 bytes of memory to
represent the reachable states of the 2 × 2 × 2 Rubik’s cube.
If the rotations are also stored, then altogether about 1.4
million bytes are needed. These figures are far below the
information-theoretic lower bound of 4.883 million bytes
derived in Sect. 5. There is no contradiction, however, be-
cause that lower bound assumes that states are represented
with 31 bits, which is no longer the case. The formulas are
valid, but now w′ = 0. Equation (1) predicts that represent-
ing the complete set of reachable states (without rotations)
needs no memory at all. This is true: it is known beforehand
that it will be 0, . . . , 3,674,159. The 459,270 bytes are
needed to represent the intermediate sets in the middle of
the construction of the state space. Theorem 3 says that the
memory needed by intermediate sets is insignificant, but its
antecedent does not hold now.

With state space applications, one seldom finds a usable
perfect packing algorithm because that would require a
better understanding of the system under analysis than is
usually available. In the case of the 2 × 2 × 2 Rubik’s
cube, however, the structure of the states is understood very
well. States differ from each other in that the seven moving
corners are permuted to different orders, and six of them
can be in any of three orientations. The orientation of the
seventh corner is determined by the orientations of the other
moving corners.

The orientations can easily be packed perfectly by
interpreting them as digits of a number in base 3. Perfect
packing of the order of the corners is equivalent to indexing
a permutation. An efficient algorithm that does that was
published in [7].

Figures 7 and 8 show a perfect packing and unpacking
algorithm for the reachable states of the 2 × 2 × 2 Rubik’s
cube based on these ideas. A packed state is a number of
the form 36 × p + a, where a = ∑5

i=0 ai × 3i stores the
orientations of six corners and p represents the permutation
of the corners. It is of the form

∑6
i=1 i !pi . The number p6

is the position of corner 6 and is in the range 0, . . . , 6. The

Fig. 7 A state packing algorithm based on the indexing of
permutations

Fig. 8 A state unpacking algorithm based on the indexing of
permutations

number p5 is the location of element 5 in the array that is
obtained from the previous array by exchanging element 6
and the last element with each other. As a consequence,
0 ≤ p5 ≤ 5. The algorithm continues like this until the
value of p1 has been computed. At this point, element 0 is
in location 0. Therefore, the corresponding p0 would always
be zero, so it need not be stored.

The algorithm in Fig. 7 differs from the above descrip-
tion in that it has been optimised by discarding assignments
to array slots which will not be used after the assignment.
Similarly, unnecessary operations have been left out of the
algorithm in Fig. 8. The computation of the orientation
of the last moving corner is based on the fact that, as was
mentioned in Sect. 2, the sum of the orientations of all
moving corners is divisible by three.

The program that is based on perfect packing of states is,
of course, superior to others as far as memory consumption
is concerned: 1.4 million bytes (in addition to which there
is always the queue). To my great surprise it was not the
fastest, however. It took 169 s to run on my laptop, which is
60% slower than the program that uses the Rubik hash table.
On my workstation the time was 28 s, 40% more than with
the Rubik hash table. (With the earlier compiler the time on
the workstation was as much as 67 s.) When measuring the
speed, I reserved one byte per state to avoid the slowdown
caused by stowing 3-bit rotation information in the middle
of bytes. Such a state array uses 3.67 million bytes, which
is still much less than with the other programs.

That perfect packing lost in speed to the Rubik hash
table was surprising, but it has a simple explanation. Both
programs use most of their time for packing and unpacking
states and for seeking packed states in the data structure for
reached states. Although searching through the Rubik hash
table requires scanning lists and extracting 13-bit entries
from 2-byte slots, this does not take much time because
the lists are not long and the information is always in the
same place within the bytes. On the other hand, despite their
simplicity, the algorithms in Figs. 7 and 8 do dozens of oper-
ations more than the packing and unpacking algorithms used

Rubik’s cube’s state space and information theory 191

by the Rubik hash table. The latter algorithms work similarly
to the handling of orientations in the former, except that the
orientation of every corner is stored. In brief, the program
based on perfect packing does altogether much more work.

10 BDDs and the 2 × 2 × 2 Rubik’s cube

A binary decision diagram (BDD) is an important data
structure for representing large sets of bit vectors [2]. When
talking about the efficiency of algorithms for constructing
big sets of states, the question of how BDDs would have
performed is almost inevitable.

A BDD is a directed acyclic graph. There are two special
nodes which we will call False and True. They have no
outgoing arcs. Each of the remaining nodes has precisely
two outgoing arcs, leading to nodes that may be called the
0-child and 1-child of the node. Each node except False and
True has a variable number, and the variable number of any
node is smaller than the variable numbers of its children.
Each variable number corresponds to a bit position in the
bit vectors; however, the variable numbering may be any
permutation of bit positions.

Each node represents a set of bit vectors. Whether or not
a given bit vector is in the set is determined by starting at
the node, reading the bit identified by its variable number,
going to its 0-child or 1-child according to the value of the
bit, and continuing like this until arriving at the False or
True node. The bit vector is in the set if and only if the
traversal ends at the True node.

In a normalised BDD the 0-child and 1-child of any
node are different, and for any two different nodes they
have different 0-children or different 1-children (or both).
Each set has a unique (up to isomorphism) normalised BDD
representation for each variable numbering. From now on,
by BDD is meant a normalised BDD.

An upper bound of (2+ε) 2w

w
(where ε → 0 as w → ∞)

for the number of BDD nodes was proven in [6]. In [9]
a formula for the average number of nodes was given for
the variant where the 0-child and 1-child of a node may be
the same, and the variable number of any node is precisely
one less than the variable numbers of its children. The next
theorem does the same for the standard normalised BDDs
(with a simpler proof).

Theorem 6 The expected number of nodes (not including
the False and True nodes) of a BDD for a random set of
w-bit elements is

2−2w
w−1∑

k=0

22w−k−1(
22w−k−1 − 1

)(
22w − (22w−k − 1

)2k)
.

When w ≥ 3, this is roughly 2 × 2w

w
.

Proof There are 22w−k
different Boolean functions over the

w − k last variables. Let us go through all 22w
functions

f over all variables and count how many of them have a

particular function g over w − k last variables as a subfunc-
tion. Each f invokes 2k such subfunctions (not necessarily
distinct), one for each possible combination of values of
the k first variables. None of these is g in (22w−k − 1)2k

cases. Thus g is present in 22w − (22w−k − 1)2k
cases. Not

every g corresponds to a node labelled with k because the
0- and 1-child of a node must be different. The node exists
in 22w−k−1

(22w−k−1 − 1) cases. The product of these yields
the total number of nodes labelled with k, when all f are
gone through. Summing them up and then dividing by the
number of different f gives the precise formula.

That the number of nodes is ≈ 2 × 2w

w
has been verified

numerically up to w = 26 (when 3 ≤ w ≤ 26, it is be-
tween 1.4 × 2w

w
and 2.3 × 2w

w
). When w > 26, consider any

k ≤ w−log2 w. We have 2w−k ≥ 2log2 w = w � max{2, k}.
Thus, 22w−k−1

(22w−k−1 − 1) ≈ 22w−k
. Furthermore,

2−2w
(22w − (22w−k − 1)2k

) = 1 − (1 − 2−2w−k
)2k =

2k2−2w−k − 1
2 2k(2k − 1)(2−2w−k

)2 + · · · ≈ 2k2−2w−k
. The

number of nodes on layer k is thus ≈ 22w−k
2k2−2w−k ≈ 2k .

(This means that the layer is almost as full as it can be.)
If w − log2 w is an integer, then the layers 0, . . . , w −

log2 w contain altogether ≈ 2 × 2w−log2 w ≈ 2 × 2w

w
nodes.

The total number of nodes on layers k ≥ w − log2 w + 1
is negligible because there is at most one node per each
different Boolean function over the log2 w − 1 last variables

and there are 22log2 w−1 = 2w/2 2w

w
such functions.

If w− log2 w is not an integer, then 2× 2w

w
overestimates

the number of nodes on the layers up to �w − log2 w�, but
then the size of the layer �w − log2 w� is not necessarily
negligible. Because a layer cannot contain more than twice
as many nodes as the previous layer, the approximation
must be multiplied by a factor that is between 1

2 and 2. �
A BDD node contains two pointers (or other children

specifiers) and the variable number. BDD nodes usually
also contain other fields supporting normalisation, memory
management, etc., but we ignore them here. Therefore, a
BDD with q nodes uses at least

q(2 log2 q + log2 w) (8)

bits of memory. Letting q ≈ 2 × 2w

w
we see that the

memory consumption of a BDD for a random set is at
least roughly 4 × 2w bits, that is roughly four times the
information-theoretic lower bound.

Unfortunately, not much is known (or at least I do not
know much) about the sizes of BDDs that store sets that are
much smaller than the universe from which they are drawn.
We can, however, experiment with the issue in the 2 × 2 × 2
Rubik’s cube setting.

Let us first investigate the case of random sets. In
three experiments, storing 3,674,160 randomly chosen
31-bit elements (each different from the others) required
3,362,953, 3,364,366, and 3,363,225 BDD nodes.3 Thus

3 One must be careful with this kind of experiment. I first used
a typical linear congruent pseudorandom number generator and got

192 A. Valmari

Table 4 BDD sizes for the 2 × 2 × 2 Rubik’s cube state space

No rotations Rotations first Rotations last

Model lsb first msb first lsb first msb first lsb first msb first

31-bit end 2,251,928 406,549 3,533,649 2,285,862 3,475,829 3,207,427
Max 2,251,928 1,030,589 3,533,649 2,308,429 3,475,829 3,207,427
35-bit end 2,964 2,964 1,870,059 1,965,956 2,389,372 2,684,500
Max 722,180 775,096 2,069,208 2,009,657 2,389,372 2,684,500

about 20 million bytes of memory are required even without
the rotation information.

Why do BDDs need so much more memory than the
information-theoretic lower bound of 4.883 million bytes?
One reason is that several different bit combinations can
represent the same BDD. For instance, if the contents of
two nodes are swapped and the pointers leading to them
are changed accordingly, the result represents the original
BDD, although the bit pattern in memory has changed.
Thus a BDD with q nodes has q! different representations.
This corresponds to log2 q! bits of useless information.
According to Eq. (3), in the case of 3.363 million nodes this
makes 8.5 million bytes. Furthermore, many bit patterns
are wasted because they fail to represent valid BDDs (for
instance, when a node specifies a node with too small a vari-
able number as its child). Yet another reason is that many
small BDDs represent sets that are larger than 3,674,160 el-
ements. From the point of view of the intended use of BDDs
this is a good thing, but from the point of view of storing
sets of 3,674,160 elements they are wasted bit patterns.

We see that BDDs clearly lost in the case of random
sets of 3,674,160 elements of 31 bits. This is not a shame,
because BDDs were not designed for storing smallish
random sets; they were designed for storing (some) very
large sets in relatively little memory. As was discussed in
Sect. 5, for any given data structure, only a small minority of
large sets can have small representations. BDDs have been
successful because many sets arising in BDD applications
are not arbitrary but have some kind of regularity that BDDs
exploit.

The obvious question now is if this is true also of the
set of (non-randomised) reachable states of the 2 × 2 × 2
Rubik’s cube. That can be found out by experimenting. The
results of this and related experiments are in Table 4. The
first entry of the table reveals that when the bits are indexed
starting from the least significant, 2,251,928 BDD nodes,
and consequently a lot of memory, are needed. With the
opposite order the number of nodes is only 406,549. Curi-
ously, this is the ordering with which the non-randomised
Rubik hash table worked particularly badly.

The latter number is promising, but we have to take into
account an extra issue: it is common that the intermediate

3,316,523, 3,316,727, and 3,316,535. However, generating fully ran-
dom sets (thanks to Theorem 6, their expected BDD sizes are precisely
known up to w = 26) revealed the results I was getting were too small.
I added the algorithm of Fig. 5 as a postprocessing step and started to
get credible results.

BDDs arising in the middle of the construction of a final
BDD are much larger than the final BDD. (This issue was
investigated in [3].) In the msb first case, when states were
added one at a time, the largest number of BDD nodes
needed to represent the states found so far was 1,114,730.
BDD programs usually add states one breadth-first frontier
at a time, however. In that case, the biggest intermediate
BDD contained 1,030,589 nodes, corresponding to 5.8
million bytes of memory according to Eq. (8) (that is,
assuming extremely dense representation for the BDD).

A reviewer of this paper pointed out that the mediocre
performance of BDDs in storing the 2 × 2 × 2 Rubik’s
cube’s reachable states may be due to the use of a very dense
packing of the state. The reviewer suggested an alternative
packing, where each position and each orientation are given
bits of their own. Because positions range from 0 to 6 and
orientations from 0 to 2, three bits suffice for representing
a position and two for an orientation, so altogether 35
bits are needed. As can be seen from the first two entries
on line ‘35-bit end’, this suggestion was very successful.
Peak BDD sizes are still somewhat of a problem, though.
Storing 722,180 BDD nodes takes at least 4.0 × 106 bytes
of memory according to Eq. (8).

(The method presented in [3] reduces the peak BDD
size to 8,303 nodes. The maximum number of nodes in
simultaneous existence ever during the computation –
including the nodes used for representing the transition
relation, and temporarily used during the computation of
BDD operations – was 186,318 in my BDD implementa-
tion. The method of [3] is not, however, particularly useful
in this case because it is based on constructing the reachable
states in a non-breadth-first order. So information about the
lengths of the rotation sequences is lost. Just obtaining the
final set of reachable states is not interesting because it has
been known all the time: it was fully described in Sect. 2.)

The 35-bit representation of states thus makes it possible
to construct the reachable states in breadth-first order within
a reasonable number of BDD nodes. From the result it is
possible to find out, for instance, the length of the longest
rotation sequence needed to solve the cube. However, to
really compete with the other approaches discussed in this
paper, the BDD implementation should also store the rota-
tion information. Without it, the BDD program cannot be
used for actually solving the cube. The latter four columns
of Table 4 show BDD sizes when the rotation information
is present. BDDs are clearly not competitive any more (at
least with the variable orderings that I tried).

Rubik’s cube’s state space and information theory 193

11 Conclusions

This research started as a modest programming exercise but
led to many useful observations and to the development of
the very tight hash table data structure. The first observation
was that data structures picked from high-quality libraries –
the C++ standard library map in this case – may be very
inefficient for a particular application. By designing an
optimised application-specific data structure one can get a
tremendous improvement in both speed and memory con-
sumption at the same time. These results are summarised in
Table 5.

More importantly, this research demonstrated the
usefulness of the information-theoretic view for the design
of efficient data structures for large sets. The basic idea
is that, given a certain amount of memory, one can have
only so many bit combinations, and one should try to
exploit them in the best possible way. Bit combinations
that do not represent any set are wasted and thus increase
memory usage. It is also wasteful if the same set can be
represented with several different bit combinations. The
memory consumption of BDDs, for instance, is significantly
affected by these considerations.

If the universe (that is the set of syntactically possible
states) is big, as is almost always the case with state
space applications, then no data structure can represent
an arbitrary set with small memory requirements, simply
because there are so many sets that a lot of memory is
needed to have enough bit combinations to distinguish
between them. Therefore, to have any chance of success,
one has to concentrate on sets in some special category.
BDDs have been successful because many large sets arising
in verification applications happen to be among those that
have small BDD representations. Interval lists have not been
successful in the same sense and have thus not found much
use in state space applications.

In this research we concentrated on sets whose special
property is that they are small compared to the universe.
This is a very reasonable assumption in explicit state space
applications because there the set starts its life as the empty
or singleton set and then grows one element at a time
until it is complete or the memory has been exhausted.
Furthermore, we assumed that other than that, the set is
arbitrary. If the set is known not to be arbitrary in its size
class, then it may be possible to obtain much better results
than we did in this research. If it is not known whether

Table 5 Summary of data structures and bounds

Data structure Mem 106 Time laptop Time workstation Generality

C++ map 88.2 98 +
nw-bound 14.2 −
Rubik hash table 11.1 105 20 −
Very tight hash table 8.9 410 48 +
Bound ≈ nw′ + 1.443n 6.1 +
Perfect packing 3.7 169 28 −

the set is arbitrary in its size class, then one can always
ensure that it is by randomising the elements before storing
them. This is important, because uncontrolled regularity
can also be harmful, as we saw. (Curiously, a set can easily
be randomised among the sets of the same size, and that is
useful, while randomising it in general seems difficult and
would be senseless. General randomisation would make it
an arbitrary subset of the universe, and an arbitrary subset
almost certainly could not be stored. This supports our view
that set size should not be considered arbitrary.)

In this setting we derived the lower bound
nw − n log2 n + 1.443n for the average memory con-
sumption, where n is the number of elements and w is
the number of bits in an element. It can be rewritten as
nw′ + 1.443n, where w′ is the number of ‘extra’ bits in the
element – extra in the sense that w − w′ bits suffice for the
universe to contain n different elements.

The lower bound allows for going well below nw, which
is the amount of memory needed for representing every
element explicitly. Since most classic data structures do
represent every element explicitly, it is possible to improve
considerably on their memory usage. To that end, we
designed the very tight hash table data structure. It is both
very memory efficient and reasonably fast.

Another observation was that if elements are thrown to
lists such that every list has the same probability of getting
the element, then the distribution of list lengths is far from
flat. In the case of the 2 × 2 × 2 Rubik’s cube, the length
of the longest list was more than twice the average length,
and three lists contained only one element each, although
the average length was about 14. This is not a consequence
of bad randomisation. It is a statistical phenomenon, which
must be taken into account when designing data structures
with good average-case performance.

We also tried to exploit the regularity of the state space of
the 2×2×2 Rubik’s cube. First, in this case it was possible to
base a program on perfect packing of states. Perfect packing
leads to extremely good memory consumption and very fast
state space manipulation operations. It was thus surprising
that the program based on it proved to be somewhat slower
than the Rubik hash table program. The reason is that,
although perfect packing and unpacking are fast in this case,
the very simple packing and unpacking used by the Rubik
hash table program are nevertheless so much faster that they
compensate for the somewhat slower state set operations.

Second, after a number of experiments (and a suggestion
by a reviewer of this paper), a representation of the states

194 A. Valmari

Table 6 The number of reached states as a function of the number of rotations

Rot. States New Rot. States New Rot. States New

0 1 1 5 2,944 2,256 10 1,450,216 930,588
1 7 6 6 11,913 8,969 11 2,801,068 1,350,852
2 34 27 7 44,971 33,058 12 3,583,604 782,536
3 154 120 8 159,120 114,149 13 3,673,884 90,280
4 688 534 9 519,628 360,508 14 3,674,160 276

and a BDD variable ordering were found that led to a small
BDD for the set of reachable states. However, unlike hash
tables, with BDDs the sizes of the representations of the
intermediate sets during the construction of the state space
are an important issue. With extreme packing of the BDD,
4.0 × 106 bytes would be needed for the biggest BDD for
an intermediate set. This figure is not realistic in practice,
though, because it ignores the memory that a practical BDD
implementation needs for BDD normalisation and memory
management. Furthermore, rotation information was not
stored in that BDD. Adding the rotation information made
the BDDs grow big. It would also be extremely hard for
BDD-based programs to beat the Rubik hash table program
in speed.

What can we use the Rubik hash table program for?
When the reachable set of states has been constructed, one
can feed in any state of the cube, and the program responds
with directions for rotating the cube back to the initial state.
The reply presents an optimal solution, that is a solution
with the smallest possible number of rotations. However,
many people solve (although not optimally) the 2 × 2 × 2
cube by hand in less time than it takes to feed in the
state.

A more important application is the investigation of
the structure of the state space. For instance, Table 6 gives
the number of different states that can be reached from the
initial state by at most the number of rotations given in the
first column and tells how many of them cannot be reached
with fewer rotations. From the table we see that no more
than 14 rotations are ever needed to solve the cube. On
the other hand, more than half the states require more than
10 rotations. A program that solves the cube by doing two
breadth-first searches at the same time, one starting from the
given state and the other from the initial state, would find op-
timal solutions, although it would never need to investigate
more than 89,942 states, less than 2.5% of the state space.

What next? Finding optimal solutions for the 3 × 3 × 3
Rubik’s cube would be a natural challenge. Unfortunately,

it has 8! × 12! × 212 × 38/12 ≈ 4 × 1019 reachable states,
which would perhaps be too much even for the computers
of tomorrow. An optimal solution for just the corner pieces
can be found in 20 s, however. This is because the 2 × 2 × 2
cube is the set of the corner pieces of the 3 × 3 × 3 cube.

Acknowledgements Jaco Geldenhuys has provided me with consid-
erable help at various stages of this research. This text is based on [8]
(in Finnish), on which Jyrki Lahtonen of the University of Turku
and Ari Korhonen of Helsinki University of Technology gave helpful
comments.

References

1. Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical
Functions, with Formulas, Graphs, and Mathematical Tables.
New York: Dover 1970

2. Bryant, R.E.: Graph-based algorithms for boolean function
manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

3. Geldenhuys, J., Valmari, A.: Techniques for smaller intermediary
BDDs. In: CONCUR 2001 – 12th International Conference on
Concurrency Theory, Aalborg, Denmark, 21–24 August 2001.
Lecture Notes in Computer Science, vol. 2154, pp. 233–247.
Berlin, Heidelberg, New York: Springer 2001

4. Geldenhuys, J., Valmari, A.: A nearly memory-optimal data struc-
ture for sets and mappings. In: Proceedings of the 10th International
SPIN Workshop on Model Checking Software, Portland, OR, 9–
10 May 2003. Lecture Notes in Computer Science, vol. 2648,
pp. 136–150. Berlin, Heidelberg, New York: Springer 2003

5. Knuth, D.E.: The Art of Computer Programming, vol 3: Sorting
and Searching. Reading, MA: Addison-Wesley 1973

6. Liaw, H.-T., Lin, C.-S.: On the OBDD-representation of general
boolean functions. IEEE Trans. Comput. 41(6), 661–664 (1992)

7. Myrvold, W., Ruskey, F.: Ranking and unranking permutations in
linear time. Inform. Process. Lett. 79(6), 281–284 (2001)

8. Valmari, A.: Mitä pieni Rubikin kuutio opetti minulle
tietorakenteista, informaatioteoriasta ja satunnaisuudesta.
Tietojenkäsittelytiede 20, 53–78 (2003)

9. Wegener, I.: The size of reduced OBDD’s and optimal read-once
branching programs for almost all boolean functions. IEEE Trans.
Comput. 43(11), 1262–1269 (1994)

