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Abstract. Games are useful in modular specification
and analysis of systems where the distinction among the
choices controlled by different components (for instance,
the system and its environment) is made explicit. In this
paper, we formulate and compare various symbolic com-
putational techniques for deciding the existence of win-
ning strategies. The game structure is given implicitly,
and the winning condition is either a reachability game
of the form “p until q” (for state predicates p and q) or
a safety game of the form “Always p.”
For reachability games, the first technique employs

symbolic fixed-point computation using ordered binary
decision diagrams (BDDs) [9]. The second technique
checks for the existence of strategies that ensure winning
within k steps, for a user-specified bound k, by reduction
to the satisfiability of quantified boolean formulas. Fi-
nally, the bounded case can also be solved by reduction to
satisfiability of ordinary boolean formulas, and we discuss
two techniques, one based on encoding the strategy tree
and one based on encoding a witness subgraph, for reduc-
tion to Sat. We also show how some of these techniques
can be adopted to solve safety games. We compare the
various approaches by evaluating them on two examples
for reachability games, and on an interface synthesis ex-
ample for a fragment of TinyOS [15] for safety games. We
use existing tools such as Mocha [4], Mucke [7], Sem-
prop [19],Qube [12], andBerkmin [13] and contrast the
results.
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1 Introduction

The motivation for solving games in formal analysis
originated with Church’s synthesis problem in the con-
text of automatically synthesizing circuits from speci-
fications [11]. Games have since then become popular
in formal methods with various applications including
control of discrete event systems [23], realizability and
synthesis, and model-checking µ-calculus formulas [26].
In formal verification, they have several applications in
verifying reactive systems where the agents comprising
the system are viewed as players of a game: in modular
verification [18], in compatibility checking of formal in-
terfaces for modules [10], in approaches to compositional
verification [1, 3], and, more recently, in applications to
synthesizing dynamic interfaces for Java classes [2].
Research and related applications have led to a var-

iety of game formulations such as infinite games on fi-
nite graphs, concurrent multiplayer games, and games on
pushdown systems [26]. However, the simplest games that
most solutions computationally rely on are the two-player
reachability and safety games on a finite graph. A reach-
ability game is played between two players, the system
and the environment, and the game problem is to check
whether the system has a winning strategy that will force
the game from the initial position to some goal position,
no matter how the environment plays. In a safety game,
a winning strategy for the system must make sure the
game avoids a set of bad states forever.
Though the theoretical complexity of solving various

games in the literature is well understood, there has been
relatively less effort spent in identifying how the pow-
erful symbolic techniques used in model checking fare
in solving games with large state spaces. In this paper,
we initiate such an effort by a comparative and experi-
mental study of solving simple reachability and safety
games using techniques that use Bdds, Qbf solvers, and
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Sat solvers. We model games symbolically using boolean
variables and succinct boolean expressions describing the
transitions – the explicit game this defines would be typ-
ically exponential in the size of the input representation.
The standard attractor-set approach to solving reach-

ability games is a simple fixed-point algorithm that can
easily be implemented using Bdds. There are two kinds
of Bdd-based solvers we use: Mocha, which is a model
checker that can directly handle specifications in a game
logic called alternating-time temporal logic (Atl), and
Mucke, which is a symbolic model checker especially op-
timized to handle µ-calculus formulas.
In order to use propositional solvers for reachability

games, we consider bounded reachability games. We first
consider games where we ask whether the system has
a strategy that will ensure that the game reaches the
goal within k steps, where k is a user-specified param-
eter. The natural way to encode this as a propositional
satisfiability problem is using a quantified boolean for-
mula, where there is a prefix of alternating quantifiers of
length 2k that capture a strategy for the system followed
by a boolean formula that checks whether the strategy is
indeed winning for the system. We then use Qbf solvers
Semprop [19], Quaffle [28], and Qube [12] to decide
these formulas.
In recent years there has been significant interest in

engineering Sat solvers that has resulted in very efficient
solvers, while the effort in speeding up Qbf solvers has
been relatively less. We hence also consider encodings of
reachability games into Sat problems, in two different
ways. In the first approach, we use Sat to guess a win-
ning strategy tree of depth k (the tree is exponential in
k). This can be seen essentially as “unwinding” the al-
ternating quantification in the Qbf formula above into
a tree of existential quantifications by converting each
universal choice to all possible choices. We hence get an
exponential-sized Sat formula that is satisfiable if and
only if there is a strategy that wins in k steps, and we use
the Sat solvers Berkmin [13] and zChaff [22].
In the strategy tree above, several nodes of the tree

may represent the same position in the game, and the tree
encodes the strategies from these nodes separately. Since
reachability games have zero-memory strategies, we need
not guess separate strategies from these nodes. In the sec-
ond reduction to Sat, we consider a variation where we
essentially guess a directed acyclic graph of positions of
the game that encodes a strategy for the system and that
witnesses the fact that the system wins the game. Given
a parameter n to bound the size of such a witness set, our
reduction checks if there exists a set of at most n positions
such that the system can force the game to be within this
set and reach the goal. This is perhaps the more natural
generalization of bounded model checking to games.
We compare all the above methods and the different

encodings described above using two examples that can
be scaled. The first example is a pursuer-evader game
where the objective is to guide a robot from one end of

a grid to another while evading another slower robot that
moves arbitrarily in the grid. Since our results show that
Bddmethods outperform both Sat andQbfmethods by
a large margin for this example, we consider in the second
example a game that is known to be hard forBdds (using
the swap example from [21]). However, it turns out that
Bdds still outperform the Sat andQbf methods.
We then turn to solving safety games, for which the

symbolic techniques using Bdds are again straightfor-
ward. However, since in a safety game the objective is to
stay away from a set of bad states forever, strategies that
bound the length of plays by a constant are not inter-
esting. However, the idea of guessing a bounded witness
set generalizes with the modification that cycles are now
permitted, and we are guessing a strategy that can be
encoded as a bounded automaton. To study these two ap-
proaches, we apply these two methods to synthesize an
interface for the radio layer of TinyOS [10]. Synthesizing
interfaces can be reformulated as a safety game prob-
lem and hence is a more realistic example for evaluating
games in the formal methods context. In this setting also,
the symbolic approach using Bdds outperform the Sat-
based strategy synthesis technique.
Our aim in this paper is to have a common platform to

specify symbolic games so as to compare various symbolic
techniques and evaluate them. The games we consider
involve continuous interaction between the two players,
as is common in most games studied in formal methods.
The use of symbolic methods to solve problems related
to games is not new. Symbolic methods have been pro-
posed and studied in the area of planning in AI, for ex-
ample, in conditional planning using Qbf methods [25]
and for universal planning using Bdds [16] (see also [6]).
More recently, in [27], the authors investigate solving infi-
nite games for synthesizing controllers using Bdds. How-
ever, we do not know of any comparative study of solving
games using different symbolic approaches.
The paper is organized as follows. Section 2 lays out

the precise definition of symbolic two-player reachability
games. In Sect. 3 we outline two approaches using Bdds
to solve reachability games, one using Atl specifications
in Mocha and the other using µ-calculus specifications
in Mucke. Section 4 deals with solving bounded ver-
sions of the reachability game problem, using reductions
to satisfiability of Qbf and Sat formulas. For the Sat
reduction we outline both the strategy-tree approach as
well as the witness-graph approach. Section 5 outlines the
approaches we follow for safety games. We present our ex-
perimental results for the two reachability games and the
TinyOS interface synthesis example in Sect. 6, and Sect. 7
contains some concluding remarks.

2 Games

In this section, we define the required terminology. Let
X be a finite set of variables. Each variable x will be as-
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sociated with a finite domain Dx; in the discussion that
follows the domain for each variable will be either evident
or stated explicitly. We writeX ′ = {x′| x ∈X} for the set
of primed variables ofX; the domain of a primed variable
x′ will be the same as that of x. We denote by Val(X ) the
set of all total functions that map every variable x inX to
a value in its domain Dx. If X is a set of variables, then
a predicate over X is a boolean combination of relations
over domains and is typically an expression constructed
using variables and constants. We denote the set of all
predicates overX by P(X).
Given p ∈Val(X ) and a predicate ϕ overX = {x1, · · ·,

xn}, we write ϕ[p] = ϕ[p(x1)/x1, · · · , p(xn)/xn] for the
truth value obtained by replacing each variable xi ∈X in
ϕ with the value p(xi).
We model a game between a system and its environ-

ment using a game structure S = (XS , XE,MS ,ME, TS ,
TE) with the following components:

– XS is a finite set of variables the system controls, and
XE is a finite set of variables the environment controls
with XS ∩XE = ∅. We write X =XS ∪XE for the set
of system and environment variables, andQ=Val(X )
for the set of states of S.
– MS is a finite set of system move variables1 that de-
termine the next move of the system, and ME is a fi-
nite set of environment move variables that determine
the next move of the environment. We assume MS ∩
ME = ∅,MS ∩X = ∅, andME ∩X = ∅.
– TS ∈ P(X,MS, X ′S) is a transition predicate for the
system variables. For each q ∈Val(X ),mS ∈Val(MS ),
and q′S ∈ Val(X

′
S ), if TS [q,mS , q

′
S ] = true, then q

′
S

is the next valuation of variables in XS when the
system picks the move mS at the state q. Similarly,
TE ∈ P(X,ME, X ′E) is a transition predicate for the
environment variables. For each q ∈ Val(X ), mE ∈
Val(ME ), and q

′
E ∈ Val(X

′
E ), if TE[q,mE , q

′
E ] = true,

then q′E is the next valuation of variables in XE when
the environment picks movemE at state q.

We define a reachability game as a tuple G = 〈S, I,G,
S〉 with a game structure S, an initial state2 I ∈Val(X),
a goal predicate G ∈P(X), and a safe predicate S ∈P(X),
where for each q ∈Val(X ), if G[q] = true, then the state q
is in the goal region, and if S[q] = true, then the state q
is in the safe region. The game starts in the initial state,
and in every step the system and the environment pick
a move simultaneously and the state evolves according to
this choice. If the goal region is reached, then the system
wins. If the current state is not in the safe region, the en-
vironment wins. Otherwise, the game continues forever.
For two states p and q, we say that q is the successor

of p if there are movesmS ∈Val(MS ) andmE ∈ Val(ME )

1 In many examples, MS and ME will contain a single variable,
but in general, if a system has multiple components, then there can
be a move variable for each component.
2 We can handle multiple initial states by introducing a new
state as an initial state with moves to all the start states.

such that TS[p,mS , q
′
S ] = true, TE [p,mE, q

′
E ] = true, and

q = qS ∪ qE . We assume that there exists at least one suc-
cessor at every state. A path of S is a finite or infinite se-
quence λ = q0, q1, · · · of states such that for all positions
i ≥ 0, qi+1 is a successor of qi. For a path λ and a pos-
ition i ≥ 0, we use λ[i] and λ[0, i] to denote the ith state
of λ and the finite prefix q0, q1, · · · , qi of λ, respectively.
A strategy for the system is a function f :Q+→ Val(MS )
thatmaps every nonempty finite state sequence λ ∈Q+ to
a move f(λ) ∈ Val(MS ). Given a strategy f , we define the
plays of f , plays(f), to be the set of paths that are pos-
siblewhen the system follows the strategyf ; that is, a path
λ= q0, q1, · · · is in plays(f) if for all positions i≥ 0, there
are mS ∈ Val(MS ) and mE ∈ Val(ME ) such that mS =
f(λ[0, i]) and qi+1 is the 〈mS ,mE〉 successor of qi.
A zero-memory strategy is a strategy that depends

only on the last state of the play, i.e., a strategy f such
that f(λq) = f(λ′q), for every λ, λ′ ∈Q∗.
Given a reachability game G = 〈S, I,G,S〉, a strat-

egy f is a winning strategy in the game G if for all λ =
q0, q1, · · · ,∈ plays(f) such that q0 = I, there exists a pos-
ition i≥ 0 such that G[qi] = true, and for all positions 0≤
j < i, S[qj ] = true. Finally, given a game G= 〈S, I,G,S〉,
the reachability game problem is to check whether the sys-
tem has a winning strategy in the game G. We postpone
the definition of safety games to Sect. 5.

Example 1.

Consider the reachability game between an evader E and
a pursuer P on an n×n grid as shown in Fig. 1. The
evader tries to reach the predefined goal position with-
out being caught by the pursuer. The evader chooses one
of five moves: up, down, left, right, and stay in every
step. The pursuer, however, chooses one such move only
in every odd step, and it must stay stationary in every
even step. Considering the evader as the system player
and the pursuer as the environment player, we can define
the game G= 〈S, I,G,S〉 as shown in the figure.

3 Solving reachability games using BDDs

In this section, we solve reachability games using binary
decision diagrams (Bdds). The standard attractor-set
method to solve games is a fixed-point algorithm that
can be implemented using Bdds. Figure 2 shows a sym-
bolic model checking algorithm for our game problem
that manipulates state sets of S. Given a goal region and
a safe region, we compute all states from which there is
a winning strategy for the system. Note that the func-
tion PreG is different from the preimage function of Ctl
model checkers. The function PreG , when given a predi-
cate ρ(XS , XE), returns a predicate Pre

G(ρ) ∈ P(X) for
the set of states p such that from p the system enforces
the next state to satisfy ρ no matter how the environment
behaves.



R. Alur et al.: Symbolic computational techniques for solving games 121

The game is G = 〈S, I,G,S〉, where S = (XS , XE ,MS ,ME, TS , TE) is given by:

– XS = {xe, ye} where xe and ye ranging over {0, · · · , n− 1} are the x-y coordinates of the evader, and XE =
{xp, yp, clock} where xp and yp ranging over {0, · · · , n−1} are x-y coordinates of the pursuer and clock ranging over
{0, 1} is a toggle specifying when the pursuer can change its position.
– MS = {me} andME = {mp} whereme andmp range over {up, down, left , right , stay}.
–

TS ≡



(
(xe > 0)∧(me = left)∧(x′e =xe−1)∧(y

′
e= ye)

)
∨
(
(xe<n−1)∧(me= right)∧(x′e =xe+1)∧(y

′
e= ye)

)
∨
(
(ye<n−1)∧(me= up)∧(x′e = xe)∧(y

′
e = ye+1)

)
∨
(
(ye> 0)∧(me= down)∧(x′e =xe)∧(y

′
e = ye−1)

)
∨
(
(me = stay)∧ (x′e = xe)∧ (y

′
e = ye)

)

.

–

TE ≡




(
(clock = 1)∧

((
(xp > 0)∧ (mp = left)∧ (x′p = xp−1)∧ (y

′
p = yp)

)
∨
(
(xp < n−1)∧ (mp = right)∧ (x′p = xp+1)∧ (y

′
p = yp)

)
∨
(
(yp < n−1)∧ (mp = up)∧ (x′p = xp)∧ (y

′
p = yp+1)

)
∨
(
(yp > 0)∧ (mp = down)∧ (x′p = xp)∧ (y

′
p = yp−1)

)))

∨
(
(mp = stay)∧ (x′p = xp)∧ (y

′
p = yp)

)



∧(clock ′ 
= clock).

– If the initial position of the evader is (x= 0, y = 0) and the initial position of the pursuer is (x= 1, y = 3), then I ≡
((xe = 0)∧ (ye = 0)∧ (xp = 1)∧ (yp = 3)∧ (clock = 0)). G is true if the x-y coordinates of the evader coincide with the
predefined goal position. S is true if the x-y coordinates of the evader are different from the pursuer’s: S ≡ (xe 
= xp)∨
(ye 
= yp).

Fig. 1. Pursuit-evasion game

Algorithm [Symbolic model checking for solving
reachability games]

Input: a game G= 〈S, I,G,S〉.
Output: the answer to the reachability game.

ρ := False;
τ := G;
while τ 
→ ρ do
ρ := ρ∨ τ ;
τ := PreG(ρ)∧S;

od;
if ρ(I) then return true;
else return false ;

Fig. 2. Symbolic algorithm for reachability games

Formally,

PreG(ρ)≡ ∃MS , X
′
S.∀ME , X

′
E .

TS(X,MS, X
′
S)∧
(
TE(X,ME , X

′
E)→ ρ(X

′
S , X

′
E)
)
.

In the algorithm, sets of states and the transition relation
are represented by Bdds [9]. Both theAtlmodel checker
and µ-calculus model checker use this algorithm.

ATL model checking

Mocha [4] is a verification environment for modular veri-
fication against specifications written in alternating-time
temporal logic, which is a game logic extension of Ctl.
Given a game G = 〈S, I,G,S〉, we specify a game

structure S in the modeling language reactive modules [4],
where the system and its environment are described as
separate modules, and specify the desired winning con-
dition as an Atl formula using the until operator U .
The logic Atl admits a formula 〈〈A〉〉φUψ, where φ and
ψ are state predicates and A is a subset of players. The
formula 〈〈A〉〉φUψ asserts that the players in A can co-
operate to keep satisfying φ until satisfying ψ no matter
how the remaining players behave. Considering A as the
system, the semantics of 〈〈A〉〉φUψ is exactly the same as
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the reachability game problem. For Example 1, we spec-
ify the evader and the pursuer as separate modules and
specify the reachability game property as the Atl speci-
fication, 〈〈Evader〉〉(safe U goal). Then, we use symbolic
Atl model checking of Mocha, which implements the
algorithm shown in Fig. 2.

µ-calculus model checking

The µ-calculus [5] is propositional modal logic extended
with the least fixed-point operator and is interpreted
over Kripke structures. While µ-calculus model checking
can be seen to be equivalent to evaluating infinite parity
games on finite graphs, the µ-calculus also trivially en-
codes solutions to reachability games. In our context, the
µ-calculus formula

µX.(goal ∨ (safe ∧
∨

ms∈Val(MS)

∧
me∈Val(ME)

〈ms,me〉X))

computes the winning states for the system player S, as it
captures the least setX containing the goal states as well
as those states from which the system can force a move
intoX.
Since least fixed-point computations can be per-

formed symbolically, we can use symbolic µ-calculus
model checkers to solve games using Bdds. The model
checker we consider is Biere’s model checker Mucke
(µcke) [7], which has been developed with an aim to
be a µ-calculus model checker that performs as well as
symbolic model checkers like Smv on the Ctl fragment.
Mucke is a Bdd model checker optimized for the µ-
calculus using techniques similar to those employed in
model checkers for Ctl (such as allocating fixed-variable
orderings for variables computing fixed-points, frontier
set simplification, etc.).
When coding games into µ-calculus, we can also im-

plement early termination, i.e., terminating the above
fixed-point computation as soon as we reach an initial
state. This can be encoded as:

µX.(goal ∨ (∃x̄ ∈X : Ix̄) ∨

(safe ∧
∨

ms∈Val(MS)

∧
me∈Val(ME)

〈ms,me〉X)) .

In the above formula, if an initial state is reached, the
set X immediately gets set to the entire set of states and
the fixed-point procedure terminates.

4 Solving bounded reachability games

Symbolic model checking [20] has been acknowledged as
an efficient verification technique. Many symbolic model
checkers use Bdds [9] as representations for sets of states
and transition relations. However, the size of Bdds may
increase exponentially as the number of variables and the

memory requirements during the fixed-point computa-
tion are unpredictable.
Recently, a new model checking technique, bounded

model checking using boolean satisfiability solvers [8, 14],
has led to promising results. In bounded model checking,
given a transition system S, a temporal logic formula f
and a user-supplied bound k ∈N, we construct a proposi-
tional formula that is satisfiable if and only if the formula
f is violated along some path of length k in S.

4.1 QBF methods

Given a reachability game G= 〈S, I,G,S〉, a strategy f ,
and a bound k, playsk(f) is the set of plays of length k
that are possible when the system follows the strategy f .
A strategy f is a k-winning strategy in a reachability game
G if all λ= q0, · · · , qk ∈ playsk(f) are winning, i.e., there
exists a position 0 ≤ i≤ k such that G[qi] = true and for
all positions 0≤ j < i, S[qj ] = true. The bounded reacha-
bility game problem is, given a reachability game G and
a bound k, to check whether the system has a k-winning
strategy in the reachability game G. Consequently, we
want to construct a boolean formula Φ1G,k that is satis-
fiable if and only if the system has a k-winning strategy
in G.
Given a game G = 〈S, I,G,S〉 with S = (XS , XE ,

MS,ME , TS, TE) and a bound k, we denote, for every
0≤ i≤ k, the ith copy of X,XS, XE by Xi, XiS , X

i
E , re-

spectively. We divide I into IS and IE , which are the
initial predicates for XS and XE , respectively. However,
unlike bounded model checking, we need alternations of
existential quantification and universal quantification in
order to solve a bounded game problem. Therefore, the
formula Φ1G,k is a quantified boolean formula describing
the fact that there exists a series of system moves to guar-
antee that for all corresponding environment moves, the
goal region is reached through the safe region as long as
the environment proceeds according to the transition re-
lation. Φ1G,k is defined as:

Φ1G,k ≡ ∃X
0
S ,M

0
S .∀X

0
E ,M

0
E. · · ·

∃Xk−1S ,Mk−1S .∀Xk−1E ,Mk−1E .∃XkS .∀X
k
E .

IS(X
0
S)∧φ1∧

((
IE(X

0
E)∧ψ1

)
→ ρ
)
,

where

– φ1 ≡
∧k−1
i=0 TS(Xi,M

i
S , X

i+1
S ) ,

– ψ1 ≡
∧k−1
i=0 TE(Xi,M

i
E, X

i+1
E ), and

– ρ≡
∨k
i=0

(
G(Xi)∧

∧
j<i S(X

j)
)
.

In the above formula Φ1G,k and the subformulas φ1 and
ψ1 force the consecutive states along the path to obey the
transition relation, and ρ encodes reachability to the goal
region through the safe region within k steps.
The total number of variables in Φ1G,k is O(k ·N),

where N = |X ∪MS ∪ME |, and the length of Φ1G,k (after
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some simplification) is O
(
k · (|TS |+ |TE |+ |G|+ |S|) +

|IS |+ |IE|
)
, where |G|, |S|, |TS |, |TE|, |IS | and |IE | are the

lengths of the respective formulas. In this expression, k ·
(|TS |+ |TE|) is the dominant factor because |TS| and |TE |
are quadratic in N while |G| and |S| are linear in N .
We define a new formula Φ2G,k that has three extra

copies of the variables X ∪MS ∪ME but that is shorter
than the previous formula Φ1G,k since it has only one oc-
currence of TS and TE . The trick is to have an additional
universal quantification after the k alternating quanti-
fiers and to treat these as temporary variables and check
that if they match the ith and (i+1)th copy of the ori-
ginal variables, then they satisfy the predicates TS and
TE . Subsequently, the total number of variables in Φ

2
G,k

is O(k ·N) and the length of Φ2G,k (after some simplifica-
tion) isO

(
k · (|G|+ |S|)+ |TS |+ |TE|+ |IS |+ |IE |

)
. Φ2G,k is

given by:

Φ2G,k ≡ ∃X
0
S ,M

0
S.∀X

0
E ,M

0
E . · · · ∃X

k
S .∀X

k
E .

∀Y, YM , Y
′, Z, ZM , Z

′.

IS(X
0
S)∧φ2∧

((
IE(X

0
E)∧ψ2

)
→ ρ
)
,

where

– φ2 ≡
∨k−1
i=0

(
(Xi = Y )∧ (M iS = YM)∧ (X

i+1
S = Y ′)

)
→

TS(Y, YM , Y
′),

– ψ2 ≡
∨k−1
i=0

(
(Xi=Z)∧(M iE =ZM)∧(X

i+1
E =Z ′)

)
→

TE(Z,ZM , Z
′), and

– ρ≡
∨k
i=0

(
G(Xi)∧

∧
j<i S(X

j)
)
.

We denote by M1 the method that uses the first for-
mula Φ1G,k to solve the game and byM2 the method that
uses Φ2G,k. We use Qbf solvers such as Semprop [19],
Quaffle [28], and Qube [12] to decide these quantified
boolean formulas.

4.2 SAT method using strategy trees

The bounded reachability game problem is naturally
translated to a Qbf solving problem, as we saw in
Sect. 4.1, and we must use Qbf solvers. However, sev-
eral Sat solvers have recently shown promising results.
In the next two subsections, we show how to translate
the bounded reachability game problem to a boolean for-

Fig. 3. Tree-based Sat method

mula that has only existential quantification in order to
use Sat solvers.
For translating the quantified formula for Φ1G,k in the

previous section into an existentially quantified boolean
formula, we need to eliminate universal quantification by
introducing extra copies of variables in order to specify
explicitly all cases the universal quantification can quan-
tify over; for example, ∀x.∃y.(x∧ y) ≡ ∃y1, y2.

(
(true ∧

y1)
)
∧ (false ∧y2)

)
. Figure 3 shows relations between suc-

cessors and predecessors in theQbf and Satmethods, in
the case where the environment has four choices of moves
in each step. In the tree-based Sat method, we introduce
explicitly one copy of variables for every node in the tree.
Thus, the number of copies is exponential in the bound k.
Every path of the tree-based Satmethod corresponds

to a play of length k and we just need to write a for-
mula to check that the paths stay in the safe region until
they reach the goal region, which we write as a boolean
formula Φ3G,k.

The number of variables in Φ3G,k is O(N ·m
k), where

m is the maximum number of an environment’s moves
and the length of Φ3G,k is O(m

k · (|TS |+ |TE |+k · (|S|+
|G|)) + |IS |+ |IE |). We then use Berkmin [13] and
zChaff [22] in order to check if the boolean formula Φ3G,k
is satisfiable.

4.3 SAT method using witness sets

In the strategy-tree based Sat method, we constructed
a tree that is a witness for a k-bounded reachability game
problem. The tree, however, could have many identical
states, and we check for a strategy from these identical
states independently. Since reachability games have zero-
memory strategies, we need not guess separate strategies
from these nodes. In this section, we introduce a method
that can generate a witness set with fewer copies of vari-
ables. The main idea is to construct a set that witnesses
the fact that the system wins. Thus, given a reachabil-
ity game G = 〈S, I,G,S〉 and a user-supplied n ∈ N, we
generate a boolean formula Φ4G,n that is satisfiable if and
only if we can generate a witness set with n states. For
each elementmi of the set {m1,m2, · · · ,mmax} of the en-
vironment’s moves, define Ti(X,MS, X

′) to be the pred-
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icate obtained from TS(X,MS , X
′
S)∧TE(X,ME , X

′
E)

(where X ′ =X ′S ∪X
′
E) by replacing each of the variables

v ∈ME with the value mi(v). Now, we define a wit-
ness set for a bounded reachability game problem as
follows. Given a reachability game G = 〈S, I,G,S〉 with
S = (XS , XE ,MS,ME , TS, TE) and a user-supplied num-
ber n,W = {q1, q2, · · · , qn} is a witness set for the gameG
if and only if

– for the initial predicate I of G, I[q1] = true and
– for each qi ∈W , G[qi] = true, or S[qi] = true and there
exists a system move miS such that for each valid
move mj in the set {m1,m2, · · · ,mmax} of environ-
ment moves at qi, there exists i < l ≤ n such that
Tj[qi,m

i
S , ql] = true.

The formula Φ4G,n for witness-based Sat is as follows:

Φ4G,n ≡ I(X
1)∧

n∧
i=1

(
G(Xi)∨

(
S(Xi)∧

max∧
j=1

(
Vj(X

i)→
∨
i<l≤n

Tj(X
i,M iS, X

l)
)))
,

where Vj ∈P(X), for every 1≤ j ≤max, is a validity pred-
icate for the environment: Vj [q] = true if and only if mj
is a valid environment move at state q. The definition of
a witness set forces every copy qi that is not a goal state
to have a transition to some ql where l is strictly larger
than i. Note that qn must hence be a goal position, and
in fact the definition forces all plays encoded in the wit-
ness set to end in the goal. In the formula Φ4G,n, the total
number of variables is O(n ·N) and the length of the for-
mula is O(mn2 · |Tj |+n · (|G|+ |S|)+ |I|), where m is the
maximum number of environment moves. We again use
Berkmin and zChaff in order to check if the boolean
formula Φ4G,n is satisfiable.

5 Solving safety games

We now describe the two methods we use to solve safety
games. A safety game is a tuple G= 〈S, I,S〉, where the
components are exactly as in a reachability game (note
that the goal predicate is missing). The notions of strate-
gies for the system and the set plays(f) are as before. For
a safety game G= 〈S, I,S〉, a strategy f is winning if for
all λ= q0, q1, · · · ∈ plays(f) with q0 = I, for all states qi,
S(qi) = true.
A safety gameG= 〈S, I,S〉 can be solved using the re-

lated reachability game G′ = 〈S, I,G,S′〉, where G = ¬S
and S′ ≡ true and where the players’ roles are reversed.
More precisely, the system has a winning strategy in G
if and only if the environment has a winning strategy in
G′, where the environment is required to force the game
to the unsafe region. The game can hence be solved by
reversing the roles of the players and solving G′. Conse-
quently, the Bdd-based approach easily extends to solv-
ing safety games.

The restriction to bounded length plays, however, is
not useful for safety winning conditions. Though it is true
that the system does win the safety game provided it can
remain safe for k steps, where k is the number of positions
in the game, this value of k is too large (as it is the state
space of the game) and impractical.
The witness-based technique (Sect. 4.3), however,

does extend to the safety setting. The witness set de-
scribed for reachability games is essentially a strategy
automaton that encodes a winning strategy for the sys-
tem. For safety games, we can define a similar strategy
automaton that encodes a set W of safe states (which
includes the initial state) such that from any state q in
W , there is a system movemS such that for every (valid)
environment movemE , the state from q on (mS ,mE) be-
longs to W as well. Note that in this setting, we do not
need a notion of progress toward the goal states and hence
we do not require the priorities, encoded by indices, to
increase as in the reachability case.
Formally, given a safety gameG= 〈S, I,S〉 and a user-

supplied n ∈ N, we generate a boolean formula Φ5G,n that
is satisfiable if and only if we can generate a strategy
automaton with n states. As in the reachability case,
for each element mi of the set {m1,m2, · · · ,mmax} of
the environment moves, let Ti(X,MS, X

′) be the pred-
icate obtained from TS(X,MS , X

′
S)∧TE(X,ME, X

′
E)

by replacing each of the variables v ∈ME with the
value mi(v). Now, we define a strategy automaton as
follows. Given a safety game G = 〈S, I,S〉 with S =
(XS , XE ,MS,ME , TS, TE) and user-supplied number n,
W = {q1, q2, · · · , qn} is a strategy automaton for the game
G if and only if

– for the initial predicate I of G, I[q1] = true and
– for each qi ∈W , S[qi] = true and there exists a sys-
tem move miS such that for each valid movemj in the
set {m1,m2, · · · ,mmax} of environment moves at qi,
there exists 1≤ l≤ n such that Tj [qi,miS , ql] = true.

The formula Φ5G,n is:

Φ5G,n ≡ I(X
1)∧

n∧
i=1

(
S(Xi)∧

max∧
j=1

(
Vj(X

i)→
∨
1≤l≤n

Tj(X
i,M iS , X

l)
))
,

where Vj ∈ P(X), for every 1≤ j ≤max, is the validity
predicate for the environment: Vj [q] = true if and only if
mj is a valid environment move at the state q. The bounds
on the size of Φ5G,n are the same as those for Φ

4
G,n, and

Sat solvers are used to check its satisfiability.

6 Experiments

Apart from the pursuer-evader game, we consider a sec-
ond example for reachability games, which is known to be
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hard for Bdds [21]. Then we present a third example –
a safety game that corresponds to interface synthesis.

Example 2.

The second example is the swap introduced in [21]. We
change the example into a reachability game problem.
There is an array A[ ] with n elements that are m-bit
binary numbers. We assume that n≤ 2m so that all elem-
ents in the array can be distinct. Initially we have, for
all 0≤ i < n, A[i] := i. At each step, the system chooses
a direction between left and right and the environment
chooses an index i in the range 0, · · · , n−1; then the value
of A[i] is swapped with that of A[(i−1)modn] or A[(i+
1)modn], according to the direction the system picked.
The property we want to check is whether the system can
eventually make A[0] and A[1] the same no matter what
the environment does (the system clearly loses).

We compare the methods for reachability games using
the Examples 1 and 2. For Qbf methods, our program
first generates a boolean circuit [17] file, which is a more
succinct format than Cnf. Then we use bc2cnf [17] to
translate the boolean circuit into a Cnf formula. In the
process, many intermediate variables are introduced. Fi-
nally, our program attaches quantification to the Cnf
file automatically, and we use Qbf solvers such as Sem-
prop, Quaffle, and Qube to solve the Cnf formula
with quantification.
Also, for Sat methods we generate a Boolean circuit

file and translate it to Cnf using bc2cnf. We use the

Table 1. The results for Example 1

Bddmethods Bounded methods
Grid size Mucke Qbf methods Sat methods

Mocha
Normal Early

Step(k)
M1 M2 Tree Witness

4 1 550 0
6 172 – 0

4×4 0 3 3 7 2030 – 0 818
(12) (7) (3) 15 – – 17 (25)

16 – – *

4 76 – 0
8×8 6 3 3 5 32429 – 0 –

(20) (16) (16) 15 – – 117
16 – – *

12 – – 29 –
16×16 190 3 3 15 – – 135

(35) (32) (32) 16 – – *

12 – – 58 –
32×32 6493 5 5 15 – – 531

(67) (64) (64) 16 – – *

256×256 – 373 100 8 – – – –
(512) (263) 12 – – –

512×512 – – 4024 8 – – – –
(517) 12 – – –

Sat solvers Berkmin and zChaff on the Cnf formula.
All experiments were performed on a PC using a 1-GHz
Pentium III processor, 1.5GBmemory, and the Linux op-
erating system.
The results for Example 1 are shown in Table 1, where

the time shown is the execution time in seconds, “–”
means that the experiment did not complete in 10 h,
and * means the size of the input file was too large to
execute (over 1GB). In Bdd methods, the number in
parentheses is the number of iterations taken to reach
the fixed point, while in the witness method the num-
ber in parentheses is the size of the witness set. For early
termination results, the initial position of the pursuer
was chosen as (n/3, 3n/4) for the n×n grids. In this ex-
ample,Mucke performed better thanMocha. For Qbf
method M1, Qube (Ver. BJ1.0) worked best, and for
Qbf method M2, Semprop (Ver. 240202) gave the best
result. For Sat methods, Berkmin worked best. The re-
sults in the table are the results for the tools that per-
formed best. For this example, Bdd-based methods seem
better than Qbf, and Sat-based methods seem better
thanQbf-methods.
Table 2 shows the results for Example 2 where the

Bdd method again outperformed the Qbf and Sat
methods. Unlike in Example 1, the Qbf method was
better than the tree-based Sat method. This is perhaps
because, in Example 2, the environment has n moves at
every stage, which makes the strategy tree very large,
while in Example 1 it has at most five moves at any
stage.
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Table 2. The results for Example 2

Bdd method Bounded methods
Array size Qbf method Sat method

Mocha Step(k)
M1 Tree

5 3 3
5 0 6 32 188

(5) 7 257 –

5 9 23
6 1 6 93 16718

(6) 7 872 –

5 22 81
7 9 6 841 –

(7) 7 3872 –

5 41 1895
8 77 6 1901 –

(8) 7 10746 –

9 518 5 – 11764
(9) 6 – –

Example for safety games: interface synthesis
for a module in TinyOS

In this section, we apply the safety games to solve the
problem of interface synthesis on an abstraction of a piece
of software code. Apart from illustrating this applica-
tion of games, this example illustrates how solving games
using BDDs and the strategy-automaton-based approach
using Sat perform in more realistic examples than those
discussed above.
The Tiny microthreading operating system (Tiny-

OS) [15] is an event-driven operating system for support-
ing operations required by networked sensors. Figure 4

Fig. 4. The radio layer in TinyOS

illustrates a communication layer of a networkwhere pack-
ets are sent and received through a low-power radio chan-
nel. The higher levels send commands to lower layers;
events originate at the lowest hardware layer and propa-
gate up.
We modeled the Radio Byte and RFM components in

Mocha, treating the upper level that issues commands as
the environment and handling the generation of events in
the hardware as nondeterministic system events.
The code of TinyOS is from an early version; Fig. 4

gives a schematic view of the components of Radio Byte
and RFM and how they communicate. The Radio Byte
layer handles requests to send data from the upper level
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and communicates at a bit level to the lower RFM mod-
ules. If the radio channel detects messages, an interrupt
causes an event that RFM propagates to the Radio Byte
layer, which in turn signals to the upper layer and man-
ages the receiving of the channel data. The radio can also
be turned to low-power mode where messages cannot be
received or sent (to conserve power) and woken up when
required.
These modules were also isolated and studied in [10],

where the authors discovered an incompatibility error.
It turns out that turning the radio to low-power mode
does not set the RFM components to low power and
the waking-up phase is hence unavailable in RFM after
a low-power command.
Our goal in this experiment is not to check for com-

patibility, but rather to generate the most general envi-
ronment that can issue commands to the radio modules
such that all issued commands can be correctly processed
by the modules. In other words, we want to synthesize
the most general assumption these modules make on the
interface that connects them to the rest of the operat-
ing system. For example, since turning the radio to low
power results eventually in an unavailability, a correct in-
terface must capture this by demanding that the upper
layer never turn the radio to low-power mode.
This problem can be set up naturally as a safety game

problem: the components Radio Byte and RFM consti-
tute one player and the upper level (environment) takes
the role of the second player. The problem of designing the
most general interface can then be stated as follows: find
the most general strategy for the environment (player 0)
to issue commands such that any command issued can be
handled by the radiomodules (player 1). Interrupts gener-
ated by the hardware (which determine when bits succeed
in getting sent and whether information is being received
by the channel) are nondeterministic – the environment
must meet its goal of issuing available commands no mat-
ter how these interrupts are generated.
We model an abstraction of the code for the radio

modules Radio Byte and RFM. In particular, various de-
tails, such as timing issues, encoding of data for error cor-
rection, byte-to-bit conversions, etc., are abstracted away.
Only the control flow (and the state variables relevant to
it) are retained, and this abstraction causes nondetermin-
ism in the model.
We implemented the safety game using Mocha to

evaluate the Bdd-based approach. The Mocha model
has 29 variables. Unavailability of commands was mod-
eled by setting a variable “Error” to true. The game prob-
lem captured by the specification “〈〈Env〉〉G(¬Error )”
(“does the environment have a strategy such that Error is
never set to true”), turned out to be true and was checked
within 1 s.
The model, however, does not satisfy the Ctl prop-

erty “AG(¬Error )” as the run where the environment
turns the radio to low power and then wakes it up causes
an error. This check could be done in 1 s byMocha.

The winning strategy for the environment in the game
always sends data on the channel and receives data when
they come on the channel, but never turns the radio to
low power.
We also implemented the above safety game prob-

lem using the strategy-automaton-based technique using
Sat. However, with the complete model, the Sat tools
could not generate a winning strategy automaton. We
then experimented with a submodel of the TinyOS mod-
ule where the receiving of events is disabled. For this
model, theBerkmin tool succeeded in synthesizing a safe
interface having 13 states (the Cnf formula correspond-
ing to this instantiation had 45645 variables and 227889
clauses and the tool took 318 s to finish).
In summary, the BDD-based approach was faster and

able to handle the full model.

7 Conclusions

We have presented various symbolic methods using
Bdds, Qbf solvers, and Sat solvers to solve symboli-
cally presented succinct games and evaluated them on
three examples. One of these examples was a realistic
verification example, an interface synthesis example for
a TinyOS module.
This research is preliminary, and one cannot draw

hard conclusions yet. From the current results, however,
it does seem that Bdds (especially Mucke) outperform
methods that use propositional solvers. The main prob-
lem with reduction to Sat seems to be the exponential
blowup in the reduction to game witnesses. Also, just
reducing the size of the formula by making it more com-
plex seems to make Sat and Qbf solvers perform worse
than with a simple but larger encoding. If one could come
up with a very small notion of a witness set for winning
games, the propositional solvers may turn out to be more
powerful.
There are several issues that are interesting for future

study. First, most applications require solving partial in-
formation games, and it is not clear how to extend the
methods to handle this. Also, once we know that the sys-
tem indeed wins the game, we do not know how hard it is
to extract a winning strategy of reasonable size from the
above procedures.
Finally, McMillan has developed a technique to per-

form unbounded model checking using Sat solvers, where
Sat solvers are exploited to manipulate sets of states
stored as boolean formulas [21]. It would be interesting to
to explore whether games can be solved using a similar
approach.
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