
Int J Softw Tools Technol Transfer (2005) 7: 143–155 / Digital Object Identifier (DOI) 10.1007/s10009-004-0169-2

Abstraction refinement in symbolicmodel checkingusing
satisfiability as the only decision procedure

Bing Li, Chao Wang, Fabio Somenzi

University of Colorado at Boulder, USA
e-mail: {bli,wangc,Fabio}@Colorado.edu
Published online: 24 February 2005 – Springer-Verlag 2005

Abstract. We present an abstraction refinement algo-
rithm for model checking of safety properties that relies
exclusively on a SAT solver for checking the abstract
model, testing abstract counterexamples on the concrete
model, and refinement. Model checking of the abstrac-
tions is based on bounded model checking extended with
checks for the existence of simple paths that help in de-
ciding passing properties. All minimum-length spurious
counterexamples are eliminated in one refinement step
by an incremental procedure that combines the analysis
of the conflict dependency graph produced by the SAT
solver while looking for concrete counterexamples with an
effective refinement minimization procedure.

Keywords: Bounded model checking – Abstraction re-
finement – Satisfiability problem – Unsatisfiability proof

1 Introduction

Model checking [11] is an algorithmic approach to the ver-
ification of properties of reactive systems that has been
successfully applied to both hardware and software. Since
model checking entails the exploration of a potentially
very large state space, the alleviation of the so-called state
explosion problem has been the object of much research.
On the one hand, techniques have been developed that
allow models with hundreds of state variables to be ana-
lyzed directly. On the other hand, abstraction has been
used to allow the model checker to draw conclusions on
the original, concrete model by examining a simpler, ab-
stract one.
For systems with many state variables and many tran-

sitions, the symbolic approach has proved crucial. In

This work was supported in part by SRC contract 2003-TJ-920.

symbolic model checking, sets of states and transition
are described by their characteristic functions. Various
forms of representation have been used for these func-
tions, the most popular being Binary Decision Diagrams
(BDDs) [7] and Conjunctive Normal Form (CNF).
Classical BDD-based model checking [17] is based on

the computation of fixpoints. For instance, the reachable
states of a model are computed as the least fixpoint of
the function λZ . I ∨Succ(Z), which adds the successors
of the states in Z to the initial states. Both the set of
states and the successor relation are stored as BDDs. The
fixpoint computation converges in a number of iterations
that equals the maximum distance of a reachable state
from the initial states. Checking for convergence is made
easy by the strong canonicity of BDDs (identical sets
share the same representation). BDD-based model check-
ing can therefore prove properties almost as easily as it
can disprove them.
Bounded model checking (BMC) [4], on the other

hand, formulates the reachability test as a series of sat-
isfiability (SAT) checks for paths of bounded length. (To
see if a path of length k to a set of states exists, the
transition relation is unrolled k times.) For finite systems
the process must eventually terminate: the length of the
shortest path between two states cannot exceed the num-
ber of states. Hence, if no path is found with length up
to the number of states, the target states are known to
be unreachable. This observation, however, does not help
for the kind of models that one encounters in practice.
The diameter of the state graph would give a much better
bound on k, but, unfortunately, it is hard to compute [4].
For this reason, BMC has come to be regarded as an ex-
cellent debugging (as opposed to verification) technique.
That is, classical BMC is particularly adept at finding
counterexamples but ill-suited to prove their absence.
The ability demonstrated by BMC to deal with

models beyond the reach of BDD-based methods has

144 B. Li et al.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure

sparked interest in the use of CNF and SAT for proof as
well as refutation. Two main approaches have been pur-
sued: the replacement of BDDs with CNF formulae in the
fixpoint computation [1, 18, 23] and the development of
more-effective termination criteria for BMC.
The opportunity of replacing BDDs with CNF formu-

lae can be argued on the grounds that canonicity of repre-
sentation makes BDDs somewhat inflexible. Hence, some
functions that admit compact representations in CNF
have exceedingly large BDDs. However, the inflexibility
argument can also be used against CNF, and memoiza-
tion techniques are more effective for BDDs. In fact, to
date, CNF-based fixpoint computation has not demon-
strated a consistent advantage over the classical BDD-
based one. One may argue that the main reason for the
success of BMC in finding counterexamples lies in its
avoidance of the needless computation and storage of
reachable states that are not on the error trace.
Several proposals have been made to improve BMC’s

ability to prove the nonexistence of a path. It is straight-
forward to check for inductive invariants since it only en-
tails checking for the existence of a transition from a state
that satisfies the invariant to one that does not. An exten-
sion of the inductive approach has been presented in [22],
in which termination occurs as soon as the length of the
path reaches the length of the longest simple path from
an initial state, or to a target state. A recent paper [19]
proposes the analysis of the unsatisfiable formulae to al-
low termination when the reverse sequential depth of the
model is reached.
Early termination in BMC requires additional checks

beyond the one for the existence of paths of certain
lengths. These checks translate into more clauses in the
CNF formulae whose satisfiability has to be established.
For the approach of [22], the number of extra clauses
is quadratic in the length of the path. As a result, it
is not surprising that finding counterexamples is slower
than with pure BMC. The extra cost, however, appears
to be worth paying, since it increases substantially the
fraction of passing properties that can be decided. Unfor-
tunately, there remain instances for which the additional
termination tests are too expensive.1 Consider the model
illustrated in Fig. 1. It has 2n+2 states, one of which is
initial (A). The n/2 states Dn/2, . . . , Dn−1 are the (un-
reachable) target states. The longest simple path from
the initial state has length n+1, while the longest simple
path to a target state that does not visit any other target
state has length n/2; the reverse sequential depth of the
model is also n/2. Hence, the methods of [19, 22] will have
to consider paths of length n/2 before they can declare
the target states unreachable. By contrast, the forward
sequential depth is 2.
Figure 2 shows an abstraction of the model of Fig. 1.

States A, Bi, C, and Di are abstracted by α, β�2i/n�,

1 In [14] it was shown how to reduce the number of clauses to
O(k log2 k). However, the extra clauses to enforce simple paths still
represent a significant hurdle for the SAT solvers.

Fig. 1. Model with long simple path

Fig. 2. Abstraction of the model of Fig. 1

γ, and δ�2i/n�, respectively. The target state remains un-
reachable in this model, and the forward sequential depth
is still 2; however, the longest simple path and the se-
quential depth are reduced. Though in general there is
no guarantee that abstraction will shorten or even not
lengthen the longest simple paths, or the shortest paths,
this example illustrates how abstraction may help BMC,
especially for passing properties.
Abstraction and BMC have been combined in more

than one recent work, especially in the context of ab-
straction refinement. In abstraction refinement [15], one
starts with a coarse abstraction of the given, concrete
model and keeps refining it until the property is decided.
For universal properties like the reachability properties
that are the focus of this article, this often means that
the abstract models simulate the concrete one [20], and
that either the property is shown to hold on an abstract
model, or a counterexample is found in the concrete one.
In [9, 10, 24, 26] BMC is used to check whether counterex-
amples found in the abstract models can be concretized,
that is, whether a counterexample can be found in the
concrete model that is mapped by the abstraction onto
the abstract counterexample. The first three of these
methods also analyze the failed concretization test to
guide the refinement. Therefore, they represent instances
of counterexample-guided abstraction refinement. On the
other hand, [26] analyzes the abstract model to decide

B. Li et al.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure 145

how to refine it. Yet another approach is the one of [16],
in which the abstractmodel is derived from a failing BMC
run on the concrete model. This reversal of the customary
order is attractive for those frequent cases in which paths
of moderate length can be easily checked on the concrete
model.
One common trait of the approaches to abstrac-

tion refinement mentioned so far is the application of
a BDD-based model checker to the abstract models and
of SAT solvers to the concrete ones. By contrast, the ob-
jective of this article is to explore what can be achieved
with a SAT solver as the only decision procedure in the
abstraction refinement framework. The rationale for com-
bining BDDs and SAT is that each is well-suited to the
task assigned to it: the SAT solver is good at check-
ing the existence of a path of a given length in a large
model, whereas the BDD-basedmodel checker is better at
proving the absence of certain paths, regardless of their
lengths, in a model of moderate size. This observation is
certainly well motivated when one regards the models for
which abstraction refinement results have been reported
in the literature; their sizes rarely exceed 1000 binary
state variables. As the models grow larger, however, we
expect an approach based purely on SAT to become more
competitive. Therefore, our goal is to eventually be able
to switch between BDD-based model checking and SAT-
based techniques for the analysis of the concrete model. In
this article we report on a significant step in that direction
by presenting an algorithm for abstraction refinement
that is based purely on SAT.
Our approach is similar to those discussed so far in

the fact that abstractions are obtained by removing part
of the state variables of the model; refinement then con-
sists of reinstating some of the removed variables. The
algorithm has four major components: the decision pro-
cedure for the abstract model is that of [22], which has
already been mentioned. The second component is the
concretization test: as in [5], a gradual refinement ap-
proach tries to prove counterexamples spurious without
resort to the concrete model. The third component – the
choice of the refinement – makes use of elements of [9,
16, 26]. Like the first two, it addresses all the abstract
counterexamples of a certain length at once; like the last
two, it analyzes the proof of nonexistence of counterexam-
ples of a certain length to derive a set of candidate state
variables from which the ones that will be added to the
abstract model are chosen. Finally, the fourth compon-
ent is a heuristic procedure for abstraction minimization.
This minimization is quite important in our approach be-
cause the simultaneous elimination of all spurious coun-
terexamples of a certain length tends to generate large
sets of candidate variables. Our experimental evaluation
of the SAT-based abstraction refinement algorithm com-
pared it to both BMC (with and without termination
checks for passing properties) and to the best abstrac-
tion refinement algorithm available to us [26]. The re-
sults, discussed in Sect. 5, show that the new approach,

though not uniformly superior, is more robust than the
others and is especially promising for the more challeng-
ing problems.

2 Preliminaries

2.1 Open systems

Let V = {v1, . . . , vn} and W = {w1, . . . , wm} be sets of
Boolean variables.Wedesignate byV ′ the set {v′1, . . . , v

′
n}

consisting of the primed version of the elements of
V , and by V i the set {vi1, . . . , v

i
n}. Likewise, W

i =
{wi1, . . . , w

i
m}. An open system is a 4-tuple

〈V,W, I, T 〉 ,

where V is the set of (current) state variables, W is the
set of combinational variables, I(V) is the initial state
predicate, and T (V,W, V ′) is the transition relation. The
variables in V ′ are the next state variables. All sets are
finite, and all variables range over finite domains.
We assume that T (V,W, V ′) is given by a circuit

graph, that is, by a labeled graph C = (V ∪W,E) such
that m≥ n, node vi ∈ V is labeled by wi ∈W , node wi ∈
W is labeled by a Boolean formula Ti = wi↔ δi(V,W),
(wi, vi) ∈ E for i ∈ {1, . . . , n}, and, for x ∈ V ∪W , wi ∈
W , (x,wi) ∈E iff x appears in δi. The transition relation
is then defined by:

T (V,W, V ′) =
∧
1≤i≤n

(v′i↔wi)∧
∧

1≤i≤m

Ti(W,V) . (1)

In a sequential circuit, the variables in W are associated
with the primary inputs and the outputs of the combi-
national logic gates of the circuit; the variables in V are
associated with the memory elements. Each Ti is called
a gate relation because it usually describes the behavior
of a logic gate. For instance, if wi is the output variable
of a two-input AND gate with inputs wj and vk, then
Ti = wi↔ (wj ∧ vk). If, on the other hand, wi is a pri-
mary input to the circuit, then Ti = 1. Each term of the
form v′i↔ wi equates a next state variable with a combi-
national variable. (The output of the gate feeding the ith
memory element.)
A state variable vj is said to be in the direct support of

variable vi (wi) if vj is connected to vi (wi) by a path in
C that goes through nodes in W (logic gates) only. Vari-
able vj is in the cone of influence (COI) of vi (wi) if there
is a path (of any kind) connecting vj to vi (wi) in C.

Example 1. Figure 3 shows a simple sequential circuit
with two state variables. The transition relation (1) is
given by

T (V,W, V ′) = (v′1↔w1)∧ (v
′
2↔w2)∧ (w2↔ (w3∧v1)) .

Note that T1 = T3 = true. If the only initial state of the
circuit is v1 = 0, v2 = 0, then I(V) = ¬v1 ∧¬v2. Variable
v1 is in the direct support of w2 and in the COI of v2. �

146 B. Li et al.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure

Fig. 3. A sequential circuit defining an open
system with n= 2 and m= 3. The rect-
angles represent binary state elements

2.2 Proving safety properties

An open system Ω defines a labeled transition structure
in the usual way, with states QΩ corresponding to the
valuations of the variables in V and transition labels cor-
responding to the valuations of the variables in W . Con-
versely, a set of states S ⊆QΩ corresponds to a predicate
S(V) or S(V ′). Predicate S(V) (S(V ′)) is the characteris-
tic function of S expressed in terms of the current (next)
state variables. State q ∈QΩ is an initial state if it satisfies
I(V). State set S ⊆QΩ is reachable from state set S′ in k
steps if there is a path of length k in the labeled transition
structure defined by Ω that connects some state in S′ to
some state in S; equivalently if

S′(V 0)∧
∧
1≤i≤k

T (V i−1,W i, V i)∧S(V k) (2)

is satisfiable. State set S is reachable from S′ if there ex-
ists k ∈ N such that S is reachable in k steps from S′.
A state set is reachable (in k steps) if it is reachable (in
k steps) from I. When no confusion arises we shall iden-
tify a state q ∈ QΩ with the set {q}. A finite (infinite)
sequence of states ρ ∈Q∗Ω (∈Q

ω
Ω) is a finite (infinite) run

of Ω if the first state is initial and every other state is
reachable from its predecessor in one step. The set of all
possible runs of Ω is the language of Ω, denoted by L(Ω).
A linear-time safety property P of Ω is a subset of QωΩ

such that any infinite sequence over QΩ not in P has a fi-
nite prefix that cannot be extended to a sequence in P [2].
Open system Ω satisfies safety property P if L(Ω) ⊆ P .
Checking the satisfaction of an ω-regular safety property
P by an open system Ω can be reduced to the reacha-
bility problem by composing Ω with an automaton AP
that accepts the inextensible prefixes of the sequences
not in P . The property is satisfied by the open system if
no state of the composition Ω ‖ AP that projects on an
accepting state of AP is reachable. In what follows we re-
strict ourselves to ω-regular safety properties and assume
that the given open system already incorporates the prop-
erty automaton. This assumption allows us to identify the
property with a set of states of the system, which we also
denote by P . Hence, property P is satisfied by Ω if there
is no k ∈N such that

I(V 0)∧
∧
1≤i≤k

T (V i−1,W i, V i)∧¬P (V k) (3)

is satisfiable. An invariant is a safety property that states
that a certain predicate holds of all reachable states of
Ω. In this case P is the set of states that satisfy that
predicate.

Example 2. Continuing Example 1, suppose that P (V) =
¬v2. Then a counterexample of length 2 to P can be found
by solving

¬v01 ∧¬v
0
2 ∧ (v

1
1 ↔ w

1
1)∧ (v

1
2 ↔w

1
2)∧

(w12↔ (w
1
3 ∧v

0
1))∧ (v

2
1 ↔ w

2
1)∧

(v22 ↔w
2
2)∧ (w

2
2 ↔ (w

2
3 ∧v

1
1))∧v

2
2 .

A satisfying assignment for this formula is

¬v01 ∧¬v
0
2 ∧w

1
1 ∧¬w

1
2 ∧v

1
1 ∧¬v

1
2 ∧w

2
1 ∧w

2
2 ∧w

2
3 ∧v

2
1 ∧v

2
2 .

The value of w13 is irrelevant. �

The search for a k such that (3) is satisfiable can obvi-
ously be restricted to the range {0, . . . , |QΩ|−1}. Hence,
in theory, the process is guaranteed to terminate. In prac-
tice, the number of states is too large to be of any prac-
tical use, and tighter upper bounds for k are sought. In
model checking approaches based on fixpoint computa-
tions [1, 17, 18, 23], the maximum value of k is provided by
the number of iterations needed to reach convergence. On
the other hand, for algorithms that directly check the sat-
isfiability of (3), the diameter of the graph [4] or bounds
obtained from the structure of the hardware model have
been proposed [6]. Here we summarize a method proposed
in [22] that is of particular interest to us.
A simple path is one that visits a state at most once. If

some state in ¬P is reachable, there must exist a simple
path from an initial state to it that does not go through
any other states in I or ¬P . Hence, if no simple path
of length k exists such that its first state is initial and
no other state is initial, or such that its final state is in
¬P and no other state is in ¬P , then there is no path of
length greater than or equal to k connecting a state in I
to a state in ¬P . If, in addition, there is no path of length
less than k connecting I to ¬P , then Ω |= P . Two sets of
states S′ and S are connected by a simple path of length k
in Ω if

Σk(S
′, S) = S′(V 0)∧

∧
1≤i≤k

T (V i−1,W i, V i)

∧S(V k)∧
∧

0≤j<i≤k

∨
1≤l≤n

(vil �= v
j
l) (4)

is satisfiable. Checking the two conditions above then
amounts to checking that either of the following formulae
is unsatisfiable:

Σk(I,Q)∧
∧
0<i≤k

¬I(V i) (5)

Σk(Q,¬P)∧
∧
0≤i<k

P (V i) . (6)

B. Li et al.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure 147

Note that the predicate corresponding to the set Q
is true.

2.3 Abstraction refinement

Abstract interpretation [8] provides a very flexible frame-
work for the description of abstraction. In this article,
however, we consider the following restricted definition.
Open system Ω̂ = 〈V̂ , Ŵ , Î, T̂ 〉 is an abstraction of Ω if

– V̂ ⊆ V ;
– Ŵ = Ŵ1∪ (V \ V̂);
– Ŵ1 ⊆W such that vi ∈ V̂ implies wi ∈ Ŵ ;
– Î(V̂) = ∃(V \ V̂) . I(V);
– T̂ (V̂ , Ŵ , V̂ ′) = ∃(V \ V̂) .∃(W \ Ŵ) .

∃(V ′ \ V̂ ′) . T (V,W, V ′).

(Note that wi is the combinational variable associated
to v′i.) This definition entails that Ω̂ simulates [20] Ω.
Hence, every run of Ω has a matching run in Ω̂. Property
P̂ is the abstraction of property P with respect to Ω̂ if
P̂ (V̂) = ∀(V \ V̂) . P (V). If P is an ω-regular property and
Ω̂ satisfies (or models) P̂ , then Ω satisfies P . That is,

Ω̂ |= P̂ → Ω |= P . (7)

This preservation result is the basis for the following ab-
straction refinement approach to the verification of P .
One starts with a coarse abstraction Ω̂0 of the concrete
open system Ω and checks whether Ω̂0 |= P̂0. If that is the
case, then Ω |= P ; otherwise, there exists a least k′ ∈ N
such that

Î(V̂ 0)∧
∧

1≤i≤k′

T (V̂ i−1, Ŵ i, V̂ i)∧¬P̂ (V̂ k
′
) (8)

is satisfiable. The satisfying assignments to (8) are
the shortest-length abstract counterexamples (ACEs). If
Ω̂0 �|= P̂0, one or more ACEs are checked for concretiza-
tion. That is, one checks whether (3) has solutions that
agree with the ACEs being checked. Because of the addi-
tional constraints provided by the ACEs, a concretization
test is often less expensive than the satisfiability check
of (3). However, its failure only indicates that the ab-
stract error traces are spurious. Therefore, if the con-
cretization test fails, one chooses a refined abstraction
Ω̂1 and repeats the process until one of these cases oc-
curs.

1. Ω̂i |= P̂i for some i, in which case Ω |= P is inferred.
2. The concretization test passes for some i, in which
case it is concluded that Ω �|= P and the satisfying as-
signment found is returned as counterexample to P .

3. The refinement eventually produces Ω̂i = Ω. In this
final case, the satisfiability check of (8) answers the
model checking question conclusively. This is an unde-
sirable outcome because the purpose of abstraction is
defeated.

When the refinement Ω̂i+1 of Ω̂i is chosen with the help
of the information provided by the failed concretiza-

tion test, one talks of counterexample-guided abstraction
refinement.
The cone of influence (direct support) of a property

is the union of the cones of influence (direct supports)
of all the variables mentioned in the predicate that de-
fines the property. Cone-of-influence reduction refers to
the abstraction in which V̂ is the COI of the property.
It is commonly applied before any model checking is at-
tempted, because it satisfies

Ω̂ |= P̂ ↔ Ω |= P . (9)

Example 3. For the circuit of Fig. 3, consider the follow-
ing abstraction Ω̂:

– V̂ = {v2};
– Ŵ = {w2, w3, v1};
– Î(V̂) = ¬v2;
– T̂ (V̂ , Ŵ , V̂ ′) = (v′2↔w2)∧ (w2↔ (w3 ∧v1).

Suppose P (V) = P̂ (V̂) = ¬v2. Then from (8) one finds
that a counterexample of length 1 exists in Ω̂ by solving

¬v02 ∧ (v
1
2 ↔w

1
2)∧ (w

1
2 ↔ (w

1
3 ∧v

1
1))∧v

1
2 .

The only satisfying assignment is ¬v02 ∧w
1
2 ∧w

1
3 ∧v

1
1 ∧v

1
2 .

Note that this ACE cannot be concretized because v01
cannot be set to 1 in the concrete model. After refinement
adds v1 to V̂ , Ω̂ = Ω. The counterexample found in Ex-
ample 2 therefore shows that Ω �|= P . �

2.4 Satisfiability solvers

Many modern SAT solvers are based on clause record-
ing. Whenever they detect a conflicting assignment to
a formula f (one that causes f to evaluate to false), they
conjoin a conflict clause to f . The new clause prevents
the solver from attempting the same assignment again. It
may also exclude from future consideration other parts of
the search space that can be inferred to contain no satis-
fying assignments. Such inference is based on the analysis
of the so-called implication graph, which shows which de-
cisions and clauses are responsible for the conflict. A SAT
solver maintains the implication graph by recording, for
each assignment, the level at which it wasmade,2 whether
it was a decision, and, if not, the clause that implied it.
When a conflict is detected, a cut separating the sink of
the implication graph from the sources identifies a set
of assignments sufficient to cause the conflict. The dis-
junction of the negation of those assignments is a conflict
clause.
The clauses that make up the edges of an implica-

tion graph between the cut and the sink can be used to
explain the conflict clause deduced from it. When using
a SAT solver in model checking based on abstraction re-
finement, there are two important reasons to keep track

2 The level starts from 0; it is incremented at every new decision
and decreases when the algorithm backtracks.

148 B. Li et al.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure

of the explanations of conflict clauses. The first reason is
the ability to identify an unsatisfiable core [13, 27] of the
given formula when it is indeed unsatisfiable. This can be
done by recursively replacing conflict clauses with those
appearing between the chosen cut and the sink in the im-
plication graphs that produced them. The process starts
from the final conflict clause and terminates when only
clauses of the original formula are left. When the check for
existence of counterexamples of a certain length fails, the
unsatisfiable core produced by the SAT solver can be used
to guide the refinement of the abstract model.
The second reason to preserve the mapping between

conflict clauses and the edges of their implication graphs
is to help in the incremental solution of sequences of SAT
instances [12, 25]. If f and f ′ are two CNF formulae, and
γ is a conflict clause of f , then γ is also a conflict clause
of f ′ if f ′ contains all the clauses of f in the implica-
tion graph for γ up to the cut that identifies γ. There-
fore, if f ′ is obtained by slight modification of f , many
conflict clauses derived in checking the satisfiability of
f may be added to f ′ inexpensively if their “explana-
tions” in terms of clauses of f are saved. As a special
case, if f ′ contains all the clauses of f , then all con-
flict clauses deduced while checking the satisfiability of
f are also valid for f ′. Sequences of closely related SAT
instances are found in our algorithm for abstraction re-
finement. They are discussed in Sect. 3.4 together with
the exploitation of inherited conflict clauses to speed up
SAT checking.

3 Algorithm

In this section we present an algorithm for abstraction
refinement that uses SAT as decision procedure on both
abstract and concrete models. The input to the algorithm
is an open system Ω = 〈V,W, I, T 〉 whose transition rela-
tion T is specified by a circuit graph C = (V ∪W,E) and
a predicate P (V) describing a set of accepting states. We
assume that cone-of-influence reduction is applied before
invoking the abstraction refinement procedure so that all
vertices of C are in the COI of the property.

3.1 The PureSAT algorithm

Our algorithm is shown in Fig. 4. Initially, an abstract
model Ω̂ is computed by collecting in V̂ only the state
variables that appear in P (V); hence, P̂ = P through-
out. In lines 3–18 the algorithm progressively increases
L from its initial value of 0 until either a counterexam-
ple of length L is found in the concrete system Ω or it is
concluded that no counterexample exists in the current
abstract model Ω̂. If at some point the abstract model
becomes the concrete model, the endgame described in
lines 19–24 is executed.
For each length L, (5) and (6) are checked to see

whether the simple path conditions are met. If either

Fig. 4. The PureSAT algorithm

one is unsatisfiable, the property holds and the algorithm
terminates.
Otherwise, the algorithm checks whether there ex-

ists a counterexample of length L (lines 7–12). The check
is incremental: since every abstract model simulates the
concrete one, a sequence of increasingly refined abstract
models is used to establish the existence of a counterex-
ample. If any model Ω̃ in the sequence has no counterex-
ample of length L, neither does the concrete model Ω. In
the first iteration of the inner while loop, (3) is checked
on the current abstract model Ω̂. If abstract counterex-
amples exist, function AddLayer produces a coarse re-
finement as the next element in the sequence.
The loop terminates as soon as it is known whether

a counterexample of length L exists in the concrete model
Ω. When no such counterexample exists, if Ω̃ �= Ω̂ at
line 13, then the abstract model admits spurious ACEs.
Therefore, it is refined by adding to V̂ a minimal set of
variables from Ṽ sufficient to rule out all counterexam-
ples of length L. (lines 14–15). The resulting model has no
counterexamples of length up to L.

Lemma 1. The abstract model computed at line 15 of al-
gorithm pureSAT has no counterexample to P of length
less than or equal to L.

Proof. Let Ω̂i be the abstract model computed at line 15
when L= i. By definition of refinement, Ω̂i has no coun-
terexamples of length i. We can then prove by induction
that Ω̂L has no counterexamples of length i for i < L.

B. Li et al.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure 149

The base for L= 0 is trivially established. For L > 0, we
can assume that Ω̂L−i has no counterexample of length
less than L. Since Ω̂L−i is an abstraction of Ω̂L, a coun-
terexample of length less than L in the latter would have
a matching run in the former, which would contradict the
inductive hypothesis. �

3.2 Concretization test

For each value of L, algorithm pureSAT checks whether
the concrete model Ω has a counterexample to P of that
length. This test proceeds incrementally, starting from
the current abstractmodel Ω̂, and possibly reaching Ω. At
each iteration of the while loop at lines 7–12 of Fig. 4,
a model Ω̃ is checked. Initially, Ω̃ = Ω̂; in the worst case,
eventually Ω̃ = Ω; however, the loop terminates before
this condition is met often enough to justify the incre-
mental approach. If a given Ω̃ �=Ω has counterexamples of
length L, AddLayer is invoked to produce the model to
be checked at the next iteration.
ProcedureAddLayer adds variables from V \ Ṽ to Ω̃

with two objectives: to allow the concretization check to
complete quickly and to help produce a better refinement
if one is necessary.
When no concrete counterexamples are found, the two

goals are met if AddLayer arrives in few iterations at
a small Ω̃ such that ExistCex(Ω̃,P ,L) returns false. By
producing a short sequence of small models, the time
spent in checking for counterexamples in them is kept
short. In addition, the sizes of the unsatisfiable cores
produced when checking (3) grow with the sizes of the
models. A smaller Ω̃ therefore tends to save time also
during refinement minimization. When there are concrete
counterexamples, eventually the concrete model Ω must
be checked. Hence, only a few iterations of thewhile loop
should be taken.
These requirements are addressed by the following

procedure. The variables in V \ Ṽ are ranked relative to
Ω̃ according to the same criteria used in the computa-
tion of refinement. If the variables at the lowest level make
up less than a set fraction of the variables in V \ Ṽ , they
are all added to the model to obtain the new Ω̃. Other-
wise, only that fraction is added. Since a variable’s level
is the first sorting criterion, all new variables come from
the lowest level; hence, they are guaranteed to have some
influence on the behavior of the model.
If there are too many iterations of thewhile loop, the

benefit of finding a more compact conflict core does not
outweigh the cost of checking the many abstract models
for counterexamples. So, if there are still counterexam-
ples after the first few rounds, the algorithm skips to the
concrete model.

3.3 Refinement

The goal of the refinement procedure is to find a mini-
mal set of state variables not in Ω̂ that, when added to

Fig. 5. The refinement algorithm

the abstract model, can suppress all counterexamples of
length L. Care is put into keeping the abstract model
small because the success of the termination criterion
based on (5) and (6) is affected by the complexity of Ω̂.
Our algorithm for picking refinement variables is

shown in Fig. 5. WhenGetRefFromCA is called, Ω̂ has
counterexamples to P of length L, while Ω̃ does not be-
cause ExistCex just returned false. The addition to Ω̂ of
the state variables in Ṽ \ V̂ found in the unsatisfiable core
of (3) as next state variables is sufficient to suppress all
spurious counterexamples of length L. Variable vi is used
as next state variables in the unsatisfiable core of (3) ifwji
appears in some clause in that core for some j between 0
and L.
Sufficiency of the refinement can be argued by observ-

ing that the candidate variables are all the variables in
a set of clauses fromwhich a contradiction can be derived.
Refinement with respect to all those variables will add to
the SAT problem for the abstract model all the clauses
that are necessary to obtain the same contradiction. If
state variable vi does not appear as next state variable in
the unsatisfiable core, then the corresponding term Ti in
(1) is irrelevant to the proof of unsatisfiability.
The original “sufficient set” (nsVarSet in Fig. 5) ex-

tracted from the unsatisfiable core may be nonminimal;
hence, RefinementMinimization removes redundant
state variables from the refinement set. This procedure
tentatively removes one variable at a time from the refine-
ment and checks whether ExistCex still returns false.
Since the order in which candidate variables are consid-
ered by the minimization procedure affects the result,
SortCandidateArray sorts the variables so that those
considered less valuable are removed first.
The number of redundant state variables in nsVarSet

may be quite large, causing too many calls to ExistCex.
The while loop of lines 4–9 is used to heuristically get
a smaller “sufficient set” for the refinement minimization:
each time, only a certain number of state variables are
picked from RCArray, after which (3) is checked to see if
they are already sufficient.
In our method, the order in which state variables are

removed in the minimization procedure is based on two

150 B. Li et al.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure

criteria: the level of each candidate state variable and, as
a tie-breaker, its relative correlation to the current ab-
stract model. The level of a state variable v ∈ Ṽ \ V̂ w.r.t.
Ω̂ is the least number of state variables on a path in C
connecting v to any state variable in V̂ . The smaller its
level, the more important v is deemed. The relative corre-
lation of v ∈ Ṽ \ V̂ equals the ratio of the number of direct
predecessors of v in C that are in Ω̂ to the total number
of nodes in the COI of v. Intuitively, the larger the rela-
tive correlation of a state variable, the greater effect it
will have when added to or subtracted from the current
abstract model. The state variables with the larger lev-
els and smaller relative correlations are considered of less
importance and thus will be tested for deletion earlier. In
this way, we can concentrate on the important candidates
and keep the refined abstract model small.

3.4 Incremental SAT solver

An incremental SAT solver exploits the similarities
among SAT instances that form a sequence by using the
conflict clauses generated from the previous instance to
guide the search for a solution to the current instance. We
assume that a sequence of SAT instances (∆0, . . . ,∆l)
is specified by a sequence of pairs of sets of clauses
((A0, B0), . . . , (Al, Bl)) such that ∆0 =A0, B0 = ∅, and,
for 1≤ i ≤ l, ∆i = (∆i−1 \Bi)∪Ai. That is, the second
and successive instances are obtained by removing some
clauses from the instances immediately preceding them
and then adding some other clauses.
If Γi is the set of conflict clauses produced while solv-

ing ∆i, γ ∈ Γi is implied by the conjunction of the clauses
in ∆i. If Bi+1 = ∅, it follows that γ is implied also by the
conjunction of the clauses in ∆i+1. Adding Γi to ∆i+1
does not change the answer to the SAT problem, but it
may help the solver by precluding examination of assign-
ments that are known not to be satisfying. If, on the other
hand, Bi+1 �= ∅, γ ∈ Γi may or may not be implied by
∆i+1. However, if none of the clauses that were used in de-
riving γ is inBi+1, then it is still correct to add γ to ∆i+1.
This test is conservative, but inexpensive.
Keeping all valid conflict clauses from previous in-

stances may result in too many clauses with very many
literals, which may have a negative impact on search time.
In our implementation, we address this problem by mod-
ifying the conflict clause deletion strategy: we decrease
the interval between successive scans of the database for
clauses to be deleted. To avoid wasting time when there
are few large conflict clauses generated, we use a thresh-
old. At the end of each interval, we search for clauses to
be deleted only if the number of new large conflict clauses
exceeds the threshold.
The pureSAT algorithm offers several opportunities

to apply an incremental SAT solver. In our implemen-
tation, we deal incrementally with two sequences of in-
stances: one is the sequence of checks of (3) (existence
of counterexamples), the other is the sequence that in-

terleaves the checks of (5) and (6) (existence of simple
paths). In the former, the instances for the same value of
L form monotonically increasing subsequences, in which
all conflict clauses can be reused. However, when L is
incremented, the clauses accumulated for models other
than Ω̂ are discarded.
Two more opportunities of applying incremental SAT

solving exist in the pureSAT algorithm. – in the loop of
lines 5–9 in Fig. 5 and in refinement minimization. How-
ever, the average number of iterations of the loop in Fig. 5
is too low to warrant incremental solving, while the SAT
instances occurring in refinementminimization aremono-
tonically decreasing; hence, they are not well suited to
incremental solving.

4 Related work

Our refinement algorithm is based on computing and ana-
lyzing the unsatisfiable core associated with the proof
that there is no concrete counterexample of length L;
hence, it is similar to the conflict analysis method pro-
posed in [9]. However, our approach differs significantly
from that of [9] in the following respects:

1. The authors of [9] identify a single spurious abstract
counterexample (by using BDD-based model check-
ing), together with its failure index (i.e., the time step
from which the ACE is no longer concretizable in Ω.)
A conflict dependency graph is built from the unsat-
isfiable formula obtained by constraining the concrete
model with the single spurious ACE up to the failure
index time step. The refinement set is then computed
by analyzing the conflict dependency graph. In our
algorithm, however, we do not use a single abstract
counterexample to constrain the BMC instance (and
consequently we do not compute the failure index).
Rather, unconstrained BMC instances (on a sequence
of increasingly concrete models) is used for the con-
cretization test; such BMC instances cover all the pos-
sible length-L spurious abstract counterexamples.

2. In [9], the invisible state variables (those in V \ V̂)
are added to the refinement set if their correspond-
ing literals at the failure index time step appear in
the conflict dependency graph. In our algorithm, all
the literals (which correspond to either state variables
or internal logic gates at different time steps) appear-
ing in the unsatisfiable core are recorded in the SAT
solver. However, only those invisible state variables
whose next-state-variable literals appear in the unsat-
isfiable core are added to the refinement set.

3. Our refinement minimization algorithm is also some-
what different from [9]. Both methods remove redun-
dant state variables greedily, but they differ in the
order in which variables are considered.

Our algorithm is also related to that of [16]. The
pureSAT algorithm starts from the abstract model and
checks concretization for increasing counterexample

B. Li et al.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure 151

lengths. By contrast, the method of [16] analyzes the con-
crete model; for some lengths of counterexamples it builds
an abstraction from the failed proof of their existence.
Both approaches check all counterexamples of a certain
length at once. The main differences are:

1. We use SAT, instead of a BDD-based model checker,
for the abstract model. Some abstract models are
more suitable for BDD-based model checking; for in-
stance, those that have very long simple paths. Other
models have unwieldy BDDs and are more suitable for
SAT-based induction proofs. Hence, neither approach
dominates the other. As pointed out in Sect. 1, we ex-
pect a combination of the two approaches to provide
significant advantages.

2. The pureSAT algorithm checks concretization incre-
mentally. In many cases, a property can be proved
without ever checking the concrete model. An addi-
tional advantage of this approach is that unsatisfiable
cores come from smaller models. Finally, the abstract
model provides guidance in checking the concrete one
in the form of conflict clauses of the more abstract
models that the incremental SAT solver may use to
guide the search of counterexamples in Ω.

3. Our abstraction grows at each refinement, and we use
refinement minimization to control its size, whereas
the abstraction of [16] is computed from scratch
each time. Refinement minimization requires repeated
BMC runs; these, however, are not on the full concrete
model. Recomputing the abstraction from scratch
may lead to smaller abstract models. Building it incre-
mentally allows pureSAT to check only for paths of
length L instead of length up to L.

In [9, 10, 26], once counterexamples of length L are
found on an abstract model, the concrete model is
checked immediately to see if a real counterexample of the
same length can be found. The method of [16] also checks
the concrete model for increasing values of L. If the con-
crete model is very large, this approach may suffer from
the state explosion problem. In [5], the authors propose
a layered reconstruction algorithm in which, instead of
checking directly the concrete model when abstract coun-
terexamples are found, the state variables in V \ V̂ are
divided into layers, and as each layer is added in turn, the
resulting model is checked for surviving counterexamples
of length L. In the pureSAT algorithm, we have adopted
a similar layered approach in our incremental concretiza-
tion test, with the following main differences:

1. While the approach of [5] is completely based on
BDDs, our approach is entirely based on SAT. The
main consequence of this choice is that we are less con-
cerned about incremental concretization reaching Ω.
We do not employ backtracking, and we limit the
number of refinements during each concretization test
to save time.We can also easily benefit from incremen-
tal SAT solving.

2. The computations of the layers differ in the two
methods. In particular, in our algorithm we use two
criteria: the level of a state variable w.r.t. the cur-
rent abstract model as the primary criterion and the
relative correlation as the second one.

The application of incremental SAT solving to bounded
model checking was proposed in [25]. In [12], a new encod-
ing scheme for BMC was presented that allows efficient
use of incrementality. The main observation behind that
encoding is that removal of unit clauses can be imple-
mented very efficiently. Our incremental solver does not
make use of this observation and is therefore closer to
that of [25]. Unlike either [25] or [12], we use incremental
SAT solving for abstraction refinement rather than plain
BMC.

5 Experimental results

To evaluate the technique of Sect. 3, we compared four
algorithms: our implementation of the BMC algorithm
of [4], BMC extended with the checks for simple paths [22]
(referred to as SSS), our PureSAT algorithm, and the
Grab algorithm of [26], which uses both BDDs and
SAT. All four algorithms are implemented in VIS-2.0 [3]
(see also http://vlsi.colorado.edu/∼vis). We used
Chaff [21] as the SAT solver. We added to it the ability
to extract unsatisfiable cores and to perform incremental
checks. The experiments were run under Linux on an IBM
IntelliStation with a 1.7-GHz Intel Pentium IV CPU and
2GB of RAM.
The comparison was conducted on 26 models, either

from industry or from VIS verification benchmarks (see
also http://vlsi.colorado.edu/∼vis), except for lsp.
This model was created to illustrate the help BMC could
get from abstraction. A simplified version of it appears
in Fig. 1. Since in the concrete model the longest simple
path is quite long, SSS failed to complete, even though
PureSAT finished within 1 s.
The results are shown in Table 1. The first column

is the name of the model; the second column indicates
whether each property passes or fails; if a property fails,
the number in this column is the length of the coun-
terexample. The third column gives the number of state
variables in the cone of influence of the property. The
fourth column lists the time of BMC. A time in paren-
theses is the time elapsed when the process ran out of
memory. In our experiments, the time limit was set to
8 h. The fifth column is the time of SSS; the sixth column
shows the time forGrab; the seventh column is the num-
ber of state variables in the final abstract model. If the
time is greater than 8 h, the number in parentheses in this
column is the number of state variables in the abstract
model when time ran out. The next two columns are the
data for PureSAT. All CPU times are in seconds except
when noted.

152 B. Li et al.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure

Table 1. Experimental results. Boldface is used to highlight best CPU times

Model Pass/ Latches BMC SSS Grab PureSAT
cex length in COI time time time final sz. time final sz.

lsp-p1 Pass 12 NA >8h 1 3 1 3
D12-p1 16 48 5 25 14 23 22 23
D23-p1 5 85 1 1 20 21 1 25
D2-p1 14 94 6 25 180 48 10 48
D14-p1 14 96 65 83 >8h (75) 1294 79
D1-p1 9 101 1 5 9 21 6 20
D1-p2 13 101 2 12 51 23 13 23
D1-p3 15 101 3 18 56 25 17 23
I12-p1 370 119 >8h >8h 2503 16 >8h (12)
B-p1 Pass 124 NA >8h 173 18 825 18
B-p2 17 124 150 675 93 7 113 7
B-p3 Pass 124 NA >8h 223 43 >8h (42)
B-p4 Pass 124 NA MO(23708) 393 42 >8h (42)
D22-p1 10 140 2 10 720 132 10 132
D24-p1 9 147 7 10 1 4 1 4
D24-p2 Pass 147 NA 16 3 8 8 8
D24-p3 Pass 147 NA 1 20 8 3 6
D24-p4 Pass 147 NA 1 43 8 3 6
D24-p5 Pass 147 NA 1 3 5 3 8
M0-p1 Pass 221 NA MO(2537) 136 16 1188 13
D5-p1 31 319 58 592 31 18 53 13
D18-p1 23 506 96 795 >8h (99) 2721 166
D16-p1 8 531 10 29 92 14 20 14
D20-p1 14 562 26 101 >8h (69) 7445 229
rcu-p1 Pass 2453 NA MO(3115) 195 10 87 10
IU-p2 Pass 4493 MO(11331) >8h >8h (6) 1060 14

The algorithm labeled BMC can check inductive in-
variants. However, no such properties are included in our
set of experiments. From the table we can see that, in
general, for passing properties, PureSAT is better than
both BMC and SSS. For most failing properties BMC
is best, while PureSAT is better than Grab. For the
largest models, like IU, whose COI contains 4493 state
variables, PureSAT is the only one able to verify the
property. Interestingly, Grab and PureSAT fail to fin-
ish similar numbers of experiments (four for Grab and
three forPureSAT). However, the two sets of failures are
disjoint. This is an encouraging sign for the development
of a hybrid algorithm that may switch between BDDs and
SAT for the analysis of the abstract models.
The effects on performance of incremental concretiza-

tion and incremental SAT solving are shown in Table 2.
In this table, IC means incremental concretization, NIC
means nonincremental concretization, IS means incre-
mental SAT, and NIS means nonincremental SAT.
The sizes of the final abstract models are the
same for PureSAT(NIC, NIS), PureSAT(IC, NIS), and
PureSAT(IC, IS), except for D24-p3 (6, 5, 6), D24-p4 (6,
5, 6), and D24-p5 (6, 8, 8). These small differences are due
to the differences in the search order followed by the SAT
solver.
Table 2 makes it clear that incremental SAT solving

almost always decreases CPU time. Incremental con-

cretization helps most of the time, though for some
models (e.g., D20-p1) it is not effective because most of
the concretization checks end up dealing with Ω. Fig-
ure 6 and Table 3 take a closer look at the effects of
incremental concretization on model D5-p1. The figure
compares two runs, with and without incremental con-
cretization. Each graph shows the numbers of state vari-
ables in the models and the CPU times as a function of
the counterexample length L. When refinement occurs,
both the size of the abstract model and the size of the
largest Ω̃ examined during the concretization check are
shown as the endpoints of a vertical line. For example,
the first refinement of the initial abstraction happens for
L= 22. Without incremental concretization (left graph)
all 319 state variables are included in Ω̃, whereas the in-
cremental check requires only the analysis of a model
with 23 state variables. In both cases, Ω̂ contains 9 state
variables.
Checking smaller models reduces the total CPU time

by over 50%, even without incremental SAT. The graphs
of Fig. 6 clearly show that the time penalty is incurred
when refinement takes place. Table 3 examines the na-
ture of this time penalty; it shows that the major effect
of incremental concretization is to speed up refinement
minimization. This happens because smaller unsatisfiable
cores are usually extracted from smaller models. (Practi-
cal methods that produce proofs of unsatisfiability do not

B. Li et al.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure 153

Fig. 6. Model sizes and CPU time for D5-p1 without and with incremental concretization (no incremental SAT in either case)

Table 2. Comparison between PureSAT with and without in-
cremental concretization (IC) and with and without incremental

SAT (IS). Boldface is used to highlight best CPU times

Model NIC,NIS IC,NIS IC,IS
time time time

lsp-p1 1 1 1
D12-p1 33 26 22
D23-p1 2 2 1
D2-p1 20 22 10
D14-p1 1393 1345 1294
D1-p1 9 8 6
D1-p2 19 23 13
D1-p3 28 17 13
I12-p1 >8h >8h >8h
B-p1 846 857 825
B-p2 316 198 113
B-p3 >8h >8h >8h
B-p4 >8h >8h >8h
D22-p1 15 18 10
D24-p1 2 2 1
D24-p2 8 9 8
D24-p3 2 5 3
D24-p4 4 2 3
D24-p5 3 3 3
M0-p1 2826 2134 1188
D5-p1 222 98 53
D18-p1 3875 2844 2721
D16-p1 29 24 20
D20-p1 7292 7717 7445
rcu-p1 123 87 87
IU-p2 1683 1568 1060

guarantee proofs that are minimal in terms of either num-
ber of clauses or variables appearing in the unsatisfiable
core.) Minimization produces refinements of the same
sizes for D5-p1 (one variable in all cases) with and with-
out incremental concretization check. The time advan-
tage comes from examining fewer candidates on smaller
models.

Table 3. Comparison of refinement procedures with and without
incremental concretization for D5-p1

Ref. Variables in core Ref. min. time Concr. time
round NIC IC NIC IC NIC IC

1 17 8 11.24 5.62 3.29 0.51
2 16 8 14.61 7.34 4.64 0.59
3 22 7 19.16 6.51 4.42 0.53
4 50 6 78.69 5.72 7.41 0.61

Despite the advantages of dealing with smaller un-
satisfiable cores, our experiments indicate that the num-
ber of rounds in the concretization check should be kept
small. We obtained the best results when the number of
rounds was limited to two.
Though PureSAT appears to be reasonably robust,

there are a few cases in which it performs poorly com-
pared to competing techniques. The profiles of two such
runs are shown in Fig. 7.
Model D20-p1 is representative of a group, which also

includes D14-p1 and D18-p1, for which pureSAT does
substantially worse than BMC and SSS on failing proper-
ties. The left graph in Fig. 7 shows that incremental con-
cretization is not effective for D20-p1. As a consequence,
refinement minimization is expensive and accounts for
the majority of the CPU time. In this case, the effort put
into keeping the abstract model Ω̂ small is wasted: the
property is eventually found to fail, and for the values ofL
up to 31 (the length of the shortest counterexamples), the
simple path checks of (5) and (6) are not very expensive
even on the concrete model – as witnessed by the CPU
time of SSS.
For model b-p3, pureSAT runs out of time, while

Grab proves that the property passes in less than 4min.
The right graph in Fig. 7 shows that pureSAT quickly
reaches the stage where no counterexamples are found in
the abstract model, but then it is unable to reach a value
of L sufficient to prove the property true. In this case,

154 B. Li et al.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure

Fig. 7. Two hard problems for pureSAT: D20-p1 (left) and b-p3 (right)

the graph shows also the time (S.P. time) spent in check-
ing (5) and (6), which clearly dominates the total CPU
time. It is consistent with this observation that SSS also
runs out of time on b-p3. Even though the abstract model
produced by pureSAT has one fewer state variable than
that of Grab, abstraction fails to sufficiently reduce the
length of the longest simple paths; hence, a BDD-based
approach like that of Grab (or [16]) is more effective.
Since checking for simple paths is sometimes expen-

sive, one may choose to use only either (5) or (6). How-
ever, in our experiments, both tests helped establish ter-
mination for passing properties. When the test for (5),
which is the most effective of the two, was disabled, the
number of experiments successfully completed decreased,
and no significant speedups were observed.

6 Conclusions

We have presented an abstraction refinement algorithm
for model checking safety properties that uses a SAT
solver as the sole decision procedure. We have compared
this algorithm to both BMC and to an abstraction re-
finement algorithm that uses both BDDs and CNF SAT.
The new algorithm is competitive and was the only one
to complete the largest test case. Our implementation is
still preliminary. We are interested in the extension of the
techniques of [26] to the SAT environment. This is not an
entirely trivial task since those techniques are based on
the knowledge of the sets of states at various distances
along the paths connecting initial states to error states.
By its very nature, the PureSAT algorithm suf-

fers, albeit in attenuated form, from the same problems
that afflict the basic procedure used in analyzing the ab-
stract models. Improvements like those proposed in [19]
may boost PureSAT’s performance. Improved extrac-
tion of unsatisfiable cores may speed up the abstraction
minimization phase, which is currently the most time-
consuming part of the algorithm. More generally, the

integration with a BDD-based approach to the analysis
of the abstract model should lead to a more robust and
powerful approach to abstraction refinement.

References

1. Abdulla PA, Bjesse P, Eén N (2000) Symbolic reachability
analysis based on SAT-solvers. In: 6th international confer-
ence on tools and algorithms for the construction of sys-
tems (TACAS). Lecture notes in computer science, vol 1785.
Springer, Berlin Heidelberg New York, pp 411–425

2. Alpern B, Schneider FB (1985) Defining liveness. Inf Process
Lett 21:181–185

3. Brayton RK et al. (1996) VIS: A system for verification and
synthesis. In: Henzinger T, Alur R (eds) 8th conference on
computer-aided verification (CAV’96). Lecture notes in com-
puter science, vol 1102. Springer, Berlin Heidelberg New York,
pp 428–432

4. Biere A, Cimatti A, Clarke E, Zhu Y (1999) Symbolic model
checking without BDDs. In: 5th international conference on
tools and algorithms for construction and analysis of systems
(TACAS’99), Amsterdam, The Netherlands, March 1999. Lec-
ture notes in computer science, vol 1579. Springer, Berlin Hei-
delberg New York, pp 193–207

5. Barner S, Geist D, Gringauze A (2002) Symbolic localization
reduction with reconstruction layering and backtracking. In:
Brinksma E, Larsen KG (eds) 14th conference on computer-
aided verification (CAV 2002), July 2002. Lecture notes in
computer science, vol 2404. Springer, Berlin Heidelberg New
York, pp 65–77

6. Baumgartner J, Kuehlmann A, Abraham J (2002) Prop-
erty checking via structural analysis. In: Brinksma E, Larsen
KG (eds) 14th conference on computer-aided verification
(CAV’02), July 2002. Lecture notes in computer science,
vol 2404. Springer, Berlin Heidelberg New York, pp 151–165

7. Bryant RE (1986) Graph-based algorithms for Boolean func-
tion manipulation. IEEE Trans Comput C-35(8):677–691

8. Cousot P, Cousot R (1977) Abstract interpretation: a unified
lattice model for static analysis of programs by construc-
tions or approximation of fixpoints. In: Proceedings of the
ACM symposium on the principles of programming languages,
pp 238–250

9. Chauhan P, Clarke E, Kukula J, Sapra S, Veith H, Wang
D (2002) Automated abstraction refinement for model check-
ing large state spaces using SAT based conflict analysis. In:
Aagaard MD, O’Leary JW (eds) Formal methods in com-
puter aided design, November 2002. Lecture notes in com-
puter science, vol 2517. Springer, Berlin Heidelberg New York,
pp 33–51

B. Li et al.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure 155

10. Clarke E, Gupta A, Kukula J, Strichman O (2002) SAT based
abstraction-refinement using ILP and machine learning. In:
Brinksma E, Larsen KG (eds) 14th conference on computer-
aided verification (CAV 2002), July 2002. Lecture notes in
computer science, vol 2404. Springer, Berlin Heidelberg New
York, pp 265–279

11. Clarke EM, Grumberg O, Peled DA (1999) Model checking.
MIT Press, Cambridge, MA

12. Eén N, Sörensson N (2003) Temporal induction by incremen-
tal SAT solving. In: 1st international workshop on bounded
model checking. Electronic notes in theoretical computer sci-
ence, 89(4). http://www.elsevier.nl/locate/entcs/

13. Goldberg E, Novikov Y (2003) Verification of proofs of un-
satisfiability for CNF formulas. In: Design, automation and
test in Europe (DATE’03), Munich, Germany, March 2003,
pp 886–891

14. Kröning D, Strichman O (2003) Efficient computation of re-
currence diameters. In: 4th international conference on verifi-
cation, model checking, and abstract interpretation, January
2003. Lecture notes in computer science, vol 2575. Springer,
Berlin Heidelberg New York, pp 298–309

15. Kurshan RP (1994) Computer-aided verification of coordinat-
ing processes. Princeton University Press, Princeton, NJ

16. McMillan KL, Amla N (2003) Automatic abstraction with-
out counterexamples. In: International conference on tools
and algorithms for construction and analysis of systems
(TACAS’03), Warsaw, Poland, April 2003. Lecture notes in
computer science, vol 2619. Springer, Berlin Heidelberg New
York, pp 2–17

17. McMillan KL (1994) Symbolic model checking. Kluwer,
Boston

18. McMillan KL (2002) Applying SAT methods in unbounded
symbolic model checking. In: Brinksma E, Larsen KG (eds)
14th conference on computer-aided verification (CAV’02),
July 2002. Lecture notes in computer science, vol 2404.
Springer, Berlin Heidelberg New York, pp 250–264

19. McMillan KL (2003) Interpolation and SAT-based model
checking. In: Hunt WA Jr, Somenzi F (eds) 15th conference

on computer-aided verification (CAV’03), July 2003. Lecture
notes in computer science, vol 2725. Springer, Berlin Heidel-
berg New York, pp 1–13

20. Milner R (1971) An algebraic definition of simulation between
programs. In: Proceedings of the 2nd international joint con-
ference on artificial intelligence, pp 481–489

21. Moskewicz M, Madigan CF, Zhao Y, Zhang L, Malik S (2001)
Chaff: Engineering an efficient SAT solver. In: Proceedings
of the design automation conference, Las Vegas, June 2001,
pp 530–535

22. Sheeran M, Singh S, St̊almarck G (2000) Checking safety
properties using induction and a SAT-solver. In: Hunt WA Jr,
Johnson SD (eds) Formal methods in computer-aided design,
November 2000. Lecture notes in computer science, vol 1954.
Springer, Berlin Heidelberg New York, pp 108–125

23. Williams P, Biere A, Clarke EM, Gupta A (2000) Combining
decision diagrams and SAT procedures for efficient symbolic
model checking. In: Emerson EA, Sistla AP (eds) 12th con-
ference on computer-aided verification (CAV’00), July 2000.
Lecture notes in computer science, vol 1855. Springer, Berlin
Heidelberg New York, pp 124–138

24. Wang D, Ho P-H, Long J, Kukula J, Zhu Y, Ma T, Damiano R
(2001) Formal property verification by abstraction refinement
with formal, simulation and hybrid engines. In: Proceedings
of the design automation conference, Las Vegas, June 2001,
pp 35–40

25. Whittemore J, Kim J, Sakallah K (2001) SATIRE: A new in-
cremental satisfiability engine. In: Proceedings of the design
automation conference, Las Vegas, June 2001, pp 542–545

26. Wang C, Li B, Jin H, Hachtel GD, Somenzi F (2003)
Improving Ariadne’s bundle by following multiple threads
in abstraction refinement. In: Proceedings of the interna-
tional conference on computer-aided design, November 2003,
pp 408–415

27. Zhang L, Malik S (2003) Validating SAT solvers using an inde-
pendent resolution-based checker: practical implementations
and other applications. In: Design, automation and test in Eu-
rope (DATE’03), Munich, Germany, March 2003, pp 880–885

