
Int J Softw Tools Technol Transfer (2004) 6: 231–244 / Digital Object Identifier (DOI) 10.1007/s10009-004-0158-5

Anagent-based approach to tool integration

Flavio Corradini1, Leonardo Mariani2, Emanuela Merelli1

1Dipartimento di Matematica e Informatica, Università di Camerino, 62032 Camerino, Italy
e-mail: {flavio.corradini,emanuela.merelli}@unicam.it
2Dipartimento di Informatica, Sistemistica e Comunicazione, Università di Milano Bicocca, 20126 Milano, Italy
e-mail: mariani@disco.unimib.it

Published online: 3 November 2004 –  Springer-Verlag 2004

Abstract. Tool integration is a very difficult challenge.
Problems may arise at different abstraction levels and
from several sources such as heterogeneity of manipulated
data, incompatible interfaces, or uncoordinated services,
to name just a few examples. On the other hand, applica-
tions based on the coherent composition of activities, com-
ponents, services, and data from heterogeneous sources
are increasingly present in our everyday lives. Conse-
quently, tool integration takes on increasing significance.
In this paper we analyze the tool-integration prob-

lem at different abstraction levels and discuss different
views on a layered software architecture that we have
designed specifically for a middleware that supports the
execution of distributed applications for the orchestration
of human/system activities. We noticed that the agent
paradigm provided a suitable technology for abstraction
in tool integration. Throughout the paper, the discussion
refers to a case study in the bioinformatics domain.

Keywords: Agent supported tool integration – WfMS
(Workflow management system) – Data extraction and
integration – Bioinformatics tools – MAS (Multiagent
systems) – Data Management

1 Introduction

Many applications are built on top of software or hardware
tools (or a combination of the two) that provide automatic
or semiautomatic activities, components, services, or data
abstractions. These kinds of applications will be increas-
ingly present in our software products due also to the in-
creasing number of available software libraries (often open
source) that allow for software reuse and easyprototyping.
Such libraries integrate the underlying tools and provide
more abstract software entities (e.g., one can integrate edi-
tors, parser tools, compilers, and model checkers for the
verification of correctness system properties).

In most cases, this integration process can be very
difficult. The involved tools may have incompatible
data formats, different interfaces, different interaction
paradigms, different degrees of accessibility to internal
functionalities (i.e., by API), different extension capa-
bilities (i.e., by plug-ins), and different access rights.
Standards (for data formats or communication proto-
cols) provide an important level of confidentiality and
agreement among tools and (will) certainly suggest rig-
orous methodologies for the tool-integration problem. At
the moment, however, most tools do not comply to stan-
dards, and there is still a need for suitable methodologies
and technologies for integrating existing tools (as also
emerged in the ESEC/FSE 2003 International Workshop
on “Tool-Integration in System Development,” held in
Helsinki in September 2003).
In this paper, we analyze the tool-integration prob-

lem at different abstraction levels. Since most of the
above-mentioned tool-based applications naturally pos-
sess a layered software architecture, we discuss the dif-
ferent views on a software architecture that we have de-
signed specifically for a middleware that supports the exe-
cution of distributed applications for the orchestration of
human/system activities.
We discuss the tool integration problem at differ-

ent abstraction levels: (1) service and data accessibil-
ity, (2) information management and coordination, and
(3) tool orchestration. The service and accessibility level
is the lowest level of abstraction and consists of a coherent
environment providing data and services. This coherent
environment needs then to be properly glued. This is the
main aim of the information management and coordina-
tion abstraction level. At this level, information on the
semantics of interfaces, communication channels, data,
etc. is particularly critical for properly implementing, for
instance, interoperability among tools. The tool orches-
tration level is the highest level of abstraction and pro-
vides a programming environment for the coordination of



232 F. Corradini et al.: An agent-based approach to tool integration

Fig. 1. Different abstraction levels in tool-integration

several heterogeneous tools. Figure 1 shows the three dis-
cussed abstraction levels.
A three-layered software architecture (Fig. 3) was pro-

posed in [27] for a middleware that supports the execution
of global activity-based applications. At the top of the
architecture is the User Layer, which supports the speci-
fication of a workflow of activities. In the middle of the ar-
chitecture is the System Layer, which provides the needed
environment to map a user-level workflow into a pool of
agents that implements a set of more primitive activities.
At the bottom of the architecture is the Run-Time Layer,
which provides the needed support for the run-time exe-
cution of system level agents.
To show the applicability of our proposed integration

framework, we present empirical evaluations of the prob-
lem of Web-based tool integration. In particular, we con-
sider the case of bioscientists that repeatedly use online
data sources and computational tools to complete their
experiments. Early results demonstrate an increase on
reuse, simplicity, and productivity.
The rest of the paper is organized as follows. Sec-

tion 2 discusses the abstraction levels in tool integration,
while Sect. 3 introduces the reader to our case study.
Then, Sect. 4 presents the agent-based middleware soft-
ware architecture and shows how the layers suitably con-
form with the tool integration abstraction levels. Sec-
tion 5 shows preliminary experimental results obtained
from our case study. Finally, approaches to tool integra-
tion not discussed in Sect. 2 are presented in Sect. 6, while
conclusions and future work are outlined in Sect. 7.

2 Abstraction levels in tool integration

Implementing a development environment composed of
many integrated tools requires the management of sev-

eral aspects, such as synchronization of operations, data
transformations, performance tuning, and management
of permissions. Our research focuses on achievement of
interoperability among tools [34] and integration of func-
tional aspects; integration of nonfunctional properties
need not always be addressed explicitly and will not be
discussed in the present work.
By surveying existing approaches in tool integration it

is possible to recognize certain aspects that play a strate-
gic role: data, services, information, coordination, and
orchestration of tools. In fact, tools implement services
and both consume and provide data. Moreover, informa-
tion extracted from tools must be managed and activities
must be coordinated to support the execution of complex
tasks, which requires the orchestration of several tools.
Integrating tools requires achieving interoperability on
these aspects. To master the complexity of this goal, we
analyze the tool-integration problem from different levels
of abstraction, as shown in Fig. 1.
The recent ESEC/FSE 2003 Workshop on “Tool In-

tegration in System Development” held in Helsinki 1–2
September 2003 highlights the necessity of addressing tool
integration at all abstraction levels; in fact, existing tech-
nologies focus on data and service integration [46, 76, 84]
(and the quality of the integration [58]), onmetadataman-
agement and coordination of services [17, 51], and, finally,
on tool orchestration [6, 26, 57], but they still lack a frame-
work conceptually addressing all levels of abstractions.
Figure 1 summarizes aspects that must be addressed

when integrating tools; thus developing a complete tool-
integration environment corresponds to providing both
a technology addressing each level and a framework en-
abling integration of these technologies. The clear separa-
tion of the functionality implemented at each level of the
abstract architecture in Fig. 1 enables the possibility of
using different technologies that we briefly survey in the
following paragraphs.

Service and data accessibility. This is the lowest level of
abstraction and consists of a coherent environment pro-
viding data and services. The environment interacts with
requestors by referring to abstract data models and ab-
stract functionalities that simplify interaction with tools.
Abstract data can be obtained by combining multiple
concrete data, in the same way as an abstract function-
ality can be obtained by interacting with several services
implemented by tools.
Database management systems (DBMSs) are a good

example of systems presenting an abstract data model,
i.e., the relational model, instead of the concrete data
model, i.e., the physical model. Moreover, the DBMS pro-
vides the possibility to execute abstract operations, e.g.,
operations specified both by queries and by invocation of
stored procedures that are mapped to operations on the
data.
Several other technologies referring to abstractmodels

provide accessibility to data and services [54, 78], but



F. Corradini et al.: An agent-based approach to tool integration 233

when facing tool integration it is necessary to face the
additional issue of integrating potentially incompatible
abstract models; in fact it is not reasonable to assume any
agreement among tools.
In this scenario, self-describing platform-independent

semistructured data models gain importance; in particu-
lar the XML technology [18] has attracted the attention
of both researchers and practitioners. XML is a flexi-
ble and portable data format widely adopted when in-
teroperability between applications is required. Today,
XML is supported by several tools, e.g., XMLTK [8] and
Xalan [7]; models, e.g., DOM [50] and SAX [20]; and lan-
guages, e.g., XSLT [23] and XPath [24]. Many resources
are still non-XML, thus several XML-based wrappers
have been implemented [3, 11, 56]; such wrappers provide
an XML-based layer of abstraction embedding the target
resource.
In the case of services, the necessity of interoper-

ability in Web-scale environments leads to the develop-
ment of the Web Services technology. A Web Service has
been defined as “a software application identified by a
URI, whose interfaces and bindings are capable of be-
ing defined, described, and discovered as XML artifacts.
A Web Service supports direct interactions with other
software agents using XML-based messages exchanged
via Internet-based protocols” [82]. Several technologies
are available for Web Services, i.e., dynamic discovery of
services [12]. Service discovery and run-time binding has
also been used in other technologies, e.g., CORBA [63]
and EJB [78] dynamically discover and link distributed
components, while multiagent systems use discovery ser-
vices for dynamically identifying services provided by
agents [41].

Information management and coordination. This is the
level where extracted data can be correctly interpreted,
integrated, and managed; such operations can be safely
completed only by considering semantics; in fact a wrong
interpretation of the data can lead to misuse.
A simple way to overcome semantic problems con-

sists in defining a common schema of known semantics
shared among all entities of the information management
and coordination level. The solution based on the com-
mon schema has several drawbacks: a common schema
is difficult to define and update and the semantics is
only implicitly specified (it is still possible that differ-
ent data consumers associate a different semantics to
the same terms). Moreover, data consumers often need
to work locally with their own schema despite the ex-
istence of a shared schema; therefore, it would be ne-
cessary to define mapping functions transforming data
from one schema to another [53]. Writing these func-
tions when many schema exist is a long error-prone ac-
tivity. Moreover, transformations are sensible to changes
on the schema; indeed, if a schema is modified, all the
transformations working on the schema must be modified
accordingly.

Issues related to semantics can be addressed by defin-
ing ontologies [39]. An ontology provides a formal spe-
cification of the knowledge about a domain and can be
used to remove or minimize errors on data interpretation.
When two entities interact referring to the same ontology,
the semantic correctness of exchanged data is guaranteed.
Ontologies have been used in several contexts, such as
data integration [29], wrapper generation [35], and agent
communication [40].
Coordination has been implemented by four main

reference models: client-server, meeting-oriented, black-
board-based, and Linda-like. Client-server interactions
are characterized by spatial and temporal coupling be-
cause communication requires both naming the server
and synchronizing the operations. In meeting-oriented
models, communication can take place only in specific
points at specific times, but it is not necessary to know the
identity of the receivers; therefore, it represents the case
of a time coupling, but spatial uncoupling, model. The
blackboard-based model implements spatially coupled
but temporally uncoupled communication; indeed, in-
teractions take place by shared data spaces where it
is possible to leave messages for a specific receiver. Fi-
nally, Linda-like models are completely uncoupled be-
cause communication takes place by shared data spaces
with associative retrieval mechanisms (hence the receiver
is not stated in the message).
There are several different implementations of each

model. Client-server-based coordination models have
been exploited in various contexts, such as multiagent
systems [55], peer-to-peer systems [73], and component-
based systems [59]. Meeting-oriented models have been
implemented in [70]. Blackboard models have been used
in many systems, as presented in [36]. Finally, a pro-
liferation of Linda-like models have been implemented,
e.g., JavaSpaces [42], KLAIM [31], TuCSoN [68], and
Lime [72].
In the context of tool integration, client-server coor-

dination models [19, 43, 84] have been preferred when in-
tegrating tools from different vendors (where wide agree-
ment on data formats and data semantics is difficult to
obtain), while a solution based on the central reposi-
tory [16, 53, 71] has been preferred when integrating tools
of the same vendor (where wide agreement on data for-
mats and data semantics is simple to obtain).

Tool orchestration. This is an environment support-
ing interaction and integration of several heterogeneous
tools. Tool orchestration can be achieved with trans-
parency of existing tools or with awareness of existing
tools. In the case of transparent tool integration, the envi-
ronment for orchestrating tools provides a homogeneous
set of primitives and functionalities for the specification
and execution of complex activities without explicitly
relying on user knowledge about the tools. In the case
of aware tool integration, the tool orchestration envi-
ronment facilitates interoperability and integration of



234 F. Corradini et al.: An agent-based approach to tool integration

tools by letting the user be aware of the tool he/she is
using.
An intuitive way to specify complex activities with

different levels of transparency is by workflows [49]. Sev-
eral languages can be used to specify a workflow; activ-
ity diagrams [32] and petri nets [1] are two well-known
examples. Workflow-based orchestration presents the ad-
vantage of providing a homogeneous environment that
can hide to the user the existence of tools. An important
drawback consists of the complexity of the engine execut-
ing the workflow.
On the other hand, different environments exist for

awareness integration of tools [6]. These environments
provide the possibility of interacting with multiple tools
simplifying mutual interactions. In general, the user is
aware of the tool that is actually in use, of the function-
alities activated on the running tools, and of the data
produced by each tool. Moreover, it is required that the
user be able to interact with each single tool. ToolNet is
a well-known example of this integrated environment [6].
With respect to the presented abstraction levels, our

architecture addresses the integration of (heterogeneous)
tools through wrapper agents based on the AIXO tech-
nology [11] at the service, multiagent systems for what it
concerns the information management and coordination
abstraction level and workflows for what it concerns the
tool orchestration abstraction level. We actually noticed
the effectiveness of the agent paradigm for tool integra-
tion. In our experience, agents turn out to be good ab-
stractions for service and system heterogeneity [15] and
for information integration [27] (see Sect. 4 for a detailed
description of agent technology).

3 Motivating example: tool integration
in the bioinformatics domain

Bioinformatics is an emerging scientific discipline that
uses information technology to organize, analyze, and dis-
tribute biological information in order to answer complex
biological questions. It involves the solution of complex
biological problems using computational tools and sys-
tems. It also includes the collection, organization, stor-
age, and retrieval of biological information using databa-
ses and data management tools. The amount of available
information is constantly increasing, and it is difficult to
exploit available data from all sources [44]. Many of the
available data are interrelated, but it is currently diffi-
cult to identify or use those related data because differ-
ent tools use different data formats and with different
semantics.
The online sources of these data provide sophisticated

user interfaces by which computational tools and deeply
interconnected data sets of great richness can be used.
Unfortunately, each interface is different, both in the sub-
set of data presented and in organization. The lack of
a standard interface for resource access leads to a huge
variety of tool-integration problems.

To explore the complexity of biological applications,
we focus on the problem of retrieving from gene informa-
tion the three-dimensional representations of the p53 pro-
tein’s molecular structure.1 According to the Web-based
tutorial in [66] for the Oak Ridge National Laboratories,
the problem can be solved by executing several steps that
imply interaction with many tools. The proposed solution
represents the state of the art for biologists that need to
discover information on the p53 protein by using online
resources.
The tutorial requires the biologist to interact continu-

ously withWeb sites in order to activate tools and retrieve
data, to filter the retrieved data, and to use the gath-
ered information in the further steps. By analyzing the
above-mentioned tutorial [66], we distinguish ten differ-
ent questions that must be answered in order to complete
the tutorial and get the final result:

Q1: What is the general information about p53?
Q2: What is the nucleotide sequence of the p53 gene?
Q3: What if we are either given just the protein sequence

or theDNA sequence and would like to find the other
type of sequence?

Q4: Now that I have the sequence, is this sequence simi-
lar to those of other proteins?

Q5: Do the bases in p53 code for any specific type of
recognition site?

Q6: What does this protein look like?
Q7: What does a mutated form of this protein look like

compared to the original type form of this protein?
Q8: Now that we know what proteins are similar to p53,

how similar are they with respect to sequence?
Q9: What other organisms have p53?
Q10: What are some common mutations found in p53?

Since the technicalities involved in implementing each
query are similar, we simply focus on query Q1. Accord-
ing to the above-mentioned tutorial, we have to perform
the following steps:

1. Start from “Online Mendelian Inheritance in Man
(OMIM)” site.

2. Search the OMIM database by entering the words
“p53 protein”.

3. Choose the first result “*191170 TUMOR PROTEIN
p53; TP53” from among several.

4. Retrieve the associatedWeb page.
5. Peruse the information given previously to make
a further choice. On this page, indeed, several accesses
to multiple areas of research are available. The OMIM
database introduces the protein domain through a lot
of other general information such as:

(a) the description of p53,

1 The gene for the p53 tumor-suppressor protein plays a vital
role in regulating cell growth. Since it is a tumor suppressor, it
halts abnormal growth in normal cells and therefore prevents can-
cer. Mutations in this gene can cause an ineffective regulation of
the cell cycle and the possibility of cancer. See [65] for further
details.



F. Corradini et al.: An agent-based approach to tool integration 235

(b)how it is cloned,
(c) how it works,
(d)the possible forms of gene therapy,
(e) the molecular genetics,
(f) the three-dimensional imaging, and
(g) the animal models of the protein,

from which specific information can be extracted.
6. Integrate the extracted information.

These steps consist of interactions with Web sites by
either browsing or interacting with bioinformatics tools
and integrating the results. We remark that today all
these operations are essentially manually performed by
bioscientists. We will consider in Sect. 5 this sequence
of operations as a case study for both evaluating our
tool-integration framework and applying our integration
technology.

4 The agent-supported
tool-integration environment

In our previous work, we noticed the effectiveness of
the agent technology when dealing with service and sys-
tem heterogeneity [15] and with information integra-
tion [27]. Moreover, other researchers have successfully
addressed heterogeneity and information integration by
agent technology [77, 79]. Our idea is to extend this ap-
proach to the tool-integration domain. With respect to
Fig. 1, agent technology represents entities providing in-
formation management and coordination, e.g., agents
can retrieve and filter information while at the same
time coordinating the sending and receiving of messages.
In our system, integration of the information is based
on both the agent’s knowledge management engine and
ontology-driven interactions. In particular, communica-
tion between two agents is possible only if an ontology
exists2 that is known by both agents; this restriction guar-
antees the agreement on the semantics of exchanged data.
Moreover, whenever an agent obtains additional infor-
mation, it integrates the information with its personal
knowledge base. Each agent is responsible for the consis-
tency and the correctness of this operation.
Coordination is hard coded in the agents that explic-

itly synchronize their operations by sending and waiting
for messages.Moreover, agents must be aware of the iden-
tity of receivers, and they must also know when they are
going to receive a message. Therefore, interactions are
both temporally and spatially coupled.
Agent technology provides additional benefits:

– Agent technology can be efficiently applied to dy-
namic systems by exploiting both the agent decision-
making capability and autonomy [5, 10, 69, 85].
– Agent technology is self-adaptable; in fact, agents’
intelligence and opportunism enable adaptability to
particular, eventually critical, scenarios [9, 10, 48, 80].

2 The term ontology is used to refer to a set of terms of known
semantics; the semantics can be formally specified.

– Agents can exploit optimal consumption of resources
by dynamically cloning, merging, dying, or passing
tasks [74].
– Agents can exploit mobility; mobile agents are par-
ticularly effective in mobile scenarios, such as wireless
systems [47], mobile computing [45], and ubiquitous
computing [13].
– Agent technology is very effective when applied to de-
centralized systems such as peer-to-peer systems [67].
– Agent technology is an ideal paradigm for specifying
active entities that must coordinate to perform com-
plex tasks; thus agents are good candidates for work-
flow execution [21, 60].

Both data and service accessibility are obtained by
implementing a wrapper agent (WA) associated to each
tool. The WA receives requests from other agents and
translates them to the corresponding operations that
must be performed on the target tool. Requests are issued
by sending Agent Communication Language (ACL) [40]
messages. The WA capability of manipulating tools is en-
hanced by the use of the Any Input XML Output (AIXO)
technology [11]. AIXO enables the agile development of
XML-based wrappers and provides the possibility of in-
teracting with the wrapped tool as it would be a resource
for generating XML documents.
Finally, the tool orchestration capability is provided

by an environment enabling the specification of work-
flows. A workflow specification is a natural way to de-
scribe with a high level of abstraction tasks solving com-
plex problems. Moreover, we have recognized that sev-
eral problems have been successfully solved by specify-
ing high-level workflows [2, 4, 83]. Furthermore, an envi-
ronment based on the specification of workflows can be
specialized for multiple application domains by loading
libraries of domain-specific activities, e.g., if the user is
a biologist and needs to retrieve information about DNA
sequences, she can load libraries containing procedures
for Internet searches andmanipulations of sequences. The
workflow specified by the user is used to generate a pool
of agents implementing the activities. The mapping from
the workflow specification to the pool of running agents is
described in Sect. 4.2.
The programming environment contains the imple-

mentation of the IDE supporting workflow specifica-
tion and many additional utilities such as compilers and
parsers. Actually, we are implementing a console for both
controlling the status of the execution of the workflowand
retrieving partial results.
Figure 2 presents entities created at each level of ab-

straction: the user defines a User-Level Workflow (ULW)
specification that is mapped to an Agent-Level Workflow
(ALW) specification; the ALW specification is then used
to generate a pool of agents implementing all specified ac-
tivities; agents are executed and their synchronization is
supported by mechanisms implemented in the run-time



236 F. Corradini et al.: An agent-based approach to tool integration

Fig. 2. Entities located at each layer

layer; finally, low-level interaction with tools is possible
through the interaction of WA and AIXO wrappers.
To clarify our approach, Fig. 3 shows the type of appli-

cation running on each layer and the infrastructure sup-
porting the application. At the user layer, the application
is the workflow and the infrastructure is composed of the
workflowmanagement environment (editor, engine, com-
pilers, . . . ). At the system layer, the application is a group
of running agents named Workflow Executors (WE), and
the infrastructure is given by the agent execution envi-
ronment. Finally, at the run-time layer, the application is

Fig. 3. Applications and infrastructure
of each layer

given by WA and the infrastructure consists of the core
environment supporting their execution.

4.1 User layer

The user layer is based on workflows and provides to
users a set of programs for interacting with the system.
There are two main families of programs: programs for
specifying, managing, and reusing existing workflow spe-
cifications and programs enabling administration and dir-
ect interaction with the system.
The workflow editor is the program that allows

one to specify workflows by composing activities in
a graphical environment. The editor enables the specifi-
cation of workflows complying with the WfMC reference
model [49] and is implemented by using the JaWE [37]
editor. Activities used in a workflow are configured by
specifying input parameters, and their effects are recog-
nizable as modification of state variables or modification
of the environment’s status. The workflow editor enables
the composition of both primitive and complex activities.
A primitive activity is an activity that can be directly
executed. A complex activity is an activity that must
be specified before it can be used; the specification of
a complex activity is a workflow of complex and simple
activities. Complex activities simplify the specification of
workflows because they enhance both hierarchical specifi-
cation and reuse: we can use an already existing complex
activity without regard to its specification. Users can use
complex activities and stored workflows to increase pro-
ductivity when specifying new workflows.Moreover, large
libraries of both domain-specific primitives and complex
activities can be loaded to specialize the editor for a spe-
cific application domain.
Each activity can be configured with four parameters:

the input data format, the output data format, the en-
vironment, and the tool. The input data format specifies
the accepted input for a given activity. In a similar way,
the output data format specifies the accepted output data
formats. The environment parameter is used to specify
what context an activity must be performed in since the
same activity with the same parameters can be performed
in different environments. The environment is separated
from the other input parameters because it can cause ei-
ther the migration of a tool or the selection of a specific
implementation of the activity, while input parameters
denote only data transfer. For example, the activity of
using one of the BLAST3 implementations in a given re-
pository implies the deployment of BLAST on a remote
site and the activation of the tool. In a similar way, the
activity of searching for given information on a given
database is always the same, but its implementation is
very different with respect to the target database, i.e.,

3 BLAST is a common and widely used tool in biology; more infor-
mation is at http://www.ncbi.nlm.nih.gov/BLAST/.



F. Corradini et al.: An agent-based approach to tool integration 237

different authentication method, different querying inter-
face, and different naming, hence the information on the
target database is used to select the proper implementa-
tion of the activity. Finally, the information on the tool is
used either when it is not possible to achieve transparency
or when the user prefers to be aware of the activated tool.
We do not formally describe activities in this paper.

However, we are aware that several description languages
are emerging both from the workflow (XLANG, XPDL)
and the Web Services (WSFL, DAML-S) communities.
We are working on a formal framework where workflows
can be described being compiled into pools of agents
(WE).
The user can request data by interacting with the

system in two main modes: offline and online. In offline
interaction, the user starts the execution of a workflow
and then stops interacting with the system, e.g., he/she
turns off the computer. When the user needs to know the
current status of the execution, he/she can use the in-
teraction console for requesting analysis, monitoring the
workflow execution, and retrieving partial results. In the
online mode, the user starts executing the workflow and
continues interacting with the system until the workflow
is completed. The online mode is also supported by the
interaction console. The console can be executed both as
a normal computer program and within a Web interface,
and in this way it is possible to interact with the system
from any computer connected to the Internet. The inter-
action console enables a posteriori communication; thus
additional parameters can be sent to agents that are wait-
ing for information.

4.2 System layer

The system layer hosts WEs that are agents generated
from the ULW specification. WEs execute and coordinate
their actions to reach the fulfillment of the ULW speci-
fication. Some of the actions executed by a WE require
interaction with WAs; these actions correspond to opera-
tions that must be completed by interacting with a tool.
Communication between agents takes place once the

negotiation of the ontology is successfully accomplished.
By fixing an ontology, the agreement on the semantics
is guaranteed, but information that can be exchanged is
constrained; in fact agents can use only concepts defined
in the ontology. If the system has defined a shared ontol-
ogy, the ontology negotiation procedure always succeeds.
We now discuss the two-phase agent-generation pro-

cedure that is performed by the compiler. In step 1 the
ULW is mapped to an ALW, and in step 2 the ALW is
used to generate WEs. The ALW is a specification simi-
lar to the ULW, but it takes into account the existence
of the agents that will execute the actions and contains
only primitive actions (actions that can be directly exe-
cuted without decomposing them into workflows). Details
of the procedure for agent generation are presented in the
following paragraphs.

Mapping the ULW to the ALW. The mapping from the
ULW to the ALW is performed by recursively substitut-
ing activities of the user-level specification with a work-
flow of primitive agent-level activities. This mapping is
performed by accessing the User-Level Activity Database
(ULAD) that maintains the correspondence between
user-level activities and ALW. There are other rules man-
aging technicalities of the transformation process, for
example branching of the execution is translated to an
agent creation activity and a join of two branches are
translated to a coordination activity between multiple
agents. Moreover, if the compiler recognizes a set of inde-
pendent activities, it can distribute them among several
agents to increase parallelism. The set of activities as-
signed to the same agent constitutes its body; therefore,
the result of this mapping consists of a set of workflows:
one for each agent. Activities belonging to an ALW spec-
ify actions at a low level of abstractions that can be
directly executed. Messages are sent from one agent to
another by using communication activities, i.e., an ac-
tivity whose execution consists of sending a message to
the receiver. Actually, communication consists of sending
and receiving single messages. In the future we would like
to extend this approach to a definition of protocols that
must be respected during interagent communication.
The ALW specifies all entities involved in the execu-

tion of a workflow; thus the constraint of spatial and tem-
poral coupling communication can be respected since the
compiler knows exactly when communication takes place
and which are the receivers and which the senders.
The compiler can optimize the ALW by applying

heuristics based on parameters issued to the compiler,
e.g., the compiler can try to minimize the consumed
bandwidth, minimize the number of generated agents,
minimize the number of generated messages, maximize
parallel execution of activities, and check for deadlock
freeness. In addition to general-purpose analysis, the
compiler can check specific properties on the ALW, such
as verifying that the shipping procedure of a specific
item begins only after the purchase is completed. An ac-
tual prototype of the compiler implements part of these
features.

Mapping the ALW to WEs. In the second step, the com-
piler concretely generates agents from the ALW speci-
fication. To achieve this result, the compiler uses the
User-Level Activity Implementation Database (ULAID)
and the Database of Skeletons (DoS). The ULAID stores
the implementation of the agent-level activities, and
the DoS stores “empty” implementations of agents (the
skeletons).
A skeleton is a role-specific implementation of an

agent that does not contain any behavior, e.g., a skeleton
of a traveller agent can be a lightweight implementation
of an agent limiting bandwidth consumption. Particular
system properties can be obtained by proper choice of
skeletons, e.g., limited bandwidth consumption. The con-



238 F. Corradini et al.: An agent-based approach to tool integration

crete WE is obtained by plugging the specified behavior
into the skeleton. In particular, the compiler performs the
following steps:

– A complex behavior CB is generated by composing, as
specified in the ALW, the implementation of each ac-
tivity contained in the ULAID.
– The compiler analyzes the CB and derives all state vari-
ables that will be necessary for completing its execu-
tion.
– A state entity SE is generated by aggregating all state
variables.
– A proper skeleton is selected from the DoS. TheWE is
created by plugging both the complex behavior CB and
state entity SE into the selected skeleton.
– The previous steps are repeated for all WEs that must
be created.
– Finally, execution starts.

Actually we are implementing theWE generation pro-
cedure by using an implementation of the skeletons that
dynamically load the compiled complex behavior and the
state variables at startup by dynamic binding. Instead
of generating compiled WEs, it is possible to use skele-
tons behaving as interpreters of ALW specifications. In
such cases, the WE is obtained by associating the skele-
ton to the ALW specification. WEs of the former type are
small, i.e., WEs contain only the code for the execution
of the activities, and fast, i.e., instructions can be directly
executed. While WEs of the latter type are large, i.e.,
they implement a complete interpreter, and slower i.e., in-
structions must be interpreted, they exploit the ability to
dynamically modify their behavior at run time. The or-
ganization of our system enables the use of both types of
agents. Actually, we are implementing the compiler pro-
ducing compiled agents, but we also plan to investigate
interpretation and dynamic adaptability.

4.3 Run-time layer

The run-time layer supports the deployment of tools and
contains the implementation of mechanisms enabling ser-
vice and data accessibility, e.g., wrappers.
In our system, we useWAs as concrete representations

of tools that must be accessed. TheWAmaps requests re-
ceived from WEs to a sequence of operations that must

Fig. 4. JaWE workflow specification

be performed on the corresponding tool. A WA can be
responsible for multiple tools. In such cases, WEs per-
ceive a unique tool, e.g., a tool for manipulating DNA
sequences, but the WA interacts with multiple tools,
e.g., several tools enabling different operations on DNA
sequences.
The implementation of the WAs is based on the AIXO

technology [11]. AIXO is a software architecture for wrap-
per systems tailored to provide an abstraction layer based
on the XML technology for any type of resource. An
AIXO wrapper is used for each tool; thus the WA per-
cepts tools as XML producing resources.
The behavior of an AIXO wrapper is based on three

steps. In the first step, the target resource is accessed and
data, if any, are collected in that resource’s native data
format. In the second step, data are mapped to XML
by taking into account only structural information, e.g.,
data gathered from a relational database are mapped to
XML by considering the organization based on rows and
columns. Finally, in the third step, a set of XSLT trans-
formations [23] are used to map XML data to the final
XML document. The final XML document complies with
the data semantics required from the WA.
Moreover, the adoption of the AIXO-based technology

provides the following benefits [11]:

– The component-based architecture both enables flex-
ible wrapping of tools and minimizes the number of
updates when changing the structure of the wrapped
resources.
– The XML output data format enables a high degree of
reusability and portability.
– AIXO is entirely based on the XML technology, so it
can be easily updated to include new XML standards.

5 Experimental results

We use the motivating example presented in Sect. 3 to
evaluate our technological solution to tool integration. In
particular, we implemented several WAs for the biolog-
ical tools involved in the tutorial, we implemented the
activities and the workflows stored in, respectively, the
ULAD and the ULAID, and, finally, we implemented a
few skeletons.



F. Corradini et al.: An agent-based approach to tool integration 239

In our experimentation, we wrote, the ULWW1 imple-
ments the queryQ1 by the workflow editor. The workflow
is represented in Fig. 4. Activities are specified with sev-
eral parameters (as explained in Sect. 4) that do not have
a graphical representation in JaWE; thus we report the
complete list of used activity in what follows (E denotes
the environment, I input data, T the activated tool, and
O output data):

search on Database
E: OMIM Database
I: “P53, Articles”
O: ListOfLinks:JDOM

select Link
I: ListOfLinks, “1”
O: link

get web page
I: link
O: TP53WebPage

extract OMIM information
E: OMIM-ProteinWebPage
I: TP53WebPage, “description”
O: Description

extract OMIM information
E: OMIM-ProteinWebPage
I: TP53WebPage, “cloning”
O: Cloning

extract OMIM information
E: OMIM-ProteinWebPage
I: TP53WebPage, “gene function”
O: GenFunction

extract OMIM information
E: OMIM-ProteinWebPage
I: TP53WebPage, “gene therapy”
O: GeneTherapy

integrate OMIM information
I: Description, Cloning, GenFunction, GenTherapy
O: p53GenralInformation

Solving Q1 by W1 instead of manually executing all
steps, i.e., solving problems by workflows, is a good prac-
tice and provides several benefits:

– W1 can be specified by knowing only the tool-integra-
tion environment without regard to integration and
tools.
– If the biologist needs more control on the underlying
system, it is possible to specify the tool parameter to
explicitly indicate tools that must be activated.
– W1 can be reused without effort: the biologist loads
and reexecutes the workflow with a few clicks. More-
over, W1 can be adapted to new requirements by

changing the control flow or the parameters. Even
subparts ofW1 can be reused.
– The biologist monitors workflow execution by the in-
teraction console; therefore, he/she does not need to
be continuously in front of a computer.
– New tools and new resources can be included in the
system, and the workflow specification takes advan-
tage of these new sources without requiring updates.

The agent layer has been implemented by the BioAgent
multiagent system [62] – a multiagent system that we
have developed for biological applications. However,WEs
and WAs can be implemented on top of any existing
multiagent system supporting distributed communica-
tion between agents. Actually, WAs behave by mapping
each received message, which represents a command, to
a sequence of operations performed on available tools.
Gathered results are then shipped back to the requestor
by XML messages. Furthermore, actual implementation
of WEs support some of the advanced functionalities in-
troduced in Sect. 4.
In particular, WEs can adapt to unexpected events

and manage “technical aspects” by behaviors built into
the skeletons that were used to generate the WEs.We im-
plemented several agents embedding some of these behav-
iors. For example, we used reactions to manage the situ-
ation where a mobile WE is not able to reach a given des-
tination host. Two reaction policies are available: wait-
ing indefinitely until migration is possible or retrying for
a limited number of times and then aborting. In our ex-
periments, adaptability was demonstrated to be useful for
facing unexpected interactions with tools and unexpected
states of the environment, even if these situations rarely
occur. Agent adaptability can be enhanced much more by
developing a larger set of behaviors and by implement-
ing a mechanism to explicitly integrate events generated
from behaviors built into skeletons with behaviors gener-
ated by the workflow.We are working to build a version of
the agent architecture supporting this mechanism.
The ability of agents to clone and create other agents

have proved very useful for managing distribution of
tasks, while the agent coordination paradigms have
proved useful for coordinating those running tasks. By
using both agent coordination and reproduction capabil-
ities we shift the focus from tool coordination to agent
coordination. In fact, execution and coordination of tasks
are performed by executing and coordinatingWEs, which
implies running tools and integrating results. Agent sys-
tems work at a higher abstraction level with respect to
systems of integrated tools; thus the user benefits from
this abstraction by perceiving a simpler system. In some
cases, the user can necessitate deep controllability of the
system despite interaction simplicity and usability, but in
the case of Web-based tools, which is our case, we find it
more valuable to increase automatization, simplicity, and
reusability with respect to maintaining direct controlla-
bility of tools.



240 F. Corradini et al.: An agent-based approach to tool integration

Decentralization of multiagent systems is naturally
exploited in our system; in fact, workflow specifications
define peer interactions among agents that correspond
to exchanging data among tools, i.e., sending data from
one WE to another often corresponds to sending data
gathered from a tool to another WE, which will use the
received information to interact with a new tool. There-
fore, peer interactions among agents resemble peer inter-
actions among tools.
Many tools provide only a local interface; thus, mo-

bility is an important property of WEs that enables in-
tegration and distributed interaction of tools even for
local tools only. This property has been used in our ex-
periments for interacting with several command-line pro-
grams (use of the BLAST command-line program has not
been reported in the presented part of the case study).
Moreover, local communication, in some cases, can be
used to avoid large bandwidth consumption caused by in-
tensive exchange of messages between a remote WE and
a tool.

Fig. 5. aWE message to WA; b AIXO results

The decision-making capability of agents has not been
used in our case since the workflow defines most of the
behavior of the running agents. Moreover, further behav-
iors are obtained by the compilation process and by using
skeletons with built-in capabilities. Agents implementing
decision-making capabilities are often “large” since they
use knowledge bases, inference engines, etc. Therefore, in-
telligent agents do not seem very useful in our context.
However, we recognize possible applications of intelligent
agents in the case of tools producing large data sets. In-
telligent agents can use the extracted data to increase the
knowledge base and to infer facts that can then be used to
make decisions. We did not exploit this possible applica-
tion of agents.
Wrapping of tools has been implemented by AIXO.

In the case of tools providing a Web interface, AIXO
sends HTTP requests and collects results that are then
parsed and converted to XML. In the case of databases,
AIXO sends queries to the DBMS and converts responses,
usually recordsets, to XML. AIXO wraps tools provid-



F. Corradini et al.: An agent-based approach to tool integration 241

ing a command-line interface by interacting with input
and output streams; the output stream is parsed and
converted to XML. Finally, AIXO wraps tools providing
APIs by sending requests to the interface and convert-
ing single results to XML. Some applications of AIXO are
presented in [11].
In the proposed example, the WE performs the first

activity search on database by sending a message to the
WA; the message includes the wrapper to be selected,
i.e., OMIM database, the expected output result’s type,
i.e., ListOfLinks, and the input parameters, i.e., “P53”
and “Articles” as described in Fig. 5a. The WA selects
the corresponding AIXO wrapper and, by using the ac-
cess method, retrieves the list of links in OMIM format,
which will be translated into an XML format as described
in Fig. 5b.
In our work, ontologies have been implemented by

taxonomies of terms of common intended semantics, and
we use them to enable interactions among agents. This
basic form of ontology has been suitable for sharing know-
ledge and enabling communication. However, it is also
possible to move to more complex ontologies [25, 39].
Other approaches address the use of ontologies for inte-
grating tools [28, 38, 52], but their concrete effectiveness
remains an open issue. In our case, migration to a more
ontology-driven context is quite simple since the agent
layer supports communication based on ontologies and
the workflow layer can easily integrate ontologies together
with task specification, for example, by dynamically load-
ing libraries of both terms and relations that can be used
during workflow specification. Ontologies provide a way
to implement automatic reasoning and inference from ex-
changed data, but they also require additional compu-
tational resources. Further investigation is necessary to
establish costs and benefits of creating a system using
complex forms of ontologies. Actually, we recognized that
shared taxonomies are a good starting point and rep-
resent an acceptable tradeoff between complexity and
interoperability [30].

6 Related work

Few software architectures are designed to support tool
integration in a heterogeneous distributed environment;
among those we mention the agent-based architecture
proposed in [28] in which a software tool and information
servers are encapsulated as “agents” that receive and re-
ply to requests using both a declarative knowledge repre-
sentation language and a library of formal ontologies that
defines the vocabulary of various domains. ToolNet archi-
tecture [6] is based on a service-oriented approach whose
main components are Services and ToolAdaptors. The
service encapsulates a tool by segmenting its functionali-
ties into basic services, whereas the adaptor is responsible
for the communication between the integrated tool and
the framework, its main task being to publish/provide

the services supported by the specific tool. We share with
ToolNet [6] the idea of viewing a tool as a collection of ser-
vices that can be accessed from other tools. Moreover, the
encapsulation of tools into agents that interact by using
shared vocabularies is present in both the agent-based ar-
chitecture in [28] and our architecture. However, our sys-
tem combines the advantages of both the agent abstrac-
tion and encapsulation of tools with a set of services; in
addition, our architecture provides a suitable architecture
for direct tool integration and provides a coherent, ho-
mogeneous, and simplified framework where the user can
transparently interact with tools by high-level workflows.
Tool registration and discovery functionalities for net-

work tool management have been proposed by Mueller
et al. in TRMS (Tool Registration and Management Ser-
vice) [64]. TRMS allows the dynamic discovery of a tool
using the semantic description of the desired behavior.
A tool is described by a set of significant properties based
on which it can be discovered in the network. This ap-
proach is mainly related to two other works dedicated to
the definition of a specification and integration language,
TES (Tool Encapsulation Specification) language [75]
and WSDL (Web Service Description Service) [81], the
latter being used for encapsulating the tool in a service.
In our case, encapsulation of the service is performed by
agents and tool discovery, and integration is transpar-
ently managed by both the middleware and the workflow
engine.
Integration of tools and services is often performed

by plugging components into existing systems to extend
implemented functionalities. This type of integration re-
quires components designed for the system where they
are plugged in and requires designing the target system
for supporting the addition of components. Providing
a way to add a plug-in into an application is a develop-
ment practice that is becoming common. A well-known
example is given by Eclipse [33], which is an open source
extensible development environment supporting the add-
ition of plug-ins. Integration of functionalities by plug-ins
is not considered in our approach since we address tools
developed by independent parties that do not guarantee
agreement on any extension mechanism.

7 Conclusions and future work

Several works have been proposed to support the work-
flow execution by multiagent systems [14, 22, 61], most of
them focused on components, agents, and problem solv-
ing. Indeed, we concentrate on service accessibility, infor-
mation management, and coordination of activity for tool
integration.
The construction of environments addressing tool in-

tegration has the promising for creating homogeneous
frameworks exploiting interoperability, reuse, and trans-
parency. We presented a rationalization of the tool-
integration problem consisting of a three-layered view:



242 F. Corradini et al.: An agent-based approach to tool integration

(1) service and data accessibility, (2) information man-
agement and coordination, and (3) tool orchestration.
We expect that future work will take advantage of this
conceptual view when developing new tool-integration
frameworks and when comparing existing approaches.
Moreover, we suggested an approach based on AIXO

wrappers, agents, and workflows. AIXO wrappers exploit
flexible XML-based wrapping of tools. The agent tech-
nology exploits management of heterogeneity and coor-
dination of activities. Finally, the workflow technology
exploits transparency with respect to complexity of ex-
isting tools. Our experience highlights the effectiveness
of the integration of these technologies when dealing
with large collections of tools placed in a distributed set-
ting. Furthermore, we previously applied the proposed
architecture in various contexts [15, 27], such as automa-
tion [15]; this shows the generality of the ideas explored in
this paper.
We are moving toward a more formal notation for spe-

cification of activities by exploring the use of XLANG,
XPDL, WSFL, and DAML-S. We also plan to perform
further experiments in different application domains ad-
dressing coarse-grained tools as well, i.e., tools that are
difficult to model as software modules implementing a set
of activities. Emerging technologies, such as ubiquitous
computing and mobile computing, provide attractive do-
mains to test our tool-integration approach, especially for
the flexibility of the agent-based technology. In the fu-
ture, we expect that tool integration will consider also
these domains.

Acknowledgements. We would like to thank Alessandro Ricci for
valuable comments on a preliminary version of this paper.

References

1. Aalst W (1998) The application of Petri nets to workflow man-
agement. J Circuits Syst Comput 8(1):21–66

2. Abbott KR, Sarin SK (1994) Experiences with workflow man-
agement: issues for the next generation. In: Proceedings of
the 1994 ACM conference on computer supported cooperative
work, Chapel Hill, NC. ACM Press, New York, pp 113–120

3. Adelberg B (1998) NoDoSE a tool for semi-automatically ex-
tracting structured and semistructured data from text docu-
ments. In: Proceedings of the 1998 ACM SIGMOD interna-
tional conference on management of data. ACM Press, New
York, pp 283–294

4. Agostini A, de Michelis G, Grasso MA, Patriarca S (1993)
Reengineering a business process with an innovative work-
flow management system: a case study. In: Proceedings of the
conference on organizational computing systems. ACM Press,
New York, pp 154–165

5. Allouche M-K, Sayettat C, Boissier O (1997) Towards a multi-
agent system for the supervision of dynamic systems. In:
Proceedings of the 3rd international symposium on au-
tonomous decentralized systems (ISADS ’97), Berlin, April
1997, pp 9–16

6. Altheide F, Dörfel S, Dörr H, Kanzleiter J (2003) An architec-
ture for a sustainable tool integration. In: Proceedings of the
ESEC/FSE workshop on tool integration in system develop-
ment, Helsinki, September 2003

7. Apache Software Foundation (2003) Xalan-j.
http://xml.apache.org/xalan-j/

8. Avila-Campillo I, Green TJ, Gupta A, Onizuka M, Raven D,
Suciu D (2002) XMLTK: An XML toolkit for scalable XML
stream processing. In: Proceedings of Programming Language
Technologies for XML (PLANX), Pittsburgh, PA, October
2002

9. Barber KS, Goel A, Martin C (2000) Dynamic adaptive au-
tonomy in multi-agent systems. J Exp Theor Artif Intell
12(2):129–147

10. Barber KS, Martin CE (2001) Dynamic reorganization of
decision-making groups. In: Proceedings of the 5th inter-
national conference on autonomous agents, Montreal. ACM
Press, New York, pp 513–520

11. Bartocci E, Mariani L, Merelli E (2003) An XML view of the
“world”. In: Proceedings of the 5th international conference
on enterprise information systems (ICEIS’03), Angers, France,
April 2003, pp 19–27

12. Bellwood T, Clément L, Ehnebuske D, Hately A, Hondo M,
Husband YL, Januszewski K, Lee S, McKee B, Munter J, von
Riegen C (2002) UDDI version 3.0. Published specification,
Oasis

13. Bergenti F, Poggi A (2001) LEAP: A FIPA platform for hand-
held and mobile devices. In: Proceedings of the workshop on
agent theories, architectures, and languages (ATAL)

14. Blake MB (2001) Agent-based workflow configuration and
management of on-line services. In: Proceedings of the 4th
international conference on electronic commerce research
(ICECR-4), Dallas, TX

15. Bonura D, Corradini F, Merelli E, Romiti G (2004) Farmas:
a MAS for extended quality workflow. In: 2nd IEEE interna-
tional workshop on theory and practice of open computational
systems. IEEE Press, New York

16. Boudier G, Gallo T, Minot R, Thomas I (1998) An overvie of
PCTE and PCTE+. In: Proceedings of the ACM SIGSOFT/
SIGPLAN Software Engineering symposium on practical soft-
ware engineering environments

17. Braun P (2003) Metamodel-based integration of tools. In: Pro-
ceedings of the ESEC/FSE workshop on tool integration in
system development, Helsinki, September 2003

18. Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergenau
F, Cowan J (2003) Extensible markup language (XML) 1.1.
W3C proposed recommendation, World Wide Web Consor-
tium (W3C), November 2003

19. Brown A, Carney D, Morris E, Smith D, Zarella P (1994)
Principles of CASE tool integration. Oxford University Press,
Oxford, UK

20. Brownell D (2002) SAX2. O’Reilly, Sebastopol, CA
21. Chen Q, Hsu M, Duyal U, Griss M (2000) Multi-agent cooper-
ation, dynamic workflow and XML for e-commerce automa-
tion. In: Proceedings of the 4th international conference of au-
tonomous agents (Agents 2000), Barcelona, Spain, June 2000

22. Chen Q, Hsu M, Duyal U, Griss M (2000) Multi-agent cooper-
ation, dynamic workflow and xml for e-commerce automation.
In: Proceedings of the 4th international conference of au-
tonomous agents, Barcelona, Spain, June 2000

23. Clark J (2003) XSL transformations (XSLT) version 1.0. W3C
recommendation, World Wide Web Consortium (W3C)

24. Clark J, DeRose S (1999) XML path language (XPath) ver-
sion 1.0. W3C recommendation, World Wide Web Consortium
(W3C)

25. Connolly D, van Harmelen F, Horrocks I, McGuinness DL,
Patel-Schneider PF, Stein LA (2001) DAML+OIL reference
description. W3C note, W3C, December 2001

26. Corradini F, Mariani L, Merelli E (2003) An agent-based lay-
ered middleware as tool integration. In: Proceedings of the
ESEC/FSE workshop on tool integration in system develop-
ment, Helsinki, September 2003

27. Corradini F, Mariani L, Merelli E (2003) A programming
environment for global activity-based applications. In: Pro-
ceedings of WOA 2003 dagli oggetti agli agenti – sistemi intel-
ligenti e computazione pervasiva

28. Cranefield S, Purvis M (1997) An agent-based architecture for
software tool coordination. In: Cavedon WWL, Rao A (ed)
Intelligent agent systems: theoretical and practical issues. Lec-
ture notes in artificial intelligence, vol 1209. Springer, Berlin
Heidelberg New York, pp 44–58



F. Corradini et al.: An agent-based approach to tool integration 243

29. Cui Z, Jones D, O’Brien P (2002) Semantic B2B integration:
issues in ontology-based approaches. SIGMOD Rec 31(1):
43–48

30. Culmone R, Rossi G, Merelli E (2002) An ontology similar-
ity algorithm for bioagent. In: Proceedings of the NETTAB
workshop on agents and bioinformatics, Bologna, Italy, July
2002

31. de Nicola R, Ferrari GL, Pugliese R (1998) Klaim: a kernel lan-
guage for agents interaction and mobility. IEEE Trans Softw
Eng 24(5):315–330

32. Dumas M, ter Hofstede AHM (2001) UML activity diagrams
as a workflow specification language. Lecture notes in com-
puter science, vol 2185. Springer, Berlin Heidelberg New York,
pp 76–90

33. Eclipse (2003) Eclipse Platform Technical Overview. White
paper. http://www.eclipse.org

34. ECMA (1993) Reference model for frameworks of software
engineering environments. Technical Report NIST 500-211,
ECMA TR/55 3rd edn

35. Embley D, Campbell D, Jiang Y, Liddle S, Ng YK, Quass D,
Smith R (1999) Conceptual-model-based data extraction from
multiple-record web pages. Data Knowl Eng 31(3):227–251

36. Englemore R, Morgan T (1988) Blackboard systems. Addison-
Wesley, Reading, MA

37. Enhydra (2003) Jawe. http://jawe.enhydra.org/
38. Falbo RA, Guizzardi G, Natali ACC, Bertollo G, Ruy FF,
Mian PG (2002) Towards semantic software engineering en-
vironments. In: Proceedings of the 14th international con-
ference on software engineering and knowledge engineering.
ACM Press, New York, pp 477–478

39. Fensel D (2001) Ontologies: a silver bullet for knowledge man-
agement and electronic commerce. Springer, Berlin Heidelberg
New York

40. FIPA-ACL (1997) FIPA97 specification, part 2: Agent com-
munication language. Specification, FIPA, October 1997

41. Foundation for Intelligent Physical Agents (2003) FIPA agent
discovery service specification. Preliminary version 1.2e

42. Freeman E, Hupfer S, Arnold K (1999) Javaspaces principles,
patterns and practice. Addison-Wesley, Reading, MA

43. Freude R, Königs A (2003) Tool integration with consis-
tency relations and their visualization. In: Proceedings of the
ESEC/FSE 2003 workshop on tool integration in system de-
velopment, Helsinki, September 2003

44. Frishman D, Heumann K, Lesk A, Mewes H-W (1998)
Comprehensive, comprehensible, distributed and intelligent
databases: current status. Bioinformatics 14(7):551–561

45. Fuggetta A, Picco GP, Vigna G (1998) Understanding code
mobility. IEEE Trans Softw Eng 24(5):352–361

46. Haase T (2003) Semi-automatic wrapper generation for a-
posteriori integration. In: Proceedings of the ESEC/FSE
2003 workshop on tool integration in system development,
Helsinki, September 2003

47. Hadjiefthymiades S, Matthaiou V, Merakos L (2002) Support-
ing the WWW in wireless communications through mobile
agents. Mobile Netw Appl 7(4):305–313

48. Hexmoor H, Vaughn JT (2002) Computational adjustable au-
tonomy for NASA personal satellite assistants. In: Proceed-
ings of the 2002 ACM symposium on applied computing. ACM
Press, New York, pp 21–26

49. Hollingsworth D (1995) The workflow reference model. Work-
flow Management Coalition Specification TC00-1003, Work-
flow Management Coalition, Winchester Hampshire, UK, Jan-
uary 1995

50. Hors AL, Hégaret PL, Wood L, Nicol G, Robie J, Cham-
pion M, Byrne S (2003) Document object model (DOM) level
3 core specification. W3C candidate recommendation, World
Wide Web Consortium (W3C)

51. Jin D, Cordy J (2003) A service sharing approach to inte-
grating program comprehension tools. In: Proceedings of the
ESEC/FSE workshop on tool integration in system develop-
ment, Helsinki, September 2003

52. Jin D, Cordy JR, Dean TR (2003) Transparent reverse engin-
eering tool integration using a conceptual transaction adapter.
In: Proceedings of the 7th European conference on software
maintenance and reengineering, March 2003

53. Karsai G, Gray J (2000) Design tool integration: an excercise
in semantic interoperability. In: Proceedings of IEEE engineer-
ing of computer-based systems

54. Kreger H (2001) Web services conceptual architecture (WSCA
1.0). Technical report, IBM Software Group, May 2001

55. Lange D, Oshima M (1998) Programming and deploying Java
mobile agents with aglets. readings. Addison-Wesley, Reading,
MA

56. Liu L, Pu C, Han W (2000) XWRAP: An XML-enabled wrap-
per construction system for web information sources. In: Pro-
ceedings of the international conference on data engineering
(ICDE), pp 611–621

57. Margaria T, Wuebben M (2003) Tool integration in the ETI
platform – review and perspectives. In: Proceedings of the
ESEC/FSE workshop on tool integration in System Develop-
ment, Helsinki, September 2003

58. Mariani L, Pezzè M (2003) Behavior capture and test for con-
trolling the quality of component-based integrated systems.
In: Proceedings of the ESEC/FSE workshop on tool integra-
tion in system development, Helsinki, September 2003

59. Matena V, Hapner M (1999) Enterprise javabeans specifica-
tion. Public Draft version 1.1, Sun Microsystems

60. Meng J, Helal S (2000) An ad-hoc workflow system architec-
ture based on mobile agents and rule-based processing. In:
Proceedings of the 2000 international conference on artificial
intelligence, Las Vegas, June 2000

61. Meng J, Helal S (2000) An ad-hoc workflow system architec-
ture based on mobile agents and rule-based processing. In:
Proceedings of the 2000 international conference on artificial
intelligence (ICAI2000), Las Vegas

62. Merelli E, Culmone R, Mariani L (2002) Bioagent: a mo-
bile agent system for bioscientists. In: NETTAB workshop on
agents and bioinformatics Bologna, Italy, July 2002

63. Merle P (2001) Corba 3.0 new components chapters. TC Docu-
ment ptc/2001-11-03, Object Management Group, November
2001

64. Mueller W, Schattkowsky T, Eikerling H,Wegner J (2003) Dy-
namic tool integration in heterogeneous computer networks. In:
IEEE (ed) Design, automation and test in Europe conference
and exhibition (DATE’03), Munich, 3–7March 2003

65. National Library of Medicine (US) (ed) (2003) Genes and dis-
ease. Bethesda, MD

66. Leonard S (2001) A web-based tutorial written for Oak Ridge
National Laboratories. Senior Thesis Project.
https://sharepoint.cisat.jmu.edu/isat/klevicca/Web/
p53/Tutorial.htm

67. Ogston E, Vassiliadis S (2002) A peer-to-peer agent auction.
In: Proceedings of the 1st international joint conference on
autonomous agents and multiagent systems, Bologna, Italy.
ACM Press, New York, pp 151–159

68. Omicini A, Zambonelli F (1998) Coordination of mobile infor-
mation agents in TuCSoN. Internet Res Electron Netw Appl
Policy 8(5):400–413

69. Parunak HVD, Baker AD, Clark SJ (1998) The AARIA agent
architecture: from manufacturing requirements to agent-based
system design. In: Proceedings of the workshop on agent-
based manufacturing, ICAA98, Minneapolis, MN, May 1998

70. Peine H (1997) Ara – agents for remote action. In: Crockayne
W, Zyda M (eds) Mobile agents: explanations and examples.
Prentice-Hall, Englewood Cliffs, NJ

71. Picard P (1990) SFINX: Tool integration in a PCTE based
software factory. In: Proceedings of the 1st international con-
ference on system development environments and factories,
pp 219–228

72. Picco GP, Murphy AL, Roman G-C (1999) Lime: Linda meets
mobility. In: Proceedings of the 21st international conference
on software engineering

73. Rhea S, Wells C, Eaton P, Geels D, Zhao B, Weatherspoon H,
Kubiatowicz J (2001) Maintenance-free global data storage.
IEEE Internet Comput 5(5):40–49

74. Shehory O, Sycara K, Chalasani P, Jha S (1998) Agent
cloning: an approach to agent mobility and resource alloca-
tion. IEEE Commun Mag 36(7):62–67

75. Specification TE (1992) Version 1.0.0, CAD framework initia-
tive inc., Austin, TX



244 F. Corradini et al.: An agent-based approach to tool integration

76. Stoeckle H, Grundy J, Hosking J (2003) Notation exchange
converters for software architecture development. In: Proceed-
ings of the ESEC/FSE workshop on tool integration in system
development, Helsinki, September 2003

77. Subrahmanian VS, Bonatti P, Dix J, Eiter T, Kraus S, Ozcan
F, Ross R (2000) Heterogeneous agent systems. MIT Press,
Cambridge, MA

78. Sun Microsystems (2003) Java2 platform enterprise edition
specification. Final Draft v1.4, Sun Microsystems

79. Sycara K, Decker K, Pannu A, Williamson M, Zeng D
(1996) Distributed intelligent agents. IEEE Expert 11(6):
36–45

80. Sycara KDK (1997) Intelligent adaptive information agents. J
Intell Inf Syst 9(3):239–260

81. W3C (2002) Web services description language (WSDL) ver-
sion 1.2. W3C working draft, W3C, July 2002

82. W3C Web Services Architecture Working Group (2002) Web
services architecture requirements. W3C working draft, W3C,
August 2002

83. Weske M, Goesmann T, Holten R, Striemer R (1999) A ref-
erence model for workflow application development processes.
In: Proceedings of the international joint conference on work
activities coordination and collaboration, San Francisco. ACM
Press, New York, pp 1–10

84. Wilcox P, Russell C, Smith M, Smith A, Pooley R, MacKin-
non L, Dewar R, Weiss D (2003) A CORBA-oriented approach
to heterogeneous tool integration: Ophelia. In: Proceedings of
the ESEC/FSE workshop on tool integration in system devel-
opment, Helsinki, September 2003

85. Wooldridge M (2000) Reasoning about rational agents. Intelli-
gent robotics and autonomous agents. MIT Press, Cambridge,
MA


