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2Dip. di Scienze dell’Informazione, Università di Roma “La Sapienza”, Via Salaria 113, 00198 Roma, Italy
e-mail: {tronci,zilli}@di.uniroma1.it
Published online: 6 July 2004 –  Springer-Verlag 2004

Abstract. In this paper we show that statistical proper-
ties of the transition graph of a system to be verified can
be exploited to improve memory or time performances of
verification algorithms.
We show experimentally that protocols exhibit transi-

tion locality. That is, with respect to levels of a breadth-
first state space exploration, state transitions tend to be
between states belonging to close levels of the transition
graph. We support our claim by measuring transition lo-
cality for the set of protocols included in theMurϕ verifier
distribution.
We present a cache-based verification algorithm that

exploits transition locality to decrease memory usage and
a disk-based verification algorithm that exploits transi-
tion locality to decrease disk read accesses, thus reducing
the time overhead due to disk usage. Both algorithms
have been implemented within the Murϕ verifier.
Our experimental results show that our cache-based

algorithm can typically save more than 40% of mem-
ory with an average time penalty of about 50% when
using (Murϕ) bit compression and 100% when using bit
compression and hash compaction, whereas our disk-
based verification algorithm is typically more than ten
times faster than a previously proposed disk-based ver-
ification algorithm and, even when using 10% of the
memory needed to complete verification, it is only be-
tween 40 and 530% (300% on average) slower than
(RAM) Murϕ with enough memory to complete the
verification task at hand. Using just 300MB of mem-
ory our disk-based Murϕ was able to complete verifica-
tion of a protocol with about 109 reachable states. This
would require more than 5 GB of memory using standard
Murϕ.

This research has been partially supported by MURST projects
MEFISTO and SAHARA.

This paper is an extended version of the papers [27, 39].
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1 Introduction

State space exploration (reachability analysis) is at the
very heart of all algorithms for automatic verification of
concurrent systems. In fact, checking that a finite-state
system (FSS) satisfies a given property (e.g., a safety
property) typically entails exploring (visiting) all reach-
able system states.
Unfortunately, reachability analysis is plagued by the

well-known state explosion problem: that is, our com-
puter runs out of memory because of the huge number of
reachable states that have to be stored in memory.
Essentially there are two main techniques to perform

state space exploration: explicit and symbolic. Explicit
state space exploration uses a hash table to store the set
of visited states, whereas symbolic state space exploration
represents the set of visited states with its characteristic
function which, in turn, is represented and manipulated
using ordered binary-decision diagrams (OBDDs) [3, 4].
For protocol verification, explicit state space explo-

ration often outperforms symbolic state space explo-
ration [18]. Indeed, our results [26] show that explicit
state space exploration can be quite useful also for au-
tomatic verification of hybrid systems. Since here we are
mainly interested in protocol verification, we focus on
explicit state space exploration: tools based on this tech-
nique are, e.g., SPIN [15, 32] and Murϕ [7, 23].
In our context, roughly speaking, two kinds of ap-

proaches have been studied to counteract (i.e., delay)
state explosion:memory saving and auxiliary storage.
In a memory saving approach, essentially one tries to

reduce the amount of memory needed to represent the
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set of visited states. Examples of the memory saving ap-
proach can be found in [16, 17, 19, 20, 28, 35, 36, 42].
In an auxiliary storage approach one tries to exploit

disk storage as well as distributed processors (network
storage) to enlarge the available memory (and CPU). Ex-
amples of this approach can be found in [29, 30, 33, 34, 38].
In this paper we study the possibility of exploit-

ing a statistical property of protocol transition graphs,
namely, the transition locality, to improve memory and
time performances of state verification algorithms. This
is quite similar to what is usually done when optimizing
a CPU on the basis of program profiling [25]. Statisti-
cal properties of protocols have also been studied in the
context of probabilistic verification [40].
We show experimentally (Sect. 3) that protocols ex-

hibit transition locality. That is, transitions tend to be
local with respect to levels of a breadth-first (BF) search.
We support our claim by measuring transition locality
for the set of protocols included in the Murϕ verifier
distribution.
Finally, we present a cache-based BF state space explo-

ration algorithm (Sect. 4) that exploits transition locality
to decrease memory usage and a disk-based BF state space
exploration algorithm (Sect. 5) that exploits transition lo-
cality to save disk read accesses, thus reducing the time
overheadwith respect to a normal disk-based verification.
Both algorithms have been implemented within the

Murϕ verifier [23] and are compatible with all the well-
known state compression techniques (such as those in [16,
36]) and, in particular, with all state reduction techniques
present in Murϕ.
By using Murϕ, we can take advantage of a full-

featured verifier to test our algorithms together with all
the other memory reduction techniques already imple-
mented in Murϕ, and we have a large set of benchmark
protocols to test. Of course, our algorithms can be in-
cluded within any explicit verifier implementing a BF
search (e.g., the latest SPIN version).

1.1 Cache-based BF state space exploration

In our cache-based BF state space exploration algorithm
we essentially replace the hash table used in a memory-
based BF state space exploration with a fixed-size cache
memory (i.e., no collision detection is done), using auxil-
iary (disk) storage for the BF queue.
Therefore, we do not incur state explosion, but we

may incur nontermination when our cache memory is too
small : in fact, in this case we may visit the same set of
states over and over. However, upon termination we are
guaranteed that all reachable states have been visited. To
the best of our knowledge this is the first time that such
a fixed size memory state space exploration algorithm has
been presented.
Note that our use of the cache memory differs from

that in [42] (see also [8, 13, 14]). In fact [42] presents
a state compression technique, and “no collision detec-

tion” in [42] refers to state signatures [34, 35], that is,
a (signature) collision in [42] may lead to declare as vis-
ited a nonvisited state, whereas our algorithm simply for-
gets a visited state upon collision, thus possibly declaring
as nonvisited a visited state.
The implementation of our cache-based algorithm

within the Murϕ verifier (Sect. 4.2), named CMurphi3.1,
can be downloaded from [5].
Experiments using our cache-based algorithm

(Sect. 6.2) show that on average we can verify systems
more than 40% larger than those that can be handled
using a hash-table-based approach. Our time penalty is
about 50% when using (Murϕ) bit compression and 100%
when using bit compression and hash compaction.

1.2 Disk-based BF state space exploration

Our disk-based BF state space exploration algorithm is ob-
tained from the one in [34] by using only a suitable subset
of the visited states stored on disk to clean up the BF
queue. By reducing disk read accesses we also reduce our
time overhead with respect to a memory-based BF state
space exploration.
Note that the SPIN verifier can use disk storage for the

depth-first (DF) stack. However, visited states are still
stored in a memory-based hash table, which is where state
explosion typically occurs.
The implementation of our disk-based algorithm

within the Murϕ verifier (Sect. 5), named CMurphi4.1,
can be downloaded from [5].
Experimental results on using our disk-based algo-

rithm (Sect. 6.4) show that, even when using 10% of
the memory needed to complete verification, our disk-
based Murϕ is only between 40 and 530% times slower
(300% on average) than (memory-based) standard Murϕ
with enough memory to complete the verification task
at hand. Moreover, our disk-based algorithm is typically
more than ten times faster than the disk-based algorithm
presented in [34].
Using just 300MB of memory our disk-based Murϕ

was able to complete verification of a protocol with al-
most 109 reachable states. Using standardMurϕ this pro-
tocol would require more than 5 GB of memory.

2 Background

In this section we give some basic information that will be
useful in the subsequent discussion.

2.1 Finite-state systems

For our purposes, a protocol is represented as a finite-
state system.

Definition 1. 1. A finite-state system (FSS) S is a 4-
tuple (S, I, A, R) where: S is a finite set (of states),
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I ⊆ S is the set of initial states, A is a finite set (of
transition labels), and R is a relation on S×A×S.
R is usually called the transition relation of S.

2. Given states s, s′ ∈ S and a ∈ A, we say that there
is a transition from s to s′ labelled a if and only if
R(s, a, s′) holds. We say that there is a transition from
s to s′ (notation R(s, s′)) if and only if there exists
a ∈ A so that R(s, a, s′) holds. The set of successors
of state s (notation next(s)) is the set of states s′ so
that R(s, s′).

3. The set of reachable states of S (notationReach(S))
is the set of states of S reachable in 0 (zero) or more
steps from I.
Formally, Reach(S) is the smallest set so that
1. I ⊆Reach(S),
2. For all s ∈Reach(S), next(s)⊆Reach(S).

In the following discussion we will always refer to
a given system S = (S, I,A,R). Thus, for example, we
will write Reach for Reach(S). Also, we may speak
about the set of initial states I as well as about the tran-
sition relation R without explicitly mentioning S.
The core of all automatic verification tools is the

reachability analysis, the computation of Reach given
a definition of S in some language.
Since the transition relation R of a system defines

a graph (transition graph), computingReach means vis-
iting (exploring) the transition graph starting with the
initial states in I. This can be done, e.g., using a depth-
first (DF) search or a breadth-first (BF) search. For ex-
ample, Murϕ [23] and (the latest version of) SPIN [32]
may use a DF as well as a BF search.
In the following discussion we will focus on BF search.

As is well known, a BF search defines levels on the tran-
sition graph. Initial states (i.e., states in I) are at level 0.
The states in (next(I)− I) (states reachable in one step
from I and not in I) are at level 1, etc.

Definition 2. Formally we define the set of states at
level k (notation L(k)) as follows.
L(0) = I,
L(k+1) = {s′| there exists s ∈ L(k) so that [R(s, s′) and
s′ �∈ ∪i=ki=0L(i)]}.
Given a state s ∈Reach, we define level(s) = k if and

only if s ∈ L(k). That is, level(s) is the level of state s in
a BF search of S.
The set Visited(k) of states visited (by a BF search) by

level k is defined as follows. Visited(k) = ∪i=ki=0L(i).

2.2 The Murϕ verifier

In this section we give a short overview of the Murϕ veri-
fier. For further details we refer the reader to [7, 23].
From a conceptual point of view Murϕ takes as input

a finite-state system S and checks whether a given invari-
ant property ϕ for S is satisfied.
An invariant property can be seen as a map from (the

states of) S to the set B = {0, 1} of boolean values. Thus

the verification goal is to check that, for each state s,
reachable from an initial state of S, the given invariant ϕ
holds (i.e., that ϕ(s) = 1). Of course, in general this check
entails visiting all reachable system states.
Figure 1 shows the standard BF state space explo-

ration algorithm. Essentially, this is the algorithm used
by Murϕ to visit the state space of a given system S.
The algorithmmakes use of two main memory data struc-
tures. A queue, where states are stored and retrieved (in
FIFO order) during the search, and a hash table used to
store all visited states. In Fig. 1 invariants for state smay
be checked whenever function Enqueue(Q, s) is called.
Since S is a finite-state system, the algorithm in Fig. 1

always terminates since we never visit the same state
more than once.
Note that Murϕ (like SPIN) represents states explic-

itly: each visited state is stored in memory (namely, in
the hash table). There are model checkers that repre-
sent states symbolically. In symbolic model checking the
set V of visited states is represented by its character-
istic function f (i.e., f(s) = if s ∈ V then 1 else0) and
suitable data structures (such as OBDDs, ordered binary-
decision diagrams [3]) are used to represent f . Exam-
ples of symbolic model checkers are SMV [31], UPP-
AAL [21, 41] (both based on OBDDs), and Hytech [1, 2,
12], which is based on polyedra in a multidimensional real
space [6, 9–11].
Explicit model checkers (such as Murϕ and SPIN)

typically perform better on softwarelike (asynchronous)
systems [18], whereas symbolic model checkers (such as
SMV) typically perform better on hardwarelike (syn-
chronous) systems.

Fig. 1. Explicit breadth-first search
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Since explicitly storing each state can take a large
amount of memory, Murϕ offers several techniques to re-
duce the state size. In the development of our algorithms,
two techniques are very important: bit compression [23]
and hash compaction [34, 35].
When bit compression is enabled, Murϕ saves mem-

ory by using every bit of the state descriptor, the memory
structure maintaining the state variables. On the other
hand, when bit compression is not used, state variables
are aligned on byte boundaries of the state descriptor,
thus wasting some space. Typically, bit compression saves
on average 300% of memory; however, it slows down the
verifier by approximately 25%.
When using hash compaction, compressed values (also

called state signatures) are stored in the hash table in-
stead of full state descriptors; however, there is a certain
probability that some states will be omitted during ver-
ification, since different states may have the same signa-
ture. By default, Murϕ compresses state descriptors up to
40 bits.
Hash compaction can be combined with bit compres-

sion: in this case, bit compression is applied on the state
queue, whereas hash compaction is used on the hash
table.

3 Transition locality for finite-state systems

In this section we define our notion of locality for transi-
tions and show experimentally that, for protocols, most
transitions are local. We do this by showing that, for
all our benchmark protocols, most transitions are indeed
local.
We used as benchmark protocols all those available in

the Murϕ verifier distribution [23] plus the Kerberos pro-
tocol from [37]. Most of these protocols are scalable since
they depend on a set of parameters. By modifying such
parameters, the size of the protocol state space can be in-
creased. To save time, in most of our experiments we set
protocol parameters so as to obtain small-sized models.
This is reasonable, since locality is a structural property
of a protocol transition graph. That is, locality may or
may not hold independently of the size of the transition
graph.
The protocols tested cover a wide range of concur-

rent software typologies such as synchronization, authen-
tication, cache coherence, distributed locks, etc. Thus we
have a fairly representative benchmark set.

3.1 Transition locality

Informally, transition locality means that, for most transi-
tions, source and target states will be in levels not too far
apart.

Definition 3. Let S = (S, I,A,R) be an FSS. A transi-
tion in S from state s to state s′ is said to be k-local if and
only if |level(s′)− level(s)| ≤ k.

Transition R(s, a, s′) is said to be a k-transition if and
only if level(s′)− level(s) = k. Note that for k-transitions,
k ≤ 1 and can be negative.

A 1-transition from state s is a forward transition,
i.e., a transition leading to a new state [a state not in
Visited(level(s))]. A k-transition with k < 0 is a back-
ward transition, i.e., a transition leading to a visited state.
A 0-transition from state s just leads to a state s′ on the
same level of s.
We are interested in the distribution of k-transitions

in the transition graph. This motivates the following
definition.

Definition 4. 1. We denote by N(s, k) the number of
k-transitions from s and by N(s) the number of tran-
sitions from s.

2. We define: δ(s, k) = N(s, k)/N(s). That is, δ(s, k) is
the fraction of transitions from s that are k-transi-
tions, which represents the probability of getting a k-
transition when picking at random a transition from s.
Of course, if s is on level λ, we have:

∑k=1
k=−λ δ(s, k) =

1.
3. If we consider the experiment consisting of picking at
random a state s in Reach and returning δ(s, k), then
we get a random variable that we denote by∆(k). The
expected value E{∆(k)} of ∆(k) is the average value
of δ(s, k) on all reachable states. That is: E{∆(k)}=
1

|Reach|

∑
s∈Reach δ(s, k).

4. As usual, we denote by σ2(k) the variance of∆(k) and
by σ(k) its standard deviation [24].

Our choice of ∆(k) to measure locality stems from
the fact that we also want to known how 1-local tran-
sitions are distributed in the transition graph. That is,
we want to know if 1-local transitions are all concen-
trated on some part of the graph or if they are more or
less uniformly distributed in the transition graph. This
can be measured by computing the standard deviation
of∆(k).

3.2 Measuring locality

We measured locality using the Murϕ verifier [23]. This
gives us a wide benchmark set for free since many pro-
tocols have already been defined using the Murϕ input
language. We modified Murϕ so as to compute E{∆(k)}
and σ(k) while carrying out state space exploration.
All the experiments were performed using bit com-

pression (Murϕ option -b) and disabling deadlock detec-
tion (option -ndl). Murϕ stops the state exploration as
soon as a deadlock or a bug is found; since our main in-
terest here is in gathering information about the structure
of the transition graph, deadlock detection has been dis-
abled. This allows us to explore the whole reachable part
of the transition graph also for protocols containing dead-
locks (e.g., Kerberos kerb).
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3.3 Experimental results about locality

We want to show experimentally that transitions in pro-
tocols tend to be local with respect to levels. We do this
by showing that for the set of protocols shown in Table 1
most transitions are 1-local, that is, they are k-transitions
with k = −1, 0, 1. In other words, for most transitions,
R(s, a, s′), s′ will be either on the same level as s (0-
transition) or on the next level (1-transition) or on the
previous level (−1-transition). More information (e.g.,
number of reachable states, etc.) about the protocols in
Table 1 are available in Sect. 6, Table 3.
The expected fraction of k-transitions is E{∆(k)};

thus the expected fraction of 1-local transitions is
SumAvg = E{∆(−1)}+E{∆(0)}+E{∆(1)}. When
this value is close to 1, almost all transitions in the pro-
tocol are 1-local, whereas when it is close to 0, there are
almost no 1-local transitions in the protocol.
To get some understanding of how 1-local transitions

are distributed in the transition graph, we compute the
standard deviation σ(k) of∆(k). In fact, if σ(k) is small
compared to E{∆(k)}, then for most states δ(s, k) is
close to E{∆(k)}.
The results of our experiments are shown in Table 1

where, for each protocol and for k = −1, 0, 1, we show
E{∆(k)}, σ(k) and SumAvg. Our measures depend nei-
ther on the used machine nor on the memory available as
long as the visit is completed. Of course, we would have
obtained the same results without bit compression. Note
that the three protocols with superscript ∗ in Table 1 con-
tain bugs. In such cases, state space exploration stops as
soon as a bug is found. We included such buggy protocols
just for completeness. Our findings can be summarized as
follows.

Table 1. Transition distribution table

Model E{∆(−1)} σ(−1) E{∆(0)} σ(0) E{∆(1)} σ(1) Sum Avg

cache3 0.0401213 0.178884 0.00476603 0.0558438 0.565482 0.381654 0.61036933
kerb 0 0 0.18417 0.385163 0.441651 0.494666 0.625821
ns-old 0.546833 0.497802 0 0 0.101695 0.302247 0.648528
ns 0.585714 0.492598 0 0 0.0969388 0.295874 0.6826528
ldash 0.0107259 0.0719168 0.0763593 0.138464 0.624139 0.191624 0.7112242
adash 0.0381775 0.122 0.00558149 0.0436066 0.723393 0.292406 0.76715199

newcache3 0.0360339 0.0991869 0.00912116 0.0533416 0.736229 0.227796 0.78138406
eadash 0.050598 0.0960145 0.015647 0.0562551 0.765236 0.178076 0.831481
adashbug∗ 0.0376604 0.124403 0.00228899 0.0295028 0.793586 0.270018 0.83353539
sci 0.215646 0.238654 0.0108192 0.0617188 0.642466 0.265885 0.8689312

cache3multi 0.0389835 0.102299 0.00299148 0.0263492 0.831139 0.176004 0.87311398
list6 0.0183668 0.0710808 0.0246248 0.0815233 0.844018 0.189053 0.8870096
mcslock1 0.0128856 0.0675736 0 0 0.881379 0.162002 0.8942646
sym.cache3 0.041675 0.10478 0.00757049 0.0445772 0.876884 0.17786 0.92612949
mcslock2 0.0054652 0.0458147 0.00056426 0.0151108 0.921489 0.156949 0.92751846
arbiter∗ 0.00848939 0.057543 0.0107366 0.0537135 0.92784 0.168859 0.94706599
n_peterson 0 0 0 0 0.958174 0.0877715 0.958174
list6too 0 0 0 0 0.988378 0.0621402 0.988378
newlist6 1.53327e-05 0.00175109 0 0 0.999586 0.00908985 0.9996

Experimental Fact 1. From column SumAvg of Table 1
we observe that, in all protocols of our benchmark set, for
most states more than 60% of the transitions are 1-local.
Indeed, for most of these protocols, we have that for most
states more than 85% of the transitions are 1-local. This
shows that most transitions are 1-local.

Moreover, for many protocols, standard deviations
σ(−1), σ(0), σ(1) are relatively small compared to
SumAvg. In such cases, for most states the fraction of
1-local transitions is close to SumAvg.
Since for most states most transitions are 1-local, we

have that locality holds uniformly. Hence if we pick at
random a state s ∈Reach, in most cases most transitions
from s (say, about 85%) will be 1-local.
On the other hand, it is not difficult to define a sim-

ple example of a nonlocal system. Consider the system
NLS defined in Fig. 2, whose transition graph is shown
in Fig. 3. NLS is highly nonlocal: in fact, following
the notation in Definition 4, we have that E{∆(i)} =

O
(
logn
n

)
, i = −1, 0, 1; thus E{∆(−1)}+E{∆(0)}+

E{∆(1)} = O
(
logn
n

)
. Therefore, by choosing n large

enough we can make the fraction of 1-local transitions in
NLS as small as we like.
One may wonder why protocols exhibit locality. We

conjecture that this is structural for human-made sys-
tems and, indeed, is a consequence of the techniques used
(consciously or unconsciously) to master complexity in
the design task.

Remark 1. A very interesting result would be to prove
(or disprove) that almost all FSSs exhibit locality. Note,
however, that, a priori, truthness or falsehood of such
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Fig. 2. A simple nonlocal system

Fig. 3. Transition graph for the system in Fig. 2

a result would not imply anything about protocols in par-
ticular.
For example, for OBDDs we have already a similar

situation (in reverse mode). In fact, in [22] it is proved
that, for almost any boolean function f of n variables, the
smallest OBDD for f has size exponential in n. Neverthe-
less, it is experimentally known that most of the boolean
functions implemented by digital circuits have OBDDs
of size polynomial (often about linear) in the number of
variables.

4 Cache-based BF state space exploration

In this section we give an algorithm that takes advan-
tage of the transition locality (Sect. 3) of protocols. Note
that the correctness of our algorithm does not depend
on the results in Sect. 3. However, such results help us
to understand why the proposed algorithm is effective on
protocol-like systems.
We modify the standard (hash-table-based) BF search

to use a cache memory rather than a hash table. This
means that we do not perform any collision check: when
a state s′ is hashed to an entry already holding a state
s, we replace s with s′, thus forgetting about s. In the
following discussion, we shall call this algorithm CBFS
(cache-based breadth-first search).

Using a fixed-size cache rather than a hash table to
store visited states is appealing since the cache size does
not grow with the state space size. However, this ap-
proach faces two obvious obstacles:

Queue explosion. The queue size may get very large.
In fact, since we forget visited states, at each level
in our CBFS the apparently new states tend to be
muchmore than those of a true (hash-table-based) BF
search. This may quickly fill up our queue.
For this reason, unlike previous work on the use
of auxiliary storage in state space exploration (e.g.,
in [34]), we use disk storage to hold the queue rather
than the hash table. This is good news since keeping
a queue on disk is much easier than keeping a hash
table on disk and, since a queue has a high locality
of reference (LOR) (whereas a hash table has a very
poor LOR), the time overhead due to disk access is
minimal. We point out that, working independently,
Steven German at IBM [43] has also extended the
queue implementation of the original Murϕ verifier so
as to use disk storage for the queue.

Nontermination. Our state space exploration may not
terminate. In fact, because of collisions, we forget vis-
ited states and thus we may visit again and again the
same set of states.
Here is where locality helps us. Since most transitions
are local, one can reasonably expect that, to avoid
looping, it is enough to remember the recently visited
states rather than all visited states. This is exactly
what a cache memory is for.
Note that a cache memory implements the above dis-
cipline only in a statistical sense. That is, replaced
(forgotten) states in the cache are often old states,
but not always. Fortunately, this is enough for us.
Of course, if the cache memory is too small with re-
spect to the size of the state space, locality cannot
help us.

Note that, whenever our CBFS terminates, it gives the
correct answer. That is, all reachable states have been
visited. However, when we stop our cache-based visit to
prevent looping, we may or may not have visited all reach-
able states.
In the following discussion we sketch our algorithm

and show how we integrated it into the Murϕ verifier.

4.1 From BFS to CBFS

To take advantage of transition locality we modify the
standard BF search of Fig. 1 as shown in Fig. 4.
We use a cache memory rather than a hash table and

we guard the main search loop with a check on the colli-
sion rate (i.e., the ratio <number of collisions in cache>
/ <number of insertions in cache>) since, as was already
stated, using a cache memory may lead to nontermina-
tion. Indeed, when the collision rate is close to 1, nearly
every state stored in the cache overwrites another state,
so we are forgetting too much to complete the search.
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Fig. 4. Cache-based breadth-first search (CBFS)

Moreover, we implement our queue using auxiliary
memory. In the present implementation we use a disk
as auxiliary memory; thus, since disks are quite large,
our disk queue approximates a potentially infinite queue.
Note, however, that (the memory of) another workstation
could have been used as well.
The implementation schema for the cache mem-

ory is quite standard. We reuse the open-addressed
hash table and hash function implemented in Murϕ to
store the states. However, we limit the length of the
collision chain so that if no free slot is found within
MAX_HT_CHAIN_LENGTH steps, a random slot within the
chain is selected and overwritten with the new state.
Figure 5 shows our implementation schema for the

queue on disk. We split the queue Q into two segments:
head queue and tail queue; both queues are in memory
and each can hold ram_queue_size states.
States are enqueued in the tail queue and dequeued

from the head queue. When the tail queue is full, its con-
tent is flushed on disk by appending it to swapout_file.
When the head queue is empty, it gets reloaded with

states from swapin_file; if this file is also empty, we
swap swapin_file and swapout_file and try to load
states from swapin_file again; if it is still empty, we
swap the head queue with the tail queue.
Note that, using pointers, swapping (for files and for

queue segments) is immediate (just a few assignments).

4.2 Integrating CBFS within Murϕ

Rather than building a tool from scratch, we decided to
integrate our algorithm into the Murϕ verifier. This gives
us at least two advantages. First, we have immediately Fig. 5. Disk queue functions
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available many benchmark systems for testing. Second,
we can exploit other memory reduction techniques that
have already been implemented. We call CMurϕ (Cached
Murϕ) [5] the resulting cache-based Murϕ verifier.
To be consistent with the standard (hash-table-based)

Murϕ verifier, the value of ram_queue_size (Fig. 5) is
such that the head queue and the tail queue together take
the same amount of memory as the queue in standard
Murϕ. That is, if M is the available memory for verifi-
cation, then gPercentActive*M is the amount of RAM
memory used for the queue in standard Murϕ as well as
in our cache-basedMurϕ (gPercentActive is in [0, 1] and
is the Murϕ constant defining the fraction of memoryM
used for the queue).
Integrating our algorithm into the Murϕ verifier re-

quires some care and consideration. As far as we are con-
cerned, Murϕ BF search can have two behaviors: one
when hash compaction is not used and another when it is.
All other Murϕ options have no impact on the hash table
or the queue and thus are transparent to us.
When no hash compaction is used, to save memory,

Murϕ stores states in the hash table and pointers to hash
table slots (states) in the queue, whereas when hash com-
paction is used, it stores state signatures in the hash table
and states in the queue.
Therefore, if we use a cache rather than a hash table,

when hash compaction is not active and we overwrite
a cache slot (collision), as a side effect we may also change
the content of the queue, since that slot may be pointed to
by the queue.
For this reason we modified the queue so that it holds

states also when hash compaction is not used; all Murϕ
functions depending on this fact have been changed ac-
cordingly.
Of course, storing states rather than pointers (to

states) takes more space: however, for the reasons ex-
plained above, we are going to use disk storage to imple-
ment our queue; thus having a large queue does not lead
to any serious problem in our context.
Note that with our approach all optimization strate-

gies implemented within the Murϕ verifier (bit compres-
sion, hash compaction, symmetry reduction, etc.) are also
available to us. Moreover, the bound on the omission
probability for the hash compaction computed “online”
by Murϕ according to [36] is also (a fortiori) valid in our
case: in fact, at each (BF) level we visit a superset of the
states visited by a standard BF visit.

5 Disk-based BF state space exploration

Disk read/write times are much larger than memory
read/write times. Thus, not surprisingly, the main draw-
back of DBFS (disk-based breadth-first search) with re-
spect to RAM-BFS (RAM-based breadth-first search) is
the time overhead due to disk usage. On the other hand,
because of state explosion, memory is one of the main

obstacles to automatic verification; thus using disks to
increase the amount of memory available during verifica-
tion is very appealing.
In [34] a DBFS algorithm has been proposed for the

Murϕ verifier. Here we show how to improve that algo-
rithm by exploiting transition locality (Sect. 3). In par-
ticular, disk accesses for reading can be reduced, leading
to a reduction in the time overhead due to disk usage. In
the following we call LDBFS our locality-based DBFS al-
gorithm.
As in [34] we actually have two DBFS algorithms: one

for the case in which hash compaction is enabled and one
for the case in which it is not enabled. In the following dis-
cussion we only present the most interesting version that
is compatible with the hash compaction option; the other
version is simpler and easy to derive from the first.
We call DMurϕ the resulting disk-based Murϕ veri-

fier.

5.1 Data structures

The data structures used by LDBFS are in Fig. 6 and are
essentially the same as the ones used in [34]. We have
a table M to store signatures of recently visited states, a file
D to store signatures of all visited states (old states), a
checked queue Q_ck to store the states in the BFS level
currently explored by the algorithm (BFS front), and an
unchecked queue Q_unck to store pairs (s, h), where s is
a state candidate to be on the next BFS level and h is the
signature of state s.
State signatures in M do not necessarily represent all

visited states. In M we just have recently visited states.
Using the information in M we build the unchecked queue
Q_unck that contains the set of state candidates to be
in the next BFS level. Note that the states in Q_unck
may be old (i.e., previously visited) since using M we can
only avoid reinserting in Q_unck recently visited states.
Indeed, we use disk file D to remove old state signatures
from table M as well as to check Q_unck to get rid of old
states. The result of this checking process is the checked
queue Q_ck.
The main difference between our algorithm and the

one in [34] is that in the checking process we only use

Fig. 6. DMurϕ global data structures
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a subset of the state signatures in D. In fact, we divide
D into blocks and then use only some of such blocks to
clean up M and Q_unck. This decreases disk usage and
thus speeds up verification; however, with this approach
Q_ck may also contain some old state and, as a result,
our algorithm may mark as new (unvisited) a state that
indeed is old (visited).
This means that some state may be visited more than

once and thus appended to file D more than once. How-
ever, thanks to transition locality (Sect. 3), this does not
happen too often. It is exactly this statistical property of
transition graphs that makes our approach effective.
The global variable disk_cloud_size holds the num-

ber of blocks of D we use to remove old state signatures
from table M; our algorithm dynamically adjusts the value
of disk_cloud_size during the search.
Table M is in memory, whereas file D is on disk; we use

a disk also for the BFS queues Q_ck, Q_unck. Our low-
level algorithm to handle disk queues Q_ck and Q_unck is
exactly the same one we used in CMurϕ (Sect. 4).
Note that all the data structures that grow with the

state space size (namely, D, Q_ck, Q_unck) are on disk in
LDBFS, whereas in [34] the state queues are in memory;
since states in the BFS queue are not compressed [23], for
large verification problems the BFS queue can be a limit-
ing factor for [34].

5.2 The main LDBFS loop

The Search() function (Fig. 7) is a breadth-first search
using the checked queue Q_ck as the current level state
queue. It first loads the BFS queue (Q_ck) with the ini-
tial states and then begins dequeuing states from Q_ck;
for each successor s’ of each state dequeued, Search()
calls Insert(s’) to store potentially new states in M as
well as in Q_unck.
Given a state s, Insert(s) (Fig. 8) computes the sig-

nature h of s and, if h is not in table M, it inserts the pair
(s, h) in the unchecked queue Q_unck and signature h in
table M.
When M is full, function Insert() calls function

Checktable() to clean up M as well as the queues.
When Q_ck becomes empty, it means that all transi-

tions from all states in the current BFS level have been ex-
plored; thus we have to move to the next BFS level. Func-
tion Search()does this by calling function Checktable(),
which refills the checked queue Q_ck with fresh (non-
visited) states, if there are any, from the unchecked
queue Q_unck. If, after calling Checktable(),Q_ck is still
empty, it means that all reachable states have been visited
and the BFS ends.

5.3 Exploiting locality in state filtering

The Checktable() function (Fig. 10), using disk file D,
removes signatures of old (visited) states from table M.

Fig. 7. Search() function

Fig. 8. Insert() function

Then, using this cleaned M, it removes old states from the
unchecked queue Q_unck. Finally, Checktable() moves
the states that are in the (now cleaned) unchecked queue
Q_unck to the checked queue Q_ck.
In [34], this function uses all the states’ signatures

in D, whereas exploiting locality (Sect. 3) here we are able
to use only a fraction of these signatures: by reading fewer
states from disk, we save, with respect to [34], some of the
time overhead due to disk accesses.
The rationale of our approach stems from the follow-

ing observations. First, we should note that state signa-
tures are appended to the file D in the same order in which
new states are discovered by the BFS; thus, as we move
toward the tail of the file we find (signatures of) states
whose BFS level is closer and closer to the current level
reached by the BFS.
From Sect. 3 we know that most transitions are local,

i.e., they lead to states that are on BFS levels close to the
current one. This means that most of the old states in M
can be detected and removed by only looking at the tail of
file D.
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Fig. 9. Probability curve for disk cloud block selection (used by
GetDiskCloud())

We can take advantage of the above remarks by using
the following approach. We divide the disk file D into
blocks; then, rather than using the whole file D in the
Checktable(), we only use a subset of the set of disk
blocks, which we call disk cloud. The disk cloud is created
by selecting at random several disk blocks; selection prob-
ability of disk blocks is not uniform; instead, to exploit lo-
cality, the selection probability increases as we approach
the tail of D (Fig. 9).
Our experiments on CMurϕ (Sect. 6.2) show that lo-

cality allows us to save about 40% of the memory required
to complete verification. This suggests that it is neces-
sary to use, say, just 60% of the disk blocks; thus the size
(number of blocks) of the disk cloud should be 60% of
the number of disk blocks. This works fine; however, we
can do more. Our experimental results show that, most
of the time, we need much fewer than 60% of the disk
blocks to carry out the cleanup implemented by function
Checktable(). Thus we dynamically adjust the fraction
of disk blocks used by function Checktable().

5.4 Disk cloud creation

The GetDiskCloud() function (Fig. 11) is called by the
Checktable() function to create our disk cloud. The
function selects disk_cloud_size disk blocks according
to the probability curve shown in Fig. 9 and returns to
Checktable() the indexes of the selected blocks.
We number disk blocks starting from 0 (oldest block);

thus, the lower the disk block index, the older (closer to
the head of file D) the disk block. On the x-axis of Fig. 9
we have the relative disk block index ρ, i.e., ρ =<block
index> / <number of blocks>. For instance, ρ= 0 is the
(relative index of the) first (oldest) disk block inserted
into disk D, whereas ρ= 1 is the last (newest) disk block
inserted. On the y-axis of Fig. 9 we have the probability of
selecting a disk block with a given ρ.

The probability curve is split into three segments.
States closer to the current one must have a high selec-
tion probability, whereas states that are not too far from
the current one have a medium selection probability. Note
that, defensively, the selection probability of old blocks
(ρ close to 0) must always be greater than zero. This is
because we want to have some old blocks to remove oc-
casional far back states (i.e., states belonging to an old
BFS level far from the current one) reached by occa-
sional nonlocal transitions. This kind of selection proba-
bility curve ensures that the most recently created blocks
(ρ close to 1) are selected with a higher probability than
old blocks, thus exploiting transition locality.
Since our min and max values for the relative disk

block indexes are, respectively, 0 and 1, in Fig. 9 we have
a0 = 0 and a3 = 1. The value of b3 is always 1/K, whereK
is a normalization constant chosen so that the sum of the
selection probabilities over all disk blocks is 1. The pairs
(a1, b1), (a2, b2) define our selection strategy.
We tested many sets of values for these parameters,

and those that obtained the best results in our experi-
ments are: a1 = 0.4, b1 = 0.4/K, a2 = 0.7, b2 = 0.6/K. Of
course, these values can be further refined, or they can be
dynamically adjusted together with the disk cloud size.
Two strategies are possible to partition disk D into

state signature blocks.We can have either a variable num-
ber of fixed-size blocks or a fixed number of variable-size
blocks.
Reading a block from disk D can be done with a se-

quential transfer, whereas moving disk heads from one
block to another requires a disk seek operation. Since
seeks take longer than sequential transfers, we decided to
limit the number of seeks, so that the structure stored in
disk D has a high locality of reference. This led us to use
a fixed number of variable-size blocks.
LetN be the number of disk blocks we want to use and

let S be the number of state signatures in file D, then each
block (possibly with the exception of the last one that will
be smaller) has �S/N� state signatures.As amatter of fact,
to avoid having too small blocks, we also impose a mini-
mum valueB for the number of state signatures in a block;
thus wemay have less thanN blocks if S is too small.
In our experiments here we usedN = 100 andB = 104;

thus to have 100 disk blocks we need at least 106 reachable
states.

5.5 Disk cloud size calibration

The Calibrate() function (Fig. 12) is called by the
Checktable() function every time a calibration is needed
for the disk cloud size.
Two parameters are passed to the Calibrate()

function: the number of disk states deleted from M by
Checktable() by only using disk blocks that are in the
disk cloud (deleted_in_cloud) and the number of disk
states deleted from M by only using disk blocks that are
not in the disk cloud (deleted_not_in_cloud).
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Fig. 10. Checktable() function (state filtering)
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Fig. 11. GetDiskCloud() function

Fig. 12. Calibrate() function

The function computes the ratio beta between the
number of states deleted from M that are not in the disk
cloud and the total number of states deleted from M
(deleted_states). A value of beta close to 1 (low disk
cloud effectiveness) means that the disk cloud has not
been very effective in removing old states from table M.
In this case, the variable disk_cloud_size is increased
by (speedup*disk_cloud_size). A value of beta close
to 0 (high disk cloud effectiveness) means that the disk
cloud has been very effective in removing old states
from table M. In this case, we decrease the value of
disk_cloud_size by (slowdown*disk_cloud_size) in
order to lower the disk access rate.
In our experiments we used speedup = 0.15 and

slowdown= 0.15.

5.6 Calibration frequency

The QueryCalibration() function tells Checktable()
whether a calibration will be performed; that is, whether,

at the end of the Checktable() function, Calibrate()
will be called (Fig. 10). If a calibration will be performed,
the Checktable() function reads the whole file D rather
than just the disk cloud.
The rationale behind the QueryCalibration() func-

tion is the following. Calling the Calibrate() function
too often nullifies our efforts for reducing disk usage, since
a calibration of the disk cloud size requires reading the
whole file D. However, calling Calibrate() too sporadi-
cally may have the same effect: in fact, waiting too long
for a calibration may lead to the use of an oversized disk
cloud or an undersized one. An oversized disk cloud in-
creases disk usage beyond needs; also, an undersized disk
cloud increases disk usage, since many old states will not
be removed from M and this will lead to revisiting many
already visited states.
In our current implementation, the QueryCalibra-

tion() function enables a calibration every γ calls of
the Checktable() function. We tried many different
values for γ; our experimental results suggest that 10
is a reasonable calibration frequency. A variable calibra-
tion frequency could make our algorithm more adap-
tive. However, the underlying heuristics should be chosen
with extreme care. Indeed, our preliminary experiments
showed that even a small change in the calibration fre-
quency can produce a big degradation in the algorithm
performances. This would be an interesting issue to
investigate.

6 Experimental results

We report the experimental results we obtained using
CMurϕ (Sect. 4) and DMurϕ (Sect. 5). We want to meas-
ure how much memory we can save by using our cache-
based and disk-based approaches.
Our benchmark consists of some of the protocols

in the Murϕ distribution [23] and the kerb protocol
from [37]. For some of these protocols we used several
different versions with different parameter sets.
To make the results from all protocols comparable and

machine independent, we will first determine the best
performance of standardMurϕ on each protocol and then
give our experimental results as ratios with respect to the
standard Murϕ results.

6.1 Murϕ measures

First, for each protocol we determine the minimum
amount of memory needed to complete verification using
the Murϕ verifier (namely, Murϕ version 3.1 from [23]).
Let M be the amount of memory and g (in [0, 1]) the

fraction of M used for the queue (g is gPercentActive
using a Murϕ parlance). We say that the pair (M , g) is
suitable for protocol p if and only if the verification of p
can be completed with memory M and queue gM . For
each protocol p we determine the leastM so that for some
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g, (M , g) is suitable for p. In the following discussion we
denote byM(p) such anM .
Of course,M(p) depends on the compression options

one uses.We determinedM(p) when only bit compression
is used (option -b) and when bit compression and hash
compaction are used (option -b -c).
The results are shown in Tables 3 and 4. The mean-

ing of the columns is shown in Table 2. Table 3 shows the
original protocols from our benchmark, whereas Table 4
shows our results for some bigger protocols obtained from
those in Table 3 by modifying some of their parameters.
For such protocols, we only present results about experi-
ments in which all compression options are enabled.
We may note that there are protocols requiring more

than 512MB of memory to complete. Thus we could not
use standard Murϕ on our 512-MB PC. However, we
were able to complete verification of such protocols using
CMurϕ (Sect. 4). In fact, when we give it enough mem-
ory, we get a very low collision rate, and from Sect. 6.2
we know that in this case the CPU time taken by CMurϕ
is essentially the same as that taken by standard Murϕ
with enough memory to complete the verification task.
Of course, these protocols will not be used in the CBFS
experiments but only to test the LDBFS algorithm in
Sect. 6.4.

Table 2. Meaning of columns in Tables 3 and 4

Attribute Meaning

Model Name of the model.

Parameters If the model parameters have been changed, we report our parameter values in the same
order in which they appear in the Const section of the model file. When this list is too long,
we just list the modified assignments.

Bytes per state Number of bytes needed to represent a state in the queue when bit compression is used.
For model p we denote this number by StateBytes(p). When bit compression and hash
compaction are used, this number is always 5 bytes (signature size).

Reachable states Number of reachable states for the model. For model p, we denote this number by
|Reach(p)|.

Rules fired Number of rules fired during state space exploration. Each rule represents a transition in
the model transition graph. For model p, we denote this number byRulesFired(p).

Max queue Maximum queue size (i.e., number of states) attained during space state exploration. For
model p we denote this number byMaxQ(p).

Diam Diameter of the model transition graph.

Mem Minimum amount of memory (in kilobytes) needed to complete state space exploration,
denoted byM(p). Let bh be the number of bytes taken by a state in the hash table (bh = 5
if hash compaction is used). From the Murϕ source code we can computeM(p). We have:
M(p) = |Reach(p)| (bh + (MaxQ(p)/|Reach(p)|)StateBytes(p)).

g Fraction of memory used for the queue. From the Murϕ source code we can compute g. We
have: g =MaxQ(p)/|Reach(p)|.

Time CPU time (in seconds) to complete state space exploration using the given parameters and
Murϕ options. We denote this number by T (p).

6.2 Results for CBFS

To test CBFS performances, we run each protocol p using
our cache-based Murϕ with the value of g (gPercentAc-
tive) chosen as in Table 3 and decreasing fractions of the
minimal memory determined in Sect. 6.1. That is, we run
p with memory limitsM(p), 0.9M(p), . . . 0.1M(p).
This approach allows us to easily compare the experi-

mental results obtained from different protocols. Note
that, as in [18], our memory is not filled up. Thus OS
buffers may reduce the time to access the queue. As a re-
sult, our measured time may be slightly smaller than that
obtained with a filled up memory.
The results using bit compression (option -b) are in

Table 5, whereas the results obtained using bit compres-
sion and hash compaction (options -b -c) are in Table 6.
Note that the tables do not show the results for all the
protocols in our benchmark set but only the most repre-
sentative cases (including the best and worst cases).
In these tables, the memory fraction used for the

experiment is shown as a real number α, with α =
1, 0.9, . . . , 0.1, on the top of each column; thus, e.g., col-
umn 0.5 gives information about the run of protocol
p with memory 0.5M(p) (half of the minimal memory
needed by standard Murϕ).
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Table 3. Murϕ results on a Linux Pentium III 866-MHz PC with 256MB RAM using bit compression and bit compression + 40-bit hash
compaction. All experiments have been carried out with deadlock detection disabled

Bit compression Bit Compression
& Hash compaction

Model Bytes Reachable Rules Max Diam Mem g Time Mem g Time
per state states fired queue

cache3 12 577 2440 102 16 10 0.4 0.15 4 0.4 0.15
list6too 20 1077 11622 64 36 26 0.2 15.55 6 0.1 16.83
arbiter 8 1103 2365 301 12 15 0.4 0.1 7 0.3 0.1
ns 24 980 2314 382 11 29 0.4 0.59 7 0.4 0.62

ns-old 24 1121 2578 424 11 33 0.4 0.69 8 0.4 0.69
adashbug 144 3742 39619 646 14 544 0.2 18.19 21 0.18125 17.60
newcache3 52 4357 20201 462 27 240 0.1125 8.01 24 0.15 7.93
adash 144 10466 137708 734 37 1516 0.075 60.57 55 0.075 62.98
newlist6 24 13044 53595 631 53 360 0.05 17.23 67 0.05 18.34
cache3multi 28 13738 65357 1229 29 435 0.1 34.16 73 0.1 35.11

sci 56 18193 60455 1175 62 1071 0.066 27.29 94 0.06875 28.17
list6 24 23410 99874 1095 53 645 0.05 13.73 119 0.05 14.90
mcslock1 12 23644 94576 928 69 373 0.04023 16.17 120 0.04375 16.76
sym.cache3 28 31433 264758 2877 32 994 0.1039 36.22 167 0.10625 36.03
kerb 80 109282 172111 20523 19 9046 0.191 291.49 615 0.190625 301.86
eadash 376 133491 1786047 9050 47 49571 0.06875 4102.33 688 0.06875 4114.71

n_peterson 16 163298 1143086 3775 145 3204 0.0233 269.13 813 0.0233 273.32
ldash 144 254986 2647358 14988 64 36930 0.075 4002.97 1307 0.062 3950.50
mcslock2 12 540219 1620657 15655 111 8503 0.0293 234.68 2693 0.02969 237.48

Table 4. Murϕ results on a 2-GHz INTEL Pentium IV Linux PC with 512MB RAM using bit compression + 40-bit hash compaction.
All experiments have been carried out with deadlock detection disabled

Bit compression
& Hash compaction

Model Parameters Bytes Reachable Rules Max Diam Mem g Time
per state states fired queue

n_peterson 9 20 2871372 25842348 46657 241 14932 0.02 764.27
newlist6 7 32 3619556 21612905 140382 91 22060 0.04 1641.67
sci 3,1,1,2,1 60 9299127 30037227 347299 94 65755 0.04 2852.03

mcslock1 6 16 12783541 76701246 392757 111 68556 0.03 3279.45
ldash 1,4,1,false 144 8939558 112808653 509751 72 115334 0.06 12352.93
ns 1,1,3,2,10 96 2455257 8477970 1388415 12 142152 0.57 1211.02

newlist6 8 40 81271421 563937480 2875471 110 509156 0.03 31114.87
sci 3,1,1,5,1 64 75081011 254261319 2927550 95 549578 0.04 35904.86
kerb NumIntruders=2 148 7614392 9859187 4730277 15 720852 0.62 2830.83
sci 3,1,1,7,1 68 126784943 447583731 4720612 143 932545 0.04 99904.47

Rows States, Rules, and Time give the ratio be-
tween the visited states, the rules fired, and the time
used to complete the state space exploration with CMurϕ
using the given memory fraction and the same values ob-
tained with standard Murϕ with the same compression
options, as determined in Sect. 6.1.
Row Coll gives the collision rate, that is, the ratio

between the number of collisions and the number of
states inserted in the cache. Since our state space ex-
ploration may not terminate, we stop our visit when
the collision rate is greater than 0.9. We report also

the information on these experiments to give an idea of
the behavior of our approach when a visit is stopped
prematurely.
In this case, we do not know a priori if all reach-

able states have been visited. However, in our experi-
ments we have such information since all the proto-
cols can actually fit in our memory. We mark with
a ∗ superscript the data obtained when the visit has
been stopped because the collision rate exceeded 0.9
and all reachable states have been visited. We mark
with a ∞ superscript the data obtained when the visit
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Table 5. Cache-based BF search with bit compression

Model Memory 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
fraction

kerb states 1.001 1.001 1.003 1.007 1.015 1.025 1.048 1.097 1.228 1.107∞

rules 1.003 1.005 1.012 1.022 1.038 1.057 1.092 1.151 1.285 1.012∞

time 0.982 0.986 0.987 0.994 1.004 1.015 1.041 1.090 1.221 0.828∞

coll 0.060 0.122 0.207 0.305 0.409 0.512 0.618 0.727 0.837 0.910∞

ns states 1.001 1.000 1.010 1.046 1.024 1.057 1.147 2.476 2.041∗ 1.020∞

rules 1.032 1.000 1.066 1.140 1.047 1.128 1.284 2.998 1.974∗ 0.891∞

time 1.085 1.068 1.102 1.169 1.119 1.169 1.305 2.864 1.746∗ 0.746∞

coll 0.042 0.098 0.202 0.326 0.409 0.530 0.659 0.886 0.919∗ 0.932∞

sci states 1.003 1.008 1.020 1.041 1.095 1.369 4.067∗ 3.243∞ 2.089∞ 1.099∞

rules 1.003 1.009 1.022 1.045 1.102 1.382 3.975∗ 2.919∞ 1.749∞ 0.850∞

time 1.017 1.016 1.025 1.048 1.104 1.392 3.970∗ 2.912∞ 1.752∞ 0.858∞

coll 0.062 0.127 0.219 0.328 0.453 0.635 0.902∗ 0.908∞ 0.906∞ 0.912∞

mcslock2 states 1.009 1.017 1.032 1.063 1.178 2.751∗ 4.008∞ 3.004∞ 2.269∞ 1.061∞

rules 1.009 1.017 1.032 1.063 1.178 2.749∗ 3.742∞ 2.710∞ 1.986∞ 0.903∞

time 0.978 0.991 1.009 1.046 1.163 2.734∗ 3.721∞ 2.692∞ 1.951∞ 0.879∞

coll 0.092 0.152 0.236 0.343 0.491 0.818∗ 0.900∞ 0.900∞ 0.912∞ 0.906∞

mcslock1 states 1.009 1.020 1.058 1.190 1.900 4.948∗ 4.187∞ 3.299∞ 2.368∞ 1.100∞

rules 1.009 1.020 1.058 1.190 1.900 4.613∗ 3.709∞ 2.818∞ 1.958∞ 0.895∞

time 1.015 1.030 1.074 1.198 1.890 4.547∗ 3.605∞ 2.678∞ 1.799∞ 0.798∞

coll 0.069 0.140 0.248 0.412 0.685 0.900∗ 0.904∞ 0.911∞ 0.917∞ 0.911∞

newlist6 states 1.009 1.022 1.049 1.198 1.830 5.136∗ 3.987∞ 3.527∞ 2.300∞ 1.227∞

rules 1.009 1.023 1.052 1.198 1.816 4.641∗ 3.328∞ 2.783∞ 1.734∞ 0.888∞

time 1.005 1.020 1.052 1.198 1.810 4.656∗ 3.320∞ 2.777∞ 1.725∞ 0.868∞

coll 0.066 0.134 0.239 0.415 0.671 0.903∗ 0.900∞ 0.915∞ 0.914∞ 0.922∞

adash states 1.006 1.016 1.043 1.124 1.738 5.160∗ 4.300∞ 3.631∞ 2.389∞ 1.147∞

rules 1.007 1.016 1.043 1.125 1.736 4.749∗ 3.714∞ 2.937∞ 1.819∞ 0.782∞

time 1.001 1.010 1.039 1.124 1.747 4.824∗ 3.792∞ 3.013∞ 1.889∞ 0.818∞

coll 0.063 0.132 0.236 0.377 0.655 0.904∗ 0.907∞ 0.919∞ 0.916∞ 0.918∞

newcache3 states 1.012 1.029 1.053 1.213 1.895 5.279∗ 4.131∞ 2.984∞ 2.066∞ 1.148∞

rules 1.011 1.027 1.050 1.222 1.927 4.851∗ 3.446∞ 2.378∞ 1.551∞ 0.754∞

time 1.004 1.022 1.049 1.230 1.953 4.905∗ 3.487∞ 2.401∞ 1.577∞ 0.792∞

coll 0.069 0.141 0.242 0.423 0.683 0.907∗ 0.907∞ 0.902∞ 0.911∞ 0.919∞

cache3multi states 1.009 1.030 1.098 1.291 2.422 5.387∗ 4.367∞ 3.203∞ 2.184∞ 0.946∞

rules 1.011 1.037 1.117 1.328 2.535 5.173∗ 3.902∞ 2.674∞ 1.725∞ 0.712∞

time 1.010 1.037 1.118 1.337 2.564 5.255∗ 3.974∞ 2.730∞ 1.759∞ 0.728∞

coll 0.062 0.141 0.272 0.458 0.752 0.908∗ 0.909∞ 0.908∞ 0.911∞ 0.900∞

n_peterson states 1.004 1.011 1.028 1.242 4.366∗ 5.028∗ 4.036∗ 3.037∞ 2.039∞ 1.035∞

fired 1.004 1.011 1.028 1.242 4.364∗ 4.994∗ 3.997∗ 2.992∞ 1.992∞ 0.993∞

time 0.972 0.981 1.004 1.201 4.222∗ 4.888∗ 3.914∗ 2.959∞ 1.975∞ 1.017∞

coll 0.062 0.128 0.225 0.437 0.863∗ 0.901∗ 0.901∗ 0.901∞ 0.902∞ 0.904∞

ldash states 1.019 1.058 1.295 7.495∗ 6.114∞ 6.106∞ 4.067∞ 3.753∞ 2.361∞ 1.020∞

rules 1.018 1.056 1.287 6.698∗ 5.084∞ 4.847∞ 3.086∞ 2.726∞ 1.633∞ 0.664∞

time 1.043 1.078 1.324 6.758∗ 5.112∞ 4.984∞ 3.177∞ 2.828∞ 1.703∞ 0.701∞

coll 0.069 0.161 0.382 0.907∗ 0.902∞ 0.918∞ 0.902∞ 0.920∞ 0.915∞ 0.902∞

Min Time 0.972 0.981 0.987 0.994 1.004 1.015 1.041 1.090 1.221 //

Avg Time 1.010 1.022 1.071 1.155 1.595 1.192 1.173 1.977 1.221 //

Max Time 1.085 1.078 1.324 1.337 2.564 1.392 1.305 2.864 1.221 //
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Table 6. Cache-based BF search with bit compression and hash compaction

Model Memory 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
fraction

kerb states 1.000 1.001 1.002 1.006 1.013 1.026 1.047 1.093 1.223 1.116∞

rules 1.000 1.003 1.008 1.018 1.034 1.060 1.090 1.146 1.280 1.020∞

time 0.983 0.990 1.002 1.011 1.026 1.054 1.078 1.135 1.274 0.891∞

coll 0.007 0.101 0.202 0.305 0.407 0.513 0.618 0.726 0.836 0.911∞

sci states 1.000 1.005 1.013 1.037 1.087 1.313 4.013∗ 3.133∞ 2.309∞ 1.154∞

rules 1.000 1.006 1.014 1.041 1.093 1.325 3.950∗ 2.793∞ 1.916∞ 0.894∞

time 1.027 1.043 1.061 1.105 1.180 1.458 4.544∗ 3.225∞ 2.226∞ 1.047∞

coll 0.005 0.108 0.210 0.331 0.450 0.618 0.902∗ 0.906∞ 0.917∞ 0.920∞

adash states 1.000 1.009 1.025 1.133 1.565 5.064∗ 4.491∞ 3.631∞ 2.293∞ 0.860∞

rules 1.000 1.009 1.025 1.133 1.568 4.684∗ 3.895∞ 2.931∞ 1.763∞ 0.572∞

time 0.973 0.994 1.016 1.134 1.593 4.855∗ 4.046∞ 3.081∞ 1.863∞ 0.609∞

coll 0.002 0.103 0.207 0.380 0.611 0.902∗ 0.911∞ 0.918∞ 0.912∞ 0.900∞

cache3multi states 1.000 1.013 1.089 1.297 2.939 5.168∗ 4.440∞ 3.421∞ 2.329∞ 0.946∞

rules 1.000 1.017 1.104 1.330 3.078 4.929∗ 3.985∞ 2.862∞ 1.835∞ 0.713∞

time 0.978 1.005 1.107 1.363 3.344 5.418∗ 4.399∞ 3.157∞ 2.026∞ 0.780∞

coll 0.003 0.114 0.264 0.457 0.798 0.905∗ 0.911∞ 0.915∞ 0.918∞ 0.903∞

newcache3 states 1.000 1.022 1.053 1.313 2.155 5.049∗ 4.131∞ 3.213∞ 1.836∞ 1.148∞

rules 1.000 1.020 1.052 1.330 2.192 4.646∗ 3.412∞ 2.564∞ 1.347∞ 0.742∞

time 1.032 1.061 1.111 1.450 2.483 5.462∗ 4.026∞ 3.021∞ 1.604∞ 0.919∞

coll 0.003 0.136 0.239 0.488 0.725 0.903∗ 0.908∞ 0.911∞ 0.909∞ 0.936∞

newlist6 states 1.000 1.007 1.050 1.226 1.897 5.443∗ 4.140∞ 3.373∞ 2.300∞ 1.073∞

rules 1.000 1.008 1.053 1.224 1.882 4.863∗ 3.434∞ 2.674∞ 1.738∞ 0.776∞

time 1.046 1.066 1.140 1.360 2.192 6.009∗ 4.263∞ 3.335∞ 2.155∞ 0.944∞

coll 0.002 0.100 0.237 0.434 0.682 0.909∗ 0.905∞ 0.912∞ 0.917∞ 0.917∞

mcslock1 states 1.000 1.010 1.046 1.163 1.848 5.160∗ 4.145∞ 3.341∞ 2.326∞ 1.100∞

rules 1.000 1.010 1.046 1.163 1.848 4.817∗ 3.680∞ 2.849∞ 1.926∞ 0.893∞

time 0.982 1.025 1.106 1.284 2.217 6.304∗ 4.776∞ 3.652∞ 2.410∞ 1.085∞

coll 0.006 0.104 0.232 0.395 0.674 0.903∗ 0.903∞ 0.911∞ 0.915∞ 0.910∞

mcslock2 states 1.000 1.006 1.022 1.055 1.177 4.444∗ 4.206∞ 3.038∞ 2.279∞ 1.063∞

rules 1.000 1.006 1.022 1.055 1.177 4.427∗ 3.915∞ 2.734∞ 1.993∞ 0.905∞

time 1.023 1.092 1.181 1.301 1.538 6.956∗ 6.202∞ 4.325∞ 3.043∞ 1.335∞

coll 0.009 0.105 0.217 0.337 0.490 0.888∗ 0.905∞ 0.901∞ 0.912∞ 0.906∞

n_peterson states 1.000 1.005 1.024 1.225 4.262∗ 5.021∗ 4.036∗ 2.988∞ 1.990∞ 0.998∞

rules 1.000 1.005 1.024 1.225 4.262∗ 4.988∗ 3.996∗ 2.942∞ 1.944∞ 0.957∞

time 1.008 1.033 1.079 1.320 5.014∗ 5.993∗ 4.797∗ 3.560∞ 2.374∞ 1.207∞

coll 0.006 0.104 0.219 0.428 0.859∗ 0.901∗ 0.901∗ 0.900∞ 0.900∞ 0.900∞

ldash states 1.000 1.028 1.284 7.189∗ 7.047∞ 5.953∞ 4.016∞ 3.722∞ 2.349∞ 1.016∞

rules 1.000 1.027 1.278 6.394∗ 5.861∞ 4.719∞ 3.048∞ 2.705∞ 1.622∞ 0.062∞

time 1.013 1.075 1.346 6.851∗ 6.177∞ 4.987∞ 3.278∞ 2.946∞ 1.762∞ 0.727∞

coll 0.007 0.125 0.377 0.903∗ 0.915∞ 0.916∞ 0.901∞ 0.920∞ 0.915∞ 0.902∞

Min Time 0.973 0.990 1.002 1.011 1.026 1.054 1.078 1.135 1.274 //

Avg Time 1.007 1.038 1.115 1.259 1.947 1.256 1.078 1.135 1.274 //

Max Time 1.046 1.092 1.346 1.450 3.344 1.458 1.078 1.135 1.274 //

has been stopped because the collision rate exceeded
0.9 and there are reachable states that have not been
visited.
The Time row shows the time overhead due to re-

visiting already visited states. Using only bit compres-

sion (Table 5) time penalty for column 0.6 (40% memory
saving) ranges from 0 to 150% with an average value of
about 50%. Using bit compression and hash compaction
(Table 6) time penalty for column 0.6 ranges from 0 to
234% with an average value of about 100%.
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Therefore, our experimental results show that our
cache-based approach typically saves about 40% of mem-
ory with respect to a hash-table-based approach. This
holds when using bit compression alone as well as when
using bit compression and hash compaction.
The results of Table 6 are also plotted in Fig. 13, where

we have the Memory fraction on the x-axis and Time on
the y-axis.
Note that no memory saving may be possible for non-

local protocols. For example, the state space exploration
of theNLS system in Fig. 2 does not terminate unless we
give the verifier enough memory to store all the reachable
states.

6.3 A large protocol with CBFS

We also tested our cache-based approachwith a large pro-
tocol that heavily loads our machine.
We used the ns protocol with parameters NumIniti-

ators= 2, NumResponders= 1, NumIntruders= 2, Net-
workSize= 2, MaxKnowledge= 10, giving to CMurϕ 200,
150, and 130MB of memory.

Fig. 13. Time (time ratio) vs. Memory fraction from Table 6

Table 7. Cache-based BF search for protocol ns with parameters: NumInitiators = 2, NumResponders = 1, NumIntruders = 2,
NetworkSize = 2, MaxKnowledge = 10. Results obtained on a Pentium III 866-MHz machine with 256MB RAM using bit compression,
40-bit hash compaction, and no deadlock detection

Memory Cache Cache Queue Queue Visited Time Collision Max states Max queue
(Mb) size memory (Mb) size memory (Mb) states rate queued space used (Mb)

200 38836153 180 215756 20 44780625 19349.80 0.17024 16215144 1113.40
150 29127121 135 161817 15 46369727 19975.79 0.373777 16239606 1115
130 25243507 117 140241 13 48933778 21769.69 0.484372 16264901 1116.8

The results are in Table 7. Columns Cache memory
and Cache size give, respectively, the memory reserved
for the cache and the max number of states that fit in that
memory (each state takes 40 bits with hash compaction).
Columns Queue memory and Queue size give, re-

spectively, the memory reserved for the queue and the
max number of states that fit in that memory (each state
takes 68 bytes in the queue).
Columns Max states queued and Max queue

space used give, respectively, the max number of states
actually contained in the BF queue (memory + disk) dur-
ing the verification and the space they would require in
memory. The other columns have their usual meaning.
WhenMemory= 200 (first row of Table 7), the colli-

sion rate is low; thus the number of visited states is about
the number of reachable states. This means that complet-
ing verification for this protocol would require more than
1313MB of memory using standard Murϕ (i.e., 200MB
for the hash table, 1113MB for the queue). This is more
than our machine can handle: however, using our cache-
based Murϕ, we were able to complete verification using
only 130MB of memory (last row of Table 7).
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As shown in our experiments, there is a time-space
tradeoff when using our cache-based approach. However,
for verification tasks such a tradeoff is often acceptable
and in any case better than being left with an out of
memorymessage after hours of computation.

6.4 Results for LDBFS

In this section we report the experimental results we
obtained by using DMurϕ. Our experiments have two
goals. First, we want to know if by exploiting locality
there is indeed some gain with respect to the algorithm
proposed in [34]. Second, we want to measure DMurϕ

Table 8. Comparing DMurϕ with standard Murϕ
(using bit compression and hash compaction)

Model Parameters Memory 1 0.5 0.1
fraction

n_peterson 9 States 1.178 1.124 1.199
Rules 1.178 1.124 1.199
Time 2.148 2.056 2.783

ns 1,1,3,2,10 States 1.348 1.405 1.373
Rules 1.487 2.011 1.645
Time 1.734 2.144 1.953

newlist6 7 States 1.366 1.335 1.384
Rules 1.365 1.334 1.382
Time 1.703 1.765 2.791

ldash 1,4,1,false States 1.566 1.668 1.702
Rules 1.528 1.626 1.658
Time 2.037 2.226 3.770

sci 3,1,1,2,1 States 1.260 1.189 1.183
Rules 1.279 1.206 1.200
Time 1.811 1.798 2.888

mcslock1 6 States 1.346 1.550 1.703
Rules 1.346 1.550 1.703
Time 1.915 2.477 5.259

sci 3,1,1,5,1 States – 1.169 1.143
Rules – 1.195 1.167
Time – 1.828 2.553

sci 3,1,1,7,1 States – 1.130 1.097
Rules – 1.152 1.115
Time – 1.421 1.743

kerb NumIntruders=2 States – 1.282 1.279
Rules – 1.060 1.080
Time – 1.234 1.438

newlist6 8 States – 1.416 1.406
Rules – 1.412 1.405
Time – 2.612 4.436

Min Time 1.703 1.234 1.438
Avg Time 1.891 1.954 2.961
Max Time 2.148 2.612 5.259

time overhead with respect to standardMurϕ performing
a RAM–BFS.
We proceed using the same method used for CBFS

in Sect. 6.2: we run each protocol p with our disk-based
Murϕ, using decreasing fractions of the minimal memory
determined in Sect. 6, i.e., we run protocol pwith memory
limitsM(p), 0.5M(p) and 0.1M(p).
The results we obtained comparing our disk-based

Murϕ with standard Murϕ are in Table 8. Column mean-
ings are the same as those in Sect. 6.2. Note that, with
the disk-based algorithm, the time to complete the ver-
ification is the time elapsed between the start and the
end of the state space exploration process: that is, it in-
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cludes the CPU time as well as the time spent on disk
accesses.
For the biggest models in our benchmark, requiring

more than 512MB of memory, we could not run the ex-
periments with memory fraction α = 1 on our machine
with 512MB of memory. However, the most interesting
column for us is the one with α= 0.1. Indeed, the experi-
mental results show that, even when α = 0.1, our disk-
based approach is only between 1.4 and 5.3 (3 on average)
times slower than a RAM–BFS with enough memory to
complete the verification task.
The results of Table 8 are also plotted in Fig. 14, where

we have the Memory fraction on the x-axis and Time
(time fraction) on the y-axis.

6.5 DMurϕ vs. disk-based Murϕ

To measure the time speedup we obtain by exploiting
locality, we are also interested in comparing our locality-
based disk algorithm DMurϕ with the disk-based Murϕ
presented in [34]. The latter algorithm is not available
in the standard Murϕ distribution, so we obtained it
from DMurϕ by omitting the calibration step in the
Checktable() function and always using all disk blocks
to clean up the unchecked queue Q_unck and table M
(Sect. 5.3). In the following discussion, we will refer to this
algorithm as disk-based Murϕ.
Although we had to use our own implementation of

the algorithm described in [34], we think that our com-
parison of it with our DMurϕ is quite fair since our imple-
mentation of the algorithm in [34] shares all optimizations
we implemented in DMurϕ except the calibration step,

Fig. 14. Time (time ratio) vs. Memory fraction from Table 8

which is what allows us to save disk accesses (and thus
verification time) by exploiting transition locality.
For disk-based Murϕ, we repeated the same set of ex-

periments we ran for DMurϕ in Sect. 6.4. However, the
biggest models of Table 4 took too long. Thus we did not
include them in our set of experiments.
The results are in Table 9. Computations taking too

much longer than the time in Table 4 were aborted. In
such cases, we get a lower bound to the time overhead
with respect to standardMurϕ. This is indicated with a>
sign before the lower bound. For these aborted computa-
tions, the rows States andRules are, of course, less than
1 and give us an idea of the fraction of the state space
explored before the computation was terminated.
Finally, Table 10 compares performances of our

DMurϕ with those of the disk-based Murϕ.
Of course, the interesting cases for us are those with

α = 0.1, when there is not enough memory to complete
verification using a RAM–BFS. For such cases, from the
results in Table 10 we see that our algorithm is typically
more than ten times faster than the one presented in [34].

6.6 A large protocol with LDBFS

We also tested our disk-based approach on a protocol out
of reach for both standard Murϕ and CMurϕ on our 512-
MB machine.
We found that the protocol mcslock2 (with N = 4)

suited our needs. Our results are in Table 11.
Columns Max states queued and Max queue

space used give, respectively, the max number of states
actually contained in the BF queue (memory + disk)
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Table 9. Comparing disk-based Murϕ with standard Murϕ
(using bit compression and hash compaction)

Model Parameters Memory 1 0.5 0.1
fraction

n_peterson 9 States 1.000 1.000 0.527
Rules 1.000 1.000 0.507
Time 2.623 2.430 > 90.704

ns 1,1,3,2,10 States 1.000 1.000 0.747
Rules 1.000 1.000 0.309
Time 1.259 242.131 > 77.895

newlist6 7 States 1.000 1.000 0.253
Rules 1.000 1.000 0.203
Time 1.331 1.357 > 42.817

ldash 1,4,1,false States 0.355 – –
Rules 0.245 – –
Time > 50.660 – –

sci 3,1,1,2,1 States 1.000 0.361 –
Rules 1.000 0.647 –
Time 1.616 > 11.863 –

mcslock1 6 States 1.000 1.000 0.137
Rules 1.000 1.000 0.115
Time 1.821 1.691 > 11.605

Table 10. Comparing DMurϕ with disk-based Murϕ
(using bit compression and hash compaction)

Model Parameters Memory 1 0.5 0.1
fraction

n_peterson 9 Time 1.221 1.182 > 32
ns 1,1,3,2,10 Time 0.726 112.934 > 39

newlist6 7 Time 0.781 0.768 > 15
ldash 1,4,1,false Time > 24 > 24 > 24
sci 3,1,1,2,1 Time 0.892 > 6 > 6

mcslock1 6 Time 0.950 0.683 > 2

Min Time 0.726 0.683 > 2
Avg Time >4.762 > 24.261 > 19.667
Max Time > 24 112.934 > 39

during the verification and the space they would require
in memory. Column Hash table space used gives the
hash table size that would be needed if all reachable
states were stored in a memory hash table. ColumnTotal
space used gives the memory (in kilobytes) needed
to complete the verification task using a RAM–BFS
with standardMurϕ (that is,Max queue space used+
Hash table space used). The other columns have their
usual meaning.

7 Conclusions

We showed experimentally (Sect. 3) that protocols ex-
hibit transition locality. We supported our claim by meas-

uring transition locality for the set of protocols included
in the Murϕ verifier distribution.
We presented (Sect. 4) a (memory-based) BF explicit

state space exploration algorithm to exploit transition lo-
cality and implemented it within the Murϕ verifier. Es-
sentially our algorithm replaces the hash table used in
a BF state exploration with a fixed-size cache (with-
out collision detection) and uses disk storage for the BF
queue. Our experimental results (Sect. 6.2) show that,
with respect to a hash-table-based approach, our cache-
based approach typically allows verification of systems
more than 40% larger with a time overhead of about
100%.
We also presented (Sect. 5) a disk-based breadth-first

explicit state space exploration algorithm as well as an
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Table 11. Disk-based BF search for protocol mcslock2 with parameter N= 4. Results obtained on a 1-GHz Pentium IV PC with 512MB
RAM using bit compression, 40-bit hash compaction, and no deadlock detection

Memory Visited Rules Diam Time Bytes Hash table Max states Max queue Total space
(Mb) states fired per state space used (Kb) queued space used (Kb) used (Kb)

300 945950806 3783803224 153 406275 16 4729754 30091568 481465 5211219

implementation of it within the Murϕ verifier. Our algo-
rithm has been obtained from the one in [34] by exploiting
transition locality to decrease disk usage (namely, disk
read accesses). Our experimental results (Sect. 6.4) show
that our algorithm is typically more than ten times faster
than the disk-based algorithm proposed [34]. Moreover,
even when using 1/10 of the memory needed to complete
verification, our algorithm is only between 40 and 530%
(300% on average) slower than RAM–BFS (namely, stan-
dard Murϕ) with enough memory to complete the verifi-
cation task at hand.
Statistical properties of transition graphs (as transi-

tion locality is) have proven quite effective in improving
state space exploration algorithms on a single-processor
machine. Looking for new statistical properties and for
ways to exploit such statistical properties when perform-
ing verification on distributed processors are natural fur-
ther developments for our research.
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