
Int J Softw Tools Technol Transfer (2004) 6: 4–14 / Digital Object Identifier (DOI) 10.1007/s10009-004-0139-8

Behavior-basedmodel construction

Hardi Hungar∗, Bernhard Steffen

Computer Science Department, University of Dortmund, Germany
e-mail: hungar@offis.de, steffen@cs.uni-dortmund.de

Published online: 1 July 2004 – Springer-Verlag 2004

Abstract. In this paper, we review behavior-based
model construction from a point of view characterized
by verification, model checking, and abstraction. It turns
out that abstract interpretation is the key to scaling
known learning techniques for practical applications, that
model checking may serve as a teaching aid in the learn-
ing process underlying the model construction, and that
there are various synergies with other validation and
verification techniques. We will illustrate our discus-
sion by means of a realistic telecommunications scenario,
where the underlying system has grown over the last
two decades, the available system documentation con-
sists of not much more than user manuals and protocol
standards, and the revision cycle times are extremely
short. In this situation, behavior-based model construc-
tion provides a sound basis, e.g., for test-suite design and
maintenance, test organization, and test evaluation.

Keywords: Automata learning – Model checking – Ab-
straction – Testing

1 Introduction

Most systems in use today lack adequate specifications
or make use of un(der)specified components. In fact, the
much propagated component-based software design style
naturally leads to underspecified systems, as most li-
braries only provide very partial specifications of their
components. Moreover, typically, revisions and last-min-
ute changes hardly enter the system specification. We ob-
served this dilemma in the telecommunications area: the
revision cycle times are extremely short, which makes the
maintenance of specifications unrealistic, and at the same
time the short revision cycles necessitate extensive test-

∗ Present address: OFFIS, R&D Division Safety-Critical Sys-
tems, Oldenburg, Germany

ing efforts. More generally, the lack of documentation is
felt in many places, of which quality control is one of the
most conspicuous. Moderated regular extrapolation [6]
has been proposed to overcome this situation: techniques
known from automata learning have been adapted to cope
with structures adequate for modeling reactive systems
(like telecommunications systems) and to faithfully incor-
porate expert knowledge for guiding the learning process.
In this paper, we review the process of moderated

regular extrapolation from a point of view characterized
by verification, model checking, and abstraction. It turns
out that abstraction is the key to adapting known learn-
ing techniques for our application scenario, that model
checking is a good means for guiding the learning process,
and that there are synergies with other validation and
verification techniques that find their natural place: test-
ing directly provides the observations the learning pro-
cess is based upon, assertion-based methods allow for the
capture of data and computation, and monitoring is at
the same time an ideal application domain and a practical
means for evaluating the quality of the learned models.
In this paper,1 we will focus on the role of abstraction,

which is at the heart of the whole learning procedure,
while the aspects of model checking and verification will
only be sketched.

Abstraction

Regular extrapolation is a process of iterated abstraction
and refinement. While abstraction is necessary to achieve
regular models (finite-state machines) at all, refinement
is a means of obtaining a tailored compensation of too
rigid abstraction steps, i.e., an aspect-specific enhance-
ment of an abstraction. Technically, we can distinguish
three kinds of abstraction, all of which naturally arise
during the model construction process:

1 This paper is an extended version of [10].

H. Hungar, B. Steffen: Behavior-based model construction 5

Complete abstractions. Given an observation level, many
details may be hidden in the concrete system without af-
fecting the learning process. In our application scenario,
we focus on the protocol level that is the essential one
(not only) for telecommunications systems. This allows
us to completely ignore the message contents without los-
ing any information at the protocol level, as the protocol
behavior does not depend on the carried content. Thus
skipping the content part provides in fact a complete ab-
stract interpretation [4, 18]. The same is true of quantita-
tive timing information, as long as the qualitative system
behavior does not depend on time durations.

Safe approximations. Complete abstractions are insuffi-
cient for arriving at a regular model, as we typically deal
with complex observational properties that are undecid-
able or at least not yet captured by current abstraction
techniques. Thus we must deal with a loss of expressive
power. Safe approximations, although typically impre-
cise, guarantee the preservation of properties in one di-
rection: either properties proved at the abstract level are
guaranteed to be true also at the concrete level (underap-
proximation) or vice versa (overapproximation).Whereas
safety of approximations is essential for program analysis,
in particular if the analysis results form the basis for pro-
gram transformations, the approximations of our model
construction approach are typically not safe. Rather, they
lead to faithful hypotheses in the following sense:

Faithful hypotheses. Behavior-based model construction
starts by collecting finite behavioral traces that are then
extrapolated into regular models by means of automata
learning techniques: automata learning builds model
structures that distinguish states only on the basis of wit-
nesses; states are identified until a distinguishing trace
is found. As state identification increases the number of
possible runs, learning leads to a behavioral overapprox-
imation of the observed portion of the system. On the
other hand, currently unobserved behavior is not mod-
eled at all. Thus safety cannot be guaranteed in any
direction. Rather, automata learning techniques itera-
tively construct minimal hypothesis automata consistent
with all the observations. This is inherited by our regular
extrapolation technique, which, additionally, comprises
expert knowledge.
Our discussion will focus on:

– Actor abstraction, which abstracts individual objects
to roles;
– The L∗-learning algorithm (adapted for our pur-
poses), which iteratively constructs the minimal hy-
pothesis automaton; and
– Partial-order reduction, based on an externally given
causality relation.

Model checking

We use temporal-logic formulas to specify the expert
knowledge about the considered system; this includes

constraints about the protocol, security policies, or
functional requirements. These formulas can then be
verified on each hypothesis model. Discrepancies lead-
ing to counterexamples are used to guide the learning
process.
However, and perhaps even more importantly, regu-

lar extrapolation can and should be regarded as an aid
for verification techniques like model checking to extend
their applicability, similar to the approach of black-box
checking in [17]: first, a behavioral model is constructed,
then properties are checked on the model. Even legacy
systems may then profit from model checking.

Verification/validation

Besides model checking, we employ various verifica-
tion and validation techniques. Answering membership
queries, the central activity of most automata learning
techniques, essentially requires “classical” system tests,
and constructed hypothesis models may well be used for
monitoring the running system (online verification). Re-
vealed discrepancies between the system and the model
may then be analyzed to determine whether the system
or the model should be modified. This analysis typically
requires a manual effort, a fact that is reflected in our
calling this approachmoderated regular extrapolation.
In the following section, we present our application

scenario before we characterize the role of model con-
struction in Sect. 3. Then, Sect. 4 sketches “classical”
automata learning, presents the model structure ade-
quate for our application domain, and adapts the pre-
sented learning algorithm accordingly. Finally, Sects. 5
and 6 show how one can exploit the specific system struc-
ture for significantly speeding up the learning process,
and Sect. 7 draws some conclusions and gives directions
for future work.

2 Application scenario

We developed the methodology with the aim of apply-
ing it to complex reactive systems like those found in the
telecommunications area. Such systems consist of several
subcomponents, either hardware or software, communi-
cating with and affecting each other. Typical examples
of this kind of system are Computer Telephony Integrated
(CTI) systems, such as complex call-center solutions, em-
bedded systems, or Web-based applications. In the fol-
lowing two subsections, we present a concrete setting and
the corresponding modeling.

2.1 A concrete setting

Our case study is based on the CTI system depicted in
Fig. 1. Like most CTI systems, it employs an instance of
the Computer-Supported Telephony Applications (CSTA)

6 H. Hungar, B. Steffen: Behavior-based model construction

protocol for the communication between their compo-
nents. A typical CSTA record contains several compo-
nents. Some of them convey essential information rele-
vant to modeling, others can be safely ignored. An ex-
ample record may have the following components, de-
scribed in the format field: value – meaning.

invokeID: 58391 – a number to identify the protocol
frame.

operation-value: 21 – indicating the reporting of some
external event (this is introduced by the observer func-
tionality used by us to get information about internal
actions in the telephone system).

event-specific info: hookswitch – name of the exter-
nal event.

device dialing number: 500 – number of the device
that issued the event.

hookswitchOnHook: TRUE – reports about the state of
the external device

timestamp: 20001010095551

For most modeling purposes, it is sufficient to project
this record (which, in fact, contains even more com-
ponents in practice) onto something as abstract as
(hookswitchOnHook,500).
As an example systemwe take a telephone switch from

a call-center installation as sketched in Fig. 1. The tele-
phone switch is connected to the ISDN telephone network
and acts as a “normal” telephone switch to the phones.
Additionally, it communicates directly via a LAN or in-
directly via an application server with CTI applications
that are executed on PCs. Like the phones, CTI appli-
cations are active components: they may stimulate the
switch (e.g., initiate calls), and they also react to stimuli
sent by the switch (e.g., notify incoming calls).

2.2 Modeling

Systems as described above operate in real time in an
environment exhibiting much parallelism. An interac-

Fig. 1. Overview of the CTI system to be learned

tion between components sometimes consists of several
records sent back and forth. So when observing a CTI sys-
tem in operation, one notices that sequences of records
belonging to different interactions will often overlap.
We decided (for complexity reasons) not to model the

real-time aspects. Additionally, just as is done in current
test practice, we do not try to capture erroneous behav-
ior in stress situations where interactions happen quickly
and reactions to different stimuli may occur interleaved.
Instead, we collect all the system’s reactions to each single
stimulus by waiting until the system has reached a sta-
ble state. Usually, this can be realized with timeouts. By
neglecting timing issues in this way, we arrive at a view
of reactive systems as input-deterministic I/O transition
systems. Just like Mealy automata, I/O-transition sys-
tems are devices that react to inputs by producing out-
puts and possibly changing their internal state:

Definition 1.
An input/output transition system is a structure S =
(Σ, AI , AO,→, s0), consisting of

– A countable, nonempty set Σ of states;
– Countable sets AI and AO of input, resp. output, ac-
tions;
– A transition relation→⊆ Σ×AI×A∗O×Σ; and
– A unique start state s0.

It is called input deterministic if at each state s there is
at most one transition for each input starting from that
state, and it is called input enabled if there is at least one
transition for each input at every state.

Input determinism is a very important property when one
tries to capture the behavior spectrum of a given system
by systematically applying stimuli and observing the sys-
tem’s reactions. Another property indispensable for our
approach is the finiteness of the model. There are two ob-
stacles to viewing a given system as a finite entity:

1. Usually, the number of components connected to
a system like the telephone switch might be rather

H. Hungar, B. Steffen: Behavior-based model construction 7

large. Modeling a system with the maximal number
of components (if known) would be impractical. Also,
a new release might increase this parameter, thus in-
validating the model. And, last but not least, such
a large model would not reveal much additional in-
formation about the system. In fact, both protocol
specifications and practical tests usually work with
small, finite instantiations of a system environment.
We do the same and thereby arrive at a manageable
system size where address spaces can be represented
by discrete symbols.2

2. Protocols may contain items like timestamps and
tags. While we can easily abstract from timestamps
when modeling at the functional level, tags in gen-
eral might constitute a more severe problem. Tags
are used, e.g., in protocols to reference some previ-
ous record (or incomplete exchange) unambiguously.
Our answer to this problem is to restrict stimulation
to use at most a bounded number of tags and to reuse
tags whenever some exchange is completed. For this
to work, it must be specified when exchanges (refer-
enced by tags) terminate. In many cases, this can be
done by either temporal-logic formulas or automata.
Then, the restriction to finitely many tags is similar
to the restriction to finite address spaces: it is nat-
ural and mirrors common practice. For our example
application, tags appear only when CTI components
enter the modeling focus. They are irrelevant if only
telephones are connected to the switch.

3 Behavior-oriented model construction

Figure 2 sketches briefly our iterative approach. It starts
with a model (initially empty) and a set of observations.
The observations are gathered from a reference system in
the form of traces. The notion reference system is due to
the regression testing scenario: there, a previous system
version is available and we want to generate a correspond-
ing model as a means to check a new version for consis-
tency with the previous one.
The observations can be obtained either passively, i.e.,

by observing a running reference system, or, better, ac-
tively, i.e., by stimulating a reference system through test
cases. The set of traces (i.e., the observations) is then pre-
processed, extrapolated, and used to extend the current
model. After extension, the model is completed through
several techniques, including adjustment to expert speci-
fications. Finally, the current hypothesis for the model is
validated, which can lead to new observations (in terms of
counterexamples), and this closes the learning cycle.

2 It may be argued that in some cases (e.g., protocol verification)
it can even be proved to be safe to restrict attention to some small
instantiation. These arguments, however, all require quite some
elaborate side conditions that cannot be established in our real-
life application domain, at least not without some very substantial
work.

Fig. 2. Generation of models

The realization of this approach makes considerable
use of automata operations and related techniques. The
basis is given by standard automata operations like ho-
momorphisms and boolean operations likemeet, join, and
complement [8].
These standard operations are complemented by some

specific operations for extrapolation. Particularly im-
portant are abstraction mappings more general than lan-
guage homomorphisms, together with a particular folding
operation, which introduces cycles in the finite traces by
identifying similar states. This borrows from automata
learning techniques as discussed in [1] but requires sub-
stantial adaptation.
The adequate incorporation of expert knowledge re-

quires further techniques. Here temporal logic [3] serves
to formulate specifications that limit the model from
above, i.e., experts formulate properties that they be-
lieve to be true of the system, and extrapolation results
should be limited by them. Temporal-logic model check-
ing is employed to check adherence of the model to these
constraints. Counterexamples generated by the model
checker in case of a violation are studied to pinpoint the
source of the discrepancy.
Another way in which expert knowledge enters the

method concerns specifying independence relations be-
tween events. By employing ideas of partial-order ap-
proaches [14, 20], this leads to a generalization from (ran-
domly) sequential observations to parallel patterns.
Finally, the validation of models draws on testing the-

ory (cf., e.g., [13] for a survey) to generate stimuli se-
quences that reveal wrongly identified states and missed
behavior.
Summarizing, our method is composed of the follow-

ing five ingredients:

1. Testing, for stimulating the system to be modeled in
order to collect behavior sequences.

2. Automata learning, to guide the testing and to com-
bine the results into an approximate model.

3. Model checking, to make use of expert knowledge for
model validation.

4. Manual interaction, for conflict resolution.
5. Change management, to cope with revisions.

In the following two sections, we explain what has to be
done to adapt automata learning to arrive at a practical
model construction method for reactive systems, and we
present some important optimizations.

8 H. Hungar, B. Steffen: Behavior-based model construction

4 Automata learning

After a brief description of the background of automata
learning, this section presents the model structure ade-
quate for our application domain, adapts the L∗ learn-
ing algorithm accordingly, and explains how the required
membership and equivalence oracle can be implemented
in our scenario.

4.1 Background

Let us assume that a regular language is given, so that we
can test arbitrary strings for membership in the language,
and that we want to construct a (minimal) acceptor.
The worst-case complexity of this learning problem

is exponential in the (assumed to be known) number of
states of the automaton to be learned [15]. The argu-
ment that proves the difficulty of exact learning relies on
combination-lock automata. A combination lock within
a finite automaton is a set of states linked by a sequence
of transitions so that the last state can only be reached by
exactly one sequence of symbols – any deviation will leave
the combination lock and lead to other states. Whether
an automaton to be learned contains such a lock can be
detected only by testing all sequences of the length of the
longest combination lock potentially contained in the au-
tomaton at hand, which results in an exponential number
of tests.
In practice, however, such locks are not very common,

and the probability of an arbitrary automaton containing
one is low. So, approximate learning (PAC learning, [19]),
which means that with high probability the learned au-
tomaton will accept a language very close to the given
one, does not suffer from the combination-lock effect. And
indeed it is known that approximate learning can be done
in polynomial time if membership tests are available [1].
Experiments have provided evidence that this theoretical
result is relevant for practice (see, for instance, [12]): ran-
dom automata can be learned pretty well.
In our scenario, the system models to be learned are

not random. One might even argue that some protocols
are in some way similar to combination locks in that they
impose sequences to be enacted in some prescribed order.
Yet the combination-lock argument does not apply here:

– These sequences tend to be of bounded length, and
– They do not arise randomly: they can typically be
found in manuals and protocol descriptions, as well as
in existing test suites.

Whereas the first reason is only of theoretical interest,
as the bounds are typically high enough to cause serious
trouble, the latter reason is another evidence for the need
for (and power of) moderation: the required knowledge
can be loosely specified and used for guiding the learning
process in an efficient way. So there is well-founded evi-
dence that the combinatorial explosion can be controlled
in our application scenario.

One way to perform the learning of automata is via the
algorithm L∗ [1]. To factor out insecurities from approx-
imation, L∗ relies on an equivalence oracle in addition
to the more standard membership oracle. The equiva-
lence oracle provides counterexamples if an automaton
constructed from the information available so far does
not match the given language. With this additional re-
source, finite automata can be learned exactly in poly-
nomial time in the number of states of the original sys-
tem. This is due to the immense power of the equivalence
oracle, which, e.g., may instantaneously detect combina-
tion locks.
We use L∗ as the basis of our learning procedure. To

make it work, it has to be adapted in several ways, as it
solves learning in an idealized setting. Neither the mem-
bership oracle nor the equivalence oracle is available in
practice, and they therefore have to be substituted by
other means.
We solve membership queries by testing. In the pres-

ence of nontrivial abstractions, this is not an easy task.
An important ingredient in solving this problem is a tool
called Integrated Test Environment (ITE) [7, 16], which
has been applied to a number of different tasks in research
and in industrial practice. From a sequence of stimuli,
the ITE generates a test program, using predefined code
blocks for stimuli and additional glue code. Glue code
and code blocks solve the problems connected with gen-
erating, checking, and identifying nonpropositional pro-
tocol elements like tags, timestamps, and identifiers. In
essence, the ITE bridges the gap between the abstract
model and the concrete system. The generated test pro-
gram is interfaced to the system to be learned with the
help of additional test hardware.
The equivalence oracle is more difficult to substitute.

If no additional information about the system is avail-
able, there is of course no reliable equivalence check – one
can never be sure whether the whole behavior spectrum
of a system has been explored. But there are approxima-
tions of the equivalence oracle that cover the majority
of systems pretty well. This is the basis of the theor-
etical result suggesting that PAC learning can be done
in polynomial time with membership queries alone. The
basic idea is to scan the system in the vicinity of the ex-
plored part looking for discrepancies with respect to the
expected behavior.
A particularly good approximation is achieved by per-

forming a test in the spirit of [2, 21]. In essence, this test
checks each transition in the hypothesis/conjecture au-
tomaton by validating that the target state behaves prop-
erly along a sequence that distinguishes it from all other
states of the conjecture automaton. This test has poly-
nomial complexity – we have additional means at our
disposal in the form of formalized expert knowledge. This
is described in more detail in Sect. 4.5.
In addition to oracle substitutions, we have to adapt

the algorithm itself from its original application do-
main – deterministic acceptors – to input-deterministic

H. Hungar, B. Steffen: Behavior-based model construction 9

input/output transition systems in order to capture our
application domain.

4.2 Learning finite automata with L∗

The basic idea behind Angluin’s algorithm is to system-
atically explore the system’s behavior using the mem-
bership oracle and trying to build the transition table of
a deterministic finite automaton with a minimal num-
ber of states. The required information is organized in
the central data structure of the algorithm called Ob-
servation Table (OT), which comprises the results of
the membership queries and represents the intermediate
conjectures.

Definition 2 (Observation Table). Given an alpha-
bet A, a finite, prefix-closed set S ⊂ A∗, and a finite set
E ⊂ A∗, an OT is a two-dimensional array with rows for
each string in S ∪S ·A and columns for strings in E and
entries in {0, 1}. An entry OT (s, e) = 1 is interpreted in
the context of the algorithm L∗ that the sequence s · e is
a member of the regular set, while 0means that it is not.

1. An OT is called closed if

∀t ∈ S ·A. ∃s ∈ S. row(t) = row(s).

2. An OT is called consistent if

∀s1, s2 ∈ S. row(s1) = row(s2)

⇒ ∀a ∈A. row(s1; a) = row(s2; a).

The algorithm starts with the initial state, which is
reached by the empty string. It keeps a set of strings S
that lead from the initial state to all the states discov-
ered so far. In fact, strings of S represent the states in the
Observation Table, which themselves are distinguished
according to distinguishing strings from E in the follow-
ing way: the states represented by two strings s and s′ of
S are distinguished by a string e of E if e is accepted after
s but not after s′ or vice versa. S may, and in fact usu-
ally will, contain for several states more than one string
leading to it. This directly leads to a more abstract rep-
resentation of states in the Observation Table in terms
of a bit vector characterizing the acceptance behavior of
a state relative to the strings in E.
The L∗ learning algorithm is characterized by its iter-

ative interplay between membership queries and equiva-
lence queries:
Membership queries are the means to determine the

entries of the Observation Table. This is in particular
necessary in order to determine the closedness and con-
sistency of the (hypothesis) automaton currently repre-
sented by the Observation Table: after filling the rows for
the elements of S ·A, it can easily be checked whether this
automaton is closed under the transition relation, mean-
ing that all successors of all states of this automaton (here
represented by strings of S) are themselves represented

by elements of S. Technically this means that their rows
appear already as a row belonging to some elements of
S [cf., Definition 2(1)]. To exploit all the information in-
herent in the Observation Table, L∗ additionally checks
whether the equivalence relation imposed by the rows
onto the elements of S is one-step consistent, meaning
that all elements of S with equal rows have equivalent
transitions [cf., Definition 2(2)]. If one of these checks
fails, L∗ resolves the discrepancy by extending S or E
accordingly.
Closed and consistent (hypothesis) automata are then

validated by L∗ by means of an equivalence query. If the
query is not successful, a counterexample is returned in
the form of a string that serves to distinguish further
states, and a new iteration begins.
Algorithm 4.1 summarizes L∗ in a high-level nota-

tion. The reader may note that L∗ identifies all states
as long as no corresponding distinguishing witness traces
have occurred. In that way, L∗ performs the maximal
possible abstraction and leads toward a state-minimal
acceptor.

Alphabet A, Observation Table OT initialized to
(S,E) = ({λ}, {λ})

repeat
ExtendOT to (S∪S ·A)×E using membership queries
while (¬isClosed(OT)∨¬isConsistent(OT)) do
if (¬isClosed(OT)) then
∃s1 ∈ S, a ∈A. ∀s ∈ S. row(s1 ·a) �= row(s)
S← S∪{s1 ·a}
Extend OT to (S ∪S ·A)×E using membership
queries

end if
if (¬isConsistent(OT)) then
∃s1, s2 ∈ S, a ∈ A, e ∈ E. row(s1) = row(s2) ∧
OT (s1 ·a ·e) �=OT (s2 ·a ·e)
E←E∪{a ·e}
Extend OT to (S ∪S ·A)×E using membership
queries

end if
end while
M ←Conjecture(OT)
σ′c←EO(M)
if (σ′c �=⊥) then
S← S∪Prefix(σc)

end if
until (σ′c =⊥)

Algorithm 4.1: L∗

4.3 Adapting L∗

In turns out that it is not too difficult to adapt L∗ to work
with input-deterministic I/O transition systems instead
of deterministic finite automata. I/O transition systems
differ from ordinary automata in that their edges are la-
beled with inputs and outputs instead of just one symbol
and that there are no accepting or rejecting states. So we

10 H. Hungar, B. Steffen: Behavior-based model construction

do not observe acceptance/rejection, but we observe the
output sequences stimulated by inputs.
Dealing with input-deterministic systems, we can re-

duce access strings to just the sequence of input sym-
bols that lead the system to the given state, omitting
the outputs. Also, input determinism permits us to re-
place the acceptance bit used by L∗ with the output
sequence generated when applying an input to a given
state. As a first-hand characterization of a state we take
the reactions to single inputs, i.e., the outputs of the
transitions originating in the state. Thus we start our
adapted Observation Table with one column for each in-
put symbol.
The accordingly modified definition of an Observation

Table is given below.

Definition 3 (Observation Table for I/O transition
systems). Given sets AI and AO of input and output
actions, a finite, prefix-closed set S ⊂ A∗I and a finite
set E ⊂ A+I , an I/O Observation Table IOOT is a two-
dimensional array with rows for each string in S ∪S ·AI ,
columns for strings in E, and entries in A∗O. An entry
IOOT (s, e) is interpreted as the reaction of the system
to be learned to the last element of s; e after applying the
sequence to the system in its initial state.

1. IOOT is called closed if ∀t ∈ S ·AI . ∃s ∈ S. row(t) =
row(s).

2. IOOT is called consistent if ∀s1, s2 ∈ S. row(s1) =
row(s2)⇒∀a ∈AI . row(s1; a) = row(s2; a).

To adapt the learning algorithm accordingly, one has to

– Insert the input actions AI for A,
– Use IOOT instead of OT and
– Initialize the table with (S,E) = ({λ}, AI).

These three simple steps transform Algorithm 4.1 into an
algorithm that works for I/O transition systems.

4.4 Realizing the membership oracle

Membership queries can be answered by testing the sys-
tem we want to learn. This is not quite as easy as it
sounds, simply because the sequence to be tested is an ab-
stract, propositional string and the system, on the other
hand, is a physical entity whose interface follows a real-
time protocol for the exchange of digital (nonproposi-
tional) data. Thus we have to drive the system with real
data, which requires reversing the abstraction and pro-
duce a concrete stimulation string.
In practice, the reversion of abstraction requires some

effort: things abstracted from the observations have to be
filled in dynamically, taking the reactions of the system
into account. For instance, timestamps have to increase
and, instead of symbolic addresses and symbolic tags,
their concrete counterparts have to be used consistently.
And, finally, all these data have to be transformed into
signals and fed to the system.

In the case of our example telephone switch, all this is
done by our testing environment, the already mentioned
ITE. The ITE performs this task using predefined code
blocks for generating stimuli and for capturing responses
and glue code, which together solve the problems con-
nected with generating, checking and identifying the non-
propositional protocol elements. Thus much of the work
of putting our approach into practice relies on the ITE
system and its diverse components.

4.5 Equivalence oracle

Besides the approximations to the equivalence oracle by
testing as described in Sect. 4.1, we propose to use for-
malizations of expert knowledge. An expert – this could
be an implementor, a system designer, or an application
specialist – provides a specification of an invariant of the
system, i.e., a property that all system runs must meet.
This specification could be given in some universal tem-
poral logic. We use linear-time temporal logic (LTL, [3])
to formulate such constraints. These constraints can be
model checked on a hypothesis automaton.3

Preferably, a constraint expresses a safety property,
i.e., a property that holds true unless a state is reached
that makes it fail. In this case, a failure yields a finite
counterexample as displayed at the top of Fig. 3. The
last system output in the sequence violates the safety
property. Just as a sequence of input stimuli is used to
generate a test, the subsequence of input elements of the
counterexample can now be fed into the system. There
are two possibilities for the observations made during the
test:

1. The observed behavior on the system is consistent
with the hypothesis automaton. In this case a dis-
crepancy between the specified constraint and the sys-
tem has been detected. Either the system itself has
an error or the specification is wrong. This has to be
resolved manually, i.e., by consulting the system or
application experts. If the error can be attributed to
the constraint, its correction is easy: the constraint is
corrected (or dropped), and the learning process can

3 To be able to do so, either a temporal logic dialect for I/O tran-
sition systems has to be used or we have to translate the transition
system into a standard finite automaton.

Fig. 3. Two forms of counterexamples

H. Hungar, B. Steffen: Behavior-based model construction 11

continue. If it is a system error, we found a bug in the
system, which is a success in itself. In this case one
has to decide manually how to proceed, e.g., whether
it makes sense to construct a model of an erroneous
system or whether one prefers to correct the error in
the model while assuming that the system will be cor-
rected in parallel.

2. The observed behavior deviates from that predicted
by the hypothesis automaton. In this case the subse-
quence is a counterexample as desired from an equiv-
alence oracle. So the learning procedure will take the
appropriate actions.

If the constraint is a liveness property, i.e., a property be-
coming true because some event eventually occurs, coun-
terexamples provided by the model checker will consist
of a path leading to a cycle in the hypothesis automaton,
so that the infinite sequence resulting from following the
path and iterating the cycle contradicts the liveness re-
quirement. The corresponding pattern of such counterex-
amples is depicted at the bottom of Fig. 3.
It is impossible to test the infinite sequence in the sys-

tem, but each finite prefix of the sequence yields a test. If
some prefix of limited length provides a discrepancy be-
tween hypothesis automaton and system, we have a coun-
terexample as in case 2 above, i.e., we were successful in
using model checking as a substitute for the equivalence
oracle. If not, experts should be consulted to resolve the
following questions:

– Was the test horizon large enough for the system to
produce some expected reaction which was not ob-
served, or
– Should the length of the tested prefix be increased?

Whereas the appropriate measure is clear in the second
case, in the first case, similar to case 1 for safety proper-
ties, it has to be manually decided whether the system or
the temporal property is wrong, before the appropriate
action can be taken.
It should be noted that, although this sounds quite

complicated, all these decisions can be taken at the level
of the application expert and no knowledge about the im-
plementation of the system or the internals of the model
construction machinery is required.

5 Speeding up the learning process

We have adapted the learning procedure to handle I/O
transition systems, but there are further structural prop-
erties of the systems we want to model that can be ex-
ploited for optimization. Some experiences and experi-
mental results with a corresponding implementation are
described in [9]. In fact, we observed superlinear effi-
ciency gains when looking at systems with one parametric
component (where the number of required membership
queries was reduced by a factor of seven) to systems with
three parametric components with a factor 100 efficiency
gain.

5.1 Pragmatics

It should be noted that L∗ as presented in Sect. 4.3 is
a theoretical algorithm, which should be tuned for prac-
tical use.
For instance, the Observation Table contains redun-

dant information: usually, there will be rows s1, s2 and
columns e1, e2 with s1; e1 = s2; e2. Also, when computing
the entries it is best to start with the longest elements
from E and fill the entries of prefixes along the way.
Other options for efficiency gains in realizing learning

include a lazy approach in filling the entries of the table
that only computes entries when they are required. The
LearnAutomaton algorithm from [11] can be seen as
a lazy variant of L∗. However, this optimization comes
at the price of an increased use of the equivalence oracle.
Thus its practical impact is difficult to predict.
Another important aspect of practical application is

seeding the learning with knowledge about the system be-
havior. For instance, stimuli sequences initiating known
behavior patterns can be entered as elements of E. In this
way, sequences that would have to be found by expensive
trial and error during the learning phase would be directly
available from the start. This is a way to avoid negative
effects similar to those of combination locks.

5.2 Symmetries

In our telecommunications example application, the en-
vironment may contain several ordinary phones. These
phones will be connected to (logical) ports of the switch,
and all those ports are supposed to show the same be-
havior. Therefore, we can abstract from concrete port
identifications to abstract names and treat all of them
as interchangeable, with various benefits throughout con-
struction and usage of models.
To formally capture the idea of interchangeable com-

ponents, we use the notion of a parametric system P (n),
consisting of n+1 components C0, . . . , Cn, where C0
is meant to be a central component and C1, . . . , Cn
are peripherals. Let us assume that messages between
those components are represented by records that, be-
sides propositional information, reference components
by their (symbolic) names C1, . . . , Cn. An example
of such a message is (hookswitchOnHook,C1), where
hookswitchOnHook indicates the occurred event and the
symbolic component name C1 replaces the concrete ad-
dress 500 used in the concrete system configuration from
Sect. 2.1.
Runs of P (n) consist of sequences of records. We say

that the system P (n) is symmetric if its set of runs is
closed under arbitrary permutations of the C1, . . . , Cn.
When learning a symmetric system, each observa-

tion (membership or equivalence oracle) can be gen-
eralized to its symmetric closure, i.e., the set of runs
resulting from permutations of C1, . . . , Cn. If this is
done, only symmetrical models are constructed by the

12 H. Hungar, B. Steffen: Behavior-based model construction

learning algorithm and also all hypothesis automata
will be symmetrical. Compared to ordinary learning,
this results in considerable savings already in standard
situations where observations are made on small in-
stantiations like a switch with three phones connected
to it.

Further savings result from the related, but different,
effects of independence: the order in which two records
concerning disjoint sets of components without unfin-
ished mutual interactions occur in a run does not mat-
ter. This leads to partial-order optimizations as discussed
below.

5.3 Partial-order methods

This way of capitalizing on specific system properties
is inspired from the partial-order reduction methods for
communicating processes [14, 20]. These methods help
to avoid having to examine all possible interleavings
among processes when analyzing their behavior. Here,
this means that we do not have to learn all interleavings
separately.
This works in the following way:

1. An expert specifies explicitly an independence re-
lation, e.g., Two calls with disjoint sets of involved
components can be shuffled in any order.

2. A trace is inspected for independent subparts.
3. Instead of the explicitly observed trace, a whole equiv-
alence class of traces (of which the observed trace is
a representative) can be added to the model.

In this way, partial-order methods speed up the model
construction and help to keep the model consistent.
Figure 4 shows an example for partial-order equiva-

lence of traces. If there is no connection between C1 and
C2, offHook/onHook events of those phones do not in-
fluence each other and can therefore be arranged in any
order. The run shown in Fig. 4a contains two such inde-
pendent offHook/onHook sequences: the permutations in

Fig. 4. Examples for reordering

Fig. 4b and c are equivalent to those in Fig. 4a and can be
added to the model once the first has been observed.

6 Distributed learning

Learning distributed systems like the CTI system above
suffers from the well-known state explosion problem:
even if the behavior can be modeled by a parallel com-
position of fairly small automata, the global system
model typically is of size exponential in the number of
parallel components. The symmetry and partial-order
methods mentioned in the previous section are intended
to address this concern but fail to provide a general
solution.
However, there is a much better alternative if the

parallel structure of the system is known and the com-
munications between components are observable: learn
the models of the individual components. This avoids the
state explosion problem and drastically reduces the learn-
ing effort from requiring exponentially many membership
queries to only a small polynomial number. This is be-
cause the complexity of learning by (our variation of)
Angluin’s algorithm is dominated by the size of the Ob-
servation Table, which is in the worst case quadratic in
the number of states of the arising hypothesis automata.
Technically, we proceed as follows. We record all in-

ternal communications stimulated by external inputs and
index each communication by the components involved.
From the Observation Table, we keep the row and column
labels (i.e., the sets S and E) in their original form and
construct smaller tables for all component systems that
represent the entries of the original table in more compact
form. On this basis, distributed learning mimics Algo-
rithm 4.1 with similar sets of membership and equiva-
lence queries. The smaller tables are built as in the regular
process of learning, only we do not strive to fill each entry:
permitting a “don’t know” value in the small tables, we
distinguish states only if there is evidence from incompat-

H. Hungar, B. Steffen: Behavior-based model construction 13

ible observations. This provides us with partial automata
tables for the component systems. As these partial tables
contain all observations from the global learning process,
the result of the learning is not affected by the distributed
organization of the Observation Tables.
Stronger assumptions on observability and/or testa-

bility may even lead to further performance gains: obvi-
ously, if each component can be tested on its own, there is
no need for learning the composed system automaton at
all. Moreover, it is straightforward to combine distributed
learning with other optimization techniques like exploit-
ing properties like prefix closure as well as suppressing
redundancy and symmetries.

7 Conclusion and future work

We have discussed behavior-based model construction
from a point of view characterized by verification, model
checking, and abstraction. It turned out that abstrac-
tion is the key for scaling known learning techniques for
practical applications, that model checking may serve as
a teaching aid in the learning process underlying the
model construction, and that there are also synergies with
various validation and verification techniques. From the
practical perspective, the main issue was to make auto-
mata learning, testing, and abstraction compatible. Al-
though these are all very active research areas, they have
hardly been considered in combination. At the theoret-
ical level, a notable exception is the work of [5, 17], which
proposes a learning-based method for system refinement.
Our focus on practicality differs from this work by look-
ing at more rigid abstractions and by exploiting expert
knowledge for steering the learning process.
A major problem in behavioral model construction

is the growth of the system size and the corresponding
complexity of the learning procedures. Thus methods are
required to support the construction of aspect-specific
models together with the possibility of suppressing re-
dundant information. We are therefore investigating var-
ious abstraction techniques and the possibility of con-
structing concise models by exploiting additional struc-
tural information, e.g., concerning the independence of
events. First experimental results, which have been re-
ported in [9], demonstrate the impact of our optimiza-
tions. In fact, the observed superlinear speedups are al-
ready very promising.
Currently we are implementing a distributed learning

algorithm along the lines sketched in Sect. 6. This opens
up a totally new dimension of optimization with perform-
ance gains far beyond the ones reported in [9]. We are
therefore convinced that we will be able to scale our tech-
niques to capture essential parts of industrially relevant
systems in order to support test-suite design and main-
tenance, test organization, and test evaluation, as well as
the monitoring of running applications.

Acknowledgements. We are very grateful to the ITE team, in par-
ticular Oliver Niese, as well as to Tiziana Margaria for discussions
and their fruitful comments.

References

1. Angluin D (1987) Learning regular sets from queries and coun-
terexamples. Inf Comput 2(75):87–106

2. Chow TS (1978) Testing software design modeled by finite-
state machines. IEEE Trans Softw Eng 4(3):178–187

3. Emerson EA (1990) Temporal and modal logic. In: van
Leeuwen J (ed) Handbook of theoretical computer science.
Elsevier, Amsterdam

4. Giacobazzi R, Ranzato F, Scozzari F (2000) Making abstract
interpretations complete. J ACM 47(2):361–416

5. Groce A, Peled D, Yannakakis M (2002) Adaptive model
checking. In: Katoen J-P, Stevens P (eds) Proceedings 8th
international conference for tools and algorithms for the con-
struction and analysis of systems, Grenoble, France, April
8–12, 2002. Lecture notes in computer science, vol 2280.
Springer, Berlin Heidelberg New York, pp 357–370

6. Hagerer A, Hungar H, Niese O, Steffen B (2002) Model gener-
ation by moderated regular extrapolation. In: Kutsche R, We-
ber H (eds) Proceedings of the 5th international conference on
fundamental approaches to software engineering (FASE ’02),
Grenoble, France, April 8–12, 2002. Lecture notes in com-
puter science, vol 2306. Springer, Berlin Heidelberg New York,
pp 80–95

7. Hagerer A, Margaria T, Niese O, Steffen B, Brune G, Ide
H (2001) Efficient regression testing of CTI-systems: testing
a complex call-center solution. Annual review of communi-
cation, vol 55. International Engineering Consortium (IEC),
Chicago

8. Hopcroft JE, Ullman JD (1979) Introduction to automata the-
ory, languages, and computation. Addison-Wesley, Reading,
MA

9. Hungar H, Niese O, Steffen B (2003) Domain-specific op-
timization in automata learning. In: Somenzi F, Hunt WA
(eds) Proceedings of the 5th international conference on com-
puter aided verification (CAV ’03), Boulder, Colorado, USA,
July 8–12, 2003. Lecture notes in computer science, vol 2725.
Springer, Berlin Heidelberg New York, pp 315–327

10. Hungar H, Steffen B (2003) Behaviour-based model construc-
tion. In: Zuck LD, Attie PC, Cortesi A, Mukhopadhyay S
(eds) Proceedings of the 4th international conference on ver-
ification, model checking and abstract interpretation (VM-
CAI’03), New York, USA, Jan. 9–11, 2003. Lecture notes in
computer science, vol 2575. Springer, Berlin Heidelberg New
York, pp 5–19

11. Kearns MJ, Vazirani UV (1994) An introduction to computa-
tional learning theory. MIT Press, Cambridge, MA

12. Lang KJ, Pearlmutter BA, Price RA (1998) Results of the
Abbadingo one DFA learning competition and a new evidence-
driven state merging algorithm. In: Proceedings of the 4th
international colloquium on grammatical inference – ICGI
’98. Lecture notes in artificial intelligence, vol 1433. Springer,
Berlin Heidelberg New York, pp 1–12

13. Lee D, Yannakakis M (1996) Principles and methods of testing
finite state machines – a survey. Proc IEEE 84:1090–1123

14. Mazurkiewicz A (1987) Trace theory. In: Brauer W et al
(eds) Petri nets, applications and relationship to other models
of concurrency. Lecture notes in computer science, vol 255.
Springer, Berlin Heidelberg New York, pp 279–324

15. Moore EF (1956) Gedanken-experiments on sequential ma-
chines. Ann Math Stud Automata Stud 34:129–153

16. Niese O, Steffen B, Margaria T, Hagerer A, Brune G, Ide H
(2001) Library-based design and consistency checks of system-
level industrial test cases. In: Hußmann H (ed) Proceedings of
the 4th international conference on fundamental approaches
to software engineering (FASE ’01), Genova, Italy, April 2–6,
2001. Lecture notes in computer science, vol 2029. Springer,
Berlin Heidelberg New York, pp 233–248

14 H. Hungar, B. Steffen: Behavior-based model construction

17. Peled D, Vardi MY, Yannakakis M (1999) Black box checking.
In: Wu J, Chanson ST, Gao Q (eds) Proceedings of the joint
international conference on formal description techniques for
distributed system and communication/protocols and proto-
col specification, testing and verification (FORTE/PSTV ’99),
Beijing, China, Oct. 5–8, 1999. Kluwer, Dordrecht, pp 225–240

18. Steffen B, Jay B, Mendler M (1992) Compositional character-
ization of observable program properties. Int J Theor Comput
Sci Appl 26(5):403–424

19. Valiant LG (1984) A theory of the learnable. Commun ACM
27(11):1134–1142

20. Valmari A (1993) On-the-fly verification with stubborn sets.
In: Proceedings of the 5th international conference on com-
puter aided verification (CAV ’93), Elounda, Greece, June
28–July 1, 1993. Lecture notes in computer science, vol 697.
Springer, Berlin Heidelberg New York, pp 397–408

21. Vasilevskii MP (1973) Failure diagnosis of automata. Kiber-
netika 4:98–108

