
Int J Softw Tools Technol Transfer (2004) 6: 15–37 / Digital Object Identifier (DOI) 10.1007/s10009-003-0125-6

Certification of compiled assembly code
by invariant translation

Xavier Rival

École Normale Supérieure, 45, rue d’Ulm, 75 230, Paris, France
e-mail: rival@di.ens.fr

Published online: 6 April 2004 –  Springer-Verlag 2004

Abstract. We present a method for analyzing assembly
programs obtained by compilation and checking safety
properties on compiled programs. It proceeds by ana-
lyzing the source program, translating the invariant ob-
tained at the source level, and then checking the sound-
ness of the translated invariant with respect to the as-
sembly program. This process is especially adapted to the
certification of assembly or other machine-level kinds of
programs. Furthermore, the success of invariant check-
ing enhances the level of confidence in the results of both
the compilation and the static analysis. From a practi-
cal point of view, our method is generic in the choice of
an abstract domain for representing sets of stores, and
the process does not interact with the compilation itself.
Hence a certification tool can be interfaced with an ex-
isting analyzer and designed so as to work with a class of
compilers that do not need to be modified. Finally, a pro-
totype was implemented to validate the approach.

Keywords: Static program analysis – Certified compila-
tion – Abstract interpretation

1 Introduction

Critical software is concerned with safety; hence various
static analysis methods have been developed and are ap-
plied to critical programs. However, these methods are
usually applied to the source program and the source an-
alysis may not be considered a trustable proof given that
the compiler may be incorrect and the compiled program
unsafe even if the source analysis succeeds in proving
safety. Indeed, modern compilers turn out to be very com-
plex due to the size of their source code and to their
perpetual evolution (for instance, the code of the current
versions of gcc amounts to about 500000 lines). There-
fore, most critical applications like avionics require the

certification of the form of the program that is actually
executed, i.e., the assembly code itself.
Moreover, the safety properties of interest usually con-

cern the very execution of the program; hence, checking
it on the compiled program (i.e., the version that is actu-
ally executed) yields more trustable proofs of safety. For
instance, the semantics of errors is defined at the machine
level first. The memory access errors (out-of-bound ar-
ray index or void pointer dereference in C programs) are
the source language counterpart for some assembly errors
(attempt to access a wrong part of memory). If we prove
that a source C program does not yield any memory ac-
cess error, then we can deduce that a compiled form of
this program is memory safe only under some additional
assumptions, i.e., mainly that the program is compiled in
a correct way for some definition of “correct” that should
be made explicit and that the memory allocation is done
at the assembly level in a safe way, which should also
be made explicit. Furthermore, the nature of the unde-
sirable behaviors may be compiler or even architecture
dependent, as is the case for overflows: the size of regis-
ters depends on the target processor and the way integer
data types are compiled affects the overflows that occur
in the compiled program (this is especially true for data
types that do not correspond to the size of registers like
short integer data types). Languages like C leave many
error cases as unspecified in order to leave the compiler
implementator free when designing more optimizations.
For example, an out-of-bound array index in a C program
results in an undefined behavior, which may be an imme-
diate error or a wrong yet continued execution. Therefore,
checking safety properties at the assembly level is no-
ticeably advantageous – in particular when dealing with
highly critical software.
As a way to achieve that, we may envisage certify-

ing the assembly program directly. However, analyzing
directly and efficiently precise high-level properties of as-

16 X. Rival: Certification of compiled assembly code by invariant translation

sembly programs may be quite difficult due to a loss of
structure at compile time. In particular, the control struc-
ture of assembly programs is based on gotos, which are
much more complicated to analyze than loops. Static an-
alysis methods for improving speed and precision apply in
an easier way to well-structured loops than general con-
trol flow graphs. Furthermore, the data structures (like
arrays, records, or enums) are translated into more com-
plicated assembly structures since everything turns into
a sequence of memory cells and low-level details should be
taken into account (as memory cell alignments). On the
other hand, the formal (semiautomatic) proof of a full C
compiler cannot be envisaged on account of the work task
that would be involved in such a project and because any
modification or evolution of the compiler would make the
proof dated (proving a commercial compiler is not a real-
istic solution). The last limitation also applies to a system
that would translate a proof of safety at compile time.
The solution proposed here is to analyze the source

version of the program using an automatic tool and to
derive automatically a “candidate invariant” for the as-
sembly program. This invariant is obtained by translating
the source invariant thanks to some information about
the way the program is compiled (in most cases, this ad-
ditional information can be found in the debugging in-
formation provided by the compiler, which describes the
correspondence between source and target variables and
program points). Then an automatic tool checks that the
candidate invariant is semantically sound: it is an upper
approximation of the set of reachable states of the pro-
gram. If program Pc is obtained by compiling program
Ps, the method proceeds as follows. A source analyzer
generates an invariant Ps for the source program and
an external tool derives the candidate invariant Pc; then
an assembly checker attempts to prove that property Pc
holds for program Pc. Afterwards, property Pc can be
used for verifying that Pc satisfies the desired safety prop-
erties. Note that this approach allows one to derive ben-
efit from existing fast and precise source analyzers (like
those of [3, 4]).
Our method does not require the instrumentation of

the compiler; if the debugging information format is stan-
dard, we can even consider designing a tool that would
translate invariants for certifying assembly programs pro-
duced by a class of compilers. Moreover, we need to cope
with the specifics of assembly programs for the checking
of invariants only and not for their inference. When the
checking succeeds, the translated invariant can be con-
sidered correct under only one assumption: the checker
must be correct. Therefore, the security level achieved by
this approach is the same as that of a direct analysis of
the assembly code. Moreover, the success of the check-
ing entails a correctness result about the compilation: the
target program presents behaviors similar to those of the
source program (in the abstract semantics point of view).
On the other hand, the method is incomplete: a failure
of the invariant checking does not entail that the com-

piler is buggy; it may be due to a loss of precision at
translation time or at checking time. The approach pro-
posed here is formalized inside the abstract interpretation
framework [10, 11], which provide an integrated view in
a single framework of both static analysis [4, 7] and pro-
gram transformations [13] (hence compilation). Further-
more, we validated our approach by designing a proto-
type aimed at checking the absence of runtime errors and
undefined behaviors in PowerPC assembly programs ob-
tained by compiling realistic C programs. Our choice of
the C language was justified by the use of this language in
safety-critical systems.

Plan. The rest of the paper is organized as follows. Sec-
tion 2 presents preliminaries and describes the source and
assembly languages considered in subsequent sections of
the paper. We formalize the compilation correctness in
Sect. 3. Section 4 describes a class of static analyses large
enough for answering most of the safety questions about
imperative source programs and shows how an invariant
can be derived at the assembly level from a source in-
variant. Section 5 discusses the problem of checking the
translated invariant independently of the source analysis.
In Sect. 6 we detail the practical problems that arise when
checking the invariant at the assembly level. The proto-
type we implemented is described in Sect. 7. Section 8
concludes the paper.

Related work. Most attempts at formally proving a com-
piler have concentrated on rather high-level languages
and byte code assembly languages [27] or on toy compil-
ers written for that purpose [5]. The lack of automation of
theorem provers severely limits the possibility of proving
large programs in general and compilers in particular.
Among direct static analyses of assembly programs,

we can cite the determination of properties about cache
usage (cache misses and cache hits) presented in [1], the
analysis of pipeline behavior in [30], and the combination
of these two analyses in [31]: precise information could be
inferred about the worst-case execution time of assembly
programs by taking into account many complex aspects
of the architecture. However, we are not aware of any ex-
ample of direct analysis for high-level properties at the
assembly level.
The idea of translating at compile time semantic in-

formation about the source program into information
about the assembly program was developed in the Proof-
Carrying Code approach described in [2, 22]. In this ap-
proach an untrusted compiler is supposed to provide an-
notations with the assembly code it produces. Before it
executes the target program, the code consumer gener-
ates verification conditions to check that the assembly
program does not violate the safety policy, and the code
consumer attempts to prove them using the annotations
supplied by the compiler. If it succeeds, then the assembly
code obeys the safety policy and can be executed safely.
The compiler of [24] implements this methodology. In this
case, the compiler annotations are type information.

X. Rival: Certification of compiled assembly code by invariant translation 17

A typed intermediate language (TIL) was proposed in
[19, 28] as a means of keeping information about source
ML programs to make further optimizations possible and
trustable. Basically, well-typed programs should not pro-
duce certain types of errors (thememory allocation should
be safe). This methodology was extended to a typed as-
sembly language (TAL) in [20]. The purpose of this work
was also to design a safe compiler for a type-safe subset of
C. However, changing to a safe subset of the C language is
not always possible in the case of embedded systems. Fur-
thermore, enforcing safety through typing systems may
turn out to be somewhat difficult in some cases. In particu-
lar, handling overflows is not very natural in the context
of typing systems. Finally, the implementation of a specific
certifying compiler involves a sizeable task.
Another approach to certified compilation proceeds by

proving the correctness of each compilation separately.
When a program Ps is compiled into a program Pc, an ex-
ternal tool generates proof obligations so as to prove that
Pc is equivalent to Ps for some definition of “is equivalent
to”. This method, known as translation validation, was pi-
oneered by [25] and then implemented in [23] and extended
in [32]. Translation validation provides proofs of compila-
tion correctness for a rather concrete semantic interpreta-
tion of programs.However, the goal of this approach is not
to produce safety proofs for assembly programs.
Our work on invariant translation was developed in

a previous contribution [26]. The purpose is to translate
abstract invariants computed at the source level, using
static analyzers similar to those presented in [3, 4], to
derive proofs of safety for compiled programs in the con-
text of critical embedded systems. Invariant translation
also yields a kind of abstract proof for the compilation:
if it succeeds, it proves that compilation preserves some
abstract property of the source program. Yet it is less
adapted to proving a strong operational equivalence be-
tween source and target programs than translation vali-
dation; the latter operates at a rather concrete semantic
level and hence aims at proving a stronger equivalence.

2 Preliminaries and notations

This section presents some basic notations we use in sub-
sequent sections; it also introduces the syntax and seman-
tics of the typical source and assembly languages that we
consider in the paper.

2.1 Mathematical common notations

We denote by Z the set of positive and negative integers
(Z= {. . . ,−1, 0, 1, . . .}) and byB the set of booleans:B=
{T ,F},whereT andF denote, respectively, trueand false.
When necessary, we write Ω for erroneous behaviors.

If E is a set, we write EΩ for the set E ∪{Ω} (for instance,
ZΩ , BΩ).
When taking overflows into account, we will write

Zo for the set of machine representable integers {n ∈

Z | Nmin ≤ n ≤ Nmax}, where Nmin and Nmax are, re-
spectively, the smallest and the biggest representable
integers.
In subsequent subsections, if E is a set, we will write

P(E) for the set of the subsets of E (P(E) = {X |X ⊆ E}).
If x0, . . . , xn are elements of E , then we write 〈x0, . . . , xn〉
for the finite sequence composed by these elements (a se-
quence is a function from an interval of integers starting
from 0 like {0, 1, . . . , n} to a set E). The set of finite se-
quences of elements of E is denoted by E�.
If E and F are sets, then we write E → F for the

set of functions from E to F . If f ∈ E → F , then we
let f̂ denote the function defined by f̂ : P(E)→ P(F);
X �→ {f(x) | x ∈X}. Furthermore, if 	 is an order rela-
tion over F , then the pointwise extension of 	 to E → F
is denoted by

.
	. We recall that a lattice is an ordering

(E ,) with a minimal and a maximal element and a bi-
nary lower upper bound operator and a binary greater
lower bound operator. If any subset of E has a greater
lower bound and a lower upper bound, we say that (E ,)
is a complete lattice.
We sometimes use the lambda notation to denote

functions: λx ∈ E .e simply stands for the function
E → F , x �→ e.

2.2 Abstract interpretation
and program transformations

Abstract interpretation [10, 11] was developed as a way
of deriving relationships between different semantics so as
to provide approximate but computable answers to unde-
cidable or costly problems. The approximations preserve
logical soundness. An abstract semantics is often less ex-
pressive than the standard semantics; hence, considering
abstract properties may induce a loss of precision (some
properties cannot be deduced or stated any more), but
reasoning in the abstract is still sound (furthermore, it
should be computer tractable).
In practice, the concrete semantics [[P]] provides the

most precise description of the behavior of P . It is gen-
erally defined as an element of a complete lattice (D,).
An abstract domain is simply another complete lattice
(D�,). A Galois connection between the concrete do-
mainD and the abstract domainD� is a pair of functions
α :D→D�, γ :D�→D such that ∀x∈D, y ∈D�, α(x)	
y ⇔ x	 γ(y). The intuitive meaning of x	 γ(y) is that
y is a sound abstract approximation of the concrete prop-
erty x, i.e., the concrete property x entails the abstract
property y. The abstract semantics α([[P]]) of the pro-
gram P will be denoted by [[P]]�.
If (α, γ) is aGalois connection,wewillwriteD−−→←−−α

γ
D�.

In some cases, this formalization of abstraction does not
apply. In particular, the existence of an abstraction func-
tion αmay not be achieved if some concrete element does
not enjoy a “best abstract property”. For instance, a disk
does not have a best abstract approximation in the do-
main of polyhedra [14]: the abstraction relation between

18 X. Rival: Certification of compiled assembly code by invariant translation

the domain P(R2) and the domain of convex polyhedra
features no abstraction function α (only a concretization
γ can be defined). Other (more general) ways of formal-
izing the notion of abstraction can be found in [12]; how-
ever, we consider in this paper Galois connection-based
abstract interpretations only for the sake of simplicity.
The semantics [[P]] can in general be defined as the

least fixpoint of a monotone semantic function F in
the lattice D. Provided there exists a monotone ab-
stract semantic function F � such that F � ◦α = α ◦F ,
the abstract semantics can also be expressed as a least
fixpoint lfpF � in the complete lattice D�, as shown
by the fixpoint transfer theorem of [29]. However, in
most cases the abstract semantics itself is not com-
putable either because the iteration is infinite or F �

is not computable or just because there is no function
satisfying the above equality. Then a sound approxima-
tion of [[P]]� is derived by computing the least fixpoint
of a computable function F � such that α ◦F 	 F � ◦α
or by using a widening operator or by applying both
techniques.
Furthermore, abstract interpretation proved useful

in studying program transformations [13]. Formalizing
a program transformation t defined syntactically pro-
ceeds by defining suitable semantic observations [[.]]os and
[[.]]ot of the standard semantics for source [[.]]s and tar-
get programs [[.]]t, which should express the properties
preserved by the transformation t. In most cases, these
observational semantics can be defined as abstractions of
the standard semantics: [[Pi]]

o
i = αi([[Pi]]i) for i ∈ {s, t}.

Hence the correctness of the transformation boils down
to Pt = t(Ps) =⇒ αt([[Pt]]t)≡ αs([[Ps]]s), where ≡ corres-
ponds to some kind of bijection. In this context, relating
semantics in hierarchies of abstract interpretations [8] is
particularly useful.
We formalize both static analysis and compilation in

the abstract interpretation framework first and then state
our methodology in this framework.

2.3 Programs, semantics

In this paper, we consider imperative programming lan-
guages only. An execution state is a pair (l, ρ), where l is
a program point (or label) and ρ is a store. A program is
defined by the data of a set of labels, a set of stores, and
a transition relation that specifies the way one steps from
one state to another:

Definition1(Transition system associated with
a program). Let R be a set of values for variables. The
transition system associated with a program P is a tuple
(LP , VP , iP ,→P) where

• LP is the set of labels of P ;
• VP is the set of memory locations of P ; the correspond-
ing set of stores VP → R is denoted by SP ; the set of
states for program P is denoted by EP = LP ×SP ;

• iP is the entry program point of P : it is the label at
which any execution of P starts;

• (→P)⊆EP ×EP is the transition relation of P . Intu-
itively, (l, ρ)→P (l′, ρ′) means that if an execution of
P reaches point l with store ρ, then it may continue at
point l′ with store ρ′.

Note that a program point is not necessarily a syntactic
program point: in the case of procedural programs, a la-
bel l would define a pair (κ, ls) where κ is a stack and ls is
a syntactic program point.
In general, we add an error state denoted by Ω to the

set of states of transition systems: EP = {Ω}∪LP ×SP .
No transition starts from Ω provided this state is block-
ing, so (→P)⊆ (EP \{Ω})×EP .
An execution trace of a program is a finite sequence

of states, starting at the entry program point and such
that one steps from a state to the next one according to
the transition relation. The trace corresponding to the se-
quence of states e0, . . . , en is denoted 〈e0, . . . , en〉. One
can remark that our presentation allows nondeterminism
since→P is a relation (in the deterministic case, it would
turn into a function). The semantics of a programP is the
set of the execution traces of P . It is formally defined as
follows:

Definition 2 (Semantics of a program). The con-
crete semantic function of the program P is the function
FP defined by

FP : P(E
�
P) −→ P(E

�
P)

X �−→ {〈(l0, ρ0), . . . , (ln, ρn), (ln+1, ρn+1)〉
| 〈(l0, ρ0), . . . , (ln, ρn)〉 ∈X
∧(ln, ρn)→P (ln+1, ρn+1)}

∪ {〈(iP , ρ)〉 | ρ ∈ SP }.

Then the semantics of the program P is the least fixpoint of
FP :

[[P]] = lfp⊆∅ FP .

Note that the operator FP is continuous; hence the least
fixpoint exists and can be written as follows:

lfp⊆∅ FP =
⋃
n∈N

FnP (∅).

(In other words the computation of the fixpoint does not
require a transfinite iteration.)

2.4 A simple imperative language

We present here the source language considered below.
The grammar is given in Fig. 1 and features integer vari-
ables and arrays, simple assignments, conditionals, and
loops. A memory location v ∈ V is either a variable or an
array cell. We write X for the set of objects (arrays and
integer variables). Expressions have integer type; hence,
we consider that R= Zo.

X. Rival: Certification of compiled assembly code by invariant translation 19

Lv ::= x (x ∈X) | x[E] (x ∈X)
E ::= n (n ∈ Zo) | Lv
| E+E | E−E | E�E | E/E

C ::= true | false | ¬C | C∧C
| C∨C | E== E | E< E

S ::= Lv := E | if(C) B else B | while(C) B
B ::= { S; . . . ; S}

Fig. 1. Simple imperative language

The semantics of expressions and conditions are de-
fined as follows:

∀e ∈ E, [[e]] ∈ (V → Zo)→ ZoΩ
∀c ∈ C, [[c]] ∈ BΩ → P(V → Zo).

Intuitively, the semantics of an expression maps a store to
a value or to the error constantΩ in case an error happens
when the expression is evaluated. It relies on a definition
of an interpretation ⊕̌ : ZoΩ ×Z

o
Ω → Z

o
Ω for the operator

⊕ ∈ {+,−, �, /}. The interpretation ⊕̌ of the operator ⊕
is assumed to be Ω -strict: ∀v ∈ZΩ , v⊕̌Ω =Ω⊕̌v =Ω (in-
tuitively, an error is always propagated). The interpre-
tations of the binary operators are supposed to handle
error cases as division by 0 and overflows, for instance,
/̌(v, 0) = +̌(Nmax, 1) =Ω . The semantics of expressions is
defined by induction on the syntax as follows (ρ denotes
an environment, x a variable, t an array of length n; e0, e1
denote expressions):

[[n]](ρ) = n
[[x]](ρ) = ρ(x)

[[t[e0]]](ρ) =

{
ρ(t [[[e0]](ρ)]) if 0≤ [[e0]](ρ)< n
Ω otherwise

[[e0⊕ e1]](ρ) = ⊕̌([[e0]](ρ), [[e1]](ρ)) ⊕ ∈ {+,−, �, /}.

Accommodating nondeterminismwould require consider-
ing sets of values instead of values here.
The semantics of a condition c maps a value b ∈ BΩ to

the set of stores in which the condition c evaluates to b.
The usual interpretations of the logical and comparison
operators are lifted to Ω -strict interpretations. As for the
expressions, the semantics of conditions is defined by in-
duction on the syntax. We give only a few cases (c0 and c1
denote conditional expressions):

[[true]](T) = V → Z,
[[true]](F) = [[true]](Ω) = ∅,
[[c0∧ c1]](T) = [[c0]](T)∩ [[c1]](T),
[[c0∧ c1]](F) = [[c0]](F)∩ [[c1]](F)∪ [[c0]](T)∩ [[c1]](F),

∪ [[c0]](F)∩ [[c1]](T),
[[c0∧ c1]](Ω) = [[c0]](Ω)∪ [[c1]](Ω).

We assume that each statement s is associated with a la-
bel l (which intuitively denotes the program point right
before the statement s). The transition system of a pro-
gram P is defined by the set of labels associated with the
statements of P and by the transition relation defined be-
low by considering all the statements in P :

– Case of an assignment l : t [e0] := e1; l
′ : . . . (where t is

an array of size n):

• If [[e0]](ρ) �=Ω and [[e1]](ρ) �=Ω and 0≤ [[e0]](ρ)<n,
then

(l, ρ)→P (l
′, ρ[t [[[e0]](ρ)]← [[e1]](ρ)]),

• else

(l, ρ)→P Ω .

An assignment to a variable is similar.
– Case of a conditional l : if(c) {lt : Bt; l′t} else{lf :
Bf ; l

′
f}; l

′ : . . .:

ρ ∈ [[c]](T) =⇒ (l, ρ)→P (lt, ρ)
ρ ∈ [[c]](F) =⇒ (l, ρ)→P (lf , ρ)
ρ ∈ [[c]](Ω) =⇒ (l, ρ)→P Ω

(l′i, ρ)→P (l
′, ρ), where l′i ∈ {l

′
t, l
′
f}.

– Case of a loop l : while(c) {lb :Bb; l′b}; l
′ : . . .:

ρ ∈ [[c]](T) =⇒ (l, ρ)→P (lb, ρ)
ρ ∈ [[c]](F) =⇒ (l, ρ)→P (l′, ρ)
ρ ∈ [[c]](Ω) =⇒ (l, ρ)→P Ω

(l′b, ρ)→P (l, ρ).

This language could be extended to a procedural
subset of the C language very easily. The definition
of the semantics would be similar (labels would in-
clude a calling context as mentioned in Sect. 2.3) and
the extension to nondeterminism would also be
trivial.

2.5 A simple assembly language

This subsection describes the simple (yet realistic) assem-
bly language we consider in this paper. It corresponds
to a (very) simplified model of the assembly language
of the PowerPC processor [21] (the prototype presented
in Sect. 7 was designed for the real PowerPC execution
model).
The simplified execution model features a given num-

ber of integer registers denoted by r0, . . . , rN and access
to memory with integer addresses. An assembly program
is a sequence of labeled instructions (we simply define
the label of an instruction as the value of the program
counter before this instruction is executed). The syntax of
instructions is given in Fig. 2.
As in many processors, a conditional branching is de-

composed in several steps: the comparison instruction
sets the value of a so-called “condition register” cr (pos-
sible values for cr are LT, EQ, and GT: LT means “less
than”, EQ “equal”, and GT “greater than”); the condi-
tional branching instruction directs the execution accord-
ing to the condition register value. We write C for the set
{LT,EQ,GT}. Hence we consider here the set of values
R = Zo∪C.

20 X. Rival: Certification of compiled assembly code by invariant translation

n ∈ Zo

c ∈ {<,≤,=, �=, >,≥}
v ∈ {r0, . . . , rN}∪Zo

op ::= add | sub | mul | div
I ::= load r0, n (v)
| store r0, n (v)
| li r0, n
| op r0, r1, r2 | mr r0, r1
| cmp r0, r1
| bc(c) l | b l

Fig. 2. Simple assembly language

The address of a variable x stored in the memory is de-
noted by x. We writeM{n} for the memory cell of address
n, where n ∈N. As is the case for many real architectures,
memory access proceeds by relative addressing: the in-
struction load r0, n (v) loads the content of the memory
cell of address n+ v into the register r0.
The transition system associated with a program P is

defined by the labels of all the instructions of the program
and the transition relation defined below by considering
all the instructions in the program (l, l′, l′′, . . . denote pro-
gram points):

– The “load integer” instruction l : li r0, n; l
′ : . . . loads

the integer n into the register r0:

(l, ρ)→P (l
′, ρ[r0← n]).

– The “load” instruction l : load r0, x (v); l
′ : . . . loads

the content of the memory cell of address x+v (v is ei-
ther an integer constant or the content of a register) if
x+ v is a valid address (if not, it fails):

• If x+ v is a valid address, then

(l, ρ)→P (l
′, ρ[r0← ρ(M{x+ v})]).

• If x+ v is not a valid address, then

(l, ρ)→P Ω .

– The “store” instruction l : store r0, x (v); l
′ : . . . stores

the content of the register r0 into the memory cell of
address x+v if x+v is a valid address (if not, it fails):

• If x+ v is a valid address, then

(l, ρ)→P (l
′, ρ[M{x+ v}← ρ(r0)]).

• If x+ v is not a valid address, then

(l, ρ)→P Ω .

– The “move register” instruction l : mr r0, r1 : l
′ : . . .

copies the content of the register r0 into the register r1:

(l, ρ)→P (l
′, ρ[r0← ρ(r1)]).

– The “compare” instruction l : cmp r0, r1; l
′ : . . . com-

pares the content v0 of the register r0 with the content

v1 of the register r1; if v0 < v1, then the value of the
condition register is set to LT; if
v0 = v1, then the value of the condition register is set
to EQ; if v0 > v1, then the value of the condition regis-
ter is set to GT:

if ρ(r0)< ρ(r1), then (l, ρ)→P (l
′, ρ[cr← LT]);

if ρ(r0) = ρ(r1), then (l, ρ)→P (l
′, ρ[cr← EQ]);

if ρ(r0)> ρ(r1), then (l, ρ)→P (l
′, ρ[cr←GT]).

– The “conditional branching” instruction l : bc(<) l′′;
l′ : . . . branches to l′′ or to the next instruction de-
pending on the value stored in the condition regis-
ter (the case of bc(c) l′′ where c is any condition is
similar):

if ρ(cr) = LT, then (l, ρ)→P (l′′, ρ);
if ρ(cr) ∈ {EQ,GT}, then (l, ρ)→P (l′, ρ).

– The “branching” instruction l : b l′′; l′ : . . . branches to
label l′′:

(l, ρ)→P (l
′′, ρ).

– The “addition” instruction l : add r0, r1, r2; l
′ : . . .

adds the content of registers r1 and r2; then, if no error
occurs, it stores the result into register r0; if an error
occurs (i.e., the result is Ω), the operation instruction
evaluates to the error state:

• If +̌(ρ(r1), ρ(r2)) �= Ω , then

(l, ρ)→P (l
′, ρ[r0← +̌(ρ(r1), ρ(r2))]).

• If +̌(ρ(r1), ρ(r2)) = Ω , then

(l, ρ)→P Ω .

The case of the other arithmetic instructions mul, sub,
div is similar. Note that the interpretations of the
arithmetic operators are the same as for the source
language of Sect. 2.4.

This simple assembly language could be extended to
handle procedures. Then we would have to extend the as-
sembly model by taking into account the execution stack.
Some extra instructions would carry out the update of the
stack at the function calls and returns.

3 Compilation as a program
transformation

This section attempts to formalize the compilation of
a source program Ps into an assembly program Pa. This
is achieved by defining a suitable observational semantics
for source and target programs that states an equivalence
between them.

X. Rival: Certification of compiled assembly code by invariant translation 21

3.1 Intuition about compilation

The purpose here is to state how we expect source and
compiled programs to be related. Indeed, proving prop-
erties about compiled programs from properties of source
programs requires a notion of “correct compilation”. In-
tuitively, both programs should carry out the same com-
putations, that is, the execution traces of both programs
should be isomorphic.We consider here the case of imper-
ative source programming languages.
We assume that program Ps is compiled into pro-

gram Pc. If the compilation is correct and if the execution
of a statement in Ps starting at a state (ls, ρs) ends in
a state (l′s, ρ

′
s), then there should exist two states (lc, ρc)

and (l′c, ρ
′
c) in the compiled program that are respectively

“related” to (ls, ρs) and (l
′
s, ρ
′
s) and such that (lc, ρc)→

(l′c, ρ
′
c) in one or several assembly execution steps. Simi-

larly, any sequence of execution of the compiled program
should have a counterpart in the source program. De-
scribing the link between the executions of both programs
is the purpose of this section.
The relation between program points of “related

states” states some kind of equivalence between the con-
trol structures of both programs. The relation between
stores of “related states” asserts that some source and as-
sembly memory locations are in correspondence; hence,
they should store the same value – modulo some con-
vention about the machine representation of the source
values.
For instance, in the case of the example given in Fig. 3,

the assembly counterpart for the source variable x is the
memory cell of address x, whereas the registers have no
source counterpart. The assembly program point la2 cor-
responds to the source program point ls1 (and the same
for the other pairs of program points listed in Fig. 3c),
whereas some assembly program points have no source
counterpart; for example, the label la1 cannot be mapped
to any point in the source program. At the semantics
level, the compilation of Ps into Pa is correct for this
mapping of the source and assembly program points and
memory locations. The correctness of compilation ex-
presses, for instance, that if x has value v at point ls1 for
some execution σs of Ps, then there exists some execution
σa of Pa that reaches point l

a
2 and such that the value con-

VPs = {x}
ls0 : x := 0;
ls1 : while(x < 100) {
ls2 : x := x+1;
ls3 : }
ls4 : 〈end of the program〉

VPa = {x}
la0 : li r0, 0
la1 : store r0, x (0)
la2 : load r0, x (0)
la3 : li r1, 100
la4 : cmp r0, r1
la5 : bc(≥) l

a
11

la6 : load r0, x (0)
la7 : li r1, 1
la8 : add r2, r0, r1
la9 : store r2, x (0)
la10 : b l

a
2

la11 : 〈end of the program〉

. Program points:
ls0 ←→ la0
ls1 ←→ la2
ls2 ←→ la6
ls3 ←→ la10
ls4 ←→ la11

. Memory locations: x ←→ x

(a) Source program Ps (b) Assembly program Pa (c) Relation

Fig. 3. Example of compilation

tained in x at this point is equal to v. Furthermore, σs and
σa present the same transitions: if σs steps forward from
the state (ls1, [x �→ v]) to the program point l

s
2 (i.e., σs en-

ters the loop), then σa carries out a corresponding step
(or sequence of steps) from (la2 , [. . . , x �→ v]) to l

a
6 ; hence it

proceeds through the execution path 〈la2 , l
a
3 , l
a
4 , l
a
5 , l
a
6〉 (i.e.,

it does not follow the branching to la11).
In general, one source statement is compiled into a se-

quence of assembly statements; therefore, some interme-
diate program points in the assembly program do not
enjoy a counterpart in the source, as remarked above in
the case of the example. Similarly, some memory loca-
tions of the assembly program do not correspond to any
memory location of the source program as is the case with
the registers. Furthermore, some basic compiler optimiza-
tions may remove dead code or dead variables; hence,
some source programpoints or memory locations may not
have a counterpart in the compiled program.
Consequently, the relation between the source and the

compiled program can only be formulated on a “restrict-
ed” form of the semantics, which ignores some parts of the
computation. We detail in the following subsection the
observational semantics we will use to define the correct-
ness of compilation.

3.2 Observational semantics

We consider here a program P defined by the labeled
transition system (LP , VP , iP ,→P) and by the set of vari-
ables VP . The notions presented here will be instantiated
to both source and assembly programs in the following.
Let LrP ⊆ LP and V

r
P ⊆ VP be “restricted” sets of pro-

gram points and memory locations. The set LrP intu-
itively represents the program points we want to observe.
Similarly, V rP stands for the set of memory locations we
want to keep. Furthermore, the notation SrP stands for
V rP →R; it denotes the set of the stores that assign a value
to the memory locations inLrP . We first define projections
for stores and for program points; then the observational
semantics will be defined as the projection of all the traces
of [[P]].

Store restriction. The store projection operator φ maps
a store ρ ∈ SP to a “restricted store” ρ′ ∈ SrP :

22 X. Rival: Certification of compiled assembly code by invariant translation

φ : SP −→ SrP
ρ �−→ ρ′ = λx ∈ V rP .ρ(x).

Trace restriction to a set of program points. The trace
projection operator Φ forgets about the states (l, ρ) such
that l does not belong to LrP and applies the store projec-
tion operator to the stores of the remaining states. The
states (l, ρ) such that l belongs to LrP are kept in the same
order in which they appear in the original sequence. More
formally, Φ is defined as follows:

Φ : (LP ×SP)� −→ (LrP ×S
r
P)
�.

If σ = 〈(l0, ρ0), . . . , (ln, ρn)〉, then Φ(σ) = σ′, where

σ′ = 〈(lk0 , φ(ρk0)), . . . , (lkm , φ(ρkm))〉
0≤ k0 < . . . < km ≤ n
{k0, . . . , km}= {i | (0≤ i≤ n)∧ (li ∈ LrP)}.

We envisage here a trace of the example assembly pro-
gram of Fig. 3b:

Example 1. As the mapping presented in Fig. 3c sug-
gests, we choose Lra = {l

a
0 , l
a
2 , l
a
6 , l
a
10, l

a
11} and V

r
a = {x}.

Let σa represent the very beginning of an execution of Pa:

〈 (la0 , [x �→ v, r0 �→ v0, r1 �→ v1, . . .])
(la1 , [x �→ v, r0 �→ 0, r1 �→ v1, . . .])
(la2 , [x �→ 0, r0 �→ 0, r1 �→ v1, . . .])〉.

Then, Φ(σa) = 〈(la0 , [x �→ v]), (l
a
2 , [x �→ 0])〉.

The following definition introduces both the observa-
tional semantics of program P and the operator used to
compute it from [[P]]:

Definition 3 (Observation operator). The observa-
tional abstraction operator αr is Φ̂. In other words,
∀E ∈ P((LP ×SP)�), αr(E) = {Φ(t) | t ∈ E}. The observa-
tional semantics [[P]]r of program P is defined by [[P]]r =
αr([[P]]).

As noted by the proposition below, the operator αr is
an abstraction operator:

Proposition 1 (Observation abstraction). The op-
erator αr defines a Galois connection

P((LP ×SP)
�)−−−→←−−−

αr

γr

P((LrP ×S
r
P)
�).

Straightforward: we are in the presence of complete
lattices; αr is monotone; hence it determines uniquely
the concretization operator γr so as to define a Galois
connection. �

Intuitively, if E ∈ P((LrP ×S
r
P)
�), then γr(E) denotes

the set of all the traces σ of elements of LP ×SP such that
the restriction of σ belongs to E .

3.3 Correctness of compilation

In this subsection, we consider a source program Ps and
an assembly program Pa. We assume they are defined
by two labeled transition systems (Ls, Vs, is,→s) and
(La, Va, ia,→a). Our goal here is to formalize a correct
compilation of Ps into Pa. We consider first the case of
a simple compilation as opposed to an optimizing com-
pilation. The case of more involved transformations is
evoked afterwards.
We assume that we are given four sets Lrs ⊆ Ls, L

r
a ⊆

La, V
r
s ⊆ Vs, and V

r
a ⊆ Va, which define the program

points and the memory locations of both programs that
can be related (the notations Sri = V

r
i →R are also used

in the following). More precisely, we assume that two bi-
jections πl :L

r
s→L

r
a and πv : V

r
s → V

r
a are defined. These

bijections denote the correspondence between source and
assembly program points and memory locations as out-
lined in in Sect. 3.1:

• πv(xs) = xa expresses the fact that memory location xa
stores a value equal to the value stored in xs at cor-
responding program points (modulo a correspondence
between source and assembly representation of data
types, which we ignore here);
• πv defines a store mapping πs : Srs → S

r
a: πs(ρ) = ρ ◦

π−1v ;
• πl(ls) = la means that a source state like (ls, ρs) is re-
lated to an assembly state like (la, ρa) and vice versa
(where the correspondence between ρs and ρa is deter-
mined by πs).

We can introduce a trace mapping operator now:

Π : (Lrs×S
r
s)
� −→ (Lra×S

r
a)
�

〈(l0, ρ0), . . . , (ln, ρn)〉 �−→ 〈(πl(l0), πs(ρ0)), . . . ,
(πl(ln), πs(ρn))〉.

The sets Lrs and V
r
s (resp. L

r
a and V

r
a) define observa-

tion abstractions as in Sect. 3.2. For instance, we write αrs
(resp. γrs) for the abstraction (resp. concretization) func-
tion associated with the definition of the observational
semantics of source programs. The compilation of Ps into
Pa is said to be correct if and only if the restricted seman-
tics of both programs are in bijection:

Definition4(Correctness of compilation). The com-
pilation c of Ps into Pa is correct with respect to the map-
ping (πl, πv) if and only if the following holds:

Π̂([[Ps]]r) = [[Pa]]r.

This situation can be depicted by the diagram below:

Ps � [[Ps]] � [[Ps]]r
αrs

Π̂

Pa

c

�
� [[Pa]] � [[Pa]]r

αra

X. Rival: Certification of compiled assembly code by invariant translation 23

Example 2. We continue here the example of Fig. 3. The
restricted sets are:

V rs = {x} Lrs = Ls = {l
s
0, l
s
1, l
s
2, l
s
3, l
s
4}

V ra = {x} Lra = {l
a
0 , l
a
2 , l
a
6 , l
a
10, l

a
11}.

The bijections πl and πv are defined in Fig. 3c. The com-
pilation of Ps into Pa is correct with respect to these
mappings (in the sense of Definition 4).
Furthermore, the assembly trace σa of Example 1 is

related to the following source trace σs (i.e., Π(σs) = σa):

σs = 〈(l
s
0, [x �→ v]), (l

s
1, [x �→ 0])〉.

Extraction of the mappings πv and πl. In general, the
bijections πv and πl can be found in the output of the
compiler. Indeed, most commonly used compilers pro-
vide auxiliary information for the sake of debugging. The
mappings between program points and memory locations
are components of this “debugging information”. Con-
sequently, the use of these mappings should not be pro-
hibitive in practice.
At the beginning of this subsection, we limited our-

selves to nonoptimizing compilation; we give here a few
hints about how to handle optimizations:

Remark 1 (Optimizations). Handling compiler optimiza-
tions generally requires integrating it right at the compi-
lation correctness definition level:

– As mentioned above, code-elimination-based or vari-
able-elimination-based optimizations are handled by
choosing πs and πl so as to get rid of the removed en-
tities. Thus Definition 4 is general enough to deal with
these optimizations.
– Many optimizations that change the structure of pro-
grams can also be handled in this framework by
defining program points in a nonsyntactic way. For
instance, in the case of an unrolling of a loop L,
a syntactic program point x of the source program
in the loop L is mapped to two points in the assem-
bly program – one for odd iteration numbers and
one for even iteration numbers. Handling this op-
timization reduces to splitting x into two program
points xodd and xeven. Hence loop-unrolling-based
optimizations would require Definition 4 to be ex-
panded to a more general definition that would allow
the control structure of the source program to be
unfolded.

Remark 2 (Practical variable mapping). In practice, the
definition of variable mapping πv turns out to be more
involved. Indeed, the source variables (hence the source
and assembly memory locations) have a restricted scope.
Consequently, the relation between source and assembly
memory locations depends on the program point. We as-
sume in this paper that all variables have a global scope
and that πv does not depend on the programpoint. Hand-
ling procedures requires solving this kind of technical
issue.

The formalization of compilation presented above is
equivalent to the approach of [32]. It is also comparable
to formalizations based on simulation techniques. How-
ever, we believe that the advantage of formalizing com-
pilation inside the abstract interpretation framework is
to bring both static analysis and compilation into a sin-
gle framework, which makes reasoning about the pro-
cess more simple, especially if we wish to extend it to
optimizations. The observation abstractions considered
in Sect. 3.2 are simple projections; however, consider-
ing simple projections would not allow us to generalize
our presentation to deal with optimizations. Indeed, in
the optimizing compilation case, the observation abstrac-
tions may have to be replaced by more complex oper-
ators (which would no longer be mere projections) and
further developments would require it to be extended
accordingly.

4 Static analysis and invariant translation

We consider now static analysis as a way of soundly ap-
proximating the possible behaviors of programs (more
precisely, an abstract semantics is defined and then
a sound overapproximation of it is computed). Then we
consider a “correct compilation” (in the sense of the
previous section) and show how to deduce abstract prop-
erties of the compiled program from abstract properties
of the source program.

4.1 Abstract domain and static analysis

We introduce here a class of static analyses large enough
to answer most questions of interest about the behav-
ior of programs (like runtime error detection). Let P
be a program defined by a labeled transition system
(LP , VP , iP ,→P) (the corresponding set of stores is de-
noted by SP = VP → R). We assume that an abstract
domainD� is given for representing sets of stores:

(P(SP),⊆)−−−→←−−−
αs

γs

(D�,).

The abstract semantics of a program is a function that
maps a program point to the abstraction of the set of
stores that can be encountered at this point in a trace of
the program:

Definition 5 (Abstract semantics). The trace ab-
straction is defined as follows:

αt : P((LP ×SP)�)−→ (LP →D�)
∀E ⊆ (LP ×SP)�, ∀l ∈ LP ,

αt(E)(l) = αs({ρ | 〈. . . , (l, ρ), . . . 〉 ∈ E}).

The abstract semantics of P is defined by [[P]]� = αt([[P]]).

The function αt defines a Galois connection:

(P((LP ×SP)
�),⊆)−−−→←−−−

αt

γt

(LP →D
�,
.
).

24 X. Rival: Certification of compiled assembly code by invariant translation

(This is the same argument as in Proposition 1). �

Static analysis. In most cases, the abstract semantics
[[P]]� cannot be computed exactly; hence we compute an
overapproximation of it by using a sound abstract seman-
tic function F �P : (LP →D

�)→ (LP →D�) (the sound-
ness of the abstract semantic function boils down to αt ◦
FP

.
	 F �P ◦α

t) and a widening operator ∇ to enforce con-
vergence [11].
Below we call invariant an element of the lattice

(LP →D�,
.
). A sound invariant for program P is an

invariant I such that [[P]]�
.
	 I; it provides a sound overap-

proximation of the set of reachable states of the program.
Hence, static analysis computes a sound invariant for the
program.
The definition of a sound abstract semantic function

requires that a few abstract operators be introduced first.
For instance, the following two abstract operators are suf-
ficient to build an abstract semantic function for the pro-
grams written in the simple language of Sect. 2.3 (the cor-
responding operators for the simple assembly language
of Sect. 2.4 will be designed in a very similar way in
Sect. 6.1):

– Assignment: The assign operator is defined by

assign : Lv×E×D� −→D�.

Intuitively, it evaluates an l-value and an expression
and operates the assignment in the abstract domain;
if the l-value does not evaluate into a single memory
location but to a set of memory locations, the assign
operator carries out a “may assign”. The soundness of
this operator can be stated as follows:

∀ρ ∈ SP , ∀ρ� ∈D�, ∀lv ∈ Lv, ∀e ∈ E,
ρ ∈ γs(ρ�) =⇒ ρ′ ∈ γs(assign(lv, e, ρ�)),

where ρ′ = ρ[[[lv]](ρ)← [[e]](ρ)] (the substitution opera-
tor also takes into account the possible “may assign”).
– Guard: The guard operator is defined by

guard : B×C×D� −→D� .

Intuitively, it inputs a boolean b, a condition c, and
an abstraction of a set of stores ρ� and determines
a superset of the stores abstracted by ρ� such that c
evaluates to b. Hence the soundness of guard boils
down to

∀ρ ∈ SP , ∀ρ� ∈D�, ∀b ∈ B, ∀c ∈ C,
(ρ ∈ [[c]](b)∧ρ ∈ γs(ρ�)) =⇒ ρ ∈ γs(guard(b, c, ρ�)).

The abstract semantic function associated with program
P can be defined by considering the abstract transfer
functions corresponding to all the statements in the pro-
gram.More precisely, we write φl,l′ for the abstract trans-
fer function corresponding to the transition l→ l′. It

should achieve the following soundness property:

∀ρ, ρ′ ∈ SP , ∀ρ� ∈D�,
(l, ρ)→P (l′, ρ′)
ρ ∈ γs(ρ�)

}
=⇒ ρ′ ∈ γs ◦φl,l′(ρ

�).

In other words, the abstract transfer function computes
an overapproximation of the set of stores at point l′ that
can be reached by following the transition l→ l′ starting
from a given set of stores at point l. If program traces can-
not step from l to l′, φl,l′ = λρ

� ∈D�.⊥.
The definition of all abstract transfer functions for

program P proceeds by considering all the statements in
the program as shown in Fig. 4.
The abstract semantic function mimics one execution

step at the abstract level by applying the abstract trans-
fer functions to the local invariants:

F �P : (LP →D
�) −→ (LP →D�)

if l = iP , then: F
�
P (I)(l) =�;

if l �= iP , then: F
�
P (I)(l) =

⊔
l′∈LP

φl′,l(I(l
′)).

This definition of F � ensures soundness since αt ◦FP
.
	

F �P ◦α
t.

Extensions. The extension of such an analysis to a proce-
dural language would not be difficult since it only requires
extending the notion of program point to enclose an exe-
cution stack. If recursion is not allowed (which is the case
in many critical embedded systems), then the execution
stack can be represented exactly at the abstract semantics
level (a programpoint corresponds to a syntactic program
point and a unique stack). On the other hand, if recursion
is allowed, then an abstraction of stack sets must be de-
fined to preserve the computer tractability (a label should

In case φl,l′ is not defined explicitly below, then
φl,l′ = λρ

� ∈D�.⊥:

-Case of an assignment l : lv := e1; l
′:

φl,l′(ρ
�) = assign(lv, e, ρ�)

-Case of a conditional l : if(c) {lt : Bt; l′t} else{lf :
Bf ; l

′
f}; l

′ : . . .:

φl,lt(ρ
�) = guard(T , c, ρ�)

φl,lf (ρ
�) = guard(F , c, ρ�)

φl′t,l′
(ρ�) = ρ�

φl′
f
,l′(ρ

�) = ρ�

-Case of a loop l : while(c) {lb :Bb; l′b}; l
′ : . . .:

φl,lb(ρ
�) = guard(T , c, ρ�)

φl,l′(ρ
�) = guard(F , c, ρ�)

φl′
b
,l(ρ

�) = ρ�

Fig. 4. Abstract semantic function F �P

X. Rival: Certification of compiled assembly code by invariant translation 25

represent a syntactic programpoint and a subset of the set
of the stacks that may occur at this point).
In the following we will consider the case of the in-

terval domain only (D� approximates the values of the
variables with intervals); however, the abstract domain
D� can be considered a parameter: it may be instanti-
ated with other domains like affine equalities [17], con-
stants [9], or octagons [18].
Finally, we can remark that a control-based partition-

ing strategy similar to those described in [16]) can be used
to express more precise properties about programs. Then
a finite partition of the set of control paths ending in l is
given for each program point and the abstract semantics
of the program inputs both a program point and an elem-
ent of the partition attached to this point and outputs an
abstraction of the corresponding set of stores. This ap-
proach would require the extension of Definition 5; how-
ever, this extension would be trivial.

Aspects of program certification. A large part of program
certification consists in proving safety properties. For in-
stance, the goal of runtime error detection is to show
that a program will not abort because of an illegal op-
eration [3, 4]. Program certification proceeds by checking
that the set of concrete values represented by the ab-
stract invariant cannot lead to an error (which is sound
but obviously incomplete). For instance, if we discover an
invariant I � [[P]]� for a program P and if P contains the
statement l : A [i] := 10/v; l′ : . . . (where A is an array of
size nA and v a variable), we would have to check:

• The correctness of the array assignment: ∀ρ ∈ γs(I(l)),
0≤ ρ(i)< nA (no out-of-bound array access);
• The correctness of the division: ∀ρ ∈ γs(I(l)), 0 �∈ ρ(v)
(no divide by 0 error).

An example analysis. Given SP = VP → Zo, we envisage
here a simple interval analysis. The Galois connection

(P(SP),⊆)−−−→←−−−
αs

γs

(D�,) is defined by

D� = VP → ({⊥}∪{[a, b] | a, b ∈ Z
o, a≤ b})

and

αs(∅) =⊥
∀E ⊆ SP such that E �= ∅, ∀x ∈ VP ,
αs(E)(x) = [min{ρ(x) | ρ ∈ E},max{ρ(x) | ρ ∈ E}]

γs(⊥) = ∅
∀ρ� ∈D�, γs(ρ�) =
{(λx ∈ VP .vx) | ∀x ∈ VP , xmin ≤ vx ≤ xmax,

where ρ�(x) = [xmin, xmax]}.

The transfer functions and the complete domain defin-
ition are trivial and can be found in [9].

Example 3. The most precise sound invariant for pro-
gram Pc is displayed in the table below. Note that a sim-
ple interval analyzer would discover this invariant exactly.

Program point l [[P]]�(l)(x)

ls0 [Nmin, Nmax]
ls1 [0, 100]
ls2 [0, 99]
ls3 [1, 100]

ls4 [100, 100]

4.2 Invariant translation

In this subsection, we use the same notations for a source
program Ps and for an assembly program Pa as we did in
Sect. 3.3. The compilation of Ps into Pa is assumed cor-
rect in the sense of Definition 4 (the mappings for the pro-
gram points, variables, and stores πl, πv, and πs are also
defined in the same way as in Sect. 3.3). Furthermore, for
simplicity we assume that V rs = Vs (the general case will
be treated in the following subsections). We also assume
that an abstract interpretation is defined for the source
program Ps: D

�
s denotes the abstract domain for repre-

senting sets of source stores (the corresponding Galois
connection is defined by the pair of functions (αss, γ

s
s)).

Moreover, we assume that Is ∈ (Ls→D�s) is a sound in-
variant for the source program (i.e., [[Ps]]

�
.
	 Is). We write

Φs and Φa for the trace restriction operators (defined as
in Sect. 3.2). The store restriction operators are denoted
by φs and φa.
Let ls ∈ Lrs and la = πl(ls).
Let σa = 〈. . . , (la, ρa), . . . 〉 ∈ [[Pa]]. The correctness of

the compilation of Ps into Pa entails that Π̂([[Ps]]r) =
[[Pa]]r; consequently, there exists a trace σs ∈ [[Ps]] such
that Π(Φs(σs)) = Φa(σa). Since la ∈ Lra, σs is of the form
σs = 〈. . . , (ls, ρs), . . . 〉 and φa(ρa) = πs(φs(ρs)).
Hence ρs = φs(ρs) = φa(ρa)◦πv.
The soundness of the invariant Is entails that ρs ∈

γss(Is(ls)). Consequently, φa(ρa)◦πv ∈ γ
s
s(Is(ls)).

At this point we have shown the proposition

[[Ps]]
�
.
	 Is

la = πl(ls)
〈. . . , (la, ρa), . . . 〉 ∈ [[Pa]]


=⇒ φa(ρa)◦πv ∈ γss(Is(ls)).

This proposition outlines how an abstract property of the
assembly program can be derived from an abstract invari-
ant of the source program, even if it does not lead to an
explicit soundness statement like ρa ∈ γsa(ρ

�
a), where ρ

�
a is

an element of a suitable abstract domain:

(P(Va→R),⊆)−−−→←−−−
αsa

γsa
(D�a,).

In the following subsection, the design of a translated in-
variant is done in two steps: a “restricted abstract seman-
tics” is first defined, which is both an abstraction of the
observational semantics of Sect. 3.2 and of the abstract
semantics underlying static analysis (Sect. 4.1); then the

26 X. Rival: Certification of compiled assembly code by invariant translation

translator is defined as a function that inputs a source-
restricted abstract semantics and outputs an assembly-
restricted abstract semantics.

4.3 Abstract semantics and observation

In this subsection,weuse the samenotationsas inSect. 4.1:
we consider a programP and suppose that an abstract in-
terpretation of the sets of stores ofP is given and extended
to an abstract semantics for P . The purpose of this sub-
section is to show how a new abstract semantics can be de-
fined to represent sets of projected stores (i.e., subsets of
V rP →R) as shown in Fig. 5. We describe here an effective
way to define [[P]]�r,α

tc, andαrc.

Forget operator. An operator forget : VP ×D�→D� in-
puts a variable x ∈ VP and an abstract value ρ� and out-
puts a new abstract value ρ′� that does not take into ac-
count the variable x by forgetting about any information
pertaining to this variable. The soundness of a forget op-
erator is stated as follows:

∀x ∈ VP , ∀ρ, ρ′ ∈ SP , ∀ρ� ∈D�,
(∀y ∈ VP , y �= x=⇒ ρ(y) = ρ′(y)) =⇒
ρ ∈ γs(ρ�) =⇒ ρ′ ∈ γs(forget(x, ρ�)).

Furthermore, a forget operator should be idempotent:

∀x ∈ VP , ∀ρ� ∈D�,
forget(x, forget(x, ρ�)) = forget(x, ρ�).

Indeed, forgetting twice about the constraints on variable
x yields the same result as forgetting about them only
once.
The definition of such an operator is trivial for most

domains: forget(x, ρ�) basically removes all the con-
straints on variable x. In most cases (domains of inter-
vals, octagons, linear equalities, etc.), the forget op-
erator achieves the following exactness condition (the
domain of polyhedra achieves a similar property de-
spite the fact that it does not enjoy an abstraction
function):

∀x ∈ VP , ∀X ⊆ SP ,
forget(x, αs(X)) =
αs({ρ′ ∈ SP | ∃ρ ∈ X ,

∀y ∈ VP , y �= x⇒ ρ(y) = ρ′(y)}).

In the remainder of the paper, all the forget operators we
consider are assumed to be exact and idempotent.

[[P]]
αr� [[P]]r

[[P]]�
�
αt

� [[P]]�r

�
αtc

αrc

Fig. 5. Abstractions of the standard semantics

Such an operator can be straightforwardly extended
to an operator on sets of variables (forgetting about a set
of variables amounts to forgetting about all of them in any
order).
Finally, note that forget(VP \V rP , ρ

�) in fact corres-
ponds to an element of a “restricted abstract domain”
Dr� that defines a Galois connection with P(SrP):

(P(SrP),⊆)−−−−→←−−−−
αsr

γsr

(Dr�,).

This domain can be defined as follows:

Definition 6 (Restricted abstract domain). The re-
stricted abstract domain is defined by

Dr� = {forget(VP \V
r
P , ρ

�) | ρ� ∈D�}.

Moreover, if X ∈ P(SrP),

αsr(X) = forget(VP \V
r
P , α

s({ρ ∈ SP | φ(ρ) ∈X})).

For instance, in the case of the interval domain seen
in Sect. 4.1, forget(VP \V rP , ρ

�) is a function of VP to in-
tervals that maps any variable not belonging to V rP to the
“top” interval [Nmin, Nmax]. Consequently, an abstract
value ofDr� is isomorphic to a function of V rP to intervals.

Toward a more adapted abstract semantics. At this point
a new abstract semantics can be defined that takes into
account the variables of V rP only (and implements the di-
agram of Fig. 5):

Definition 7 (Restricted abstract semantics). Let
αrc be the function defined by

αrc : (LP →D�) −→ (LrP →D
r�)

I �−→ λl ∈ LrP .(forget(VP \V
r
P , I(l))).

The restricted abstract semantics [[P]]�r of the program P
is defined by [[P]]�r = α

rc([[P]]�).

As shown by the following (trivial) proposition, the re-
stricted abstract semantics is an abstraction of the “stan-
dard” abstract semantics [[P]]�:

Proposition 2. The function αrc is the abstraction
function of a Galois connection:

(LP →D
�,
.
)−−−−→←−−−−

αrc

γrc

(LrP →D
r�,

.
).

Straightforward. �

Observation and restricted abstract semantics. The re-
stricted abstract semantics [[P]]�r can also be seen as an
abstraction of the observational semantics introduced in
Sect. 3.2 in order to define the correctness of compilation:

X. Rival: Certification of compiled assembly code by invariant translation 27

Proposition 3. Let αtc be the function defined by anal-
ogy with αt by

αtc : P((LrP ×S
r
P)
�) −→ (LrP →D

r�)
∀E ⊆ (LrP ×S

r
P)
�, ∀l ∈ LrP ,

αtc(E)(l) = αsr({ρ | 〈. . . , (l, ρ), . . . 〉 ∈ E}).

This function is the abstraction function of a Galois con-
nection:

(P((LrP ×S
r
P)
�),⊆)−−−−→←−−−−

αtc

γtc

(LrP →D
r�,

.
).

Furthermore, αtc ◦αr = αrc ◦αt.

Hence, [[P]]�r = α
tc([[P]]r).

Let E ⊆ (LP ×SP)� and l ∈ LrP .

αtc ◦αr(E)(l)
= αsr({ρ | 〈. . . , (l, ρ), . . . 〉 ∈ αr(E)})
= αsr({ρ | 〈. . . , (l, ρ), . . . 〉 ∈ {Φ(σ) | σ ∈ E}})
= αsr({φ(ρ) | 〈. . . , (l, ρ), . . . 〉 ∈ E})
= forget(VP \V rP ,

αs({ρ | φ(ρ) ∈ {φ(ρ) | 〈. . . , (l, ρ), . . . 〉 ∈ E}}))
= forget(VP \V rP ,

αs({ρ | ∃ρ′ ∈ SP , 〈. . . , (l, ρ′), . . . 〉 ∈ E
∧∀y ∈ V rP , ρ(y) = ρ

′(y)}))
= forget(VP \V rP ,

forget(VP \V rP ,
αs({ρ ∈ SP | 〈. . . , (l, ρ′), . . . 〉 ∈ E})))
since forget is exact

= forget(VP \V rP , α
s({ρ | 〈. . . , (l, ρ), . . . 〉 ∈ E}))

since forget is idempotent
= αrc ◦αt(E)(l).

�

At this point, we have introduced three abstractions
of the standard concrete semantics [[P]], shown in the di-
agram of Fig. 5:

– [[P]]r is the observational semantics (correctness of
compilation is expressed with respect to it);
– [[P]]� underlies static analysis;
– [[P]]�r is an abstraction of these two semantics (intu-
itively, the dual of a reduced product).

In other words, analyzing the program and then restrict-
ing the results of the analysis by forgetting the abstract
store at some program points and the information about
some store locations amounts to first restricting the sets
of program points and of locations and then abstracting
traces.

4.4 Invariant translation correctness

In this section, we consider a source program Ps and an
assembly program Pa as in Sect. 4.2. We assume that the
compilation of Ps into Pa is correct, hence πv, πs, πl,
and Π are defined as in Sect. 3.3. All the notations of
Sect. 4.2 apply; however, the assumption that V rs = Vs is

relaxed. An abstract domain D�s (resp. D
�
a) is defined for

the source program (resp. the assembly program). The
link between both domains is made explicit in the follow-
ing subsection. A forget operator is defined at both the
source and the assembly level; furthermore, restricted ab-
stract domains are defined as in the previous subsection
and denoted byDr�s andD

r�
a .

Invariant translation. An invariant translation proced-
ure is based on a function that maps an abstract value
ρ�s ∈D

r�
s to an abstract value ρ

�
a ∈D

r�
a and that is an ab-

stract counterpart for πs. Let π
�
s be such a function.

Definition 8 (Soundabstracttranslationoperator).
The abstract store translation function π�s is sound if and

only if αsra ◦ π̂s
.
	 π�s ◦α

sr
s .

Furthermore, π�s is exact if and only if α
sr
a ◦ π̂s = π

�
s ◦

αsrs .

The notion of a sound abstract translation operator
introduced in Definition 8 operates the invariant trans-
lation outlined in Sect. 4.2: if ρ� is a sound approxima-
tion of a set E of source-restricted stores, then π�s(ρ

�) is
a sound approximation of the set of assembly-restricted
stores π̂s(E).
Once an abstract translation operator π�s is given, an

abstract invariant translation operator Π� can be defined
as follows:

Π� : (Lrs→D
r�
s) −→ (L

r
a→D

r�
a)

I �−→ λla ∈ Lra.(π
�
s(I(π

−1
l (la)))).

If π�s is sound, then α
tc
a ◦ Π̂

.
	Π� ◦αtcs . In this case, we say

that Π� is sound. Similarly, if π�s is exact, then the equality
holds and Π� is said to be exact.
The soundness of an abstract translation operator is

defined with respect to a correct compilation since it in-
volves the mapping operators πv and πl.
In practice, the domainsDr�s andD

r�
a are similar: if the

first is an interval domain, then so is the second. Hence
the design of a sound abstract translation operator is
straightforward and completely guided by the mapping of
variables πv. Moreover, π

�
s is always exact and monotone

in practice. The definition of Π� is also completely deter-
mined by the translation information since it is based on
the function π�s and on the mapping of program points πl.

Correctness. At this point, we can state the soundness of
the method: if we use a sound source analyzer, a correct
compiler, and a sound invariant translator, the process
yields a safe invariant for the compiled program.

Theorem 1 (Invariant translation correctness). If
the compilation of Ps into Pa is correct, if π

�
s is sound and

monotone, and if Is ∈ (Ls→D�s) is a sound invariant for
Ps (i.e., [[Ps]]

�
.
	 Is), then Ira = Π

� ◦αrcs (Is) is a sound-
restricted abstract invariant for the assembly program,
that is, [[Pa]]

�
r

.
	 Ira .

28 X. Rival: Certification of compiled assembly code by invariant translation

Hence a sound abstract invariant for the assembly pro-
gram can be derived:

[[Pa]]
�
.
	 γrca ◦Π

� ◦αrcs (Is).

We first choose Is = [[Ps]]
�; this situation is illustrated in

Fig. 6. Then

Π� ◦αrcs (Is) = Π
� ◦αrcs ◦α

t
s([[Ps]])

= Π� ◦αtcs ◦α
r
s([[Ps]]) (Proposition 3)

= Π� ◦αtcs ([[Ps]]r)

and

[[Pa]]
�
r = α

tc
a ([[Pa]]r) (Proposition 3)

= αtca ◦ Π̂([[Ps]]r)

since the compilation is correct ([[Pa]]r = Π̂([[Ps]]r)).
The soundness of Π� entails that

[[Pa]]
�
r

.
	Π� ◦αrcs (Is).

In general, [[Ps]]
�
.
	 Is. Given that αrcs and π

�
s are

monotone, the assembly invariant Π� ◦αrcs (Is) is a sound
approximation of [[Pa]]

�
r. �

We mentioned in Sect. 3.3 that allowing further com-
piler optimizations and transformations would require
the observational semantics [[.]]r to be adapted. This
would entail the extension of the semantics [[.]]�r and of the
invariant translation procedure π�s. However, the method-
ology we presented in this section is general and would
not change.

Example 4. The source invariant displayed in Example 3
can be translated into the assembly invariant Ira given
in the table below. Note that this invariant is a sound
approximation of the abstract semantics of the assembly
program as proved by Theorem 1 ([[Pa]]

�
r

.
	 Ira).

Program point l Ira(l)(x)

la0 [Nmin, Nmax]
la2 [0, 100]
la6 [0, 99]
la10 [1, 100]
la11 [100, 100]

Ps
c � Pa

[[Ps]]
� αrs � [[Ps]]r

Π̂ [[Pa]]r � αra [[Pa]]
�

[[Ps]]
�

αts

�
αrcs � [[Ps]]

�
r

αtcs

�
Π� � Π�([[Ps]]

�
r)
.
� [[Pa]]

�
r

αtca
�

� αrca [[Pa]]
� .

αta

�

Fig. 6. Proof of Theorem 1

Toward a more informative and safer invariant. The in-
variant translation procedure defined above does not
yield a very accurate invariant for the assembly program.
Roughly speaking, the invariant Ia = γ

rc
a (I

r
a) does not tell

us anything about the value of the memory locations that
do not belong to V ra or about the value of any variable
at a program point l �∈ Lra. Furthermore, the correctness
of the translated invariant relies on several assumptions
that we would like to relax (the compiler, the invariant
translator, and the source invariant are assumed to be
correct). Therefore, we show in the following section how
to construct a “full” invariant for the assembly program
(i.e., that would tell something about all the assembly
memory locations and program points) and how to check
it independently.

5 Invariant propagation
and invariant checking

This section shows how to carry out the invariant propa-
gation (i.e., computation of a more precise invariant for
the assembly program) and the invariant checking, which
should allow one to trust the assembly invariant apart
from any hypothesis about the compilation, the source
analysis, or the invariant translation.

5.1 Postfixpoints and postiterations

In this section we retain the notations of Sect. 4.4. In par-
ticular, Ia denotes the translated invariant that we would
like to refine and check.

Assembly invariant checker. In Sect. 4.1, a static analy-
sis was defined for a program P by giving a computable
function F �P : (LP → D

�)→ (LP → D�) such that αt ◦
FP

.
	 F �P ◦α

t (soundness of the abstract semantic func-

tion F �P), where FP denotes the concrete semantic func-
tion introduced in Definition 2. Such a function F �a :
(La→D�a)→ (La→D

�
a) can be defined for the assem-

bly program (with the same soundness condition with
respect to the concrete semantic function of the assembly

X. Rival: Certification of compiled assembly code by invariant translation 29

program Fa), as will be done in Sect. 6.1. The sound-

ness of F �a entails that [[Pa]]
�
.
	 lfpF �a. In practice, F

�
a is

monotone. Note that this function could define an ana-
lyzer for the assembly program as shown in Sect. 4.1 in
the case of program P : a sound approximation of [[Pa]]

�

could be computed by iterating this function from ⊥ and
using a widening operator and an appropriate iteration
strategy [6]. However, the lack of information available
at the assembly level would make the design of an effi-
cient iteration strategy rather involved, as mentioned in
the introduction.

Postfixpoint and invariant checking. The invariant Ia is
said to be a postfixpoint of F �a if and only if F

�
a(Ia)

.
	 Ia.

If Ia is a postfixpoint of F
�
a, then lfpF

�
a

.
	 Ia; therefore Ia

is a sound approximation of [[Pa]]
�.

Therefore, the checking of a candidate assembly in-
variant can be done just by verifying that it is a post-
fixpoint of the assembly abstract semantic function F �a.
If the translated invariant is a postfixpoint, then it is
sound apart from any hypothesis concerning the way it
was obtained (the source analyzer, the invariant trans-
lator, and the compiler are no longer required to be
sound to trust the translated invariant as was done in
Theorem 1). However, if Ia is not a postfixpoint of F

�
a,

we cannot conclude it is not a sound approximation
of [[Pa]]

�.
In practice, the assembly abstract domain and the as-

sembly transfer functions should be defined carefully so as
to make the checking possible. Moreover, the refinement
of the invariant (invariant propagation) should be done
before the invariant checking.

Postiteration and invariant propagation. If I is a postfix-
point of F �a, then the sequence (In)n∈N defined by I0 = I
and In+1 = F

�
a(In) is decreasing since F

�
a is monotone.

Hence a way of improving the precision of the translated
invariant is to iterate the assembly abstract transfer func-
tion starting from Ia if it is a postfixpoint.
In case Ia is not a postfixpoint, then an iteration se-

quence can still be computed starting from it. However,
a widening operator would generally be necessary to en-
force convergence.
Nevertheless the translated invariant is generally not

a postfixpoint: Ia maps elements of L
r
a to precise abstrac-

tions of sets of stores but it maps the elements of La \
Lra to the least precise local invariant �, which makes
the checking unsuccessful at the points of Lra. Therefore,
the next subsection explains how to compute a postfix-
point I ′a from the translated invariant Ia. Then I

′
a can be

checked as mentioned above.

5.2 Practical solution

In practice, the program point mapping πl maps at least
one point in each loop of the assembly control flow graph
to a source program point. Therefore, the computation

of a postfixpoint of F �a does not require an unbounded
iteration.
We assume now that Ia is sound. Let l ∈ La \Lra.

Then, a sound local invariant can be determined for this
point by considering all the paths from a point in Lra to l
that do not encounter another point belonging to Lra. In-
deed, given such a path c= l′, l0, . . . , ln, l, where l

′ ∈ Lra,
we can compute a sound abstract approximation Icl of the
set of stores {ρ | 〈. . . , (l′, ρ′), (l0, ρ0), . . . , (ln, ρn), (l, ρ)〉 ∈
[[Pa]]} by using the abstract transfer functions introduced
in Sect. 4.1:

Icl =
⊔
{ φln,l ◦φln−1,ln ◦ . . .◦φl0,l1 ◦φl′,l0(Ia (l0)) |

(∀i, li �∈ Lra)∧ (l
′ ∈ Lra)}.

This amounts to iterating F �a from the abstract elem-
ent Ja : La→D�a displayed below:

Ja :

{
x ∈ Lra �−→ Ia(x)
x �∈ Lra �−→ ⊥ .

Then, ifN is the maximal length of a path c= l′, l0, . . . , ln
such that l′ ∈ Lra and ∀i, li ∈ La \L

r
a, a sound invariant

Ia can be computed inN iterations. Furthermore, this in-
variant would provide precise information for any point of
the control flow graph of Pa:

I ′a =
N⊔
i=0

(F �a)
i(Ja).

In practice, I ′a is adapted to invariant checking. Fur-
thermore, checking that I ′a is a postfixpoint for F

�
a re-

duces to showing the following local property for each pair
(l, l′) ∈ (La \Lra)×L

r
a:

φl,l′(I
′
a(l))	 I

′
a(l
′).

(Indeed, the local invariants at all the other points of
the graph have been computed so as to achieve this
property.)

5.3 Incompleteness

Section 5.2 details a method that should lead to the
checking of an invariant I ′a (by verifying it is a postfix-
point of F �a) derived from the translated invariant Ia.
However, the invariant checking is definitely incom-

plete. For instance, I ′a may fail to be a postfixpoint of F
�
a if

the abstract domain for the assembly program is too weak
to express some intermediate properties necessary for the
checking to succeed or if the abstract transfer function is
not precise enough.
Intuitively, a very simple piece of source code may be

compiled into a very obfuscated piece of target code. If
the source statement is simply a “skip” statement, the
assembly checker would have to check that the corres-
ponding piece of code does not modify the abstract stores.
Nevertheless, the fact that a piece of code “does nothing”

30 X. Rival: Certification of compiled assembly code by invariant translation

is not decidable and so is in general the fact that a piece of
code “does nothing at the abstract level”.
In practice, the implementation of the method starts

by the definition of a class of source and compiled pro-
gramswe wish the checking to succeed for, which amounts
to choosing the features of the source language allowed
and a class of compilers and compilation options. Then
comes the choice of the assembly abstract domain (which
may need to be obtained by refining the source abstract
domain to convey “more” intermediate properties) and
of the abstract transfer functions for assembly programs.
This step is crucial and should lead to the automatic
checking of the programs of the previously defined class,
following the method proposed in Sect. 5.2. We believe it
is generally possible to build a “good” abstract domain
for a large class of source and compiled programs. For
instance, in the case of our experiment based on a sig-
nificant subset of the C language and on the PowerPC
architecture, only three refinements of the domain were
required. Two of them are due to the method of condi-
tional branching in assembly programs and are described
in detail in Sect. 6 (the third one is evoked briefly in
Sect. 7). These refinements were made necessary by par-
ticular aspects of the assembly language: they should be
handled only once even if we wish to use several compilers
since the refinements are not specific to the compiler but
to the assembly language.
The purpose of designing a tool that would be “com-

plete on a class of programs” does not contradict the
incompleteness of the method. Indeed, given a tool that
is complete on the class of programs we are interested in,
it is generally possible to design a source program Ps and
an assembly program Pa (outside of the class) such that
the compilation of Ps into Pa is correct in the sense of
Definition 4 and such that the checking of a translated in-
variant computed from an invariant obtained on Ps fails.
Anyway, a failure at checking time should lead to the

manual inspection of the cause. If the failure is due to
a weakness of the abstract domain, the domain should be
improved.
The case of compiler optimizations (not considered in

this paper) turns out to be similar. Indeed, the choice
the optimizations allow is part of the first step (defin-
ition of a class of source and compiled programs). The
abstract domain and transfer functions should still be
chosen accordingly.

5.4 An abstract proof of compilation

When the checking of an invariant I ′a succeeds on an as-
sembly program Pa, the invariant I

′
a can be considered

sound apart from any hypothesis about the compilation
of Ps into Pa or about the way the invariant Ia was pro-
duced. Then Ia provides information about the behav-
ior of the assembly program Pa. For instance, the value
stored in the memory cell of address x is in the range
[1, 100] at the program point la10 in the assembly program

of Fig. 3b (the propagation and checking of the invari-
ant displayed in Example 4 will be described formally in
the next section). However, the correctness of the compi-
lation itself is not proved: in the example, the checking
of the invariant does not prove that the value stored in
the memory cell of address x at point la10 is equal to the
value of variable x at point ls3 in the source program,
even if it shows that both these values belong to the
range [1, 100].
However, the assembly-level checking of an invari-

ant that was derived from a source invariant provides
a kind of “abstract proof of compilation”: indeed, it
entails that the compiled program does not present be-
haviors that the source analyzer proved the source pro-
gram does not enjoy. Therefore, this approach may de-
tect some bugs of compilers whereas other bugs can-
not be detected. By contrast, translation validation [25]
aims at proving an operational equivalence between
source and target programs. Consequently, this method
should be more adapted to the discovery of compiler
bugs.

6 Practical aspects of invariant propagation
and invariant checking

Previous sections gave an overview of invariant transla-
tion and invariant checking. Given that the method is not
complete (checking may fail even if the translated invari-
ant is sound), the design of a precise abstract domain is
required for checking to succeed.We envisage common re-
finements, which turned out to be necessary for a specific
(yet representative) architecture.

6.1 Definition of the assembly-level
abstract checker

In this section we are interested in the checking of in-
variants on programs produced by simple nonoptimizing
compilers for the target architecture described in Sect. 2.5
(which defines the class of compiled programs we are in-
terested in). This includes the gcc compiler for the Pow-
erPC architecture with most optimizations turned off: the
prototype presented in Sect. 7 was designed for this archi-
tecture and this compiler; hence it basically implements
the domain presented in this section.
The invariant checking method presented in Sect. 5

is based on an abstract semantic function F �a for the as-
sembly program Pa. We assume here that an assembly
domain D�0 is given together with a Galois connection

(P(Sa),⊆)−−−→←−−−α0

γ0
(D�0,) and we define a sound abstract

semantic function F �a : (La→D
�
0)−→ (La→D

�
0) for Pa;

in the following, we show how to instantiate D�0 so as
to make checking succeed on the class of programs under
consideration.
As in Sect. 4.1, we assume that D�0 provides two ab-

stract operators to handle assignments and tests:

X. Rival: Certification of compiled assembly code by invariant translation 31

– assign : L×E×D�0 −→D
�
0, where L denotes the set

of assembly l-values (including all the registers and ex-
pressions that define one or several memory cells) and
E denotes the set of the expressions depending on the
content of assembly memory cells.
– guard : B×C×D�0 −→D

�
0, where C denotes the set

of the conditional expressions depending on the con-
tent of assembly memory cells.

The definition of the assembly abstract function F �a is
also based on abstract transfer functions:

F �a : (La→D
�
0) −→ (La→D

�
0).

If Ia ∈ (La→D
�
0), then:

if l = ia, then F
�
a(Ia)(l) =�;

if l �= ia, then: F �a(Ia)(l) =
⊔
l′∈LP

φl′,l(Ia(l
′)).

Intuitively, φl,l′ defines the abstract transition from point
l to point l′. The abstract transfer functions are defined
in detail in Fig. 7. The soundness of F �a boils down to the
soundness of the transfer functions in the same way as in
Sect. 4.1.
The abstract domain used for computing an invari-

ant for the source program is the domain of intervals
(Sect. 4.1), so the first choice for D�0 is also based on in-
tervals. Yet variable values in assembly programs not only
include integers but also condition register values; there-
fore,D�0 also relies on the domain of constantsDC defined
by C. Another possible choice would be to use a domain
based on P(C); the results would be slightly more precise,
yet the problems mentioned in the following subsection
would still occur. In practice, the condition register is the
only memory cell that may contain a value in C, which
justifies the following choice forD�0:

D�0 = ({cr}→DC× ((La \{cr})→ IZo)
= DC× ((La \{cr})→ IZo),

where IZo denotes the set of intervals of Z
o.

The definitions of the guard and assign operators for
this domain are straightforward.
However, this very simple choice forD�0 does not allow

for the propagation and proper checking of the translated
invariant of Example 4 as shown in the next subsection.

6.2 Practical problems of checking

We envisage here the propagation and checking of the
translated invariant given in Example 4. More precisely,
we consider the propagation of the local invariant cor-
responding to the program point la2 ; we derive local in-
variants for the program points la3 , l

a
4 , l
a
5 , l
a
6 , and l

a
11. The

result is shown in Fig. 8 (the translated local invariants
Ia(l

a
6) and Ia(l

a
11) associated with the program points l

a
6

and la11 are recalled in the second part of the table).
No precise information about the value of the con-

dition register cr is discovered after the comparison in-
struction: at la5 , cr is mapped to noninformative abstract

We describe here the contribution to F �a of all the
instructions in a program Pa, by defining the
corresponding abstract transfer functions (in case φl,l′ is

not defined explicitly, it is equal to λρ� ∈D�0.⊥):

– “load integer” instruction l : li r0, n; l
′ : . . .:

φl,l′(ρ
�) = assign(r0, n, ρ

�)

– “load” instruction l : load r0, x (v); l
′ : . . .:

φl,l′(ρ
�) = assign(r0,M{x+ v}, ρ

�)

– “store” instruction l : store r0, x (v); l
′ : . . .:

φl,l′(ρ
�) = assign(M{x+ v}, r0, ρ

�)

– “move register” instruction l : mr r0, r1; l
′ : . . .:

φl,l′(ρ
�) = assign(r0, r1, ρ

�)

– “compare” instruction l : cmp r0, r1; l
′ : . . .:

φl,l′(ρ
�) =




assign(cr,LT,guard(T , r0 < r1, ρ�))
� assign(cr,EQ,guard(T , r0 = r1, ρ�))
� assign(cr,GT,guard(T , r0 > r1, ρ�))

– “conditional branching” instruction
l : bc(<) l′′; l′ : . . .:

φl,l′′(ρ
�) = guard(T , cr = LT, ρ�)

φl,l′(ρ
�) = guard(F , cr = LT, ρ�)

(the definition of the transfer functions for the
conditional branching in case of other conditions is
similar)
– “branching” instruction l : b l′′; l′ : . . .:

φl,l′′(ρ
�) = ρ�

φl,l′(ρ
�) =⊥

– “arithmetic” instruction l : op r0, r1, r2; l
′ : . . .:

φl,l′(ρ
�) = assign(r0, r1⊕ r2, ρ

�)

where ⊕ corresponds to the binary operator
associated to the arithmetic instruction op.

Fig. 7. Assembly abstract semantic function F �a

value �. Hence, no precise characterization of the values
of the variables is inferred for any of the branches after the
conditional branching instruction and the checking fails
both at point la6 (since [0, 100] �⊆ [0, 99]) and at point l

a
11

(since [0, 100] �⊆ [100, 100]).
The reason why no information about the value of

the condition register is derived stems from the nonre-
lational structure of the domain D�0. Indeed, the choice
made for D�0 does not allow one to take into account any

32 X. Rival: Certification of compiled assembly code by invariant translation

Program cr x r0 r1
point l
Propagated invariant starting from la2
la2 � [0, 100] � �
la3 � [0, 100] [0, 100] �
la4 � [0, 100] [0, 100] [100, 100]
la5 � [0, 100] [0, 100] [100, 100]
la6 � [0, 100] [0, 100] [100, 100]
la11 � [0, 100] [0, 100] [100, 100]

Translated invariant
la6 � [0, 99] � �
la11 � [100, 100] � �

Fig. 8. Invariant propagation

relation between the value of cr and the values stored
in the other memory locations (which is necessary for
the invariant checking to succeed): in the above case,
cr contains LT if r0 ∈ [0, 99]; similarly, it contains EQ if
r0 = 100 and it cannot be equal to GT. The design of
a new domain that solves this problem is addressed in
Sect. 6.3; roughly speaking, it is based on a partition-
ing of the abstract values by the value of the condition
register.
A second issue is related to the fact that the com-

parison instruction compares the value contained in reg-
isters even if these registers stand for variables (in the
example program of Fig. 3c, r0 contains the same value
as the memory cell of address x). The abstract trans-
fer function for cmp given in Fig. 7 would not take into
account this equality in case the abstract domain D�0 is
unable to carry some kind of equality relation between
the values stored in distinct memory locations. Hence
a more precise domain is needed to fix this weakness of
the initial domainD�0. This second extension is described
in Sect. 6.4.

6.3 Value partitioning

We suppose here that a domain D�0 was defined for the
assembly programs as in Sect. 6.1 and we extend it to
a new and more precise domain D�1. An abstract value of
D�1 encloses an abstraction of the set of stores that map
the condition register to c, where c is any given condi-
tion register value. The set of stores that map cr to LT
is approximated by an element of D�0 (likewise for EQ
and GT).
More formally, D�1 is defined as a partitioning do-

main:

Definition 9 (Partitioning domain). Given the do-

main D�0 and the Galois connection (P(Sa),⊆) −−−→←−−−α0

γ0

(D�0,), the corresponding partitioning domain (D
�
1,
.
) is

defined as follows:

D�1 = C−→D
�
0.

Furthermore, it defines a Galois connection

(P(Sa),⊆)−−−→←−−−α1

γ1
(D�1,

.
),

where the concretization function is given by

∀ρ� ∈D�1,

γ1(ρ
�) =




{ρ ∈ γ0(ρ�(LT)) | ρ(cr) = LT}
∪ {ρ ∈ γ0(ρ�(EQ)) | ρ(cr) = EQ}
∪ {ρ ∈ γ0(ρ�(GT)) | ρ(cr) = GT}.

Proof of the Galois connection: straightforward. �

Note that the notion of partitioning presented in
Definition 9 can be extended to other data types. For in-
stance, the partitioning of the abstract values by the value
of one or several boolean variables can improve the pre-
cision of static analysis (this refinement is widely used
in [4]).
The extension of the abstract operators is rather

straightforward (we use the index “0” for the operators of
D�0 and the index “1” for the operators ofD

�
1):

– Assignment operator:
If ρ� ∈D�1, then an assignment to the condition regis-
ter is handled as follows:

assign1(cr,EQ, ρ
�) =



LT �→ ⊥

EQ �→ assign0(cr,EQ, ρ
�
0)

GT �→ ⊥ ,

where ρ�0 = ρ
�(LT)�ρ�(EQ)�ρ�(GT).

The assignment of other values to cr is similar.
If l denotes an assembly l-value (which cannot evalu-
ate to cr) and e any assembly expression, then

assign1(l, e, ρ
�) = λc ∈ C.assign0(l, e, ρ

�(c)).

– Guard operator:
If ρ� ∈D�1, then:

guard1(T , cr = LT, ρ
�) =



LT �→ ρ�(LT)
EQ �→ ⊥
GT �→ ⊥.

The other conditions depending on cr are handled in
a similar way.
If the condition expression c does not depend on the
condition register and if b is a boolean, then

guard1(b, c, ρ
�) = λc ∈ C.guard0(b, c, ρ

�(c)).

The comparison instruction l : cmp r0, r1; l
′ : . . . is now

analyzed as follows:

φl,l′(ρ
�) =



LT �→ guard0(T , r0 < r1, ρ

�
0)

EQ �→ guard0(T , r0 = r1, ρ
�
0)

GT �→ guard0(T , r0 > r1, ρ
�
0),

where ρ�0 = ρ
�(LT)�ρ�(EQ)�ρ�(GT).

X. Rival: Certification of compiled assembly code by invariant translation 33

In practice, the partitioning can be implemented
lazily. Indeed, the condition register is used only for
tests; hence its value is of interest only at some points of
a program (between a comparison instruction and a con-
ditional branching instruction, i.e., only at the program
point la5 in our example). Lazy partitioning may allow
memory savings: the real Power PC architecture features
eight condition register fields, which makes lazy partition-
ing quite useful. Memory savings can also be achieved by
using sharing.
Moreover, the partitioning layer (corresponding to

D�1) provides all the information we need about the condi-
tion register value and the relation between its value and
the values of the other variables; hence the basic domain
D�0 can be simplified into a domain that does not take the
condition register into account (i.e., a function that maps
integer registers and memory cells to intervals in the case
of the domain chosen in Sect. 6.1).

Example 5. Using the partitioning domain based on the
interval domain yields the invariant displayed in Fig. 9.
Note that we do lazy partitioning here: the mention ∀c in
the cr column means that the abstract store ρ� depicted
in the corresponding row maps any value of the condition
register to the same element ofD�0 (no partitioning at this
point). As remarked above, la5 is the only program point
at which partitioning is absolutely necessary; hence the
values for all the partitions are merged after the branch-
ing (i.e., for the propagated invariants corresponding to
the labels la6 and l

a
11).

The correct ranges for the register r0 are now derived.
However, the checking still fails since the ranges for the
content of the memory cellM{x} do not take into account
the test on r0 (the value in r0 is equal to the content of
M{x}). This issue motivates the next subsection.

6.4 Equality domain

As mentioned in Example 5, the abstract domain used
for checking the invariant should keep information about
equality relations between the content of distinct memory
locations. If the domain is not precise enough to express
and derive such properties, we propose here to do a re-
duced product [11] with a specialized domain D�e, which
we define below:

Definition 10 (Variables equalities domain). The
equality domain (D�e,	e) is defined by:

• D�e is the set of partitions of the set of assembly memory
locations Va:

D�e = {(Ei)i∈I | (∀i ∈ I, Ei ⊆ Va)∧ (∪i∈IEi = Va)
∧ (i �= j⇒Ei∩Ej = ∅)
∧ (∀i ∈ I, Ei �= ∅)}.

• 	e is the inverse of the sharpness order:

(Ei)i∈I 	e (Ej)j∈J ⇐⇒∀j ∈ J, ∃i ∈ I, Ei ⊆Ej .

Program cr x r0 r1
point l
Propagated invariant starting from la2
la2 ∀c [0, 100] � �
la3 ∀c [0, 100] [0, 100] �
la4 ∀c [0, 100] [0, 100] [100, 100]
la5 LT [0, 100] [0, 99] [100, 100]

EQ [0, 100] [100, 100] [100, 100]
GT ⊥ ⊥ ⊥

la6 ∀c [0, 100] [0, 99] [100, 100]
la11 ∀c [0, 100] [100, 100] [100, 100]

Translated invariant
la6 ∀c [0, 99] � �
la11 ∀c [100, 100] � �

Fig. 9. Invariant propagation with partitioning

Moreover, this domain defines a Galois connection as fol-
lows:

(P(Sa),⊆)−−−→←−−−αe
γe
(D�e,	e),

where

γe((Ei)i∈I) = {ρ ∈ Sa | ∀i ∈ I, ∃v ∈Ra,
∀x ∈Ei, ρ(x) = v}.

Proof of the Galois connection: straightforward (the ab-
straction function is determined by the data of γe). �

Intuitively, memory locations x and y may belong to
the same element of the partition only if they store the
same value.
Abstract operators assign and guard can be defined

for the domainD�e:

– Assignment operator:
The most important case is the “copy” assignment
(the content of a memory location is copied into an-
other one):

assign(x, y, (Ei)i∈I) = (E
′
j)j∈J ,

where the partition (E′j)j∈J is defined completely by

x �∈Ei∧y �∈Ei =⇒ ∃j ∈ J, E′j =Ei;
{x} ⊂Ei∧y �∈Ei =⇒ ∃j ∈ J, E′j =Ei \{x};
x ∈Ei∧y ∈Ei =⇒ ∃j ∈ J, E′j =Ei;
x �∈Ei∧y ∈Ei =⇒ ∃j ∈ J, E′j =Ei∪{x}.

The instructions load, store, and mr fall in that case.
We can remark that this case allows for the derivation
of new information: Either x and y are equal before the
assignment and this information is preserved, or x and
y are not equal before the assignment and the equal-
ity x = y is then taken into account (after the other
equalities involving x are relaxed).
The case of more complicated assignments is handled
in a straightforward way. If e is a more complex ex-
pression,

assign(x, e, (Ei)i∈I) = (E
′
j)j∈J ,

34 X. Rival: Certification of compiled assembly code by invariant translation

where the partition (E′j)j∈J is defined by

∃j ∈ J, E′j = {x}
x �∈Ei =⇒ ∃j ∈ J, E′j =Ei
{x} ⊂Ei =⇒ ∃j ∈ J, E′j =Ei \{x}.

This intuitively amounts to relaxing the equalities x
was involved in before the assignment without deriv-
ing any new relation.
– Guard operator:
The guard operator does not allow for the derivation
of more information:

guard(b, c, (Ei)i∈I) = (Ei)i∈I .

Moreover, the merge (Ei)i∈I �e (E′j)j∈J of two partitions
(Ei)i∈I and (E

′
j)j∈J is the coarsest partition (E

′′
k)k∈K ,

which is finer than both (Ei)i∈I and (E
′
j)j∈J :

{E′′k | k ∈K}= {Ei∩Ej | i ∈ I ∧ j ∈ J}\{∅}.

The reduced product domain. We assume that the current
assembly abstract domainD�1 cannot deal with equalities
between the content of memory locations (like nonrela-
tional domains and in particular like the interval domain
considered above) and we strengthen it into a new domain
D�2 that can do it.
More precisely, we defineD�2 as a reduced product

D�2 =D
�
1×D

�
e

that defines the following Galois connection (with the
product order):

(P(Sa),)−−−→←−−−α2

γ2
(D�2,).

Intuitively, an element (ρ�1, (Ei)i∈I) represents a set of
stores that are upper approximated by both ρ�1 and
(Ei)i∈I :

∀(ρ�, (Ei)i∈I) ∈D
�
2,

γ2(ρ
�, (Ei)i∈I) = γ1(ρ

�)∩γe((Ei)i∈I).

A reduce operator reduce :D�2 −→D
�
2 is a function that

transforms an abstract value into another one that has
the same concretization (i.e., represents the same set of
stores) by refining the first element: taking equalities into
account allows for the derivation of more precise infor-
mation in the domain D�1 (more precise ranges can be
found for some variables that turn out to be equal to other
variables by intersecting their ranges). For instance, in
the case of the interval domain, a valid reduce operator
would map (ρ�, (Ei)i∈I) to (ρ

�
r, (Ei)i∈I), where the new

abstract value ρ�r is defined by

∀x ∈ Va, if x ∈Ei, then ρ
�
r(x) =

⋂
y∈Ei

ρ�(y).

Program cr x r0 r1
point l
Propagated invariant starting from la2
la2 ∀c [0, 100] � �
la3 ∀c [0, 100] [0, 100] �
la4 ∀c [0, 100] [0, 100] [100, 100]
la5 LT [0, 99] [0, 99] [100, 100]

EQ [100, 100] [100, 100] [100, 100]
GT ⊥ ⊥ ⊥

la6 ∀c [0, 99] [0, 99] [100, 100]
la11 ∀c [100, 100] [100, 100] [100, 100]

Translated invariant
la6 ∀c [0, 99] � �
la11 ∀c [100, 100] � �

Fig. 10. Invariant checking with partitioning
and equalities

In practice, the reduction operator can be integrated into
the assign and guard operators.

Example 6 (Equalities). In the example program of
Fig. 3c, the equality domain discovers the equalityM{x}=
r0 at points l

a
3 , l
a
4 , l
a
5 , l
a
6 , and l

a
11 (we only consider here

the program points we need to consider to propagate and
check the local invariant of the point la2 , as is done in
Examples 4 and 5).
The reduction improves the ranges for the content of

the memory cell of address x at point la5 : if cr is set to LT,
then the content of r0 is in the range [0, 99] and hence so is
the content of variable x.
The resulting local invariants given in Fig. 10 allow

the checking to succeed: indeed, the local invariant com-
puted for point la6 starting with the translated invariant
of point la2 is more precise than the translated local invari-
ant for point la6 (and the same for l

a
11); hence the checking

condition given in Sect. 5.2 is satisfied.

7 Implementation and results

This section presents an overview of the implementation
of a prototype of an assembly code certifier and assesses
the results of this experience.

7.1 Context

The purpose here is to design a prototype able to certify
assembly programs corresponding to typical embedded
systems, like those considered in [3, 4]. The certification
of a large class of C programs (i.e., automatic analysis
resulting in a very low false alarm number) is not our cur-
rent goal; hence we restrict ourselves to a class of simpler,
yet more safety-critical, C programs.
These programs are written in C but mainly use rather

basic features. The control structure of these programs
involves procedures (i.e., void functions) and a few more
complicated functions (with complex arguments and a re-

X. Rival: Certification of compiled assembly code by invariant translation 35

turn value). The data types that should be handled do not
include pointers even if pointers are implicitly used when
passing arrays to functions (the arguments passed by ref-
erence can always be determined without any ambiguity,
so an alias analysis was unnecessary). Most classical C
data types are widely used: various integer and floating
point data types, structures, arrays, and enums. A pleas-
ant aspect of the class of programs under consideration
is that they do not use recursion. Therefore, the calling
stack (the sequence of function calls) can be represented
explicitly during the analysis. The absence of dynamic
memory allocation and of recursion also implies that the
set of memory locations (in the current environment and
in the calling functions) can be represented explicitly and
finitely at any program point, which simplifies the analy-
sis and makes it more precise.
The target architecture we chose comprises a 64-byte

version of the Motorola PowerPC processor [21] and
a version of gcc (we used a cross compiler). The assem-
bly language introduced in Sect. 2.5 is a simplified version
of the PowerPC instruction set; however, the real archi-
tecture is much more complicated. Indeed, the processor
we considered features 32 “general-purpose registers”
(integer registers), 32 “floating point registers”, and a
“condition register” composed of eight fields. Memory
access proceeds through various addressing modes; the
relative addressing described in Sect. 2.5 is a generaliza-
tion of the main addressing modes.
The compilation of programs containing functions and

procedures involves an execution stack. Local variables
are addressed relative to the stack pointer (function pa-
rameters are also stored in the stack). Therefore, the pre-
cise analysis of the structure of the stack is crucial for the
checking to succeed.

7.2 Structure of the prototype

Structure. The source analyzer is quite similar to the C
analyzers described in [3, 4]; however, it does not include
all the domain refinements considered there. Below we
provide more details about the abstract domain we used.
The source analyzer checks the correctness of the source
code (as sketched in Sect. 4.1).
The invariant translator preprocesses STABSstandard

debugging information and inputs the invariant produced
by the source analyzer. The result of the invariant transla-
tioncorresponds to the invariantdenotedbyJa inSect. 5.2.
The assembly invariant checker proceeds to the propa-

gation and to the verification of the translated invariant
as described in Sect. 5.2. The resulting invariant can be
dumped to the disk as a bunch of HTML files, which
allows for the manual inspection of the final results of
the analysis (additional information about the transla-
tion are also output as HTML files).
The assembly checker also carries out the assembly

code certification. This involves the checking of the fol-
lowing properties:

– The arithmetic instructions do not yield any exception
(no division by 0 or overflow error may occur);
– The access to memory is safe: any load or store in-
struction only affects defined and authorized memory
locations (i.e., no segmentation fault may occur)

In fact, the treatment of arithmetic exception may be
modified by the user. Therefore, we plan to make the pre-
cise nature of the errors the analyzer should keep track of
a parameter of the analysis.
The whole development (frontends, analyzers, transla-

tor, and checker) amounts to 25000 lines of OCaml code
and required 3months of full-timework for one person.

Abstract domain. The abstract domain is more com-
plicated than the interval domain considered through-
out the paper; nevertheless the content of Sects. 4, 5,
and 6 can be straightforwardly generalized. Basic inte-
ger and floating point objects are abstracted to intervals.
A boolean type defined as an enum type is precisely han-
dled (using a domain of constants). The abstract domain
represents exactly the structure of composed objects (ar-
rays, structures, and enums); the basic members of these
structures (integer or floating point array cells and struc-
ture members) are abstracted in the same way as simple
variables (using intervals). Moreover, the abstract do-
main presents the ability to partition stores using control-
based criteria (like the approach of [16]). A parameter of
the analyzer commands the control-based partitioning by
pointing out which control structure (conditional or loop)
should be analyzed precisely.
At the assembly level, the domain is quite similar

but the refinements described in Sect. 6 (lazy partition-
ing by the value of the condition register and reduced
product with the equality domain) are required and apply
straightforwardly. Moreover, the importance of pointers
at the assembly level (for representing arrays, structures,
and the stack pointer) makes their precise abstract repre-
sentation crucial. The abstract representation of a pointer
x is a function φx: φx maps an integer n to the cell of the
abstract domain that corresponds to the concrete mem-
ory location of address x+n (intuitively φx inputs an
offset and outputs the abstract representation of the cor-
responding cell). If x corresponds to an array,φx maps the
valid indexes for this array to the abstract value corres-
ponding to its cells. This symbolic representation renders
the checking of the correctness of memory access simple:
load r0, x (r1) is correct if and only if the register r1 con-
tains a value that defines a correct offset for the pointer
corresponding to x.

Remark 3 (Memory alignments). In fact, the problem of
memory alignments required the implementation of an
additional domain. The assembly language introduced in
Sect. 2.5 features one basic data type only and ignores
the problem of memory alignments: all the memory cells
have size 1, so the addresses of the cells of an array of
integers are successive integers. In the case of the real

36 X. Rival: Certification of compiled assembly code by invariant translation

PowerPC processor, integers and floating point numbers
are 4 bytes long whereas short integers are 2 bytes long.
In the case of an integer array lookup, the interval in-
formation is generally not sufficient to prove the correct-
ness of the memory access. For instance, if we consider
an array of floating point numbers, the addresses of the
cells are multiples of 4, and if the index in the source
program is in the range [a, b], then the assembly offset
is in the range [4a, 4b]; if a < b, then 4a+1 belongs to
the interval but does not correspond to a valid address
since the addresses are multiples of 4. The congruence
domain [15] provides adequate information to prove the
correctness of arrays and struct reads and writes; so a re-
duced product with this domain can be defined as in
Sect. 6.4.
The abstract operators have been extended to convey

congruence information in the prototype.

Example 7. We give here a few details about an example
run of the prototype on a C program of 400 lines, con-
taining 10 functions and about 50 global variables. One
of the loops of the program required a precise analysis
(i.e., partitioning of traces by the number of iterations
in the loop). A main loop controls the execution of al-
most the entire program (the number of iterations in
this loop is unbounded). A few unrolling iterations (the
union operator is used for the first iterations) and the
use of a staged widening with threshold [3] were neces-
sary for the source analyzer to produce a quite precise
invariant. The program points at which control partition-
ing should be performed, and the list of values corres-
ponding to the widening thresholds should be provided to
the analyzer.
The source analysis requires 2.5 s and 15MB of RAM

on an Intel Pentium III laptop (1 GHz) on Linux 2.4.18.
It produced one false alarm, which would be solved using
a more precise abstract domain (Sect. 6.7 of [3]).
The parsing of the assembly program, including the

processing of the debugging information and the build-
ing of the mappings πl and πv, requires about 4.5 s. The
invariant translation requires 1.5 s.
The invariant propagation is done in 4.1 s; the checking

of the stability of the translated invariant is passed after
about 1 s (it actually succeeds). Checking requires about
27MB RAM. The final assembly analysis leaves the same
false alarmas for the source (one potential overflow).

The prototype succeeded in proving the soundness of
invariants.However, the size of the programswe could con-
sider is fairly limited: the prototype was not designed for
the purpose of scaling up since it was the first experience
with the implementation of an invariant translator. The
main limitation comes from the memory usage and stems
from the fact that the assembly invariant was completely
generated. A real tool would generate and check it incre-
mentally (the memory usage would not be much greater
than that of the source analyzer).

8 Conclusion

We proposed a method for certifying assembly pro-
grams produced by compilation from programs written
in a source language for which we have an analyzer. The
method is generic with respect to the compiler and to
the choice of an abstract domain for representing sets
of stores (since the assembly abstract domain is derived
from the source abstract domain). Invariant propagation
and checking may require a precise treatment of some as-
sembly language aspects; nevertheless, we have to cope
with this additional issue only once, even if the compiler
is modified or changed, since it merely stems from the
characteristics of the assembly language itself.
The approach proved to be successful in practice. Note

that the final checking of the invariant is a strong guaran-
tee: analyzing programs is a complex task, and checking
the final result apart from any hypothesis on the correct-
ness of the rest of the process is always a good point.
Moreover, the distinct steps of the process are indepen-
dent: the source analysis, the translation of the invari-
ants, and their checking can be done separately. Existing
tools can be used so as to reduce the cost of the analysis of
assembly programs.
A first extension of this work would be to turn the cur-

rent prototype into a true certifying tool by extending the
abstract domain to a relational domain and the source
language under consideration. Another more challenging
goal would be to define a class of transformations (opti-
mizations, etc.) the method would work for and to aug-
ment this class by takingmore optimizations into account.
This would certainly require the extension of the defin-
ition of compilation correctness. A last direction would be
to use similar methods to analyze programs generated au-
tomatically from a specification: a specification could be
used to compute an invariant on the program (the specifi-
cation should contain appropriate information about the
programbehavior), checking the invariant on the program
being simpler than inferring an invariant from the gener-
ated programalone.Analyzing a rather “high-level” speci-
fication may make the inference of properties more simple
and thus increase the precision of static analysis.

Acknowledgements. We offer our profound thanks to the anony-
mous referees for their significant comments on an early ver-
sion of this paper. We also would like to thank Bruno Blanchet,
Patrick and Radhia Cousot, Jérôme Feret, Charles Hymans, Lau-
rent Mauborgne, Antoine Miné, and David Monniaux for stimulat-
ing discussions.

References

1. Alt M, Ferdinand C, Martin F, Wilhelm R (1996) Cache be-
havior prediction by abstract interpretation. In: Proceedings
of the static analysis symposium (SAS’96), September 1996.
Lecture notes in computer science, vol 1996. Springer, Berlin
Heidelberg New York, pp 51–66

2. Appel AW (2001) Foundational proof-carrying code. In: Pro-
ceedings of the 16th symposium on logics in computer science
(LICS’01), Boston, June 2001, pp 247–256

X. Rival: Certification of compiled assembly code by invariant translation 37

3. Blanchet B, Cousot P, Cousot R, Feret J, Mauborgne L, Miné
A, Monniaux D, Rival X (2002) Design and implementation
of a special-purpose static program analyzer for safety-critical
real-time embedded software, invited chapter. In: The essence
of computation: complexity, analysis, transformation. Essays
dedicated to Neil D. Jones. Lecture notes in computer science,
vol 2566. Springer, Berlin Heidelberg New York, pp 85–108

4. Blanchet B, Cousot P, Cousot R, Feret J, Mauborgne L, Miné
A, Monniaux D, Rival X (2003) A static analyzer for large
safety critical software. In: Proceedings of the ACM SIGPLAN
2003 conference on programming languages, design and im-
plementation (PLDI’03), San Diego, October 2003. Lecture
notes in computer science, vol 2566. Springer, Berlin Heidel-
berg New York, pp 85–108

5. Bertot Y (1998) A certified compiler for an imperative lan-
guage. Technical Report RR-3488, INRIA, 1998

6. Bourdoncle F (1993) Efficient chaotic iteration strategies
with widenings. Lecture notes in computer science, vol 735.
Springer, Berlin Heidelberg New York, pp 128–141

7. Cousot P (1981) Semantic foundations of program analysis.
In: Program flow analysis: theory and applications, chap 10.
Prentice-Hall, Englewood Cliffs, NJ, pp 303–342

8. Cousot P (1997) Constructive design of a hierarchy of
semantics of a transition system by abstract interpreta-
tion. Electron Notes Theor Comput Sci vol 6. Available at:
http://www.elsevier.nl/locate/entcs/volume6.html

9. Cousot P (1999) The calculational design of a generic abstract
interpreter. In: Calculational system design. NATO ASI Series
F. IOS Press, Amsterdam

10. Cousot P, Cousot R (1977) Abstract Interpretation: a unified
lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In: Conference record of
the 4th symposium on principles of programming languages
(POPL’77), Los Angeles, January 1977, pp 238–252

11. Cousot P, Cousot R (1979) Systematic design of program analy-
sis frameworks. In: Conference Record of the 6th symposium on
principles of programming languages (POPL’79), San Antonio,
TX, January 1979. ACMPress, New York, pp 269–282

12. Cousot P, Cousot R (1992) Abstract interpretation frame-
works. J Logic Comput 2(4):511–547

13. Cousot P, Cousot R (2002) Systematic design of program
transformation frameworks by abstract interpretation. In:
Proceedings of the 29th symposium on principles of program-
ming languages (POPL’02), Portland, OR, January 2002.
ACM Press, New York, pp 178–190

14. Cousot P, Halbwachs N (1978) Automatic discovery of linear
restraints among variables of a program. In: Proceedings of
the 5th symposium on principles of programming languages
(POPL’78), Tucson, AZ, January 1978, pp 84–97

15. Granger P (1989) Static analysis of arithmetical congruences.
Int J Comput Math 30:165–190

16. Handjieva M, Tzolovski S (1998) Refining static analayses by
trace-based partitioning using control flow. In: Proceedings
of the 5th static analysis symposium (SAS’98), Pisa, Italy,
September 1998. Lecture notes in computer science, vol 1503.
Springer, Berlin Heidelberg New York, pp 200–214

17. Karr M (1976) Affine relationships among variables of a pro-
gram. Acta Inf 1976, pp 133–151

18. Miné A (2001) A new numerical abstract domain based on dif-
ference-bound matrices. In: Proceedings of the conference on

programs as data objects (PADO II), Aahrus, Denmark, May
2001. Lecture notes in computer science, vol 2053. Springer,
Berlin Heidelberg NewYork, pp 155–172

19. Morrisett G, Tarditi D, Cheng P, Stone C, Harper R, Lee
P (1996) The TIL/ML compiler: performance and safety
through types. In: Proceedings of the workshop on com-
piler support for systems software, Tucson, AZ, February
1996

20. Morrisett G, Crary K, Glew N, Grossman D, Samuels R,
Smith F, Walker D (1999) TALx86: A realistic typed assembly
language. In: Proceedings of the 1999 ACM SIGPLAN work-
shop on compiler support for system software, Atlanta, GA,
May 1999, pp 25–35

21. Motorola (1997) PowerPC microprocessor family: the pro-
gramming environments for 32-Bit microprocessors, Publica-
tion no. G522-0290-01, revised 02/21/00

22. Necula GC (1997) Proof-carrying code. In: Proceedings of
the 24th ACM SIGPLAN-SIGACT symposium on principles
of programming langauges (POPL’97), Paris, January 1997,
pp 106–119

23. Necula GC (2000) Translation validation for an optimizing
compiler. In: Proceedings of the 2000 ACM SIGPLAN con-
ference on programming language design and implementation
(PLDI’00), Vancouver, BC, Canada, June 2000, pp 83–94

24. Necula GC, Lee P (1998) The design and implementation of
a certifying compiler. In: Proceedings of the ACM SIGPLAN
98 conference on programming languages, design and imple-
mentation (PLDI’98), Montréal, June 1998, pp 333–344

25. Pnueli A, Shtrichman O, Siegel M (1998) Translation valida-
tion for synchronous languages. In: Prooceedings of the 25th
international colloquium on automata, languages and pro-
gramming (ICALP’98), Aahrus, Denmark, July 1998. Lecture
notes in computer science, vol 1443. Springer, Berlin Heidel-
berg New York, pp 235–246

26. Rival X (2003) Abstract interpretation-based certification of
assembly code. In: Proceedings of the 4th international confer-
ence on verification, model checking and abstract interpreta-
tion (VMCAI’03), New York, January 2003, pp 41–55

27. Strecker M (2002) Formal verification of a Java compiler in
Isabelle. In: Proceedings of the conference on automated de-
duction (CADE), Copenhagen, Denmark, July 2002. Lecture
notes in computer science, vol 2392. Springer, Berlin Heidel-
berg New York, pp 63–77

28. Tarditi D, Morrisett G, Cheng P, Stone C, Harper R, Lee
P (1996) TIL: A type-directed optimizing compiler for ML.
In: Proceedings of the ACM SIGPLAN’96 conference on pro-
gramming language design and implementation, May 1996,
pp 181–192

29. Tarski A (1955) A lattice-theoretical fixpoint theorem and its
applications. Pacific J Math 5:285–309

30. Theiling H, Ferdinand C (1998) Combining abstract interpre-
tation and ILP for microarchitecture modelling and program
path analysis. In: Proceedings of the 19th IEEE real-time sys-
tems symposium, Madrid, Spain, pp 144–153

31. Theiling H, Ferdinand C, Wilhelm R (2000) Fast and precise
WCET prediction by separate cache and path analyses. Real-
Time Sys 18:157–179

32. Zuck L, Pnueli A, Fang Y, Goldberg B (2002) VOC: A trans-
lation validator for optimizing compilers. In: Electronic notes
in theoretical computer science, vol 65. Elsevier, Amsterdam

