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Abstract. Two types of temporal properties are usu-
ally distinguished: safety and liveness. Recently we have
shown how to verify liveness properties of finite state sys-
tems using safety checking. In this article we extend the
translation scheme to typical combinations of temporal
operators. We discuss optimizations that limit the over-
head of our translation. Using the notions of predicated
diameter and radius we obtain revised bounds for our
translation scheme. These notions also give a tight bound
on the minimal completeness bound for simple liveness
properties. Experimental results show the feasibility of
the approach for complex examples. For one example,
even an exponential speedup can be observed.
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1 Introduction

Sequential properties of systems are often formulated in
temporal logics such as linear temporal logic (LTL) [12].
These properties fall into two categories: liveness and
safety properties. Safety properties are invariants of the
system and can be checked fairly easily by reachability
analysis. Sophisticated algorithms and implementations
exist. On the other hand, many important system proper-
ties, for example absence of deadlock or livelock, are more
naturally formulated as liveness properties.
Many techniques, as well as many implementations,

target only safety properties or use optimizations that
are only applicable to safety checking. Examples of such
techniques are invariant checking [2, 31], sequential auto-
mated test pattern generation (ATPG) [27], and sym-
bolic trajectory evaluation (STE) [30] in its basic form.
In this article we extend our translation scheme in-
troduced in [5], which allows an efficient reformulation

of liveness checking for finite state systems as safety
checking. The translation makes tools and techniques
for safety checking applicable to liveness checking as
well.
Safety is often characterized as “something bad never

happens”, while liveness means “something good eventu-
ally happens” [24]. A counterexample to a liveness prop-
erty is an infinite path where something good never hap-
pens. Such a path must include a loop in a finite state
system. If that loop is extended infinitely, a lasso-shaped
counterexample is obtained. Essentially, our translation
searches for such a lasso-shaped counterexample. It tries
to guess the start of a loop, saves it in a copy of the
state variables, and checks whether the saved state oc-
curs a second time. When this happens, a loop has been
found and the property is checked. Our translation is
able to handle fairness. Thus, it is applicable to all LTL
properties via a standard automaton construction [13].
For several commonly used LTL properties such as the
request/acknowledge template G(r→ Fa), we also give
a direct translation.
Our translation scheme can be applied even manu-

ally on the design entry level, with the proviso that an
observer automaton be added, without changing the be-
havior of the original system. The user does not need
to have access to the source code of the tool, e.g., the
model checker, itself. This could be useful in an industrial
setting where the source code of a tool is usually not avail-
able. To some extent it might also discourage tool vendors
from charging extra license fees for liveness support if
compromises with respect to capacity are acceptable.
Some optimizations [1, 22] from boundedmodel check-

ing [3] can be applied to our translation. When combined
with a translation-specific optimization, the performance
of our approach is also acceptable on more involved ex-
amples, in some cases even comparable with standard
techniques. We give an example where our approach is ex-
ponentially faster.
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Radius, diameter, and reoccurrence diameter are
characteristics of a Kripke structure that are used to give
bounds on the number of iterations required for verifica-
tion [3]. The bounds on the maximal number of image
computations necessary to check liveness with our trans-
lation in BDD-based symbolic model checking [26] as
stated in [5] are formulated using these notions. These
bounds proved incorrect. In this paper we give revised
bounds using the new notions of predicated radius and
diameter. In addition, we extend the concept of com-
pleteness threshold [22] and prove a tight bound on the
completeness bound for liveness properties, which can im-
mediately be applied to bounded model checking.
The most closely related idea is the verification of

liveness properties in bounded model checking [3]. The
double DFS [11] used in on-the-fly model checking [13]
is somewhat similar. However, depth-first search tends to
find counterexamples where the loop starts rather late.
Our approach can be used with breadth-first search sym-
bolic model checking to find the shortest counterexamples
and, at least in principle, does not require any changes to
the model checker.
Our translation can also be viewed as an extension

of monitors as used in static or dynamic checking with
additional inputs that signal the beginning and closing
of a loop. Synchronous observers that check properties
of a program are proposed in [16] to verify reactive sys-
tems. The class of properties is restricted to safety, and
observers are required to be deterministic. This approach
is adapted in [21] to provide a structural translation from
past time LTL into program fragments in ESTEREL.
In [18] a monitor based on a dynamic programming algo-
rithm is generated for Java from a past time LTL formula.
Two different versions that produce monitors for future
time LTL adapted to finite traces are presented in [14, 17].
There, (non-)occurrence of eventualities is only consid-
ered up to the end of a trace.
One standard optimization for BDD-based model

checking is forward model checking [4, 19, 20]. It uses
a different model checking algorithm that avoids visiting
unreachable states and often is able to find counterex-
amples faster. For safety properties this optimization is
implemented in most symbolic model checkers. The algo-
rithm for general properties, in particular liveness proper-
ties, is usually not available. Therefore, [23] characterizes
safety properties as properties with a finite violating pre-
fix. These can be checked with efficient algorithms using
reachability analysis. As already noted in [5], our trans-
lation allows one to use this restricted version of forward
model checking for liveness properties as well. For spe-
cific examples, checking a simple liveness property with
our approach is exponentially faster than forward (and
backward) model checking algorithms.
The rest of this paper is organized as follows. Sec-

tion 2 presents the state recording translation and de-
scribes some optimizations. In Sect. 3 we revise the neces-
sary formal background. Section 7 introduces the notion

of predicated radius and diameter. In Sect. 5 we extend
the completeness threshold to the more general notion
of completeness bound. Both notions are then used to
give tighter bounds for the minimal completeness bound
of simple liveness properties. Correctness of the state
recording translation is proved in Sect. 6. Section 7 proves
revised bounds for verification with our translation. Sec-
tions 8 and 9 report on applying the state recording trans-
lation to artificial and real-world examples. Section 10
concludes the paper.

2 Translating simple liveness into safety

A counterexample trace for a simple liveness property Fp
is an infinite path where p never holds along the path. If
the number of states in a system is finite, a counterexam-
ple trace to a simple liveness property can be assumed to
be lasso-shaped: it consists of a finite prefix and an in-
finitely repeating loop (Fig. 1). Such a trace can always
be derived from an arbitrary infinite trace by inserting
a back loop from the first state occurring the second time.
If p was false for every state in the original trace, it will
not hold anywhere in the lasso-shaped trace either.
Thus, simple liveness properties Fp of finite state sys-

tems can be verified by finding all lasso-shaped traces
and checking whether p has been true somewhere on each
trace once the loop is closed. Explicit state algorithms
for Büchi automata [13] and unfolding liveness proper-
ties in bounded model checking [3] are examples of model
checking algorithms that use this observation. Instead of
implementing this observation in a special-purpose algo-
rithm, we show in the following discussion how it can
be used to transform a system and a liveness property
such that reachability checking is sufficient to verify that
property.
In model checking applications, it is often observed

that a liveness propertyAFp can further be restricted by
adding a bound k to the number of steps within which
the body p has to hold. The bound is either given in the
specification or may be determined by manual inspection.
A bounded liveness propertyAFkp is defined as

AFkp≡A (p∨Xp∨· · ·∨Xkp), withXip≡X · · ·X︸ ︷︷ ︸
i−times

p

(1)

and clearly AFkp implies AFp. The reverse direction is
also true if the bound is chosen large enough, in particu-
lar as large as the number of states |S| in the model,

Fig. 1. A generic lasso-shaped counterexample
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Fig. 2. A 2-bit counter with self-loops

since all states are reachable in |S| steps. A naive transla-
tion would just exchangeAFp forAFkp with k being the
number of states. However, the expansion ofAFkp in (1)
results in a very large formula, especially in the context of
symbolic model checking.
Assume instead that the system is extended with

a variable looped that indicates when a loop is closed
and with a variable live that remembers whether p has
already been true. Then, the liveness property Fp in
the original system is equivalent to the safety property
G(looped → live) in the extended system. Implementing
live is easy. In the rest of this section, two implemen-

MODULE main

VAR
  s: {0, 1, 2, 3};
ASSIGN
  init(s) := 0;
  next(s) := case
    s = 0: {1, s};    
    s = 1: {2, s};
    s = 2: {3, s};    
    s = 3: {0, s};
  esac;

SPEC
  AF s = 3

MODULE main

-- unmodified part of the
-- original system
VAR
  s: {0, 1, 2, 3};
ASSIGN
  init(s) := 0;
  next(s) := case
    s = 0: {1, s};    
    s = 1: {2, s};
    s = 2: {3, s};    
    s = 3: {0, s};
  esac;

-- loop detection part
VAR
  counter: 0..4;
ASSIGN
  init(counter) := 0;
  next(counter) := case
    counter < 4: counter + 1;
    1: counter;
  esac;
DEFINE
  looped := counter = 4;

-- property observing part
VAR
  live: boolean;
DEFINE
  found := s = 3;
ASSIGN
  init(live) := 0;
  next(live) := live | found;

-- transformed specification
SPEC
  AG (looped -> live)

MODULE main

-- unmodified part of the 
-- original system
VAR
  s: {0, 1, 2, 3};
ASSIGN
  init(s) := 0;
  next(s) := case
    s = 0: {1, s};    
    s = 1: {2, s};
    s = 2: {3, s};    
    s = 3: {0, s};
  esac;

-- loop detection part
VAR
  save: boolean;
  saved: boolean;
  l2s_s: {0, 1, 2, 3};
ASSIGN
  init(saved) := 0;
  next(saved) := on_loop;
  init(l2s_s) := s;
  next(l2s_s) := case
    save & !saved: s;
    1: l2s_s;
  esac;
DEFINE
  looped := saved & (s = l2s_s);
  on_loop := save | saved;

-- property observing part
VAR
  live: boolean;
DEFINE
  found := s = 3;
ASSIGN
  init(live) := 0;
  next(live) := live | found;

-- transformed specification
SPEC
  AG (looped -> live)

a original b counter-based c state-recording

Fig. 3. Original and transformed SMV code of 2-bit counter with self-loops

tations for looped are discussed. The first counter-based
translation is based on the verification of bounded live-
ness only as described above. Our main contribution is
the second state-recording translation that can be ap-
plied to arbitrary finite state systems and general LTL
properties and can still be verified efficiently in many
cases.
For example, consider the 2-bit counter with self-loops

in Fig. 2. There, F (s= 3) does not hold. A counterexam-
ple is given by π = 0, 1, 2, 2, . . . . Figure 3 shows a model
of the counter in the input language of the model checker
SMV [26] in its original form and with the counter-based
and the state-recording translation applied. Note that all
three models explicitly enumerate all possible values of
the counter. While this makes the description easier to
understand, it is exponential in the number of bits of the
counter. A linear description can be obtained by using
a binary encoding of s in the declaration of the variables
and in the transition relation.
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2.1 Counter-based translation

Instead of detecting a loop when it is closed, the counter-
based translation infers that a loop should have occurred
once a sufficient number of transitions has been per-
formed. A counter is added to the system that is incre-
mented at each transition and sets looped to true once it
reaches a predefined bound.
A trivial bound valid for arbitrary systems and prop-

erties is the overall number of states in the original sys-
tem: any path of that length must include a loop. How-
ever, this requires an impractically large number of iter-
ations in a realistic system as the property can only be
checked when the counter has reached its bound.
For most systems and properties smaller bounds exist

that still ensure correct results (see examples given in
Sect. 5). A smaller bound adds fewer state bits and should
lead to faster verification. Presently, a practically efficient
method of computing a minimal bound is not known for
arbitrary systems and properties. Also note that, in gen-
eral, the counter-based translation will not produce the
shortest counterexamples.
InFig. 3b the state variables and the transition relation

of the original system are left unchanged. The loop detec-
tion part implements a counter for the number of transi-
tions performed. The property observing part adds the flag
live. Finally, the specification is modified as described.
Note that in our definition the last state in the loop

must have already been seen and does not add new in-
formation regarding the truth of the liveness property.
Therefore, the result could be determined one cycle be-
fore this bound is actually reached. This optimization has
not been applied in Fig. 3b so as to keep the presentation
of both translations uniform.
A more general form of the counter-based translation

can use a finished flag instead of looped . That flag be-
comes true once a sufficient number of transitions has
been performed to ensure that p would have occurred on
a path if Fp were true.

2.2 State-recording translation

In principle, state space search is memoryless. Detecting
a loop as soon as it is closed cannot be expressed directly
in temporal logic. Instead, we add copies of all variables to
the model, enabling us to save a state that has previously
been visited. Reoccurrence of a state can now be detected
by comparing the present state to the saved copy. As the
start of a loop is not known beforehand, a save oracle is
used to indicate when a copy of the present state should
be saved. An additional flag, saved , is needed to prevent
overwriting a previously saved copy.
For simple liveness properties the counter-based and

the state-recording translations differ only in the loop de-
tection part (Fig. 3c). Here, it consists of a save oracle,
a copy of the original state variables l2s_s, and a saved
flag to ensure that the state is saved only once on a path.

The on_loop flag indicates whether the presumed loop
has started. It is used in translations for more complex
formulae (Table 1).
When the loop-closing condition looped becomes true,

this means that the current state was visited earlier.
Therefore, the transformed specification does not need
to take the current value of the property p into account.
It suffices that the live flag remembers whether p has
been true in the past. Figure 4 illustrates a run of the
state-recording translation for the generic counterexam-
ple from Fig. 1.

2.3 Translating fairness and hierarchy

Fairness conditions can be incorporated similarly to live-
ness properties. A fairness condition is a set of states in
the original model. A path is fair if it passes infinitely
often through a state in each fairness condition. An addi-
tional state variable fair i is introduced for fairness con-
dition i that observes, similarly to live, whether one of
its fair states has been seen. It is initially set to false and
becomes true when a fair state occurs on the loop. The
specification is required to hold at the end of a loop only
if all fairness conditions hold as well.
No special precautions are required for hierarchical

models that can be flattened. If hierarchy should be pre-
served, the save, saved , and on_loop signals are forwarded
to each submodule. The submodules perform detection of
loops and observing of fairness and specification proper-
ties locally. The results are sent back to the main module
that computes global values for looped and fair and then
checks the specification. This enables translating models
(possibly by hand) without separate flattening before.
For an example, see Appendix A.1.

2.4 General LTL

Generalized Büchi automata and thus LTL [13] can be
translated into fair Kripke structures. Therefore, our
translation applies to LTL model checking in general per-
forming the following steps:

1. Translate the negated LTL formula into a general-
ized Büchi automaton. Algorithms for this purpose
include [11, 13], and some are also described in [10, 28].
Various tools are available that implement more ad-
vanced algorithms (see, e.g., [32, 33].

2. Build the cross product of the model and the for-
mula automaton. Each acceptance set is represented
as a fairness constraint. The property that is actually
verified states that no fair path exists in the model.

3. Apply the state-recording translation.

An example is given in Appendix A.2.

2.5 Templates for frequently occurring specifications

A large fraction of the specifications found in practice can
be covered by a limited number of temporal formulae.
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Table 1. Property observing part and specification for frequently used LTL formulae

Formula Negation Translation
(counterexample) (witness)

Fp G¬p
ASSIGN init(live) := 0;
       next(live) := live | p;
SPEC   AG (looped -> live)

Gp F¬p
ASSIGN init(safe) := 1;
       next(safe) := safe & p;
SPEC   AG (looped -> safe)

GFp FG¬p
ASSIGN init(live) := 0;
       next(live) := live | on_loop & p;
SPEC   AG (looped -> live)

FGp GF¬p
ASSIGN init(safe) := 1;
       next(safe) := safe & (on_loop -> p);
SPEC   AG (looped -> safe)

pU q ¬pR ¬q

VAR    safe_p: boolean;
ASSIGN init(live) := 0;
       next(live) := live | safe_p & q;
       init(safe_p) := 1;
       next(safe_p) := safe_p & p;
SPEC   AG (looped -> live)

G(p→ Fq) F(p∧G¬q)

VAR    live_q: boolean;
ASSIGN init(safe) := 1;
       next(safe) := !p & safe | q | live_q;
       init(live_q) := 0;
       next(live_q) := live_q | on_loop & q;
SPEC   AG (looped -> safe)

F(p∧Xq) G(¬p∨X¬q)

VAR    last_p: boolean;
ASSIGN init(live) := 0;
       next(live) := live | last_p & q;
       init(last_p) := 0;
       next(last_p) := p;
SPEC   AG (looped -> live)

Fig. 4. A run of the state-recording translation for the generic counterexample

Table 1 provides templates for the translation of some fre-
quently used LTL formulae. This avoids having to use the
explicit translation described above. Column 1 gives the
(universally quantified) LTL formula represented, and
column 2 states its (existentially quantified) negation. For
the former the translation searches a counterexample, for
the latter a witness. The property observing part and the
specification of the translation are shown in the language
of the model checker SMV in the last column. The loop
detection part is independent of the formula and can be
found in Fig. 3. In each template, p and q can be replaced
with arbitrary propositional formulae.

A formal proof for the translation of Fp follows in
Sect. 6. We do not prove the other translations but rather
try to give an intuitive understanding. The translation
of Fp is repeated for reference. While not necessary for
a simple safety property, the translation ofGp shows the
symmetry to finite liveness. The translations forFGp and
GFp are similar whereby the former considers, the latter
requires p to hold on the loop only. Intuitively, forFGp to
be true, pmust hold on each state of a loop while the pre-
fix of the loop does not influence the truth of the formula.
GFp can only be true in a finite state system if p holds
on at least one state of a loop. The translation of pU q
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combines the representations for a safety and a liveness
property: q must become true as long as p is true or when
p is false for the first time. The translation of the request-
response propertyG(p→Fq) directly reflects that one or
more p-states must be met or followed by at least one q-
state, where any q-state on the loop is sufficient. Finally,
the next-time operator X is handled by first shifting the
point of view one step forward in time and then applying
the translation of F.

2.6 Optimizations

Two optimizations can help to improve verification of
a translated model. They are source to source and are ap-
plied after the translation has been performed.
Bounded model checking and the state-recording

translation prove or disprove a liveness property by
searching for a lasso-shaped counterexample. Not all vari-
ables need to be considered when comparing states in the
search for a loop. Both techniques can use the same static
set of variables for loop detection. Kroening and Strich-
man [22] proved in the context of bounded model check-
ing that input variables can be ignored when comparing
states in the search for a loop. Baumgartner et al. [1]
observed that the diameter of a model need only be com-
puted for the variables in the property’s cone of influence.
Thus, input variables and variables not in the cone of in-
fluence of the property under consideration need neither
be copied nor compared in our translation. The correct-
ness of the latter fact can also be seen in our context by
first applying cone of influence reduction to the original
model and then performing the state-recording transla-
tion. Obviously, variables known to remain constant after
initialization can also be ignored. The combination of
these three optimizations is referred to as variable opti-
mization. Note that finding a shortest counterexample is
not guaranteed if variable optimization is enabled.
The second optimization is based on the monotonicity

of a simple liveness property Fp – once p has been found
true on a path, the value of the live-flag remains constant
further down on this path, i.e., the truth of the formula
G(looped → live) will be true from then on. This fact al-
lows one to stall the state machine of the original model
completely once live is true in a state. Thus, from that
state no further states of the original model are reachable.
For hardware systems, this corresponds to adding a stall
signal to each flip-flop that keeps its output at the cur-
rent state. In effect, the radius of the translated system is
reduced (Sect. 7). In addition, the reachable state space
might be cut. We call this halt optimization.

3 Preliminaries

A Kripke structure K = (S, T, I, L) consists of a set of
states S, a transition relation T ⊆ S×S, a set of initial
states I ⊆ S, and a labeling function L : S→ P (A), where

P (A) is the power set of the set of atomic propositions
A= {p, q, . . . }. A state s ∈ S is defined to have a transi-
tion if there exists s′ ∈ S with (s, s′) ∈ S. Then T is called
total if all s ∈ S have a transition. For technical reasons
we also have to work with nontotal transition relations
and do not require T to be total as is usually done. An
important restriction for the rest of the article is that we
only consider finite Kripke structures with |S|<∞.
It is often convenient to describe the state space S of

a Kripke structure as the product of the valuations of a set
of variables V : S = V1× . . .×Vn, n= |V |, where Vi is the
set of valuations of variable vi ∈ V . The transition rela-
tion is then given as a set of equations each defining the
next state of a variable in terms of the current and next
state values of a set of variables: v′i ∈ f(U,U

′), U ⊆ V . If
the next state value of a variable is not constrained by the
transition relation, it is called an input variable.
A path π = (s0, s1, . . . ) of a Kripke structure is,

whether finite or infinite, a nonempty sequence of states
si ∈ S. For a finite sequence (s0, . . . , sn), we define the
length of π to be |π| = n and |π| =∞ for an infinite se-
quence. For any path it is also required that (si, si+1) ∈ T
for 0≤ i < |π|. Further, let π(i) denote the i-th state of
the sequence. Then πi is the suffix (π(i), π(i+1), . . . ) of
π with its first i states chopped off. A path π ismaximally
expanded if it is infinite, or if π is finite and the last state
π(|π|) of π does not have a transition. The set of all paths
of a Kripke structure is denoted by Π.
A (partial) specification describes desired properties

of a system. We consider specifications given as linear
temporal logic (LTL) formulae. An LTL formula is made
of atomic propositions from A and the standard boolean
operators for conjunction (∧), disjunction (∨), negation
(¬), and implication (→). Additionally, the following
temporal operators are used: the unary operators next-
time (X), globally (G), finally (F), and the binary tem-
poral operator until (U) and its dual release (R). The
validity of a temporal formula f over a maximally ex-
panded path π, written π |= f , is defined recursively. Let
g and h be LTL formulae and p ∈A.

π|=p iff p ∈ L(π(0))

π|=¬g iff π 	|= g

π|=g∧h iff π |= g and π |= h

π|=X g iff |π|> 0 and π1 |= g

π|=F g iff there exists i≤ |π| with πi |= g

π|=G g iff πi |= g for all i≤ |π|

π|=gU h iff there exists i≤ |π| with
πi |= h and πj |= g for all j < i

π|=gR h iff for all i≤ |π| either πi |= h or
there exists j < i with πj |= g.

A path π is defined as initialized iff π(0)∈ I. Then an LTL
formula f is called valid, more precisely universally valid,
for a Kripke structure K, written K |=∀ f , iff π |= f for
all initialized and maximally expanded paths π of K. In
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particular, if S = ∅, then all LTL formulae are valid. Note
that our notion of (universal) validity matches the classi-
cal semantics, if T is total and I 	= ∅. For the dual notion
of existential validity, we defineK |=∃ f iff there exists an
initialized and maximally expanded path π with π |= f . If
no doubt can arise, we writeK |= f forK |=∀ f .
Note that existential validity is slightly different from

the CTL semantics [12] of Ef , assuming Ef is a CTL for-
mula. Then K |= Ef in CTL semantics holds iff for all
initial states s ∈ I the zero length path (s) can be ex-
panded to a fully expanded path π with π |= f . In our
definition of existential validity, s is existentially quan-
tified. The two notions only match if there is a unique
initial state (|I|= 1).
If an LTL formula f does not hold in a Kripke struc-

tureK, a maximally expanded path π ofK can be found,
with π |= ¬f . If π is infinite, we additionally assume that
π is lasso-shaped as in [3]. A lasso-shaped path has the
general structure shown in Fig. 1: starting from an initial
state s0, the loop state sl is reached after l steps and after
k− l steps the loop-closing state sk is reached from which
there is a transition back to the loop state sl. In this case,
we define the counterexample for f representing π as con-
sisting of the first k+1 states of π and the backward loop
position l. The length of the counterexample is defined
as k.
A fairness constraint is a subset of S. A path π is

called fair with respect to one fairness constraint F i ⊆ S
iff some state in F i occurs infinitely often on π. If π is fair,
then π is infinite, written |π|=∞. Formally we add a fifth
component F to a Kripke structure, where F is a pos-
sibly empty list of fairness constraints F = (F 1, . . . , Fm).
Then a path is fair forK iff it is fair with respect to every
F i. The semantics of structures with fairness constraints
is defined as in the unfair case, except that all quantified
paths are required to be fair.
Validity of CTL* formulae (and, hence, also LTL for-

mulae) is preserved under bisimulation equivalence [6,
10]. Two Kripke structures K = (S, T, I, L) and K̂ =
(Ŝ, T̂ , Î, L̂) over the same set of atomic propositions are
bisimulation equivalent iff there exists a relation∼⊆ S×
Ŝ with the following properties: Let s ∈ S and ŝ ∈ Ŝ with
s∼ ŝ.

1. The labeling has to match, that is, L(s) = L̂(ŝ).
2. For all s′ ∈ S with T (s, s′) there has to exist ŝ′ ∈ Ŝ
with T̂ (ŝ, ŝ′) and s′ ∼ ŝ′.

3. For all initial states s ∈ I there has to be an initial
state ŝ ∈ Î with s∼ ŝ.

The dual properties of (2) and (3), where K and K̂, are
reversed have to hold as well.
Bisimulation with fairness is defined by expanding

the transition-based definition stated above to whole fair
paths as in [10]: the additional requirement is that for all
fair paths π ∈Π there exists a fair path π̂ ∈ Π̂ with π ∼ π̂,
where π ∼ π̂ iff π(i)∼ π̂(i) for all i≥ 0.

The state space of a Kripke structure is usually con-
structed as the product of the valuations of a set of vari-
ables. For a large fraction of the models occurring, in
practice the transition relation can be written as a set of
functions such that each function defines the next state
value of a variable in terms of the current valuations of
some set of variables. Cone of influence reduction [10] re-
moves all variables from a model that do not influence its
behavior with respect to a given specification. The cone of
influence is defined as the smallest set of variables that in-
cludes all variables mentioned in the specification and, re-
cursively, each variable mentioned in the next state func-
tion of any variable in the cone of influence. Formally, let
K = (S, T, I, L) be a Kripke structure, f a property,U the
set of variables mentioned in f , and dep(v) the set of vari-
ables defining the next state of v. Then, coi(K, f) is the
smallest set such that U ⊆ coi(K, f), and if v ∈ coi(K, f),
then dep(v)⊆ coi(K, f).

4 Radius and diameter

A path π of a Kripke structureK = (S, T, I, L) leads from
state s to state t, if it is finite, π(0) = s and π(|π|) = t. In
this case, t is called reachable from s. Similarly, we say t
is reachable from a set Ŝ ⊆ S if there is an s ∈ Ŝ and t is
reachable from s.
The distance δ(K, s, t) between s and t in K is the

length |π| of a path π inK with minimal length that leads
from s to t. The distance is infinite, written δ(K, s, t) =
∞, if t is not reachable from s. The diameter d(K) of
a Kripke structure K is the maximal distance between
two reachable states in K. The distance δ(K, Ŝ, t) of
a state t from a set of states Ŝ ⊆ S is the minimum
δ(K, s, t) of all s ∈ Ŝ. Finally, the radius is defined as the
maximal δ(K, I, t) of all t reachable from I.
Thus the diameter is the maximal number of transi-

tions it takes to reach all states reachable from a state, or
just the length of the longest shortest finite path. The ra-
dius is the maximal number of transitions it takes to reach
a state reachable from the initial states. As an example,
consider the Kripke structure of Fig. 5. It models a 2-bit
counter with initial state 0 from which all the other states
can be reached in one step. As usual, the initial states are
marked by an incoming edge without source state. L is
represented by marking states with sets of atomic propo-
sitions, e.g., state 3 is the only state in which p holds. In
this example the diameter is 3, which is maximal, since
the only path that leads from state 1 back to the initial
state 0 has a length of three transitions. The radius, how-
ever, is only 1. This example can be generalized to an
n-bit counter with diameter 2n−1 and constant radius 1.
The set of reachable states R(K) is defined as all

states that can be reached from an initial state. Since
the validity of an LTL formula is always defined with re-
spect to initialized paths, it is clear that we can simply
remove all nonreachable states from a Kripke structure
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Fig. 5. Kripke structure with constant
radius but large diameter

without affecting the validity of LTL formulae. Formally,
for any Ŝ ⊆ S we define KŜ ≡ (Ŝ, T̂ , Î, L̂), with T̂ ≡ T∩
(Ŝ)2, Î ≡ I ∩ Ŝ, and L̂≡ L|Ŝ . Then it is easy to see that
K |= f iff KR(K) |= f . Since the maximal distance of all
states may be much larger than the distance of reach-
able states, it is often advantageous in practice to restrict
model checking toKR(K).
Let L−1 : A→ P (S) be the reverse of L, e.g., s ∈

L−1(p) iff p ∈ L(s). Then L−1 is lifted to arbitrary
boolean expressions f over A by defining L−1(f) ≡
L−1(g)∩L−1(h) for f = g∧h andL−1(f)≡ S\L−1(g) for
f = ¬g etc., and we writeKf forKL−1(f).
Then we call d(Kf ) the predicated diameter ofK with

respect to f , or just f -diameter. Similarly the predicated
radius of K with respect to f is r(Kf ). In particular, we
are interested inK¬p, which is obtained fromK by delet-
ing all states in which p holds. Then the “¬p”-diameter of
K turns out to be the longest shortest finite path inK on
which p does not hold. In the n-bit counterexample gener-
alized from Fig. 5, where p only holds in state 2n−1, the
“¬p”-diameter is 2n−3, for n > 1, which is the length of
the single path that leads from state 1 to state 2n−2.
The Kripke structure of Fig. 6 models a variant of

a 2-bit counter with an additional set state. The counter
starts in state 0 and increments the state index up to 3
and then wraps back to 0. Additionally, at any instant of
time, the counter may transition to the set state *, from
which after the following time step any other state can
be reached. This example can again be generalized for
arbitrary n. The diameter and the radius are both con-
stant because every state can be reached after at most two
steps from any other state, by going over the set state if
necessary.
What is particularly interesting about this example

is that the “¬p”-diameter is 2n− 1 and thus exponen-
tial in n. It is obtained by calculating the diameter after
removing the set state, the only state in which p holds.
The opposite is also possible: consider a Kripke struc-
ture in which states far away from the initial states are
only reachable through states, that are close to the ini-
tial states, and in which p holds. Then removing those
close states will cut off all the far-away states, making
them unreachable. This will result in a much smaller
radius, which is the “¬p”-radius of the original Kripke
structure.
Note, in the construction of KŜ, which is essential for

the proof of our diameter bounds further down, T being
total does not imply the totality of T̂ . This is the reason

Fig. 6. Kripke structure with constant
diameter but larger “¬p”-diameter

that we could not assume a total transition relation in the
beginning and had to give nonstandard semantics.
In the rest of the article we assume that the original

Kripke structure under consideration has a total tran-
sition relation. Then all maximally expanded paths are
infinite and all counterexamples can be assumed to be
lasso-shaped. Only forK¬p do we have to take maximally
expanded finite paths into account.

5 Completeness bounds
for simple safety and liveness

Some verification algorithms work in an iterative man-
ner by increasing the value of a parameter until truth
or falsity of a formula can be concluded. For example,
bounded model checking [3] searches for counterexamples
up to a specified length. This parameter is increased until
a bound on the maximal length of a potential counterex-
ample has been reached. The number of image computa-
tions performed in BDD-based reachability checking [26]
is a similar example. Performing only a minimal number
of iterations while still ensuring a correct result can help
to limit the resources required for verification. This idea
is captured by the notion of completeness threshold intro-
duced by Kroening and Strichman in [22] in the context of
bounded model checking. In the following discussion, we
generalize their notion to a broader class of verification al-
gorithms and parameters. The new notion is then used to
rephrase the well-known fact that the radius of a Kripke
structure is a sufficient bound to verify safety properties
and a new bound is derived for simple liveness properties.

5.1 Completeness bound

Let K be a Kripke structure, f an LTL formula, and
i,m, n natural numbers. A semantic approximation is
a function

V : (K, f, i) �→ {false, true}.

V is stable at n iff

∀m . m≥ n⇒ (V (K, f,m)⇔ V (K, f, n)).

If a semantic approximation V is stable at some n, then
the limit lim(V,K, f) := limi→∞ V (K, f, i) exists. V is



V. Schuppan, A. Biere: Efficient reduction of finite state model checking to reachability analysis 193

correct forK and f iff it is stable at some n and

lim(V,K, f)⇔K |= f.

Finally, we call V a verification function for K and f iff
it is a correct semantic approximation for K and f . In-
formally, a verification function converges to the correct
answer toK |= f for any increasing sequence of parameter
values.
A parameter value n is a completeness bound for V ,K,

and f , denoted by cb(V,K, f), iff V is correct and stable
at n. We are particularly interested in the minimal com-
pleteness bound forK and f , denoted by cbmin(V,K, f).

Remark 1. In other words, we know that we have reached
a completeness bound for cb(V,K, f), and thus, that
V (K, f, n) is the correct answer to K |= f , if further in-
creasing the value of the parameter n will not lead to
a different result.

Most verification functions are monotonically increas-
ing or decreasing in n for the order false < true for a given
model and property. Then, a correct result is obtained as
soon as V changes from true to false or vice versa:

Corollary 1. Let V (K, f, i) be a verification function
monotonic in i. Then

(∃m,n . m < n∧ (V (K, f,m)⇔¬V (K, f, n)))⇒
(V (K, f, n)⇔K |= f).

The notion introduced above can be extended to
sequences of other partially ordered sets of parame-
ter values, e.g., to the set of variables used for detec-
tion of loops in the state-recording translation (see also
Sect. 2.6). Note that if the order is not linear, a minimal
completeness bound of a model and a property might not
be unique.

5.2 Safety properties

Given a concrete Kripke structure, the (universal) va-
lidity of simple safety properties of the form Gp can be
checked by traversing all reachable states and checking
whether p holds for each state reached. In symbolic model
checking [26], the search is usually organized as breadth-
first search (BFS), starting with the set of initial states
and adding images. An image is calculated as the set of
states that can be reached in one step from the set of
states reached so far. This process is continued until no
new states can be added or a state violating p is found.
Using the notation introduced above we can define

a function smcsafe that yields false iff a violating state
is reachable from an initial state in at most i steps. Let
K = (S, T, I, L) be a Kripke structure and f =Gp a sim-
ple safety property. Then

smcsafe(K, f, i) ={
false if ∃s ∈ I ∃t ∈ S . δ(K, s, t)≤ i∧p 	∈ L(t)
true otherwise.

Clearly, smcsafe is a verification function monotonic in i.
If f holds in K, smcsafe is true for each i. If K 	|= f , then
smcsafe is true as long as i is smaller than the distance
of the closest violating state and false for any other i.
Therefore, for simple safety properties the minimal com-
pleteness bound is 0 if the property holds, the distance of
the closest violating state otherwise.
Neither the truth of the property nor the distance of

the closest violating state is usually known in advance.
Without additional information verification terminates
when either a violating state is found (Corollary 1) or all
reachable states have been traversed (Remark 1). In the
latter case, the states with the largest distance to the set
of initial states determine the number of image compu-
tations. This number turns out to be exactly the radius
of the Kripke structure. It is a completeness bound for
smcsafe and any Kripke structure and simple safety prop-
erty. In the same manner, the radius can be used as max-
imal bound for bounded model checking of simple safety
properties.

5.3 Liveness properties

In bounded model checking, a generic counterexample of
length k is represented symbolically by a boolean for-
mula. The formula is a conjunction of k copies of the
symbolic representation of the (total) transition relation,
an initial state constraint, and a loop-closing condition.
Then, to falsify a simple liveness property, of the form
Fp, e.g., disprove its validity, with respect to the univer-
sal semantics, the states are further restricted to fulfill ¬p.
From a satisfying assignment for the resulting boolean
formula a counterexample can be extracted.
However, if the liveness property is valid for the given

Kripke structure, then for any k the generated boolean
formula remains unsatisfiable. Since we cannot test in-
finitely many values of k, the question is, up to which k
do boolean formulae have to be generated and checked for
unsatisfiability before validity of the liveness property can
be concluded.
We can define a monotonic verification function

bmclive as above that yields false if a lasso-shaped coun-
terexample of length ≤ i exists. The minimal complete-
ness bound is 0 if the property holds for a model, the
length of the shortest counterexample otherwise.
In [3, 22] it has been observed that the recurrence

diameter, which is the longest cycle-free path, and its ini-
tialized variant, the recurrence radius, are upper bounds
for the minimal completeness bound of simple liveness
properties. Note that the diameter is not an upper bound
for the minimal completeness bound of Fp, as the ex-
ample in Fig. 6 shows, where the diameter is constant, but
the length of the single counterexample is linear in 2n,
the number of states. As this example shows, the search
for a lasso-shaped counterexample has to be restricted to
K¬p. This leads to one of our main results: the minimal
completeness bound for simple liveness properties Fp is
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linear in the “¬p”-predicated diameter. The exact rela-
tion is stated in the following:

Theorem 1.

cbmin(bmclive,K,Fp)≤ r(K¬p)+d(K¬p) =O(d(K¬p)).

Proof. r(K¬p)+ d(K¬p) is a sufficient bound on the
length of counterexamples for Fp in K. The proof works
as follows: given an arbitrary counterexample of length k,
which represents an infinite initialized path π of K with
π |= ¬Fp, we construct an infinite initialized path π∗ ofK
with π∗ |= ¬Fp. Then we show that π∗ is represented by
a counterexample of maximal length r(K¬p)+d(K¬p).
For the construction, let π = (s0, . . . , sl, . . . , sk, . . . )

with 0≤ l ≤ k and (sk, sl) ∈ T . Without loss of general-
ity we assume sl 	= sk if l < k. Otherwise, k is decremented
until the assumption is fulfilled. Clearly p does not hold
in any of the states of π and, since K¬p still contains all
states violating p, this implies that π is also an initialized
path in K¬p. Therefore, there exists an initialized path π̂
inK¬p of maximal length r(K¬p) with π̂(|π̂|) = sl.
If in π there is a self-loop at the looping state, e.g.,

sl = sk, then the infinite initialized path π
∗ ≡ π̂ · (sl)ω is

still a path in K¬p and π
∗ |= ¬Fp. It consists of the pre-

fix π̂ and an infinite repetition of the looping state sl
and can be represented by a counterexample of length
|π̂| ≤ r(K¬p). Otherwise, let l < k and thus sl 	= sk after
the assumption above. Then we can find a second path ˆ̂π
inK¬p, with ˆ̂π(0) = sl and ˆ̂π(|ˆ̂π|) = sk. This path leads us
from sl to sk and is not necessarily initialized. Its length
can only be bounded by d(K¬p).
There is a transition back from sk to sl. Therefore,

π∗ ≡ π̂ · ˆ̂π1 · (ˆ̂π)ω is an initialized infinite path of K¬p
and thus π∗ |= ¬Fp. It consists of the prefix π̂ concate-
nated with ˆ̂π1, which is ˆ̂π with its first state, the loop-
ing state sl, chopped off, and an infinite repetition of ˆ̂π.
The length of the counterexample representing π∗ is |π̂|+
|ˆ̂π| ≤ r(K¬p)+d(K¬p). The rest follows from r(K¬p) ≤
d(K¬p). �

As a corollary we obtain that the maximal bound for
checking Fp in BMC is r(K¬p)+d(K¬p). Note again that
d(K) and d(K¬p) are in general not comparable and there
are examples (see above) where either one is much larger
than the other.

6 Correctness

In this section we formally establish the correctness of the
state-recording translation for simple liveness properties.
For the proof we show that adding the loop detection part
and the property observing part preserves bisimulation
equivalence between the original and the transformed sys-
tem. For this purpose we introduce the notion of an ob-
server extension. Then, it remains to construct a coun-
terexample for the original system and specification from

one for the transformed system and specification and vice
versa.

6.1 Observer extensions

Both, the loop detection part and the property observ-
ing part add state variables to a system. The newly added
variables determine their next state values in terms of the
variables of the original system but do not interfere with
the original system. In particular, they neither change
the transition relation of the original system nor do they
introduce dead ends. This is called an observer [16] or
monitor [18].
LetK = (S, T, I, L) be a Kripke structure and O a set

of states. KO = (SO, TO, IO, LO) is an observer exten-
sion ofK with O iff

1. SO = S×O,

2. ( (s, o), (s′, o′) ) ∈ TO⇒ (s, s′) ∈ T ,

3. ∀(s, s′) ∈ T . ∀o ∈O . ∃o′ ∈O . ( (s, o), (s′, o′) ) ∈ TO,

4. s ∈ I⇔ (∃o ∈O . (s, o) ∈ IO),

5. LO( (s, o) ) = L(s).

Requirements 2 and 3 ensure that the transition re-
lation of the original system is respected and that the
enhanced system can proceed if the original system can.
The fourth requirement guarantees that each initial state
of the enhanced system has a counterpart in the original
system and vice versa. The labeling of the states in the
enhanced system is defined by the component from the
original system.
Let K = (S, T, I, L) be a Kripke structure, O a set of

states, and KO = (SO, TO, IO, LO) an observer exten-
sion ofK with O. Let ρ be the projection of SO on S, i.e.,
ρ( (s, o) ) = s. Then

Lemma 1. K andKO are bisimulation equivalent.

Proof. Consider ∼⊆ S×SO with s ∼ sO ⇔ s = ρ(sO).
�

6.2 Adding loop detection

The loop detection part is common for all translations.
Let K = (S, I, T, L) be a Kripke structure. Then we con-
struct

KL = (SL, TL, IL, LL)

with

SL =S× (S∪{⊥})

TL = {( (s, l), (s′, l′) ) |
(s, s′) ∈ T∧
((l =⊥∧ l′ = s)∨ l′ = l)}

IL = {(s,⊥) | s ∈ I}

LL( (s, l) )=L(s),
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which operates on the first state component like the ori-
ginal transition relation. In the second state component
a previously reached original state may be recorded, non-
deterministically, but at most once. We further assume
that ⊥ is a new state that does not already occur in S. It
is easy to see that KL is an observer extension of K and
therefore we have

Lemma 2. K and KL are bisimulation equivalent.

Note that TL is monotonic in its second component for
the order ≤L ⊆ (S∪{⊥})2 with s≤Lt iff s= t or s=⊥.

6.3 Adding property observing

The next step adds a flag that remembers whether p has
been valid on the path so far:

KS = (SS, TS, IS, LS)

with

SS =SL×{0, 1}

TS = {( (s, live), (s′, live ′) ) |
(s, s′) ∈ TL∧
(if p ∈ LL(s)
then live ′ = 1
else live ′ = live)}

IS = IL×{0}

LS( (s, live) ) =LL(s).

KS is an observer extension of KL. With Lemma 2 and
transitivity of bisimilarity we have

Lemma 3. K and KS are bisimulation equivalent.

Note that, although KS depends on the property being
verified, the translations for all other formulae in Table 1
are also observer extensions. Since the validity of CTL*
formulae is preserved under bisimulation equivalence [6,
10], we obtain the equivalence ofK |= Fp andKS |= Fp.
TS is also monotonic in its second component, in this

case for 0< 1.

6.4 Proving equivalence for simple liveness

The final step in our translation for simple liveness con-
sists of adding a new atomic proposition q with

q ∈ LS( ((s, t), live) ) ⇔ s= t → live = 1 (2)

Theorem 2.

K |= Fp ⇔ KS |=G q.

Proof. It remains to show the equivalence ofKS |=∃G¬p
and KS |=∃ F¬q. First assume K

S |=∃ G¬p. Then there

exists an infinite initialized path π ∈ΠS with p 	∈LS(π(i))
for all i ≥ 0. Since the number of states of SS is fi-
nite, there have to exist indices k ≥ l ≥ 0 with π(k+
1) = π(l). Let π(i) = ((si, ti), live i) for i ≥ 0 and define
π̂(i) = ((si, t̂i), livei) with t̂i =⊥ for 0≤ i≤ l and t̂i = sl
for l < i≤ k+1.
Clearly, π̂ is an initialized legal path of KS. By defin-

ition we have sk+1 = t̂k+1 = sl and live i = 0 for 0 ≤ i ≤
k+1 since p 	∈ LS(π̂(j)) = L(sj) = L

S(π(j)) for 0≤ j ≤ k.
From (2) we get q 	∈ LS(π̂(k+1)) and π̂ proves to be a wit-
ness forF¬q, assuming π̂ is extended to an infinite path in
the obviousway.Note thatTS is total sinceT is assumed to
be total and our translation does not introduce dead ends.
For the reverse direction assume F¬q holds in KS.

Without loss of generality we find an initialized path
π ∈ ΠS with |π| = k+1 and π(k+1) |= ¬q. With π(i) =
((si, ti), live i) we deduce from (2) that sk+1 = tk+1 and
livek+1 = 0. From the monotonicity of T

S in its second
state component, we obtain an l with 0≤ l ≤ k such that
⊥= t0 = . . .= tl and sl = tl+1 = . . .= tk+1. Now we con-
struct an infinite path π̂ with π̂(i) = ((ŝi, t̂i), live i) as fol-
lows: for 0 ≤ i ≤ k we simply set π̂(i) = π(i). If i > k,
we define t̂i = tk+1, ˆlive i = livek+1, and ŝi = sl+c with
c = (i− l) mod (k+1− l). From the monotonicity of TS

in its second state component, we have livek+1 = . . . =
live0 = 0, which implies si |= ¬p for 0≤ i≤ k. Since these
original states determine the nonvalidity of p for every
π̂(i), and π̂ is a legal initialized infinite path, it serves as
witness forG¬p. �

6.5 Adding fairness

Our translation is able to incorporate fairness. To han-
dle a fair Kripke structure K(S, I, T, L, F ), we construct
KS(SS, IS, TS, LS, FS), where SS, IS, TS, and LS are
defined as above and F is extended to

FS = (F 1× (S∪{⊥})×{0, 1}, . . . ,

Fm× (S∪{⊥})×{0, 1}).

We defineKSF = (S
S
F , I

S
F , T

S
F , L

S
F ) with S

S
F =S

S×{0, 1}m

and ISF = I
S×{(0, . . . , 0)} by replacing each fairness con-

straint F i with a state bit that remembers whether a loop
state in F i has been reached. LetLSF be the natural exten-
sion ofLS as before. Let (s, t, x, v), (s′, t′, x′, v′)∈ SSF with
s, s′ ∈ S, t, t′ ∈ S∪{⊥}, x, x′ ∈ {0, 1} and v, v′ ∈ {0, 1}m.
The transition relation TSF is satisfied for (s, t, x, v) and
(s′, t′, x′, v′) as current and next state iff

TS( ((s, t), x) , ((s′, t′), x′) ) ∧∧m
i=1

(
v′(i) = v(i) ∨ (t′ 	=⊥ ∧ s ∈ F i ∧ v′(i) = 1)

)
,

which is again monotonic in the new fairness components
of the state space. We further add a new atomic proposi-
tion qF with

qF ∈ L
S
F ( (s, t, x, v) ) ⇔

(v(1) = . . .= v(m) = 1) → q ∈ LS( ((s, t), x) ),
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where q is defined as for KS. We can prove a correctness
result like before, now including fairness.

Theorem 3.

K |= Fp ⇔ KSF |=G qF .

The number of added state bits grows linearly in the
number m of fairness constraints. This corresponds di-
rectly to the increase in size of the input for symbolic
model checking. The state space KSF itself grows expo-
nentially, as do the diameter and the radius. The ap-
proach seems to be feasible, at least for explicit model
checking, only for a small number of fairness constraints.
However, checking G qF will always find the shortest
counterexamples.
An alternative approach counts the number of fair-

ness constraints satisfied so far, similar to the well-known
translation of generalized Büchi automata into ordinary
Büchi automata. It produces a liveness property with
a single fairness constraint, which in turn is translated
into a safety property. This approach is more space effi-
cient. It requires only a logarithmic number of additional
state bits. However, it fails to generate counterexample
traces of minimal length. In addition, it is not clear how
this binary encoding performs for symbolic model check-
ing vs. the one-hot encoding discussed before.

7 Complexity

After correctness has been established, we can now state
the theoretical bounds on the overhead for verification
that is introduced into a model by our translation. Our
objective was to enable checking liveness properties with
techniques and tools previously only used for reachability
calculation or safety checking. The impact of our transla-
tions on the complexity for model checking or reachability
calculation is quite reasonable.
As sketched with the example of Fig. 3, the size of

a noncanonical symbolic description in program code in-
creases only by a small constant factor. In global (ex-
plicit) model checking [9], the complexity is governed by
the number of states, which increases quadratically:

|SS|= |S|·|S ∪{⊥}| · |{0, 1}|= |S| · (|S|+1) ·2=O(|S|2).

In the case of on-the-fly (explicit) model checking [13],
only the size of the reachable state space R(KS) is of in-
terest. A reachable state (s, t) ∈ R(KL) either contains
⊥ as second component t, or t is reachable in K since
only reachable states are recorded. Therefore, R(KL) is
bounded by |R(K)| · (|R(K)|+1). This bound is tight:
a modulo n counter, like the model in Fig. 2 for n= 4, has
|R(KL)|= n · (n+1) reachable states. If n= 4, then every
combination of {0, . . . , 3}×{⊥, 0, . . .3} can be reached.
Introducing the live-recording flag at most doubles the

number:

|R(KS)| ≤ 2 · |R(KL)|

≤ 2 · |R(K)| · (|R(K)|+1)=O(|R(K)|2).

Regarding symbolicmodel checkingwithBDDs [26]we
have two results.First,we relate the size of reducedordered
BDDs for the transition relation of K, KL, and KS. As-
suming S is encoded with n= �log2 |S|� state bits, we can
encode SL with 2n+1 boolean variables. It is important
to interleave the boolean variables for the first and second
component.Otherwise, the size of the BDD for the term

((l =⊥∧ l′ = s)∨ l′ = l) (3)

in the definition of TL may explode. With an interleaved
order it is linear in nwith a factor of approx. 6. The factor
has been determined empirically for large state spaces,
as shown in Table 2. The first column shows the original
number n of state bits. The second and third columns
contain the number of BDD nodes necessary to represent
(3) using a noninterleaved (blocked) or interleaved order,
respectively. The exact number of nodes depends on the
details of the encoding of ⊥.
Thus the size of the BDD for TL can be bounded

roughly by 6 ·n the size of the BDD for T by using the fact
from [7] that computing any boolean binary operation on
BDDs will produce a BDD that is linear in size with fac-
tor 1 in the size of the argument BDDs. Finally, the size
of the BDD for TS compared to the size of the BDD for
TL may increase by a linear factor in the size of the BDD
representing the set of states in which p holds, which in
practice is usually very small.
Similar calculations for the set of initial states show

that the size of BDDs representing KS can be bound to
be linear in the size of the BDDs representingK, linear in
the number of state bits, and linear in the size of the BDD
representing the set of states in which p holds.
These static bounds do not say anything about the

size of the BDDs in the fixpoint iterations. The radius
of a Kripke structure is an upper bound for the number
of iterations necessary to reach a fixed point (Sect. 5).
The results derived for the radius and the diameter ofKS

stated in Theorem 4.4 of [5] are incorrect if d¬p > d.1 As
shown in Sect. 7, the predicated diameter can be much
larger than the diameter itself. This is taken into account
in cases 1 and 2 below.
To determine the correct radius rS of KS, con-

sider an initial state sS0 = (s0,⊥, 0) and a target state
sSt = (st, x, y) with s

S
0 , s

S
t ∈ S× (S∪{⊥})×{0, 1}. If s

S
t is

reachable from sS0 , s
S
t is reachable from s

S
0 in at most r

S

steps. This is denoted as follows:

sS0 =


s0⊥
0


 ≤ rS−→


stx
y


= sSt .

1 We use the following shorthand notations if no doubt can arise:
d= d(K), dS = d(KS), d¬p = d(K¬p) and similarly for r.
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Table 2. BDD sizes for (3) (∗ = memory
limit of 1GB reached)

Blocked Interleaved

n #nodes #nodes #nodes/n

10 5146 61 6.1
12 20512 73 6.08333
14 81958 85 6.07143
16 327724 97 6.0625
18 1310770 109 6.05556
20 5242936 121 6.05
32 ∗ 193 6.03125
128 ∗ 769 6.00781
512 ∗ 3073 6.00195
2048 ∗ 12289 6.00049

Both enhancements to the original state space are mono-
tonic in the added component. Therefore, depending on
x and y, four cases can be distinguished: either a state
is saved exactly once (x ∈ S) or not (x =⊥), and either
a state fulfilling p is encountered (y changes to 1 once and
remains so) or not (y = 0). This gives the following cases:

1. x=⊥, y = 0: no state is saved, pmust be false on each
state on the path from s0 to st. The length of such
a path is bounded by r¬p:
s0⊥
0


 ≤ r¬p−→


st⊥
0


 .

2. x= sl, y = 0: state sl is saved, p is false on each state
on the path from s0 to st. Now, sl must be reached
first. From its successor, s′l, the target state st is
reached. No p-state may be visited on the path. This
results in a bound of r¬p+d¬p+1:
s0⊥
0


 ≤ r¬p−→


sl⊥
0


 1
−→


s′lsl
0


 ≤ d¬p−→


stsl
0


 .

3. x=⊥, y = 1: no state is saved, at least one p-state sp
is crossed on the way to st. sp can be reached from s0
in at most r steps. The “−” in the third component de-
notes a don’t care: another state ŝp with p ∈L(ŝp) may
be traversed before sp is visited, having live already
made true. From s′p, st can be reached in d steps giving
a bound of r+d+1:
s0⊥
0


 ≤ r
−→


sp⊥
−


 1
−→


s′p⊥
1


 ≤ d
−→


st⊥
1


 .

4. x= sl, y = 1: state sl is saved, at least one p-state sp is
crossed on the way to st. If sp is reached first, this takes
at most r steps. From its successor, sl can be reached
in d steps, and st in d further steps from s

′
l. This gives

an overall bound of r+2d+2:
s0⊥
0


 ≤ r
−→


sp⊥
−


 1
→


s′p⊥
1


 ≤ d
−→


sl⊥
1


 1
→


s′lsl
1


 ≤ d−→


stsl
1


 .

The result is the same if sl is reached first:
s0⊥
0


 ≤ r
−→


sl⊥
−


 1
→


s′lsl
−


 ≤ d
−→


spsl
−


 1
→


s′psl
1


 ≤ d−→


stsl
1


 .

Bounds on the diameter dS can be obtained similarly by
starting in an arbitrary state sSs = (ss, xs, ys). This leads
to the following reformulation of Theorem 4.4 in [5]:

Theorem 4.

rS ≤max{r+2d+2, r¬p+d¬p+1} =O(max{d, d¬p})

and

dS ≤max{3d+2, 2d¬p+1} =O(max{d, d¬p}).

Note that if halt optimization is applied, the radius
of KS is reduced by d in cases 3 and 4: rS =max{r+d+
2, r¬p+d¬p+1}.
If breadth-first search is used for reachability analysis

ofKS, the algorithm will either reach a fixed point or find
a counterexample after at most rS+1 iterations. How-
ever, if the property under consideration is false, there is
always a shortest counterexample whose length is equal to
the bmclive-minimal completeness bound for K and Fp.
As the state-recording translation finds a shortest coun-
terexample, the fixed point computation may already
terminate after cbmin(bmclive,K,Fp)+1 iterations. Note
that the translated system needs one step to detect a loop
and update the live flag.

8 Real-world examples

In this section we report on a series of experiments with
examples of nontrivial complexity. Most examples were
taken from a collection of benchmarks [35] by Bwolen
Yang for SMV, and one is from the authors’ previous work
[29]. Three classes of properties were checked: Fp, GFp,
andG(p→Fq).
The experiments were performed with Cadence SMV

(build 08-20-01) [25] on a PC with an Intel Pentium
III at 800MHz and 1.5GB RAM running Linux 2.2.19.
Model checking was restricted to the reachable states,
and a variable order was provided explicitly in each case.
We set a wall clock limit of 1 h. Tables 3–6 show the
results. In each table the first column states the class
of the property checked. The second column gives the
name of the model. Apart from Table 6 the third col-
umn states whether the property is true or false. The
remaining columns list the results. The headings are live
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for the original model using standard liveness checking,
l2s for the translated, unoptimized model, and var, halt,
and var + halt for the translated model with variable,
halt, and both optimizations applied. Table 3 shows time
and space requirements. Table 4 states the number of
iterations performed to check the property, that is, ex-
cluding iterations to construct a counterexample. The
number of variables in the cone of influence and the size
of the reachable state space is given in Table 5 for se-
lected examples. Finally, Table 6 compares the lengths
of counterexamples found for the original and the trans-
lated model.
To obtain a good variable order, the original vari-

ables were interleaved with their copies introduced by
the translation. Some trials showed that a good variable
order for the original model also seems to give good re-
sults for the translated model. Therefore, we used the
variable order of [35] or of [8] if one was provided. A good
position for the property observing variables depends on
the property being verified. We did not apply further op-
timizations but placed the variables from the property
observing part and the remaining variables from the loop
detection part at the end of the variable order.

Table 3. Time and memory needed for verification

CPU time [s] # BDD nodes

Property Model Truth Live Var + halt Halt Var l2s Live Var + halt Halt Var l2s

Fp 1394-2-2-true t 0.60 1.13 2.20 1.42 3.27 66 584 127 148 195 691 150 631 251 357

1394-3-2-true t 7.63 11.08 20.59 16.47 32.11 656 916 666 821 1 101 901 973 403 1 740 630

1394-4-2-true t 382.72 316.92 707.57 731.53 1313.78 12 748 065 11 612 358 22 156 965 20 665 581 37 671 970

1394-2-2-false f 1.06 1.13 2.16 1.18 2.22 84 661 121 640 199 030 125 386 225 251

1394-3-2-false f 6.73 7.44 14.50 11.25 17.53 538 562 552 084 804 731 725 920 1 557 995

1394-4-2-false f 397.73 270.76 536.86 453.28 801.45 12 968 071 10 886 232 18 262 702 20 654 223 26 241 966

dme-03-true t 112.48 369.47 – 1142.82 – 336 311 5987 369 – 21 848 216 –

dme-04-true t 414.44 – – – – 1 282 565 – – – –

dme-05-true t 1537.88 – – – – 5 116 176 – – – –

dme-03-false f 404.29 1.48 – 1.37 – 308 902 202 179 – 198 982 –

dme-04-false f 2351.86 1.87 – 2.40 – 1 079 160 284 297 – 428 931 –

dme-05-false f – 5.39 – 4.18 – – 687 726 – 641 885 –

p-queue t 0.20 0.23 0.26 1.04 5.37 31 214 48 630 53 176 102 627 289 409

GFp abp1 t 0.08 0.49 3.87 0.71 7.83 3573 42 782 189 528 57 747 340 689

abp4 t 0.09 0.51 74.85 0.70 597.89 3573 42 782 2 880 808 57 747 21 299 133

reactor-base-1 t 1.19 13.56 13.47 517.22 524.07 87 849 322 271 324 984 5 751 743 5 982 628

reactor-base-2 t 1.74 145.93 161.10 525.17 537.21 102 961 2604 819 2 710 108 5 672 905 5 419 344

reactor-bc56-sensors-1 t 6.25 107.12 106.88 – – 373 993 1660 326 1 920 631 – –

reactor-bc56-sensors-2 t 7.88 2319.06 2454.00 – – 400 194 22 702 256 23 314 130 – –

reactor-bc57-sensors-1 t 12.35 268.85 280.82 – – 701 793 5150 899 5 373 528 – –

reactor-bc57-sensors-2 f 191.28 229.00 266.02 213.72 224.35 1 151 399 6778 798 7 314 282 6 251 219 6 288 691

reactor-motors-stuck-1 t 12.28 152.90 148.60 – – 917 665 3051 950 2 954 656 – –

reactor-motors-stuck-2 f 33.44 670.01 669.09 1309.38 1247.58 1 109 592 14 863 244 14 367 833 28 770 893 30 509 639

reactor-valves-gates-1 t 38.15 939.44 1003.61 – – 1 429 572 13 039 409 10 237 659 – –

reactor-valves-gates-2 t 43.53 – – – – 2 001 444 – – – –

G(p→ Fq) guidance t 0.46 8.21 95.63 49.43 707.02 41 014 504 831 2 062 249 2 959 929 13 377 306

prod-cons-1 f 4.43 7.67 15.07 12.00 27.75 172 894 468 930 769 734 623 875 1 214 313

prod-cons-3 f 0.66 3.66 7.46 6.98 25.00 39 951 219 839 437 287 432 719 1 311 126

prod-cons-4 t 0.38 11.72 31.96 1899.24 – 31 542 498 038 975 382 44 680 697 –

production-cell-1 t 0.28 2.94 2.96 9.64 9.94 36 148 158 262 158 262 429 259 429 259

production-cell-3 t 0.25 0.83 0.90 7.66 7.34 35 278 82 648 82 648 375 484 375 484

Verification of the translated model is feasible. The
most optimized version is usually 5 to 50 times slower
and requires 3 to 30 times more memory than the usual
liveness checking algorithm. Note that it was not our
intention to provide an improved algorithm for liveness
checking but to make liveness checking possible if reach-
ability analysis is the only available option. Still, in the
optimized translated model, a bug in the dme model is
found much faster than with standard liveness checking.
Both optimizations yield performance improvements

in most cases. Variable optimization can speed up veri-
fication by more than two orders of magnitude. Within
the given resource bounds the dme model could not be
verified in the translated version without variable opti-
mization. Our translated specification refers to each vari-
able that is copied and compared. All such variables are
included in the cone of influence of the translated speci-
fication. Variables not in the cone must not be used for
loop detection if cone of influence reduction is to be ap-
plied. An example is the abp model. It contains a data
path of variable width (1 and 4 bits in our experiments)
that is not in the cone of influence of the property verified.
With variable optimization (and, as enabled by default,
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Table 4. Iterations performed to check property

# iterations [all (fw + bw)]

Property Model Truth Live Var + halt Halt Var l2s

Fp 1394-2-2-true t 54 (15 + 39) 15 (15 + 0) 15 (15 + 0) 19 (19 + 0) 19 (19 + 0)

1394-3-2-true t 60 (17 + 43) 16 (16 + 0) 16 (16 + 0) 19 (19 + 0) 19 (19 + 0)

1394-4-2-true t 116 (27 + 89) 27 (27 + 0) 27 (27 + 0) 31 (31 + 0) 31 (31 + 0)

1394-2-2-false f 30 (15 + 15) 10 (10 + 0) 10 (10 + 0) 10 (10 + 0) 10 (10 + 0)

1394-3-2-false f 33 (17 + 16) 11 (11 + 0) 11 (11 + 0) 11 (11 + 0) 11 (11 + 0)

1394-4-2-false f 61 (27 + 34) 16 (16 + 0) 16 (16 + 0) 16 (16 + 0) 16 (16 + 0)

dme-03-true t 13 138 (96 + 13042) 247 (247 + 0) – – – – 301 (301 + 0) – – – –

dme-04-true t 22 167 (117 + 22050) – – – – – – – – – – – – – – – –

dme-05-true t 38 734 (142 + 38592) – – – – – – – – – – – – – – – –

dme-03-false f 47 532 (96 + 47436) 1 (1 + 0) – – – – 1 (1 + 0) – – – –

dme-04-false f 129 681 (117 + 129 564) 1 (1 + 0) – – – – 1 (1 + 0) – – – –

dme-05-false f – – – – 1 (1 + 0) – – – – 1 (1 + 0) – – – –

p-queue t 16 (12 + 4) 2 (2 + 0) 3 (3 + 0) 16 (16 + 0) 18 (18 + 0)

GFp abp1 t 87 (19 + 68) 31 (31 + 0) 34 (34 + 0) 41 (41 + 0) 48 (48 + 0)

abp4 t 87 (19 + 68) 31 (31 + 0) 34 (34 + 0) 41 (41 + 0) 48 (48 + 0)

reactor-base-1 t 298 (271 + 27) 272 (272 + 0) 272 (272 + 0) 661 (661 + 0) 661 (661 + 0)

reactor-base-2 t 369 (271 + 98) 381 (381 + 0) 381 (381 + 0) 661 (661 + 0) 661 (661 + 0)

reactor-bc56-sensors-1 t 429 (390 + 39) 391 (391 + 0) 391 (391 + 0) – – – – – – – –

reactor-bc56-sensors-2 t 496 (390 + 106) 592 (592 + 0) 592 (592 + 0) – – – – – – – –

reactor-bc57-sensors-1 t 369 (302 + 67) 303 (303 + 0) 303 (303 + 0) – – – – – – – –

reactor-bc57-sensors-2 f 5020 (302 + 4718) 103 (103 + 0) 103 (103 + 0) 103 (103 + 0) 103 (103 + 0)

reactor-motors-stuck-1 t 456 (401 + 55) 407 (407 + 0) 407 (407 + 0) – – – – – – – –

reactor-motors-stuck-2 f 589 (401 + 188) 315 (315 + 0) 315 (315 + 0) 315 (315 + 0) 315 (315 + 0)

reactor-valves-gates-1 t 644 (616 + 28) 617 (617 + 0) 617 (617 + 0) – – – – – – – –

reactor-valves-gates-2 t 726 (616 + 110) – – – – – – – – – – – – – – – –

G(p→ Fq) guidance t 68 (41 + 27) 56 (56 + 0) 82 (82 + 0) 76 (76 + 0) 106 (106 + 0)

prod-cons-1 f 58 (48 + 10) 24 (24 + 0) 24 (24 + 0) 24 (24 + 0) 24 (24 + 0)

prod-cons-3 f 114 (48 + 66) 24 (24 + 0) 24 (24 + 0) 24 (24 + 0) 24 (24 + 0)

prod-cons-4 t 132 (48 + 84) 68 (68 + 0) 69 (69 + 0) 120 (120 + 0) – – – –

production-cell-1 t 112 (81 + 31) 110 (110 + 0) 110 (110 + 0) 173 (173 + 0) 173 (173 + 0)

production-cell-3 t 90 (81 + 9) 83 (83 + 0) 83 (83 + 0) 146 (146 + 0) 146 (146 + 0)

Table 5. Size of state space

# state holding booleans # reachable states

Property Model Truth Live Var l2s Live Var + halt Halt Var l2s

Fp 1394-2-2-true t 60 96 128 1.07856e+08 1.09334e+08 5.40174e+08 1.1707e+08 1.21886e+09

1394-2-2-false f 60 96 128 1.07856e+08 1.10073e+08 5.91601e+08 1.14829e+08 9.86541e+08

dme-03-true t 54 164 — 6579 2.3233e+20 — 4.67112e+20 —

dme-03-false f 54 161 — 6579 1.80144e+16 — 1.80144e+16 —

p-queue t 39 79 86 1824 275 15 510 64 739 6.06062e+06

GFp abp1 t 17 39 50 180 11 202 229 326 18 622 661 506

abp4 t 17 39 74 180 11 202 9.81073e+09 18 622 3.02828e+10

reactor-base-1 t 65 142 144 398 2912 2912 264 889 264 889

reactor-base-2 t 65 142 144 398 102 293 102 293 264 157 264 157

reactor-bc56-sensors-1 t 69 150 152 6023 80 860 80 888 — —

reactor-bc56-sensors-2 t 69 150 152 6023 3.60834e+06 3.6133e+06 — —

reactor-valves-gates-1 t 77 166 168 1.80469e+06 4.03702e+07 4.08945e+07 — —

reactor-valves-gates-2 t 77 — — 1.80469e+06 — — — —

G(p→ Fq) guidance t 55 113 193 3.29395e+10 5.10475e+18 2.59509e+25 5.45806e+19 3.05457e+26

prod-cons-1 f 28 56 62 211 144 3.9479e+07 2.42509e+08 1.72519e+08 1.08308e+09

production-cell-1 t 54 111 111 81 1257 1257 6415 6415

cone of influence reduction in Cadence SMV) verification
time and space are independent of the number of bits in
the data path, exponential otherwise. Halt optimization

shortens the radius of the model if the property is true for
all but one model (Table 4). The reachable state space is
cut for both true and false properties (Table 5). The re-
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Table 6. Length of counterexamples

Length in # states
Property Model Live l2s

Fp 1394-2-2-false 13 10
1394-3-2-false 11 11
1394-4-2-false 19 16

dme-03-false 1 1
dme-04-false 1 1
dme-05-false – 1

GFp reactor-bc57-sensors-2 103 103
reactor-motors-stuck-2 319 315

G(p→Fq) prod-cons-1 39 24
prod-cons-3 27 24

sulting speedup is usually between 2 and 10. Most valid
instances of the reactor model cannot be verified without
halt optimization. Both optimizations are independent
and may be combined.
Often, a shorter counterexample is produced for the

translated model (Table 6. For 1394, the counterexample
given by the original liveness algorithm includes an invo-
cation of a subprotocol not necessary to falsify the prop-
erty. The counterexamples obtained for prod-cons by the
original and the transformed models are semantically dif-
ferent. In addition, the counterexamples produced by the
original algorithm contain a number of context switches
between processes where the target process cannot act
(i.e., nothing changes between two states apart from the
running variable).

9 A forward jumping counter

Our translation may lead to a model that can be verified
exponentially faster. Consider the n-bit counter shown in
Fig. 7. It can jump forward from state i to an arbitrary
state j > i. Only in the last state p is true. For the correct
versionFp holds, self-loops are added to generate an erro-
neous version. A standard algorithm for symbolic model
checking [10] needs O(2n) backward iterations to verify
the correct counter. If the state-recording translation is

Fig. 8. Forward jumping counter – CPU time [s]

Fig. 7. Forward jumping counter

applied, a constant number of forward iterations suffices
as r, r¬p, d, d¬p ≤ 2.
We used the model checker of the VIS system (v. 1.4)

[34] to verify the forward jumping counter. Apart from
backward (standard) model checking, VIS also provides
an implementation of the forward model checking algo-
rithm by Iwashita et al. [20]. The experiments were per-
formed on an Intel PC running at 800MHz with 1.5GB
RAM, and a wall clock limit was set at 1 h.
The results confirm that standard and forward model

checking require exponentially many iterations, while the
translated version is verified with a constant number of
iterations in the correct case. All algorithms can find
a counterexample with a constant number of iterations.
Figure 8 shows that both classical and forward model

checking need time exponential in n. The translated vari-
ant can be checked in linear time. The standard algo-
rithm is more than 25% faster than forward model check-
ing. A counterexample is found in the erroneous version
in linear time by all algorithms. Standard and forward
model checking give similar results for the translated
variant.

10 Conclusion

We have extended our translation of liveness checking
problems into safety checking problems for finite state
systems. To improve applicability of our method in prac-
tice, we have provided translations for more complex for-
mulae and optimizations to speed up verification. The
feasibility of our approach is underlined by a series of
experiments. In one example, an exponential speedup is
observed. Using the new notions of predicated radius and
completeness bound we have derived revised bounds for
BDD-based model checking.
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The current optimizations ensure that only variables
are removed from the translation that do not influence
the truth of a formula. While removing further vari-
ables may produce spurious counterexamples, consider-
able speedups can be achieved with these reducedmodels.
We have very promising initial results on an incremental
procedure that starts with only few variables copied and
compared in the translation and adds further variables
until the formula is either proved true or all variables have
been added.
Our tight bounds on the minimal completeness bound

for liveness properties may potentially lead to faster algo-
rithms for liveness checking in general. The performance
of the counter-based translation should be evaluated for
low completeness bounds. Future research could evaluate
how our translation can be applied to other formalisms
such as process algebras. Another direction for research is
to look into structural algorithms to determine bounds on
the “¬p”-predicated diameter, similar to the algorithms
for plain diameters in [1].

Acknowledgements. We would like to thank Ofer Strichman for
sharing some of his insights on the completeness threshold with us.

References
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MODULE task(id, turn)

VAR
  s: {non, try, crit};
ASSIGN
  init(s) := non;
  next(s) := case
    s = non: try;
    s = try & (id = turn): crit;
    s = try & !(id = turn): try;
    s = crit: non;
  esac;

FAIRNESS
  turn = id

SPEC
  AF s = crit

MODULE main

VAR
  turn: 0..1;
  t0: task(0, turn);
  t1: task(1, turn);

MODULE task(id, turn, save, saved, on_loop)

-- unmodified part
VAR
  s: {non, try, crit};
ASSIGN
  init(s) := non;
  next(s) := case
    s = non: try;
    s = try & (id = turn): crit;
    s = try & !(id = turn): try;
    s = crit: non;
  esac;

-- loop detection part
VAR
  l2s_s: {non, try, crit};
ASSIGN
  next(l2s_s) := case
    save & !saved: s;
    1: l2s_s;
  esac;
DEFINE
  looped := saved & s = l2s_s;

-- property observing part
VAR
  fair: boolean;
ASSIGN
  init(fair) := 0;
  next(fair) := fair | on_loop & turn = id;
VAR
  live: boolean;
ASSIGN
  init(live) := 0;
  next(live) := live | s = crit;

MODULE main

-- declaration part with signal forwarding
VAR
  turn: 0..1;
  t0: task(0, turn, save, saved, on_loop);
  t1: task(1, turn, save, saved, on_loop);

-- loop detection part
VAR
  save: boolean;
  saved: boolean;
ASSIGN
  init(saved) := 0;
  next(saved) := on_loop;
DEFINE
  on_loop := save | saved;
  looped := t0.looped & t1.looped;

-- property observing part
DEFINE
  fair := t0.fair & t1.fair;

-- transformed specifications
SPEC
  AG ((looped & fair) -> t0.live)
SPEC
  AG ((looped & fair) -> t1.live)

a original b state-recording

Fig. 9. Original and transformed SMV code of mutex
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Appendix : Example translations

A.1 Fairness and hierarchy

Figure 9 shows an example of our translation that in-
cludes fairness and hierarchy. Two tasks are trying to
enter a critical section. If both are in their try-state,
a nondeterministic choice decides which task is allowed to

MODULE task(id, turn)

-- unmodified part
VAR
  s: {non, try, crit};
ASSIGN
  init(s) := non;
  next(s) := case
    s = non: try;
    s = try & (id = turn): crit;
    s = try & !(id = turn): try;
    s = crit: non;
  esac;

MODULE main

VAR
  turn: 0..1;
  t0: task(0, turn);
  t1: task(1, turn);

-- buechi automaton
VAR
  b: {n1, n2, n3, sink};
ASSIGN
  init(b) := {n2, n3};
  next(b) := case
    b = n1 & (t0.s = non | t0.s = crit): {n1};
    b = n1 & t0.s = try: {n2, n1};
    (b=n2 | b=n3) & (t0.s=non | t0.s=try): {n3};
    1: sink;
  esac;

FAIRNESS
  turn = 0

-- buechi specification
FAIRNESS
  b = n3
SPEC
  AF 0

MODULE task(id, turn, save, saved, on_loop)

-- unmodified part
VAR
  s: {non, try, crit};
ASSIGN
  init(s) := non;
  next(s) := case
    s = non: try;
    s = try & (id = turn): crit;
    s = try & !(id = turn): try;
    s = crit: non;
  esac;

-- loop detection part
VAR
  l2s_s: {non, try, crit};
ASSIGN
  next(l2s_s) := case
    save & !saved: s;
    1: l2s_s;
  esac;
DEFINE
  looped := saved & s = l2s_s;

MODULE main

-- declaration part with signal forwarding
VAR
  turn: 0..1;
  t0: task(0, turn, save, saved, on_loop);
  t1: task(1, turn, save, saved, on_loop);

-- buechi automaton
VAR
  b: {n1, n2, n3, sink};
ASSIGN
  init(b) := {n2, n3};
  next(b) := case
    b = n1 & (t0.s = non | t0.s = crit): {n1};
    b = n1 & t0.s = try: {n2, n1};
    (b=n2 | b=n3) & (t0.s=non | t0.s=try): {n3};
    1: sink;
  esac;

-- loop detection part
VAR
  save: boolean;
  saved: boolean;
  l2s_b: {n1, n2, n3, sink};
ASSIGN
  init(saved) := 0;
  next(saved) := on_loop;
  next(l2s_b) := case
    save & !saved: b;
    1: l2s_b;
  esac;
DEFINE
  on_loop := save | saved;
  looped := saved & b = l2s_b & t0.looped & t1.looped;

-- property observing part
VAR
  fair: boolean;
  b_fair: boolean;
ASSIGN
  init(fair) := 0;
  next(fair) := fair | on_loop & turn = 0;
  init(b_fair) := 0;
  next(b_fair) := b_fair | on_loop & (b = n3);

-- transformed buechi specification
SPEC
  AG ((looped & fair & b_fair) -> 0)

a original b state-recording

Fig. 11. Original and transformed SMV code of mutex with specification given as Büchi automaton

Fig. 10. Büchi auotomaton for
G((s= try)→ (F(s = crit)))
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proceed. Fairness ensures that each task eventually gets
its turn.

A.2 Using a Büchi automaton

The example in Fig. 11 shows the translation of the
mutex model with a specification given as a Büchi au-

tomaton. The original specification G(t0.s = try)→
(F(t0.s = crit)) states that if task 0 is trying to enter
its critical section, it will eventually be able to do so.
The negated specification was translated into a gen-
eralized Büchi automaton with Wring v1.1.0 (avail-
able from [32]). The resulting automaton is shown in
Fig. 10.


