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Abstract. We report on the automatic verification of
timed probabilistic properties of the IEEE 1394 root con-
tention protocol combining two existing tools: the real-
time model checker Kronos and the probabilistic model
checker Prism. The system is modelled as a probabilis-
tic timed automaton. We first use Kronos to perform
a symbolic forwards reachability analysis to generate the
set of states that are reachable with non-zero probabil-
ity from the initial state and before the deadline expires.
We then encode this information as a Markov decision
process to be analyzed with Prism. We apply this tech-
nique to compute the minimal probability of a leader be-
ing elected before a deadline, for different deadlines, and
study how this minimal probability is influenced by using
a biased coin and considering different wire lengths.

Keywords: Probabilistic model checking – Timed auto-
mata – Forwards reachability – IEEE standard – FireWire

1 Introduction

The design and analysis of many hardware and soft-
ware systems, such as embedded systems and monitor-
ing equipment, requires detailed knowledge of their real-
time aspects in addition to their functional requirements.
Typically, this is expressed in terms of hard real-time
constraints, e.g., “after a fatal error, the system will be
shut down in 45 s”. In the case of safety-critical systems,
it is essential to ensure that such constraints are never
invalidated.
However, in other cases, for example multimedia

protocols that perform in the presence of lossy media,
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such hard deadlines can be too restrictive. Soft dead-
lines are a viable alternative in these cases. For ex-
ample, a soft deadline of a multimedia system could be
that “with probability at least 0.96 video frames arrive
within 80 to 100ms after being sent”. Soft deadlines
can also specify fault-tolerance and reliability proper-
ties such as “deadlock will not occur with probabil-
ity 1” or “the message may be lost with probability at
most 0.01”.
Recent research [28] has set a theoretical framework

for the specification and verification of timed probabilis-
tic systems. Inspired by the success of real-time model
checkers such as Kronos [14] and Uppaal [30], the direc-
tion taken is that of automatic verification throughmodel
checking, adapting the formalisms and algorithms for
model checking of classical (non-probabilistic) timed sys-
tems [2] to the case of timed probabilistic systems.Within
this approach,1 timed probabilistic systems are modelled
as probabilistic timed automata [1, 28], i.e., timed auto-
mata with discrete probability distributions associated
with the edges, and properties are specified in the logic
PTCTL (Probabilistic Timed Computation Tree Logic),
which extends the quantitative branching temporal logic
TCTL with a probabilistic operator. Due to the dense-
ness of time, model checking algorithms rely on the con-
struction of a finite quotient of the state space of the
system, namely, the region graph or the forwards reacha-
bility graph [28]. By adding the corresponding probability
distributions to the transitions of the graph we obtain
a Markov decision process (MDP). The probability that
a state of this MDP will satisfy a property can then be
calculated by solving an appropriate linear programming
problem [7, 9].

1 In this work, we consider systems where only discrete probabil-
ities arise.
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In this work, we show how, based on these ideas, the
real-time model checker Kronos [14, 25] and the proba-
bilistic model checker Prism [26, 32] can be combined for
the automatic verification of the root contention protocol
of IEEE 1394, a timed and probabilistic protocol to re-
solve conflicts between two nodes competing in a leader
election process. The property of interest is the mini-
mal probability for electing a leader before a deadline.
We first use Kronos to perform a symbolic forwards
reachability analysis to generate the set of states that are
reachable with non-zero probability from the initial state
and before the deadline expires.2 We then encode this
information as an MDP in the Prism input language. Fi-
nally, we compute with Prism the minimal probability
of a leader being elected before a deadline, for different
deadlines. Moreover, we investigate the influence of using
a biased coin and wires of different lengths on this mini-
mal probability.
This article proceeds as follows. Section 2 introduces

probabilistic timed automata and defines probabilistic
reachability of a set of states. In Sect. 3, we describe the
features of Kronos and Prism used in our verification
approach. The encoding of the reachability graph in the
Prism input language is explained in Sect. 4. Section 5 il-
lustrates this approach with the verification of the root
contention protocol of the IEEE 1394 standard. We con-
clude with Sect. 6.

2 Probabilistic timed automata

A timed automaton [3] is an automaton extended with
clocks, variables with positive real values which increase
uniformly with time. Clocks may be compared to posi-
tive integer time bounds to form clock constraints such as
(x≥ 2)∧(x≤ 5). There are two types of clock constraints:
invariants , which label nodes, and guards, which label
edges. The automaton may stay in a node, letting time
pass, only if the clocks satisfy the invariant.When a guard
is satisfied, the corresponding edge can be taken. Tran-
sitions are instantaneous and can be labelled with clock
resets of the form x := 0, meaning that upon entering
the target node the value of clock x is set to 0. Proba-
bilistic automata have probability distributions added to
the edges, which model the likelihood that the action will
happen.

Example 1. The probabilistic timed automaton PTA1 of
Fig. 1 models a process which repeatedly tries to send
a packet after waiting between 4 and 5ms and, if success-
ful, waits for 3 ms before trying to send another packet.
The packet is sent with probability 0.99 and lost with
probability 0.01 because of an error. Notice that edges be-
longing to the same distribution must be labelled with the
same guard.

2 We have used an experimental version of Kronos, not yet
distributed, that has been adapted to deal with probability distri-
butions and generates the corresponding output.

Fig. 1. An example of a probabilistic timed automaton PTA1

2.1 Syntax

Clocks and valuations. Let X be a finite set of vari-
ables called clocks which take values from the time do-
main R+. A clock valuation is a point v ∈R

|X |
+ . The

clock valuation 0 ∈R|X |+ assigns 0 to all clocks in X . Let

v ∈R|X |+ be a clock valuation, t∈R+ a time duration, and
X ⊆ X a subset of clocks. Then v+ t denotes the time in-
crement for v and t, and v[X := 0] denotes the clock valu-
ation obtained from v by resetting all of the clocks inX to
0 and leaving the values of all other clocks unchanged.

Zones. Let Z be the set of zones over X , which are con-
junctions of atomic constraints of the form x∼ c and x−
y ∼ c, with x, y ∈ X , ∼∈ {<,≤,≥, >} and c ∈N. A clock
valuation v satisfies the zone ζ, written v |= ζ, if and
only if ζ resolves to true after substituting each clock
x ∈ X with the corresponding clock value v(x). Let ζ be
a zone and X ⊆ X be a subset of clocks. Then↗ζ is the
zone representing the set of clock valuations v+ t such
that v |= ζ and t ≥ 0, and ζ[X := 0] is the zone repre-
senting the set of clock valuations v[X := 0] such that
v |= ζ.

Probability distributions. A discrete probability dis-
tribution (subdistribution) over a finite setQ is a function
µ :Q→ [0, 1] such that

∑
q∈Q µ(q) = 1 (

∑
q∈Q µ(q) ≤ 1).

Let Dist(Q) (SDist(Q)) be the set of distributions (sub-
distributions) over subsets ofQ.

Definition 1. A probabilistic timed automaton is a tu-
ple PTA= (L, l̄,X ,Σ, I ,P) where:

– L is a finite set of locations;
– l̄ ∈ L is the initial location;
– Σ is a finite set of labels;
– the function I : L→Z is the invariant condition, and
the finite setP ⊆L×Z×Σ×Dist(2X ×L) is the prob-
abilistic edge relation.

An edge takes the form of a tuple (l, g,X, l′), where l is
its source location, g is its enabling condition,X is the set
of resetting clocks and l′ is the destination location such
that (l, g, σ, p) ∈ P and p(X, l′)> 0.
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To aid higher-level modelling, systems can be defined
as the parallel composition of a number of interacting
components. For example, in the case of the IEEE 1394
root contention protocol, it suffices to construct models
for each of the two contending nodes and the two wires
along which they communicate. Based on the theory of
(untimed) probabilistic systems [33] and classical timed
automata [3], the parallel composition of two probabilis-
tic timed automata, which interact by synchronizing on
common events, is defined in the following way.

Definition 2. The parallel composition of two prob-
abilistic timed automata PTA1 = (L1, l̄1,X1,Σ1, I1,P1)
and PTA2 = (L2, l̄2,X2,Σ2, I2,P2), such that X1 ∩X2 =
∅, is the probabilistic timed automaton

PTA1‖PTA2 = (L1×L2, (l̄1, l̄2),X1∪X2,Σ1∪Σ2, I ,P)

where I (l, l′) = I1(l)∧ I2(l′) for all (l, l′) ∈ L1×L2 and
((l1, l2), g, σ, p) ∈ P if and only if one of the following con-
ditions holds:

– σ ∈ Σ1 \Σ2 and there exists (l1, g, σ, p1) ∈ P1 such
that p= p1⊗µ(∅,l2);
– σ ∈ Σ2 \Σ1 and there exists (l2, g, σ, p2) ∈ P2 such
that p= µ(∅,l1)⊗p2;
– σ ∈ Σ1 ∩Σ2 and there exists (l1, g1, σ, p1) ∈ P1 and
(l2, g2, σ, p2) ∈ P2 such that g = g1∧g2 and p= p1⊗p2

where for any l1 ∈ L1, l2 ∈ L2, X1 ⊆ X1 and X2 ⊆ X2 we
let p1⊗p2(X1∪X2, (l1, l2)) = p1(X1, l1) ·p2(X2, l2).

Furthermore, it is often convenient to designate cer-
tain locations as being urgent ; once an urgent location is
entered, it must be left immediately, without time pass-
ing. The notion of urgency for locations is closely related
to the concept of urgent transitions [16, 22] (an urgent
location is a location for which all outgoing discrete tran-
sitions are urgent). Urgent locations can be represented
syntactically by the framework given in Definition 1 using
an additional clock, combined with additional clock resets
and invariant conditions.

2.2 Semantics

A state of a probabilistic timed automaton PTA is a pair
(l, v) where l ∈ L and v ∈R|X |+ such that v |= I (l), and the
automaton starts in the state (l̄,0), that is, in the initial
location l̄ with all clocks set to 0. If the current state is
(l, v), there is a non-deterministic choice of either letting
time pass while satisfying the invariant condition I (l) or
making a discrete transition according to any probabilis-
tic edge in P with source location l and whose enabling
condition g is satisfied. If the probabilistic edge (l, g, σ, p)
is chosen, then the probability of moving to location l′

and resetting all clocks inX to 0 is given by p(X, l′).
The semantics of probabilistic timed automata is de-

fined in terms of transition systems exhibiting both non-
deterministic and probabilistic choice, called probabilis-
tic systems, which are essentially equivalent to MDPs.

2.2.1 Probabilistic systems

A probabilistic system PS = (S, s̄,Act ,Steps) consists of
a set S of states , an initial state s̄ ∈ S, a set Act of actions
and a probabilistic transition relation Steps ⊆ S×Act×
SDist(S). A probabilistic transition s

a,µ
−−→ s′ is made from

a state s ∈ S by first non-deterministically selecting an
action–distribution pair (a, µ) such that (s, a, µ) ∈ Steps
and then by making a probabilistic choice of target state
s′ according to µ such that µ(s′)> 0.

Definition 3. Given a probabilistic timed automaton
PTA = (L, l̄,X ,Σ, I ,P), the semantics of PTA is the
probabilistic system [[PTA]] = (S, s̄,Act ,Steps) defined
by the following.

States. Let S ⊆ L×R|X |+ such that (l, v) ∈ S if and only
if v |= I (l) and s̄= (l̄,0).

Actions. Let Act =R+∪Σ.
Transitions. Let Steps be the least set of probabilistic
transitions containing, for each (l, v) ∈ S:

– for each t ∈R+, let ((l, v), t, µ) ∈ Steps if and only
if µ(l, v+ t) = 1 and v+ t′ |= I (l) for all 0≤ t′ ≤ t;
– for each (l, g, σ, p) ∈ P, let ((l, v), σ, µ) ∈ Steps if
and only if v |= g and for each (l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X & v′=v[X:=0]

p(X, l′) .

2.3 Probabilistic reachability

The behaviour of a probabilistic timed automaton PTA is
described in terms of the behaviour of its semantics, that
is, the behaviour of the probabilistic system [[PTA]].

Paths. A path of a probabilistic system PS is a non-
empty finite or infinite sequence of transitions

ω = s̄
a0,µ0−−−→ s1

a1,µ1−−−→ s2
a2,µ2−−−→ · · · .

For a path ω and i ∈N, we denote by ω(i) the (i+1)-th
state of ω and by last(ω) the last state of ω if ω is finite.

Adversaries. An adversary is a function A mapping
every finite path ω to a pair (a, µ) ∈ Act×Dist(S) such
that (last(ω), a, µ) ∈ Steps [36]. Let AdvPS be the set of
adversaries of PS. For any A ∈ AdvPS, let Path

A
fin and

PathAful denote, respectively, the set of finite and infinite

paths associated with A. A probability measure ProbA

over PathAfin can then be defined following [24].

Definition 4. Let PS = (S, s̄,Act ,Steps) be a proba-
bilistic system. Then the reachability probability with
which a set F ⊆ S of target states can be reached from the
initial state s̄, for an adversaryA ∈AdvPS, is:

ProbReachA(F )
def
=

ProbA{ω ∈PathAful | ∃i ∈N . ω(i) ∈ F} .
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Furthermore, the maximal and minimal reachability
probabilities are defined respectively as

MaxProbReachPS(F )
def
= sup
A∈AdvPS

ProbReachA(F )

MinProbReachPS(F )
def
= inf
A∈AdvPS

ProbReachA(F ).

2.4 Probabilistic bisimulation

Definition 5 ([31]). A probabilistic bisimulation on
a probabilistic system (S, s̄,Act ,Steps) is an equivalence
relationR on S such that, for all sRs′, if s

a
→ µ, then there

exists a transition s′
a
→ µ′ such that for all equivalence

classes C ∈ [S]R:
∑

t∈C

µ(t) =
∑

t∈C

µ′(t).

Two states s1 and s2 are called probabilistically bisimilar,
denoted by s1 ∼ s2, if and only if there exists a probabilis-
tic bisimulation which contains (s1, s2).

A probabilistic system P = (S, s̄,Act ,Steps) can be re-
duced by quotienting with respect to probabilistic bisim-
ulation, giving an equivalent probabilistic system P∼ =
([S]∼, [s̄],Act ,Steps

′), where

Steps ′ ⊆ [S]∼×Act×Dist([S]∼)

is such that ([s], a, µ′)∈ Steps ′ if for some r ∈ [s], (r, a, µ)∈
Steps and for all C ∈ [S]∼ we have µ′(C) =

∑
t∈C µ(t).

Probabilistic bisimulation preserves the behaviour of
the systems, that is, bisimilar probabilistic systems ex-
hibit the same behaviour. For instance, in the case of
finite state probabilistic systems, formulas of the logic
PCTL (Probabilistic Computation Tree Logic) [21] are
preserved by probabilistic bisimulation [33]. Here we are
interested, in particular, in the preservation of maxi-
mal and minimal probabilities of reaching an equivalence
class [11]. That is, for any finite state probabilistic system
P and F ∈ [S]∼:

MaxProbReachP (F ) =MaxProbReachP∼(F )

MinProbReachP (F ) =MinProbReachP∼(F ).

3 Verification with KRONOS and PRISM

Due to the denseness of time, the underlying semantic
model of a (probabilistic) timed automaton is infinite,
and hence effective decision procedures rely on build-
ing a finite quotient of the state space, e.g., the region
graph or the forwards reachability graph. This section de-
scribes a verification technique based on the generation of
the forwards reachability graph with Kronos and model
checking the obtained graph encoded as a Markov deci-
sion process (MDP) with Prism.

3.1 Forwards reachability with KRONOS

The forwards reachability algorithm of Kronos proceeds
by a graph-theoretic traversal of the reachable state space
using a symbolic representation of sets of states called
symbolic states [15]. A symbolic state is a pair of the form
〈l, ζ〉, with l ∈ L and ζ ∈ Z, such that ζ ⊆ I (l); it rep-
resents all states (l, v) such that v |= ζ. The traversal is
based on the iteration of a successor operator in two alter-
nating steps: first the computation of the edge successors
and then the computation of the time successors of a sym-
bolic state.

Edge successors. The edge successor of 〈l, ζ〉 with re-
spect to an edge e= (l, g,X, l′), such that (l, g, α, µ) ∈ P
with α ∈ Σ and µ(X, l′)> 0, is:3

edge_succ(〈l, ζ〉, e) = 〈l′, (ζ ∧g)[X := 0]∧ I (l′)〉 .

Time successors. The time successor of 〈l, ζ〉 is defined
as

time_succ(〈l, ζ〉) = 〈l,↗ζ∧ I (l)〉 .

Figure 2 shows the reachability graph obtained for the
probabilistic timed automaton PTA1 for a deadline of
15ms, measured with an extra clock y. Since y is never re-
set, its value would increase indefinitely. To obtain a finite
reachability graph, we need to apply the extrapolation
abstraction of [15], which abstracts away the exact value
of y when y > 15. Notice that this abstraction is exact
with respect to reachability properties.

3.2 Model checking reachability properties with PRISM

Prism [26, 32] is a model checker designed to verify dif-
ferent types of probabilisticmodels: discrete-timeMarkov
chains (DTMCs), Markov decision processes (MDPs) and
continuous-time Markov chains (CTMCs). Properties to
be checked are specified in probabilistic temporal logics,
namely, PCTL [7, 9] if the model is a DTMC or an MDP
and CSL [6] in the case of a CTMC. We focus on the
model checking of reachability properties on MDPs since
a (non-deterministic) probabilistic reachability graph be-
longs to this class of model and deadline properties are
specified as time-bounded reachability properties.

3.2.1 Model checking MDPs

Model checking of MDPs is based on the computation of
the minimal probability p(s,♦φ) or the maximal proba-
bility P(s,♦φ) with which a state s satisfies a reachability
formula ♦φ. Then, a state s satisfies the PTCL formula

3 Note the use of the same non-probabilistic edge-successor op-
erator as for timed automata. The probabilistic information is,
however, kept in the transitions between symbolic states and used
later to generate the MDP.



C. Daws et. al.: Automatic verification of the IEEE 1394 root contention protocol with KRONOS and PRISM 225

Fig. 2. Reachability graph of PTA1

P≤λ(♦φ) if and only if P(s,♦φ)≤ λ. Maximal and min-
imal probabilities are computed by solving a linear pro-
gramming problem [9, 17]. The iterative algorithms im-
plemented in Prism to solve this problem can combine
different numerical computation methods with different
data structures [18, 27].

3.2.2 Model checking PTAs

We verify a PTA by model checking its probabilistic
reachability graph using the following result [28]: the
maximal probability computed on the reachability graph
is an upper bound to the maximal probability defined on
the semantic model of the probabilistic timed automaton.
That is,

MaxProbReachPS(s, F )≤ P(s,♦φF ),

where φF is a formula characterizing the set of states F .

4 Encoding of a reachability graph in PRISM

The reachability graph obtained with Kronos is a list of
symbolic states and transitions between them. In order to
model-check probabilistic properties, we must encode it
as an MDP using Prism’s description language, a simple,
state-based language similar to Reactive Modules [4].
The behaviour of an MDP is described in this lan-

guage by a set of guarded commands of the form

[] <guard> -> <command>;

where guard is a predicate over variables of the system
and command describes a transition that the system can
make when the guard is true. A transition updates the
value of the variables by giving their new primed value
with respect to their old unprimed value. We consider
two types of encoding of a reachability graph in this
language.

4.1 Explicit encoding

The first solution is to use an explicit encoding of the
reachability graph with a single variable s whose value is
the index of the symbolic state of the reachability graph.
Transitions are simply encoded by guarded commands
such that the guard tests the value of s and the com-
mand updates it according to the transition relation of
the reachability graph.
For example, the encoding of the outgoing probabilis-

tic transitions from symbolic states 0, 4 and 7, corres-
ponding to location send in the reachability graph of
Fig. 2, is:

[] (s=0) -> 0.99:(s’=1) + 0.01:(s’=2);

[] (s=4) -> 0.99:(s’=5) + 0.01:(s’=6);

[] (s=7) -> 0.99:(s’=8) + 0.01:(s’=9);

and the incoming transitions to symbolic state 3, corres-
ponding to location error_before, are encoded as:

[] (s=2) -> 1:(s’=3);

[] (s=6) -> 1:(s’=3);

This encoding generates a description file whose size is,
in number of command lines, the size of the transition
relation of the reachability graph, which can grow dras-
tically as the complexity of the system increases. Prism
involves a model construction phase during which the
system description is parsed and an MTBDD [5, 10] rep-
resenting the transition relation is built. When the in-
put file is not a modular description of a system, such
as a file generated with explicit encoding, this phase
can be extremely time consuming. An encoding allow-
ing for a more compact description of the system is
needed.

4.2 Instances encoding

Symbolic states in the reachability graph correspond to
several instances of locations of the timed automaton
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from which it was generated, with different time con-
straints. We can then encode them with two variables:
a location variable l and an instance variable n describing
which instance of the location it corresponds to.
Let l = 0, 1, 2 and 3 be the values corresponding to,

respectively, locations send, wait, error and error_before
in Fig. 2. Then symbolic states 0, 4 and 7 correspond to
three different instances of location send, e.g., n = 0, 1
and 2. The outgoing probabilistic transitions from these
states can be specified by the guarded commands:

[] (l=0)&(n=0) -> 0.99:(l’=1)&(n’=0)

+ 0.01:(l’=2)&(n’=0);

[] (l=0)&(n=1) -> 0.99:(l’=1)&(n’=1)

+ 0.01:(l’=2)&(n’=1);

[] (l=0)&(n=2) -> 0.99:(l’=1)&(n’=2)

+ 0.01:(l’=2)&(n’=2);

Similarly, symbolic state 3 is the unique instance of loca-
tion error_before, encoded as l = 3 and n= 0. The incom-
ing transitions to this state are described by:

[] (l=2)&(n=0) -> 1:(l’=3)&(n’=0)

[] (l=2)&(n=1) -> 1:(l’=3)&(n’=0).

Instances are computed by a breadth-first traversal of the
reachability graph.

4.2.1 Relative compaction

Note that in the commands representing the outgoing
transitions from location send, the instance variable n
is left unchanged, meaning that the transition only af-
fects the location variable for instances 0, 1 and 2. This
is equivalent to writing that n′ = n, which can be omit-
ted since, by default, a non-updated variable takes its old
value. Thus the transitions above have the same update
command and can then be described more compactly in
a single command line:

[] (l=0)&(n=0|n=1|n=2) -> 0.99:(l’=1)

+ 0.01:(l’=2).

In a reachability graph, a transition between two given
locations is usually repeated several times for different
instances of the locations. This encoding allows us to
specify them all in a single command line.
We will refer to this as the relative compaction because

it is based on specifying the updated value n′ relative to
its old value n.

4.2.2 Absolute compaction

The previous compaction does not apply in the case of the
two incoming transitions to error_before. However, if we
specify the updated value n′ with its absolute value, the
update command of both transitions is the same. Thus
they can both be described more compactly in a single
command line:

[] (l=2)&(n=0|n=1) -> 1:(l’=3)&(n’=0).

In a reachability graph, we encounter states which are
the destination of many different transitions, such as the

state encoded by l = 3 and n= 0 in the example of Fig. 2.
This encoding allows us to specify them all in a single
command line.
We will refer to this as the absolute compaction because
it is based on specifying the absolute value of n′. Note
that this compaction could also be applied to the explicit
encoding. However, since in practice the relative com-
paction leads to a more compact description, compaction
algorithms have only been implemented in the case of the
instances encoding. Absolute compaction is especially in-
teresting when used in combination with the relative one.

4.2.3 Combination

To obtain a further reduction, we can combine both com-
pactions. Since in practice there are potentially more
transitions to be compacted with the relative encoding
than with the absolute one, the heuristic implemented
consists in first applying the relative compaction and
then, for those transitions that were not compacted, i.e.,
those whose guard corresponds to a unique source state,
to change the command updates for the instance variable
n from relative to absolute and then apply the absolute
compaction.

4.2.4 Algorithms

The compaction algorithms are based on a traversal of the
set of transitions of the reachability graph to find those
which correspond to the same update command and then
describe them in a single line as a transition frommultiple
sates.
Roughly speaking, the algorithm keeps a set of update

commands as pairs (d, k), with d ∈N and k ∈ Z, corres-
ponding to an update (l′ = d)&(n′ = n+k) in the case of
a relative encoding and to (l′ = d)&(n′ = k) in the case of
an absolute encoding. It then associates a list of source
states to every update command.
Furthermore, to improve the model building phase,

the algorithm detects when different source states cor-
respond to the same location and successive numbers of
instances. The corresponding guard is then a constraint
specifying that the value of n is between two bounds. The
set of transitions considered in the examples above are
then specified by:

[] (l=0)&(n=0..2) -> 0.99:(l’=1)

+ 0.01:(l’=2);

[] (l=2)&(n=0..1) -> 1:(l’=3)&(n’=0);

5 Verification of the root contention protocol

The IEEE 1394 High Performance serial bus is used to
transport digitized video and audio signals within a net-
work of multimedia systems and devices, such as TVs,
PCs and VCRs. It has a scalable architecture, and it
is hot-pluggable, meaning that devices can be added or
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removed from the network at any time, supports both
isochronous and asynchronous communication and allows
quick, reliable and inexpensive data transfer. It is cur-
rently one of the standard protocols for interconnecting
multimedia equipment. The system uses a number of dif-
ferent protocols for different tasks, including a leader elec-
tion protocol called tree identify protocol .
The tree identify protocol is a leader election proto-

col which takes place after a bus reset in the network,
i.e., when a node (device or peripheral) is added to, or
removed from, the network. After a bus reset, all nodes
in the network have equal status and know only those
nodes to which they are directly connected, so a leader
must then be chosen. The aim of this protocol is to check
whether the network topology is a tree and, if so, to con-
struct a spanning tree over the network whose root is the
leader elected by the protocol.
To elect a leader, nodes exchange “be my parent” re-

quests with their neighbours. However, contention may
arise when two nodes simultaneously send “be my par-
ent” requests to each other. The solution adopted by the
standard to overcome this conflict, called root contention,
is both probabilistic and timed: each node will flip a coin
to decide whether to wait a short time or a long time
for a request. The property of interest of the protocol is
whether a leader is elected before a certain deadline, with
a certain probability or greater.

5.1 The probabilistic timed automata models

The models presented here are based on the classical
timed automata models of [34]. Figure 3 shows Nodepi ,
the probabilistic timed automaton for a contending node
of a network involved in the root contention protocol.
The probabilistic timed automaton Nodepi is a prob-

abilistic extension of the classical timed automaton node
model from [34]. The usual conventions for the graphi-
cal representation of classical timed automata are used.

Fig. 3. The probabilistic timed automaton Nodepi

The edges leaving the locations root_contention (the ini-
tial location, as denoted by the bold node) and rec_idle
correspond to probabilistic transitions. For example, the
left-hand edges leaving root_contention correspond to
a probabilistic choice of taking a transition to either
of the target locations, rec_req_fast and rec_req_slow,
each with probability 0.5, while resetting the clock xi.
For simplicity, we omit the probability labels from edges
corresponding to probability 1. Urgent locations are in-
dicated by the dashed locations. The communication
medium between the nodes, which assumes that sig-
nals are driven continuously across wires which comprise
two-place buffers, is then represented by the models
Wirei, for i ∈ {1, 2} (Fig. 4), adopted directly from [34].
The full model of the protocol is defined as the parallel
composition

Implp1 = Node
p
1‖Wire1‖Wire2‖Node

p
2

using Definition 2.
We also study the abstract probabilistic timed au-

tomaton Ip1 of the root contention protocol given in
Fig. 5. It is a probabilistic extension of the classical
timed automaton I1 of [34] where each instance of bi-
furcating edges corresponds to a coin being flipped.
For example, in the initial location start_start, there
is a non-deterministic choice corresponding to node
1 (resp. node 2) starting the root contention proto-
col and flipping its coin, leading with probability 0.5
to both slow_start and fast_start (resp. start_slow and
start_fast). For simplicity, probability labels are omitted
from the figure and probabilistic edges are represented by
dashed arrows.
The probabilistic timed automaton Ip1 represents an

abstraction of the root contention protocol in the sense
that it may exhibit a superset of adversaries of the more
refined protocol model Implp1. However, similarly to the
results presented in [29], the probabilities computed for
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Fig. 4. The timed automaton template for Wirei

the verification of Ip1 and Impl
p
1 agree for all the dead-

lines considered.
The timing constraints are derived from those given

in the IEEE 1394a standard when the communication
delay between the nodes is set to 360ns, which rep-
resents the assumption that the contending nodes are
separated by a distance close to the maximum required
for the correctness of the protocol (from the analysis
of [34]). Note that in the abstract model (Fig. 5), the tim-
ing constant for the enabling condition of the edge from
fast_fast to done is obtained from 760ns, the minimal
waiting time if the “fast” side of the coin is obtained, mi-
nus 360 ns, the wire propagation delay; similarly, the en-
abling conditions of the other edges to done are obtained
from 1590ns, the minimal waiting time if the “slow” side
of the coin is obtained, minus 360 ns. In Sect. 5.5, we
will investigate the effect of changing the communica-
tion delay.

5.2 Verification method

In this section, we outline our approach to using Kro-
nos and Prism for verifying deadline properties of the
tree identify protocol of the IEEE 1394 High Perform-
ance serial bus. In particular, we calculate the proba-
bility of electing a leader before a certain deadline D
for both the full model Implp1 and the abstract model
Ip1. For both models the first step is to construct the
reachability graph of the probabilistic timed automa-
ton until a deadline D is exceeded. To do this, we add
an additional clock y, which measures the time elapsed
since the beginning of the execution, and, upon enter-
ing a location where a leader is elected, we immedi-
ately check whether the clock y satisfies the deadline
and then force the system to move to distinct loca-
tions depending on whether or not the deadline is satis-
fied by y.
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Fig. 5. The probabilistic timed automaton Ip1

For example, in the case of the abstract model Ip1,
upon entering the location done, we test in time zero
whether the clock y exceeds this deadline or not, by
adding an invariant x = 0 to this location and reset-
ting the clock x on all incoming edges (this invari-
ant then forces the system to leave the location im-
mediately), and two outgoing edges from done, one
with the guard y ≥ D leading to a location done_after
and one with the guard y < D leading to a location
done_before.
Next, we specify the property of the root contention

protocol we are interested in, namely, that a leader is
elected before the deadline D with at least a given prob-
ability λ. The PTCTL formula that specifies this prop-
erty is of the form P≥λ(♦ (leader_elected∧y <D)), which
cannot be verified with our technique because the proba-
bilistic quantifierP≥λ is not of the correct form. However,
it can be shown [29] that it is equivalent to the formula
P<1−λ(♦ (leader_elected∧ y ≥ D))), which can actually
be verified on the reachability graph. For example, in the
case of the abstract model, this corresponds to checking
the formula P<1−λ(♦ done_after).
More precisely, we compute P(s,♦ (leader_elected∧

y ≥ D)), the maximal probability of electing a leader
after the deadline on the forwards reachability graph,
and then, from above, p(s,♦ (leader_elected∧ y < D)),
the minimal probability of electing a leader before the
deadline, which equals 1 minus this computed proba-
bility. Note that, as explained in Sect. 2.3, since using
forwards reachability yields only upper bounds on the
actual maximal reachability probability, the computed
minimal reachability probability is a lower bound on the
actual minimal reachability probability. However, the re-
sults generated with this forwards reachability approach

for both the full model Implp1 and abstract model I
p
1

agree with the exact results presented in [29].

5.3 Experimental results

The deadlines D we consider range up to 105 ns, and, un-
less otherwise stated, the wire delay is set to 360 ns. These
experiments were performed on a PC running Linux with
a 1400-MHz processor and 512 MB of RAM. Prism was
used with its default options. Additional information can
be found in [32].
Tables 1 and 2 show the results concerning the gener-

ation with Kronos of a reachability graph and of its en-
coding as an MDP for the full model Implp1 and abstract
model Ip1. In both tables, the first two columns give in-
formation about the generation of the reachability graph,
its size in terms of the number of states and the time
in seconds needed to generate it. The remaining columns
show the size, in number of lines (i.e., transitions), of the
MDP file generated by Kronos for the different encod-
ings we considered: explicit, instances with either abso-
lute or relative compaction, and with both of them.
Figures 6 and 7 show the evolution of the number of

command lines of the generated file for different values
of the deadline for the full protocol Implp1 and abstract
model Ip1, respectively. The graphs demonstrate that the
instances encoding allows for compactions which reduce
drastically the number of lines of the MDP file. In the
case of the abstract model Ip1, when both relative and ab-
solute compactions are considered, the number of lines
grows less than linearly on the value of the deadline. How-
ever, there is not such a drastic improvement in the case
of the more complex model Implp1. Currently, the com-
paction algorithms do not take into account the fact that
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Table 1. Generation and encoding of the reachability graph for the full model Implp1

Deadline Forw. reach. Explicit Instances
(103 ns) States Time (s) Abs Rel Rel+abs

4 2599 0.940 3716 2424 974 894
6 4337 1.64 6202 4050 1545 1473
8 7831 2.93 11262 7320 2748 2622
10 11119 4.27 15986 10398 3864 3710
20 41017 18.7 59254 38406 14062 13730
30 89283 56.1 129154 83634 30349 29843
40 155675 129 225420 145854 52681 52019

Table 2. Generation and encoding of the reachability graph for the abstract model Ip1

Deadline Forw. reach. Explicit Instances
(103 ns) States Time (s) Abs Rel Rel+abs

4 131 0.00 174 104 42 26
6 216 0.01 290 173 64 27
8 372 0.02 499 297 91 36
10 526 0.03 709 421 126 39
20 1876 0.09 2531 1501 368 72
30 4049 0.20 5466 3240 734 100
40 7034 0.46 9499 5629 1223 126
50 10865 1.23 14674 8694 1842 159
60 15511 2.74 20952 12412 2586 186
80 27296 8.94 36868 21841 4437 243
100 42401 22.29 57274 33926 6797 303

this model is built through the parallel composition of
subcomponents, which may explain why the compaction
methods are not as efficient in this case.
The experimental results concerning the verification

withPrism of the full protocol Implp1 and abstractmodel
Ip1 are shown in Tables 3 and 4, respectively. The left-
most column shows the deadline used in the property,
and the right-most column shows the minimal probability
with which the system has reached a state where a leader
is elected before the deadline. The results reflect the obvi-

Fig. 6. Number of lines of the MDP
for the full protocol Implp1

ous fact that increasing the deadline increases the proba-
bility of a leader being elected. Notice that the probabil-
ities computed for deadlines of more than 80,000ns have
value 1, meaning that the probabilities equal one when
rounded up to eight decimal places, not that the probabil-
ity equals 1.
The remaining columns give information on the time

performance of Prism in seconds to build the model
(columns labelled “model”) and to compute the probabil-
ity (columns labelled “verif”), using the explicit encod-

Fig. 7. Number of lines of the MDP
for the abstract model Ip1
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Table 3. Time performances for model building and verification of the full model Implp1

Deadline Explicit Inst+rel Inst+rel+abs Probability
(103 ns) Model (s) Verif (s) Model (s) Verif (s) Model (s) Verif (s)

4 249 0.461 5.52 0.109 4.76 0.111 0.62500000
6 792 0.709 13.1 0.217 10.8 0.158 0.85156250
8 2657 1.31 43.4 0.272 37.9 0.229 0.93945313
10 5915 9.76 189 0.719 89.7 0.364 0.97473145
20 – – 1684 1.48 1450 1.39 0.99962956
30 – – 9268 5.07 7669 4.29 0.99999445
40 – – 30977 14.9 27870 20.3 0.99999991

Table 4. Time performances for model building and verification of the abstract model Ip1

Deadline Explicit Inst+rel Inst+rel+abs Probability
(103 ns) Model (s) Verif (s) Model (s) Verif (s) Model (s) Verif (s)

4 0.497 0.020 0.062 0.010 0.051 0.001 0.625000000
6 1.21 0.025 0.094 0.017 0.058 0.018 0.851562500
8 4.00 0.035 0.157 0.019 0.091 0.023 0.939453135
10 9.31 0.051 0.244 0.020 0.108 0.020 0.974731455
20 131 0.158 2.01 0.042 0.466 0.043 0.999629565
30 778 0.383 9.06 0.088 1.35 0.089 0.999994454
40 2445 0.554 28.9 0.151 3.30 0.151 0.999999919
50 – – 78.2 0.239 7.32 0.231 0.999999998
60 – – 151 0.334 13.9 0.343 0.999999999
80 – – 555 0.604 37.3 0.606 1.000000000
100 – – 1449 1.00 90.6 0.963 1.000000000

ing and the instances encoding with relative compaction
(inst+rel) and with relative and absolute compaction
(inst+rel+abs).
Compared to the previous attempt at verifying the

root contention protocol using forwards reachability [29],
an approach which uses HyTech [23], the generation of
the reachability graph is no longer a problem since it
only took about 20 s to generate the forwards reacha-
bility graph of the abstract model Ip1 for a deadline of
100 000 ns, while it took approximately 24 h to generate it
with HyTech for a deadline of 6000 ns. Moreover, model
checking of the probabilistic property in the case of the
abstract model took less than 1 s in the worst case.
Figures 8 and 9 show the evolution of the time needed

to build the model for different deadlines using different
encodings for the full protocol and abstract model, re-
spectively. We can see that the compactions also improve
the time required to build the model in Prism. We note
the improvements in the case of the abstract model Ip1
over the result presented in [13] (the full model Implp1
was not considered there), where the time to build the
model in Prism grew drastically as the value of the dead-
line increased, even though the size of the input file grows
linearly. This was due to the complexity of the guards
after compaction. However, the model building phase of
Prism has since been optimized, leading to an order of
magnitude decrease in construction times.

5.4 Probabilistic bisimulation

The results presented in Fig. 8 and Table 3 demonstrate
that, even after applying the compaction techniques of
Sect. 4, the main obstacle to verifying the full protocol
Implp1 against large deadlines is the time required by
Prism to build the model. In this section, we consider an
approach overcoming this problem by first reducing the
forwards reachability graph to its (strong) probabilistic
bisimulation quotient and then constructing the Prism
model. This is similar to the approach in [11, 12], where

Fig. 8. Time to build the full protocol Implp1
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Fig. 9. Time to build the abstract model Ip1

probabilistic systems are reduced with respect to a prob-
abilistic simulation relation, which is refined until the
probabilities are accurate enough, yielding in the worst
case the probabilistic bisimulation quotient.
We use CADP (Ceasar/Aldebaran Development Pack-

age) [20], a toolset for the design and verification of
complex systems, which has recently been extended to
allow for performance evaluation [19]. In particular, we
use the Bcg_Min tool [8], which supports the minimiza-
tion of probabilistic systems with respect to probabilistic
bisimulation. The main steps in this approach are: rep-
resent the reachability graph in a format suitable for the
CADP toolset, use CADP (in particular Bcg_Min) to
construct the bisimulation quotient, and, finally, trans-
late the CADP output into the Prism language.
Constructing the input to CADP required only

a straightforwardmodification of the output fromKronos.4

For the quotient system to preserve the maximal reacha-
bility probability of interest, we must identify the states
where a leader has been elected after the deadline has
passed. For simplicity, since these are the only states that
we need to identify, we label all the transitions leaving

4 The main step in the modification is converting the reachability
graph to the alternating model [21].

Fig. 10. State space reduction through bisimulation quotient for both models

such states with one action and then label all remaining
transitions with another distinct action.
Using this version of the reachability graph, we then

use the CADP toolset to construct the quotient under
probabilistic bisimulation, which preserves the maximal
probability of electing a leader after the deadline has
passed.
To translate the CADP output into the Prism lan-

guage we wrote a simple translator which takes as input
the probabilistic system representing the quotient sys-
tem (the output from CADP) and translates this into the
Prism language. We note that at this stage we have lost
all information concerning which locations and zones cor-
respond to which states, and hence we are restricted to an
explicit encoding of the quotient system.
The results obtained with CADP for both the full pro-

tocol Implp1 and abstract model I
p
1 are given in Fig. 10.

As can be seen from the graphs of Fig. 10, there is a sig-
nificant state-space reduction in both cases, in particular
when considering the full protocol. The improved reduc-
tion for the full protocol can be expected since the model
Ip1 is already an abstraction, and hence there is less reduc-
tion possible by applying the bisimulation quotient.
In Table 5, we give the experimental results concern-

ing the verification with Prism on the reduced reacha-
bility graph for different deadlines and for both the full
protocol Implp1 and the abstract model I

p
1. The results

demonstrate that, similarly to the compaction-based ap-
proach, the majority of the time required by Prism is for
model construction and not verification. Note that, as ex-
pected, the probabilities match those obtained through
the compaction approach. In Fig. 11, we compare the
time required to construct the models in Prism with
the time taken when using the most efficient compaction
technique (instances encoding with both relative and
absolute compactions). In the case of the full protocol
Implp1, because there is such a significant reduction in the
state space, even though we can only use an explicit en-
coding, the time taken to construct the model in Prism
is faster than when applying any of the compaction al-
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Table 5. Time performances for model building and verification for both models after reduction

Deadline Full protocol Implp1 Abstract model Ip1 Probability
(103 ns) Model (s) Verif (s) Model (s) Verif (s)

4 0.268 0.054 0.092 0.039 0.625000000
6 0.711 0.076 0.167 0.048 0.851562500
8 1.85 0.124 0.208 0.045 0.939453135
10 5.08 0.180 0.339 0.093 0.974731455
20 81.8 0.709 5.79 0.129 0.999629565
30 389 1.94 27.7 0.333 0.999994454
40 1305 4.11 111 0.655 0.999999919
50 3451 6.17 284 1.087 0.999999998
60 7172 13.0 554 1.379 0.999999999
80 23320 30.5 1802 2.771 1.000000000
100 – – 5181 6.05 1.000000000

gorithms. On the other hand, in the case of the abstract
model Ip1, the results show that using the compaction al-
gorithms on the (unreduced) reachability graph is more
efficient than using the explicit encoding of the reduced
reachability graph. This can be seen as a result of both
the efficiency of the compaction algorithms in this case
and the less significant reduction in the state space when
using probabilistic bisimulation in comparison with the
reduction for the full protocol.

5.5 RCP under wires of different lengths

In this section, we report on the results obtained as the
communication delay between the nodes varies, which
corresponds to running the protocol with wires of differ-
ent lengths connecting the nodes. The results obtained
are presented in Fig. 12. As expected, as the communica-
tion delay between the nodes increases, the probability of
electing the root before a deadline decreases.
The statistics obtained when considering different

wire delays, for both the full protocol and the abstract
model, with regard to both the compaction algorithms
and the reduction by probabilistic bisimulation follow
a pattern similar to that presented above (where the com-

Fig. 11. Comparison of construction time for compaction-based and bisimulation-based approaches

munication delay equals 360 ns). In particular, the most
efficient approach for the full protocol is to use the re-
duced reachability graph with the explicit encoding and,
in the case of the abstract protocol, to apply the instances
encoding with both the relative and absolute compaction
on the unreduced reachability graph.

5.6 RCP with a biased coin

We now study the influence of using a biased coin on
the performance of the protocol. As conjectured in [35],
a curious property of the protocol is that the probability
of electing a leader before a deadline can be slightly in-
creased if the probability of choosing fast timing increases
for both nodes.
Note that we do not need to recompute the forwards

reachability graph in each case. Instead, since probabil-
ities for choosing a fast or slow timing can be given as
parameters in the Prism description language, the same
input file is used to perform probabilistic model checking,
and only the actual values of the probabilities change.
Table 6 gives the probability of electing a leader for

deadlines between 3000 ns and 10000 ns when using dif-
ferent biased coins (coins which return different probabil-
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Fig. 12. Verification results as communication
delay varies

ities of choosing the fast and slow timing). We assume
that the nodes in contention have the same biased coins.
Although it is possible to improve the performance fur-
ther by assuming that nodes have different biased coins
(one node has a coin biased toward fast while the other’s
coin is biased toward slow), this is not feasible in prac-
tice as each node follows the same procedure and it is not
known in advance which nodes of the network will take
part in the root contention protocol. Furthermore, decid-
ing before entering the protocol which node should flip
what sort of coin is equivalent to electing a root.
The results demonstrate that the (timing) perform-

ance of the root contention protocol can be improved
using a biased coin with a higher probability of flipping
“fast”. This curious result is possible because, although
using such a biased coin decreases the likelihood of the
nodes flipping different values, when nodes flip the same
values there is a greater chance (i.e., when both flip
“fast”) that less time will elapse before they flip again.
There is a compromise here though: as the coin becomes
more biased toward “fast”, the probability of the nodes

Table 6. Probability of leader election with a biased coin

Fast Slow D = 3000 D = 4000 D = 6000 D = 8000 D = 10000

0.01 0.99 0.019800 0.019803 0.039211 0.058237 0.076886
0.10 0.90 0.180000 0.181800 0.330534 0.452219 0.551777
0.20 0.80 0.320000 0.332800 0.554516 0.702353 0.801006
0.30 0.70 0.420000 0.457800 0.704352 0.838050 0.910958
0.40 0.60 0.480000 0.556800 0.799150 0.907635 0.957090
0.45 0.55 0.495000 0.595238 0.830027 0.927066 0.968234

0.50 0.50 0.500000 0.625000 0.851562 0.939453 0.974731

0.55 0.45 0.495000 0.644738 0.864616 0.946095 0.977772
0.60 0.40 0.480000 0.652800 0.869498 0.947313 0.977795
0.65 0.35 0.455000 0.647238 0.865609 0.942253 0.974559
0.70 0.30 0.420000 0.625800 0.850898 0.928530 0.966912
0.80 0.20 0.320000 0.524800 0.768942 0.853275 0.923035
0.90 0.10 0.180000 0.325800 0.544273 0.629189 0.746829
0.99 0.01 0.019800 0.039206 0.076872 0.095156 0.130622

actually flipping different values (which is required for
a leader to be elected) decreases, even though the delay
between coin flips will on average decrease. This decrease
in probability is demonstrated in Table 6 and Fig. 13,
where it is shown that increasing the probability of flip-
ping “fast” eventually leads to a decrease in the probabil-
ity of electing a leader by any given deadline.
We also considered the effect of using a biased coin

as the communication delay between the nodes varies.
The results showed that, for shorter communication de-
lays (wire lengths), there is a greater advantage in using
a biased coin (for shorter wire length the maximum prob-
ability for a fixed deadline occurs for a coin with a greater
bias toward “fast”). The reason this happens is that, for
the short wire length, there is a greater time savings when
both nodes flip “fast” than for a longer wire length since
the time required when both nodes flip “fast” is a con-
stant delay given in the protocol plus a delay which is
dependent on the wire length. For details of computed
probabilities in this case, see the PrismWeb page [32].

6 Conclusions

We have presented an approach to the automatic veri-
fication of soft deadlines for timed probabilistic systems
modelled as probabilistic timed automata. We use Kro-
nos to generate the probabilistic reachability graph with
respect to the deadline and encode it in the Prism input
language. A probabilistic reachability property is then
verified with Prism. We have successfully applied this
verification technique to the timed and probabilistic root
contention protocol of the IEEE 1394.We have computed
the minimal probability of electing a leader before differ-
ent deadlines and studied the influence on this minimal
probability of using a biased coin and varying the wire
length.
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Fig. 13. Verification results with a biased coin

The main obstacle we faced was the encoding of
the reachability graph in the Prism input language.
The model checking algorithms of Prism are based on
(MT)BDDs, so Prism’s input needs to be specified in
a modular way. An explicit encoding of the reachability
graph using a single variable to encode a state turned out
to be inadequate even for small values of the deadline.
The instances encoding using two variables, one corres-
ponding to the location of the timed automaton and the
other to the instance of this location in the reachability
graph, allowed us to apply compaction techniques that
helped overcome this problem in the case of the abstract
model.
However, verification of the full model showed that

compaction algorithms do not always lead to a substan-
tial reduction. Taking these results into account, a better
encoding allowing for a better compaction is under study.
Reduction by strong bisimulation proved to be very useful
in this case, although it was limited to the use of the ex-
plicit encoding. It will be interesting to investigate the use
of the instances encoding and the compaction algorithms
on the reduced model to obtain a further compaction and
decrease the time needed to build the model. These differ-
ent aspects should be studied by applying this approach to
other systemswhere timingandprobabilistic aspects arise.
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