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Abstract. The problem of testing whether a finite exe-
cution trace of events generated by an executing program
violates a linear temporal logic (LTL) formula occurs nat-
urally in runtime analysis of software. Two efficient al-
gorithms for this problem are presented in this paper,
both for checking safety formulae of the form “always P”,
where P is a past-time LTL formula. The first algorithm
is implemented by rewriting, and the second synthesizes
efficient code from formulae. Further optimizations of the
second algorithm are suggested, reducing space and time
consumption. Special operators suitable for writing suc-
cinct specifications are discussed and shown to be equiva-
lent to the standard past-time operators. This work is
part of NASA’s PathExplorer project, the objective of
which is to construct a flexible framework for efficient
monitoring and analysis of program executions.

Keywords:Monitoring – Safety – Temporal logics

1 Introduction

The work presented in this paper is part of a project at
NASA Ames Research Center called PathExplorer [14,
17–19,34] that aims at developing a practical testing
environment for NASA software developers. The basic
idea of the project is to analyze the execution trace of
a running program to detect errors. The errors being con-
sidered at this stage are multithreading errors such as
deadlocks and data races and nonconformance with linear
temporal logic specifications, which is the main focus of
this paper.
Linear temporal logic (LTL) [27, 28, 33] is a logic for

specifying properties of reactive and concurrent systems.

∗ Supported in part by joint NSF/NASA grant CCR-0234524.

Themodels of LTL are infinite execution traces, reflecting
the behavior of such systems as ideally always being ready
to respond to requests, operating systems being a typical
example. LTL has been mainly used to specify proper-
ties of concurrent and interactive down-scaled models of
real systems so that fully formal correctness proofs could
subsequently be carried out, for example using theorem
provers or model checkers (see, e.g., [15, 20, 21]). However,
formal proof techniques are usually not scalable to real-
sized systems without a substantial effort to abstract the
system more or less manually to an analyzable model.
Model checking of programs has received increased at-
tention from the formal methods community within the
last couple of years, and several systems have emerged
that can directly model check source code, such as Java
and C [3, 8, 9, 16, 22, 32, 37]. Stateless model checkers [12,
36] try to avoid the abstraction process by not storing
states. Although these systems provide high confidence,
they scale less well because most of their internal algo-
rithms are exponential or worse.
Testing scales well, and it is by far the most used

technique in practice to validate software systems. The
merging of testing and temporal logic specification is
an attempt to achieve the benefits of both approaches
while avoiding some of the pitfalls of ad hoc testing
and the complexity of full-blown theorem proving and
model checking. Of course, there is a price to pay to
obtain a scalable technique – the loss of coverage. The
suggested framework can only be used to examine sin-
gle execution traces and can therefore not be used to
prove a system correct. Our work is based on the belief
that software engineers are willing to trade coverage for
scalability, so our goal is to provide tools that are com-
pletely automatic, implement very efficient algorithms,
and find many errors in programs. A longer-term goal is
to explore the use of conformance with a formal speci-
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fication to achieve fault tolerance. The idea is that the
failure may trigger a recovery action in the monitored
program.
The idea of using LTL in program testing is not new.

It has already been pursued in commercial tools such as
Temporal Rover (TR) [10], which inspired our work in
a major way. In TR, future- and past-time LTL proper-
ties are stated as formal comments within the program at
chosen programpoints, like assertions. These formal com-
ments are then translated by a preprocessor into code,
which is inserted at the position of the comments, and ex-
ecuted whenever reached during program execution.1 The
MaC tool [26] is another example of a runtime monitor-
ing tool that has inspired this work. Here Java bytecode is
automatically instrumented to generate events of interest
during the execution. Of special interest is the temporal
logic used in MaC, which can be classified as a past-time
interval logic convenient for expressing monitoring prop-
erties in a succinct way. A theoretical contribution in this
paper is Theorem 1, which shows that the MaC temporal
logic, together with ten others, is equivalent to the stan-
dard past-time temporal logic. The path exploration tool
described in [13] uses a future-time temporal logic for-
mula to guide the execution of a program for debugging
purposes. Hence the role of a temporal logic formula is
turned around from monitoring a trace to generation of
a trace.
Past-time LTL has been shown to have the same

expressiveness as future-time LTL [11]. However, past-
time LTL is exponentially more succinct than future-time
LTL [29]. For example, a property like “every response
should be preceded by a request” can be easily stated
in past-time logic (reflecting directly the previous sen-
tence), but the corresponding future-time representation
becomes “it is not the case that (there is no request un-
til (there is a response and no request))”. Hence past-time
LTL is more convenient for specifying certain properties
and is the focus of this paper.
We present two efficient monitoring algorithms for

checking safety formulae of the form “always P”, where
P is a past-time LTL formula, one based on formula
rewriting and the other based on synthesizing efficient
monitoring code from a formula. The rewriting-based
algorithm illustrates how rewriting can be used to eas-
ily and elegantly define new logics for monitoring. This
may be of interest when experimenting with logics,
or if logics are domain specific and change with the
application, or if one simply wants a small and ele-
gant implementation. The synthesis-based algorithm,
on the other hand, generates a very effective monitor
for the particular past-time logic and focuses on effi-
ciency. Also, in contrast to the rewriting approach, where
a rewriting engine must be called by an external call,
the synthesis-based algorithm is better suited for gen-

1 The implementation details of TR are not available to the gen-
eral public.

erating code that can be inserted in the monitored pro-
gram.
The first algorithm is implemented by rewriting using

Maude [5–7], an executable specification language whose
main operational engine is based on term rewriting. Since
flexibility with respect to defining/modifying monitoring
logics is a very important factor at this stage in the de-
velopment of PathExplorer, we have actually developed
a general framework using Maude that allows one to eas-
ily and effectively define new logics for runtime analy-
sis and to monitor execution traces against formulae in
these logics. The rewriting algorithm presented in this
paper instantiates that framework to our logic of inter-
est, past-time LTL. The second algorithm presented in
this paper is designed to be as efficient and specialized
as possible, thus adding the minimum possible amount
of runtime overhead. It essentially synthesizes a special
purpose, efficient monitoring code from formulae, that is
further compiled into an executable monitor. Further op-
timizations of the second algorithm are suggested, mak-
ing each monitoring step typically run in time lower than
the size of the monitored formula. Both algorithms are
based on the fact that the semantics of past-time LTL
can be defined recursively in such a way that one only
needs to look one step, or event, backwards to compute
the new truth value of a formula and of its subformu-
lae, thus allowing one to process and then discard the
events as they are received from the instrumented pro-
gram. Several special operators suitable for writing suc-
cinct monitoring safety specifications are introduced and
shown to be semantically equivalent to the standard past-
time operators.
Section 2 gives a short description of the PathEx-

plorer architecture, putting the presented work in con-
text. Section 3 recalls past-time LTL and introduces sev-
eral monitoring operators together with their semantics,
then discusses several past-time logics, and finally shows
their equivalences. Section 4 first presents our rewriting-
based framework for defining and executing new moni-
toring logics and then shows how past-time LTL fits into
this framework. Section 5 finally explains our monitor-
synthesis algorithm together with optimizations and two
ways to implement it. Section 6 concludes the paper.

2 The PathExplorer architecture

PathExplorer (PaX) is a flexible environment for moni-
toring and analyzing program executions. A program (or
a set of programs) to be monitored is supposed to be
instrumented to emit execution events to an observer,
which then examines the events and checks whether they
satisfy certain user-defined constraints. We first give an
overview of the observer that monitors the event stream.
Then we discuss how a program is instrumented for mon-
itoring of temporal logic properties. The instrumentation
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presented is specialized for Java, but the principles carry
over to any programming language.

2.1 The observer

The constraints to be monitored can be of different kinds
and defined in different languages. Each kind of con-
straint is represented by a module. Such a constraint
module in principle implements a particular logic or pro-
gram analysis algorithm. Currently there are modules for
checking deadlock potentials, data race potentials, and
temporal logic formulae in different logics. Among the lat-
ter, several modules have been implemented for checking
future-time temporal logic, and the work presented in this
paper is the basis for a module for checking past-time
logic formulae. In general, the user can program new con-
straint modules and in this manner easily extend PaX.
The system is defined in a component-based way,

based on a dataflow view, where components are put to-
gether using a “pipeline” operator (Fig. 1). The dataflow
between any two components is a stream of events in sim-
ple text format, without any a priori assumptions about
the format of the events; the receiving component just
ignores events it cannot recognize. This simplifies compo-
sition and allows for components to be written in different
languages and in particular to define observers of arbi-
trary systems, programmed in a variety of programming
languages. This latter fact is important at NASA since
several systems are written in a mixture of C, C++, and
Java.
The central component of the PaX system is a so-

called dispatcher . The dispatcher receives events from the
executing program or system and then retransmits the
event stream to each of the constraint modules. Each
module is running in its own process with one input pipe,
dealing only with events that are relevant to the mod-
ule. For this purpose, each module is equipped with an
event parser. The dispatcher takes as input a configura-
tion script, which specifies a list of commands – a com-

Fig. 1. Overview of the PaX observer

mand for each module that starts the module in a pro-
cess. The dispatcher may read its input event stream from
a file, or alternatively from a socket, to which the instru-
mented running programmust write the event stream. In
the latter case, monitoring can happen on the fly as the
event stream is produced, and potentially on a different
computer than the observed system.

2.2 Code instrumentation

The program or system to be observed must be instru-
mented to emit execution events to the dispatcher (writ-
ing them to a file or to a socket as discussed above). We
have currently implemented an automated instrumenta-
tion package for Java bytecode using the Java bytecode
engineering tool JTrek [25]. The instrumentation package
together with PaX is called Java PathExplorer (JPaX).
Given information about what kind of events are to be
emitted, the instrumentation package instruments the
bytecode by inserting extra code for emitting events. For
deadlock analysis, for example, events are generated that
inform about lock acquisitions and releases. For tempo-
ral logic monitoring, one specifies the variables to be ob-
served and what predicates over these variables one wants
to refer to in the temporal properties to be monitored.
Imagine, for example, that the observer monitors the for-
mula “always p”, involving the predicate p, and that p is
intended to be defined as p ≡ x > y, where x and y are
static variables defined in a class C. In this case, all up-
dates to these variables must be instrumented such that
an update to any of them causes the predicate to be eval-
uated and a toggle p to be emitted to the observer in case
it has changed. The instrumentation script is written in
Java (using reflection) but in essence can be represented
as follows:

monitor C.x, C.y;

proposition p is C.x > C.y;

The code will then be instrumented to emit changes in the
predicate p. More specifically, first the initial value of the
predicate is transmitted to the observer. Subsequently,
whenever one of the two variables is updated, the predi-
cate is evaluated, and in case its value has changed since

Fig. 2. Events corresponding to observing predicate p≡ x > y
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the last evaluation, the predicate name p is transmit-
ted to the observer as a toggle. The observer keeps track
of the value of the predicate, based on its initial value,
and the subsequent predicate toggles. Figure 2 shows an
execution trace where x and y initially are 0 and then
subsequently updated. The corresponding values of p are
shown. Also shown are the events that are sent to the ob-
server. That is, the initial value of p and the subsequent
p toggles.

3 Finite trace past-time LTL

In this section, we recall some basic notions of finite
trace linear past-time temporal logic [27, 28], establish
some conventions, and introduce some operators that we
found particularly useful for runtime monitoring. We em-
phasize that the semantics of past-time LTL can be ele-
gantly defined recursively, thus allowing us to implement
monitoring algorithms that only need to look one step
backwards. We also show that past-time LTL can be en-
tirely defined using just the special operators that were
introduced essentially because of practical needs, thus
strengthening our belief that past-time LTL is an appro-
priate candidate logic for expressing monitoring safety
requirements.

3.1 Syntax

We allow the following constructors for formulae, whereA
is a finite set of “atomic propositions”:

F ::= true | false | A | ¬F | F op F
(propositional operators)

◦·F | �·F | �·F | F SsF | F SwF
(standard past-time operators)

↑ F |↓ F | [F, F )s | [F, F )w
(monitoring operators)

The propositional binary operators, op, are the standard
ones, that is, disjunction, conjunction, implication, equiv-
alence, and exclusive disjunction.
The standard past-time and the monitoring operators

are often called “temporal operators” because they refer
to other (past) moments in time. The operator ◦·F should
be read “previously F”; its intuition is that F held at the
immediately previous moment in time. �·F should be read
“eventually in the past F”, with the intuition that there
is some past moment in time when F was true. �·F should
be read “always in the pastF”, with the obviousmeaning.
The operator F1 SsF2, which should be read “F1 strong
since F2”, reflects the intuition that F2 held at some mo-
ment in the past and that since then F1 has held all the
time. F1 SwF2 is a weak version of “since”, read “F1 weak
since F2”, saying that either F1 was true all the time or
otherwise F1 SsF2.
The monitoring operators ↑, ↓, [_, _)s, and [_, _)w were

inspired by work in runtime verification in [26]. We of-
ten found these operators more intuitive and compact

than the usual past-time operators in specifying run-
time requirements, despite the fact that they have the
same expressive power as the standard ones, as we dis-
covered later. The operator ↑ F should be read “start
F”; it says that the formula F just started to be true,
that is, it was false previously but is true now. At the
same time, the operator ↓ F which is read “end F”,
carries the intuition that F stops being true, that is,
it was previously true but is now false. The operators
[F1, F2)s and [F1, F2)w are read “strong/weak inter-
val F1, F2” and carry the intuition that F1 was true
at some point in the past but F2 has not been seen
to be true since then, including that moment. For ex-
ample, if Start and Down are predicates on the state
of a Web server to be monitored, then [Start,Down)s
is a property stating that the server was rebooted re-
cently and since then it has not been down, while
[Start,Down)w says that the server was not down re-
cently, meaning that it was either not down at all
recently or it was rebooted and since then has not
been down.

3.2 Formal semantics

We next present formally the intuitive semantics de-
scribed above. We regard a trace as a finite sequence of
abstract states. In practice, these states are generated
by events emitted by the program or system that we
want to observe. Such events could indicate when vari-
ables’ values are changed or when locks are acquired or
released by threads or processes, or even when a physi-
cal action takes place such as opening or closing a valve,
a gate, or a door. If s is a state and a is an atomic
proposition, then a(s) is true if and only if a holds in
the state s. Notice that we are loose with respect to the
meaning of “holds” because, depending on the context,
it can mean anything. However, in the case of JPaX,
the atomic predicates are simply any Java boolean ex-
pressions, and their satisfaction is decided by evaluat-
ing them in the current state of the Java program. If
t = s1s2 . . . sn (n ≥ 1) is a trace, then we let ti denote
the trace s1s2 . . . si for each 1≤ i≤ n. The formal seman-
tics of the operators defined in the previous subsection is
given in Fig. 3.
Notice the special semantics of the operator “pre-

viously ” on a trace of one state: s |= ◦·F iff s |= F .
This is consistent with the view that a trace consist-
ing of exactly one state s is considered as a stationary
infinite trace containing only the state s. We adopted
this view because of intuitions related to monitoring.
One can start monitoring a process potentially at any
moment, so the first state in the trace might be dif-
ferent from the initial state of the monitored process.
We think that the “best guess” one can have with re-
spect to the past of the monitored program is that it
was stationary. Alternatively, one could consider that ◦·F



162 K. Havelund, G. Roşu: Efficient monitoring of safety properties

t |= true is always true,
t |= false is always false,
t |= a iff a(sn) holds,
t |= ¬F iff t �|= F ,
t |= F1 op F2 iff t |= F1 and/or/etc. t |= F2, when op is ∧/∨/etc.,
t |= ◦·F iff t′ |= F , where t′ = tn−1 if n > 1 and t′ = t if n= 1,
t |= �·F iff ti |= F for some 1≤ i≤ n,
t |= �·F iff ti |= F for all 1≤ i≤ n,
t |= F1 SsF2 iff tj |= F2 for some 1≤ j ≤ n and ti |= F1 for all j < i≤ n,
t |= F1 SwF2 iff t |= F1 SsF2 or t |= �·F1,
t |=↑ F iff t |= F and tn−1 �|= F ,
t |=↓ F iff tn−1 |= F and t �|= F ,
t |= [F1, F2)s iff tj |= F1 for some 1≤ j ≤ n and ti �|= F2 for all j ≤ i≤ n,
t |= [F1, F2)w iff t |= [F1, F2)s or t |= �· ¬F2.

Fig. 3. Semantics of finite trace past time LTL

t |= �·F iff t |= F or (n > 1 and tn−1 |= �·F ),
t |= �·F iff t |= F and (n > 1 implies tn−1 |= �·F ),
t |= F1 SsF2 iff t |= F2 or (n > 1 and t |= F1 and tn−1 |= F1 SsF2),
t |= F1 SwF2 iff t |= F2 or (t |= F1 and (n > 1 implies tn−1 |= F1 SwF2)),
t |= [F1, F2)s iff t �|= F2 and (t |= F1 or (n > 1 and tn−1 |= [F1, F2)s)),
t |= [F1, F2)w iff t �|= F2 and (t |= F1 or (n > 1 implies tn−1 |= [F1, F2)w)).

Fig. 4. Recursive semantics of finite trace past time LTL

is false on a trace of one state for any atomic propo-
sition F , but we find this semantics inconvenient be-
cause some atomic propositions may be related, such as,
for example, a proposition “gate-up” and a proposition
“gate-down”.

3.3 Recursive semantics

An observation of crucial importance in the design of the
subsequent algorithms is that the semantics above can be
defined recursively in such a way that the satisfaction re-
lation for a formula and a trace can be calculated along
the execution trace looking only one step backwards, as
shown in Fig. 4.
For example, according to the formal, nonrecursive

semantics, a trace t = s1s2...sn satisfies the formula
[F1, F2)w if and only if either F2 was false all the time
in the past or otherwise F1 was true at some point and
since then F2 has always been false, including at that
moment. Therefore, in the case of a trace of size 1, i.e.,
when n = 1, it follows immediately that t |= [F1, F2)w if
and only if t �|= F2. Otherwise, if the trace has more than
one event, then first t �|= F2, and then either t |= F1, or
else the prefix trace satisfies the interval formula, that is,
tn−1 |= [F1, F2)w. Similar reasoning applies to the other
recurrences.

3.4 Equivalent logics

We call the past-time temporal logic presented above
ptLTL. There is a tendency among logicians to minimize

the number of operators in a given logic. For example,
it is known that two operators are sufficient in proposi-
tional calculus, and two more (“next” and “until”) are
needed for future-time temporal logics. There are also
various ways to minimize ptLTL. Let ptLTL�Ops be the
restriction of ptLTL to the propositional operators plus
the operations in Ops. Then

Theorem 1. The following 12 logics are all equivalent to
ptLTL:

1. ptLTL�{◦·,Ss},
2. ptLTL�{◦·,Sw},
3. ptLTL�{◦·,[)s},
4. ptLTL�{◦·,[)w},
5. ptLTL�{↑,Ss},
6. ptLTL�{↑,Sw},
7. ptLTL�{↑,[)s},
8. ptLTL�{↑,[)w},
9. ptLTL�{↓,Ss},
10.ptLTL�{↓,Sw},
11.ptLTL�{↓,[)s},
12.ptLTL�{↓,[)w}.

The first two are known in the literature [27].

Proof. We first show the following properties:

1. �·F=true SsF
2. �·F=¬�· ¬F
3. F1 SwF2=(�·F1)∨ (F1 SsF2)
4. �·F=F Swfalse
5. �·F=¬�· ¬F
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6. F1 SsF2=(�·F2)∧ (F1 SwF2)
7. ↑ F=F ∧¬◦·F
8. ↓ F=¬F ∧◦·F
9. [F1, F2)s=¬F2∧ ((◦·¬F2) SsF1)
10. [F1, F2)w=¬F2∧ ((◦·¬F2) SwF1)
11. ↓ F=↑ ¬F
12. ↑ F=↓ ¬F
13. [F1, F2)w=(�· ¬F2)∨ [F1, F2)s
14. [F1, F2)s=(�·F1)∧ [F1, F2)w
15. ◦·F=(F →¬ ↑ F )∧ (¬F →↓ F )
16. F1 SsF2=F2∨ [◦·F2,¬F1)s

These properties are intuitive and relatively easy to
prove. For example, property 15, the definition of ◦·F in
terms of ↑ F and ↓ F , says that to find out the value of
a formula F in the previous state, it suffices to look at the
value of the formula in the current state and then, if it
is true, see if the formula just started being true or else
see if the formula just stopped being true. We next only
prove property 10; the proofs of the others are similar and
straightforward.
To prove property 10, one needs to show that for any

trace t, it is the case that t |= [F1, F2)w if and only if t |=w
¬F2 ∧ ((◦·¬F2) SwF1). We show this by induction on the
size of the trace t. If the size of t is 1, that is, if t= s1, then

t |= [F1, F2)w iff
iff t �|= F2
iff t |= ¬F2
iff (by “absorption” in boolean reasoning)
t |= ¬F2 and (t |= F1 or t |= ¬F2)

iff t |= ¬F2 and (t |= F1 or t |= ◦·¬F2)
iff t |= ¬F2 ∧ ((◦·¬F2) SwF1).

If the size of the trace t is n > 1 then

t |= [F1, F2)w iff
iff (by the recursive semantics)
t �|= F2 and (t |= F1 or

tn−1 |= [F1, F2)w)
iff (by the induction hypothesis)
t �|= F2 and (t |= F1 or

tn−1 |= ¬F2 ∧ ((◦·¬F2) SwF1))
iff t �|= F2 and (t |= F1 or tn−1 |= ¬F2 and

tn−1 |= (◦·¬F2) SwF1)
iff t �|= F2 and (t |= F1 or t |= ◦·¬F2 and

tn−1 |= (◦·¬F2) SwF1)
iff (by the recursive semantics)
t �|= F2 and t |= (◦·¬F2) SwF1

iff t |= ¬F2 ∧ ((◦·¬F2) SwF1).

Therefore, [F1, F2)w = ¬F2 ∧ ((◦·¬F2) SwF1).
The equivalences of the 12 logics with ptLTL follow

now immediately. For example, to show the eighth logic,
ptLTL�{↑,[)s}, equivalent to ptLTL, one needs to show how
the operators ↑ and [_, _)s can define all the other past-
time temporal operators. This is straightforward because
property 11 shows how ↓ can be defined in terms of ↑, 15

shows how ◦·F can be defined using just ↑ and ↓, 16 de-
fines Ss, 1 defines �· , 2 �· , 3 Sw, and 13 the weak interval.
The interested reader can check the other 11 equivalences
of the logics. �

Unlike in theoretical research, in practical monitoring
of programs we want to have as many temporal operators
available as possible and not to automatically translate
them into a reduced kernel set. The reason is twofold.
On the one hand, the more operators that are available,
the more succinct and natural the task of writing require-
ment specifications. On the other hand, as seen later in
the paper, additional memory is needed for each tempo-
ral operator, so we want to keep the formulae as concise as
possible.

4 Monitoring safety by rewriting

The architecture of JPaX is such that events extracted
from a running program are sent to an observer that de-
cides whether or not requirements are violated. An im-
portant concern that we had and are still having at this
relatively incipient stage of JPaX is whether the chosen
monitoring logics are expressive enough to specify power-
ful, practical, and interesting requirements. Since flexibil-
ity with respect to defining/modifying monitoring logics
is a very important factor at this stage, we have developed
a rewriting-based framework that allows one to easily and
effectively define new logics for runtime analysis and to
monitor execution traces against formulae in these log-
ics. We use the rewriting system Maude as a basis for
this framework. In the next four subsections, we present
Maude and describe how formulae and important data
structures are represented in Maude. Then we describe
how basic propositional calculus is defined in Maude, and
then how ptLTL is defined. Finally, it is described how
this Maude definition of ptLTL is used for monitoring re-
quirements stated by the user on execution traces.

4.1 Maude

We have implemented our logic-defining framework by
rewriting in Maude [5–7]. Maude is a modularized mem-
bership equational [31] and rewriting logic [30] specifica-
tion and verification system whose operational engine is
based mainly on a very efficient implementation of rewrit-
ing. A Maude module consists of sort and operator dec-
larations as well as equations relating terms over the op-
erators and universally quantified variables. Modules can
be composed in a hierarchical manner, building new the-
ories from old theories. A particularly attractive aspect of
Maude is its mix-fix notation for syntax, which, together
with precedence attributes of operators, gives us an ele-
gant way of compactly defining the syntax of logics. For
example, the operation declarations2

2 These declarations are artificial and intended to explain some
of Maude’s features; they will not be needed later in the paper.
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op _/\_ : Expression Expression

-> Expression [prec 33] .

op _\/_ : Expression Expression

-> Expression [prec 40] .

op [_,_} : Expression Expression

-> Expression .

op if_then_else_ : Bool Expression Expression

-> Expression .

define a simple syntax over the sort Expression, where
conjunction and disjunction are infix operators (the un-
derscores stand for arguments whose sorts are listed after
the colon), while the interval and the conditional are
mix-fix: operator and arguments can be mixed. Con-
junction binds tighter than disjunction because it has
a lower precedence (the lower the precedence the tighter
the binding), so one is relieved of having to add useless
parentheses to one’s formulae.
It is often the case that equational and/or rewriting

logics act like foundational logics, in the sense that other
logics, or more precisely their syntax and operational se-
mantics, can be expressed and efficiently executed by
rewriting, so we regardMaude as a good choice to develop
and prototype with various monitoring logics. TheMaude
implementations of the current logics supported by JPaX
are quite compact. They are based on a simple, general
architecture to define new logics, which we only describe
informally in the next subsection. Maude’s notation will
be introduced “on the fly” as needed.

4.2 Formulae and data structures

We have defined a generic module, called FORMULA, that
defines the infrastructure for all the user-defined logics.
Its Maude code is rather technical and so will not be given
here. The module FORMULA includes some designated basic
sorts, such as Formula for syntactic formulae, FormulaDS
for formula data structures needed when more informa-
tion than the formula itself should be stored for the next
transition as in the case of past-time LTL, Atom for atomic
propositions (or state variables), AtomState for assign-
ments of boolean values to atoms, also called “states”,
and AtomState* for such assignments together with final
assignments, i.e., those that are followed by the end of
a trace, sometimes requiring a special evaluation proced-
ure. A state As is made terminal by applying to it a unary
operator, _* : AtomState -> AtomState*. Formula is a sub-
sort of FormulaDS because there are logics in which no
extra information but a modified formula needs to be car-
ried over for the next iteration (such as future-time LTL,
which is also provided by JPaX). There are two constants
of the sort Formula provided, namely, true and false,
with the obvious meanings. The propositions that hold in
a certain program state are generated by the executing
instrumented program.
One of the most important operators in FORMULA is

_{_}:FormulaDS AtomState* -> FormulaDS, which updates
the formula data structure when an (abstract) state

change occurs during the execution of the program. No-
tice the use of mix-fix notation for the operator declara-
tion in which underscores represent places of arguments,
their order being the one in the arity of the operator.
On atomic propositions, say, A, the module FORMULA de-
fines the “update” operator as follows: A{As*} is true or
false depending on whether As* assigns true or false to the
atom A, where As* is an atom state (i.e., an assignment
from atoms to boolean values), which is either a ter-
minal state (the last in a trace) or not. In the case of
propositional calculus, this update operation basically
evaluates propositions in the new state. For other log-
ics, it can be more complicated, depending on their trace
semantics.

4.3 Propositional calculus

Propositional calculus should be included in any monitor-
ing logic. Therefore, we begin with the following module,
which is heavily used in JPaX. It implements an efficient
rewriting procedure devised by Hsiang [23] to decide the
validity of propositions, reducing any boolean expression
to an exclusive disjunction (formally written _++_) of con-
junctions (_/\_):

fmod PROP-CALC is extending FORMULA .

*** Constructors ***

op _/\_ : Formula Formula

-> Formula [assoc comm] .

op _++_ : Formula Formula

-> Formula [assoc comm] .

vars X Y Z : Formula . var As* : AtomState* .

eq true /\ X = X .

eq false /\ X = false .

eq false ++ X = X .

eq X ++ X = false .

eq X /\ X = X .

eq X /\ (Y ++ Z) = (X /\ Y) ++ (X /\ Z) .

*** Derived operators ***

op _\/_ : Formula Formula -> Formula .

op _->_ : Formula Formula -> Formula .

op _<->_ : Formula Formula -> Formula .

op !_ : Formula -> Formula .

eq X \/ Y = (X /\ Y) ++ X ++ Y .

eq ! X = true ++ X .

eq X -> Y = true ++ X ++ (X /\ Y) .

eq X <-> Y = true ++ X ++ Y .

*** Operational Semantics

eq (X /\ Y){As*} = X{As*} /\ Y{As*} .

eq (X ++ Y){As*} = X{As*} ++ Y{As*}

endfm

In Maude, operators are introduced after the op and
ops (when more than one operator is introduced) sym-
bols. Operators can be given attributes in square brack-
ets, such as associativity and commutativity. Univer-
sally quantified variables used in equations are introduced
after the var and vars symbols. Finally, equations are
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introduced after the eq symbol. The specification of the
simple propositional calculus above shows the flexibility
of the mix-fix notation of Maude, which allows us to de-
fine the syntax of a logic in the most natural way.
The equations above are interpreted as rewriting rules

by Maude, so they will be applied from left to right only.
However, due to the associativity and commutativity at-
tributes, rewrites as well as matchings are appliedmodulo
associativity and commutativity (AC), making the pro-
cedure implied by the rewrite rules for propositional cal-
culus above highly nontrivial. As proved by Hsiang [23],
the AC rewriting system above has the property that any
proposition is reduced to true or false if it is semanti-
cally true or false, or otherwise to a canonical form mod-
ulo AC; thus two formulae are equivalent if and only if
their canonical forms are equal modulo AC. We found
this procedure quite convenient so far, as we were able to
efficiently reduce formulae of hundreds of symbols that
occurred in practical examples. However, one should of
course not expect this procedure to work efficiently on
any proposition because the propositional validity prob-
lem is NP-complete.

4.4 Past-time linear temporal logic

Past-time LTL can now be implemented on top of the
provided logic-defining framework. Our rewriting-based
implementation below follows the recursive semantics of
ptLTL defined in Sect. 3.3, and it appears similar to the
Java implementation used in [26]. We next explain the
PT-LTL module in detail.
We start by defining the syntax of ptLTL. Since it ex-

tends the module PROP-CALC of propositional calculus, we
only have to define syntax for the temporal operators:

fmod PT-LTL is extending PROP-CALC .

op (*)_ : Formula -> Formula .

*** previously

op <*>_ : Formula -> Formula .

*** eventually in the past

op [*]_ : Formula -> Formula .

*** always in the past

op _Ss_ : Formula Formula -> Formula .

*** strong since

op _Sw_ : Formula Formula -> Formula .

*** weak since

op start : Formula -> Formula .

*** start

op end : Formula -> Formula .

*** end

op [_,_}s : Formula Formula -> Formula .

*** strong interval

op [_,_}w : Formula Formula -> Formula .

*** weak interval

We have used a curly bracket to close the intervals be-
cause for some technical parsing-related reasons, Maude
does not allow unbalanced parentheses in its terms. The
syntax above can now be used by users to write monitor-
ing requirements as formulae. These formulae are loaded

by JPaXat initialization and then sent to Maude for pars-
ing and processing. When the first event from the instru-
mented program is received by JPaX, it sends this event
to Maude to initialize its monitoring data structures as-
sociated with its formulae (remember that the recursive
definition of ptLTL in Sect. 3.3 treats the first event of the
trace differently). This is done by launching the reduction
mkDS(F, As) in Maude, where F is the formula to monitor
and As is the atom state abstracting the first event gener-
ated by the monitored program; mkDS is an abbreviation
for “make data structure” and is defined below.
Before we define the operation mkDS we first discuss

the formula data structures storing not only the formu-
lae but also their current satisfaction status. It is worth
noting that the strong and weak temporal operators have
exactly the same recursive semantics starting with the
second event. This suggests that we do not need nodes
of different types (strong and weak) in the formula data
structure once the monitoring process is initialized: the
difference between strong and weak versions of an opera-
tor are rather represented by the initial values passed as
arguments to a single common version of the operator.
The following operation declarations therefore define the
constructors for these data structures:

op atom : Atom Bool -> FormulaDS .

op and : FormulaDS FormulaDS Bool -> FormulaDS .

op xor : FormulaDS FormulaDS Bool -> FormulaDS .

op previously : FormulaDS Bool -> FormulaDS .

op eventuallyPast : FormulaDS Bool -> FormulaDS .

op alwaysPast : FormulaDS Bool -> FormulaDS .

op since : FormulaDS FormulaDS Bool -> FormulaDS .

op start : FormulaDS Bool -> FormulaDS .

op end : FormulaDS Bool -> FormulaDS .

op interval: FormulaDS FormulaDS Bool -> FormulaDS.

The first operation defines a cell storing an atomic
proposition together with its observed boolean value,
while the next two store conjunction and exclusive dis-
junction nodes. According to the propositional calcu-
lus procedure defined in module PROP-CALC in Sect. 4.3,
these are the only propositional operators that can
occur in reduced formulae. The remaining operators
are the seven past-time temporal operators introduced
so far.
An operator that extracts the boolean value associ-

ated with a temporal formula is needed in the sequel, so
we define it next. The syntax of this operator is [_] :
FormulaDS -> Bool and is defined in the module FORMULA
together with its obvious equations [true] = true and
[false] = false. Its definition on temporal and proposi-
tional and temporal operators follows:

var A : Atom . var B : Bool .

vars D Dx Dy : FormulaDS .

eq [and(Dx,Dy,B)] = B .

eq [xor(Dx,Dy,B)] = B .

eq [atom(A,B)] = B .

eq [previously(D,B)] = B .

eq [eventuallyPast(D,B)] = B .



166 K. Havelund, G. Roşu: Efficient monitoring of safety properties

eq [alwaysPast(D,B)] = B .

eq [since(Dx,Dy,B)] = B .

eq [interval(Dx,Dy,B)] = B .

eq [start(Dx,B)] = B .

eq [end(Dx,B)] = B .

The operation mkDS can be defined now. It basically
follows the recursive semantics in Sect. 3.3, when the
length of the trace is 1:

vars X Y : Formula .

op mkDS : Formula AtomState -> FormulaDS .

eq mkDS(true, As) = true .

eq mkDS(false, As) = false .

eq mkDS(A, As) = atom(A, (A{As} == true)) .

eq mkDS(X /\ Y, As) =

and(mkDS(X,As), mkDS(Y,As),

[mkDS(X,As)] and [mkDS(X,As)]) .

eq mkDS(X ++ Y, As) =

xor(mkDS(X,As), mkDS(Y,As),

[mkDS(X,As)] xor [mkDS(X,As)]) .

eq mkDS( (*)X, As) =

previously(mkDS(X, As), [mkDS(X, As)]) .

eq mkDS( <*>X, As) =

eventuallyPast(mkDS(X, As), [mkDS(X, As)]) .

eq mkDS( [*]X, As) =

alwaysPast(mkDS(X, As), [mkDS(X, As)]) .

eq mkDS(X Ss Y, As) =

since(mkDS(X,As), mkDS(Y,As), [mkDS(Y,As)]) .

eq mkDS(X Sw Y, As) =

since(mkDS(X,As), mkDS(Y,As),

[mkDS(X,As)] or [mkDS(Y,As)]) .

eq mkDS(start(X), As) = start(mkDS(X,As),false) .

eq mkDS(end(X), As) = end(mkDS(X,As), false) .

eq mkDS([X,Y}s, As) =

interval(mkDS(X,As), mkDS(Y,As),

[mkDS(Y,As)] and not [mkDS(Y,As)]) .

eq mkDS([X,Y}w, As) =

interval(mkDS(X,As), mkDS(Y,As),

not [mkDS(Y,As)]) .

The data structure associated with a past-time formula
is essentially its syntax tree augmented with a boolean
bit for each node. Each boolean bit will store the result
of the satisfaction relation between the current execution
trace and the corresponding subformula. The only thing
left is to define how the formula data structures, or more
precisely their bits, change when a new event is received.
This is defined below, using the operator _{_} : FormulaDS
AtomState -> FormulaDS provided by the module Formula:

eq atom(A, B){As} = atom(A, (A{As} == true)) .

eq and(Dx, Dy, B){As} =

and(Dx{As}, Dy{As},[Dx{As}] and [Dy{As}]) .

eq xor(Dx, Dy, B){As} =

xor(Dx{As}, Dy{As},[Dx{As}] xor [Dy{As}]) .

eq previously(D,B){As} = previously(D{As},[D]) .

eq eventuallyPast(D, B){As} =

eventuallyPast(D{As}, [D{As}] or B) .

eq alwaysPast(D, B){As} =

alwaysPast(D{As}, [D{As}] and B) .

eq since(Dx, Dy, B){As} =

since(Dx{As}, Dy{As},

[Dy{As}] or [Dx{As}] and B) .

eq start(Dx,B){As} =

start(Dx{As}, [Dx{As}] and not B) .

eq end(Dx,B){As} =

end(Dx{As}, not [Dx{As}] and B) .

eq interval(Dx, Dy, B){As} =

interval(Dx{As}, Dy{As}, not [Dy{As}] and

([Dx{As}] or B)) .

endfm

The operator _==_ is built in and takes two terms of the
same sort, reduces them to their normal forms, and re-
turns true if they are equal, and false otherwise.

4.5 Monitoring with Maude

In this subsection, we give more details on how the ac-
tual rewriting-basedmonitoring process works.When the
JPaX system is started, the user is supposed to have al-
ready specified several formulae in a file containing mon-
itoring requirements. The first thing JPaX does is to
start a Maude process, load the ptLTL semantics de-
scribed above, and then set Maude to run in its loop
mode, which is an execution mode in which Maude main-
tains a state term that the user (potentially another pro-
cess such as JPaX) can modify interactively. Then JPaX
sends Maude all the formulae that the user wants to mon-
itor. Maude stores them in its loop state and waits for
JPaX to send events. Note that the above is general and
applies to any logic.
When JPaX receives the first event from the instru-

mented program that is relevant for the ptLTL analysis
module, it just sends it to Maude. On receiving the first
event, say, As, Maude needs to generate the formula data
structures for all the formulae to be monitored. It does
so by replacing each formula F in the loop state by the
normal form of the term mkDS(F, As). Then it waits for
JPaX to submit further events. Each time a new rele-
vant event As is received by JPaX from the instrumented
program, it just forwards it to Maude. Then Maude re-
places each formula data structure D in its loop state
by D{As} and waits for further events. If at any moment
[D] is false for the data structure D associated with a
formula F, then Maude sends an error message to JPaX,
which further warns the user appropriately.
It should be obvious that the runtime complexity of

the rewriting monitoring algorithm is O(m) to process an
event, wherem is the size of the ptLTL formula tomonitor.
That is, thealgorithmonlyneeds to traverse thedata struc-
ture representing the formulabottomupfor eachnewevent
and update one bit in each node. So the overall runtime
complexity isO(n ·m), where n is the number of events to
bemonitored.This is the best one canasymptotically hope
for from a runtime monitoring algorithm, but of course
there is room for even faster algorithms in practical sit-
uations, as the one presented in the next section demon-
strates. The main benefit of the rewriting algorithm pre-
sented inthis section is that it fallsunder thegeneral frame-
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work by which one can easily add or experiment with new
monitoring logics within the JPaX system.
The Maude code performing the above steps is rela-

tively straightforward but rather ugly, so we prefer not to
present it here. Additionally, Maude’s support for inter-
process communication is slated to be changed soon, so
this code would soon become obsolete.

5 Synthesizing monitors for safety properties

The rewriting algorithm above is a very good choice in the
context of the current version of JPaX because it gives
us flexibility and is efficient enough to process events at
a faster rate than they can actually be sent by JPaX.
However, there might be situations in which a full-scale
AC rewriting engine like Maude is not available, such as
within an embedded system, or in which as little run-
time overhead as possible is allowed, such as in real-
time applications. In this section, we present a dynamic
programming-based algorithm, also based on the recur-
sive semantics of past-time LTL in Sect. 3.3, that takes as
input a formula and generates source code that can fur-
ther be compiled into an efficient executable monitor for
that formula. This algorithm can be used in two different
ways. On the one hand, it can be used as an efficient exter-
nal monitor to take an action when a formula is violated,
such as to report an error to a user, to reboot the system,
to send a message, or even to generate a correcting task.
On the other hand, it can be used in a context in which
one allows past-time LTL annotations in the source code
of a program, where the logical annotations can be ex-
panded into source code that is further compiled together
with the original program. These two use modes, offline
vs. inline, are further explained in Sect. 5.4.

5.1 The algorithm illustrated by an example

In this section, we show via an example how to gener-
ate dynamic programming code for a concrete ptLTL for-
mula. We think that this example would be sufficient in
practical terms for the reader to foresee our general al-
gorithm presented in the next subsection. Let ↑ p→ [q, ↓
(r∨ s))s be the ptLTL formula that we want to gener-
ate code for. The formula states: “whenever p becomes
true, then q has been true in the past, and since then we
have not yet seen the end of r or s”. The code transla-
tion depends on an enumeration of the subformulae of the
formula that satisfies the enumeration invariant : any for-
mula has an enumeration number smaller than the num-
bers of all its subformulae. Let ϕ0, ϕ1, . . . , ϕ8 be such an
enumeration:

ϕ0=↑ p→ [q, ↓ (r∨s))s,
ϕ1=↑ p,
ϕ2=p,
ϕ3=[q, ↓ (r∨s))s,
ϕ4=q,

ϕ5=↓ (r∨s),
ϕ6=r∨s,
ϕ7=r,
ϕ8=s.

Note that the formulae have been enumerated here in
a postorder fashion. One could have chosen a breadth-
first order, or any other enumeration, as long as the enu-
meration invariant was true.
The input to the generated program will be a fi-

nite trace t = s1s2 . . . sn of n events. The generated pro-
gram will maintain a state via a function update : State×
Event→ State, which updates the state with a given
event.
To illustrate the dynamic programming aspect of the

solution, one can imagine recursively defining a matrix
s[1..n, 0..8] of boolean values {0, 1}, with the meaning
that s[i, j] = 1 iff ti |= ϕj . Then one can fill the table ac-
cording to the recursive semantics of ptLTL as described
in Sect. 3.3. This would be the standard way of regarding
the above satisfaction problem as a dynamic program-
ming problem. An important observation is, however,
that, as in many other dynamic programming algorithms,
one does not have to store the entire table s[1..n, 0..8],
which would be quite large in practice; in this case, one
needs only s[i, 0..8] and s[i−1, 0..8], which we will hence-
forth write as now [0..8] and pre[0..8], respectively. It is
now only a relatively simple exercise to write up the fol-
lowing algorithm for checking the above formula on a fi-
nite trace:

State state←{};
bit pre[0..8];
bit now[0..8];
Input: trace t= s1s2...sn;
/* Initialization of state and pre */
state← update(state, s1);
pre[8]← s(state);
pre[7]← r(state);
pre[6]← pre[7] or pre[8];
pre[5]← false;
pre[4]← q(state);
pre[3]← pre[4] and not pre[5];
pre[2]← p(state);
pre[1]← false;
pre[0]← not pre[1] or pre[3];
/* Event interpretation loop */
for i= 2 to n do {

state← update(state, si);
now[8]← s(state);
now[7]← r(state);
now[6]← now[7] or now[8];
now[5]← not now[6] and pre[6];
now[4]← q(state);
now[3]← (pre[3] or now[4]) and not now[5];
now[2]← p(state);
now[1]← now[2] and not pre[2];
now[0]← not now[1] or now[3];
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if now[0] = 0 then
output(‘‘property violated’’);

pre← now;
};

In what follows, we explain the generated program.

Declarations. Initially a state is declared. This will be up-
dated as the input event list is processed. Next, the
two arrays pre and now are declared. The pre array
will contain values of all subformulae in the previous
state, while now will contain the value of all subformu-
lae in the current state.

Initialization. The initialization phase consists of initial-
izing the state variable and the pre array. The first
event s1 of the event list is used to initialize the state
variable. The pre array is initialized by evaluating all
subformulae bottom up, starting with the highest for-
mula numbers, and assigning these values to the cor-
responding elements of the pre array; hence, for any
i ∈ {0 . . .8}, pre[i] is assigned the initial value of for-
mula ϕi. The pre array is initialized in such a way as
to maintain the view that the initial state is assumed
to be stationary before monitoring is started. This in
particular means that ↑ p is false, as is ↓ (r∨s), since
there is no change in state (indices 1 and 5). The inter-
val operator has the obvious initial interpretation: the
first argument must be true and the second false for
the formula to be true (index 3). Propositions are true
if they hold in the initial state (indices 2, 4, 7, and 8)
and boolean operators are interpreted in the standard
way (indices 0, 6).

Event loop. The main evaluation loop goes through the
event trace, starting from the second event. For each
such event, the state is updated, followed by assign-
ments to the now array in a bottom-up fashion similar
to the initialization of the pre array: the array elem-
ents are assigned values from higher index values to
lower index values, corresponding to the values of the
corresponding subformulae. Propositional boolean
operators are interpreted in the standard way (in-
dices 0 and 6). The formula ↑ p is true if p is true now
and not true in the previous state (index 1). Similar
reasoning can be applied to the formula ↓ (r∨s) (in-
dex 5). The formula [q, ↓ (r∨s))s is true if either the
formula was true in the previous state or q is true in
the current state and in addition ↓ (r∨s) is not true in
the current state (index 3). At the end of the loop an
errormessage is issued if now[0], the value of the whole
formula, has the value 0 in the current state. Finally,
the entire now array is copied into pre.

Given a fixed ptLTL formula, the analysis of this algo-
rithm is straightforward. Its time complexity is Θ(n),
where n is the length of the input trace, the constant be-
ing given by the size of the ptLTL formula. The memory
required is constant since the length of the two arrays is
the size of the ptLTL formula. However, one may want to
also include the size of the formula, say,m, into the analy-

sis; then the time complexity is obviously Θ(n ·m) while
memory required is 2 · (m+1) bits. The authors conjec-
ture that in practical situations it is hard to find an al-
gorithm running faster than the above algorithm, though
some slight optimizations are possible (see Sect. 5.3).

5.2 The algorithm formalized

We now formally describe our algorithm, which synthe-
sizes a dynamic programming algorithm from a ptLTL
formula. It takes as input a formula and generates a pro-
gram like the one above, containing a “for” loop that
traverses the trace of events while validating or invalidat-
ing the formula. The generated program is printed using
the function output, which takes one or more string or
integer parameters that are concatenated in the output.
This algorithm is designed to generate pseudocode, but it
can easily be adapted to generate code in any imperative
programming language:

Input: past-time LTL formula ϕ
let ϕ0, ϕ1, ..., ϕm be the subformulae of ϕ;
output(“State state←{};”);
output(“bit pre[0..m];”);
output(“bit now[0..m];”);
output(“Input: trace t= s1s2...sn;”);
output(“/* Initialization of state and pre */”);
output(“state← update(state, s1);”);
for j =m downto 0 do {

output(“ pre[”, j, “]← ”);
if ϕj is a variable then

output(ϕj , “(state);”);
if ϕj is true then output(“true;”);
if ϕj is false then output(“false;”);
if ϕj = ¬ϕj′ then

output(“not pre[”,j′, “];”);
if ϕj = ϕj1 op ϕj2 then

output(“pre[”,j1, “] op pre[”,j2, “];”);
if ϕj = ◦·ϕj1 then

output(“pre[”, j1, “];”);
if ϕj = �·ϕj1 then

output(“pre[”, j1, “];”);
if ϕj = �·ϕj1 then

output(“pre[”, j1, “];”);
if ϕj = ϕj1 Ss ϕj2 then

output(“pre[”, j2, “];”);
if ϕj = ϕj1 Sw ϕj2 then

output(“pre[”,j1, “] or pre[”, j2, “];”);
if ϕj = [ϕj1 , ϕj2)s then

output(“pre[”,j1, “] and not pre[”, j2, “];”);
if ϕj = [ϕj1 , ϕj2)w then

output(“not pre[”, j2, “];”);
if ϕj =↑ ϕj′ then output(“false;”);
if ϕj =↓ ϕj′ then output(“false;”);

};
output(“/* Event interpretation loop */”);
output(“for i= 2 to n do {”);
for j =m downto 0 do {
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output(“ now [”, j, “]← ”);
if ϕj is a variable then output(ϕj , “(state);”);
if ϕj is true then output(“true;”);
if ϕj is false then output(“false;”);
if ϕj = ¬ϕj′ then output(“not now [”,j

′, “];”);
if ϕj = ϕj1 op ϕj2 then

output(“now [”,j1, “] op now [”, j2, “];”);
if ϕj = ◦·ϕj1 then output(“pre[”, j1, “];”);
if ϕj = �·ϕj1 then

output(“pre[”, j, “] or now [”,j1, “]”);
if ϕj = �·ϕj1 then

output(“pre[”, j, “] and now [”,j1, “]”);
if ϕj = ϕj1 Ss ϕj2 then

output(“(pre[”, j, “] and now [”,j1, “]) or
now [”, j2, “];”);

if ϕj = ϕj1 Sw ϕj2 then
output(“(pre[”, j, “] and now [”,j1, “]) or

now [”, j2, “];”);
if ϕj = [ϕj1 , ϕj2)s then

output(“(pre[”, j, “] or now [”,j1, “]) and
not now [”, j2, “];”);

if ϕj = [ϕj1 , ϕj2)w then
output(“(pre[”, j, “] or now [”,j1, “]) and

not now [”, j2, “];”);
if ϕj =↑ ϕj′ then

output(“now [”, j′, “] and
not pre[”, j′, “];”);

if ϕj =↓ ϕj′ then
output(“not now [”, j′, “] and

pre[”, j′, “];”);
};
output(“ if now[0] = 0 then

output(‘‘property violated’’);”);
output(“ pre ← now ;”);
output(“}”);

op is any binary propositional connective. Since we have
already given a detailed explanation of the example in the
previous section, we shall only give a very brief descrip-
tion of this algorithm.
The formula should be first visited top down to assign

increasing numbers to subformulae as they are visited.
Let ϕ0, ϕ1, ..., ϕm be the list of all subformulae. Because
of the recursive nature of ptLTL, this step ensures us that
the truth value of ti |= ϕj can be completely determined
from the truth values of ti |= ϕj′ for all j < j

′ ≤m and the
truth values of ti−1 |= ϕj′ for all j ≤ j

′ ≤m.
Before we generate the main loop, we should first gen-

erate code for initializing the array pre[0..m], basically
giving it the truth values of the subformulae on the ini-
tial state, which is conceptually an infinite trace with
repeated occurrences of the initial state. After that, the
generated main event loop will process the events. The
loop body will update/calculate the now array and in the
end will move it into the pre array to serve as the basis
for the next iteration. After each iteration i, now[0] tells
whether the formula is validated by the trace s1s2...si.

Since the formula enumeration procedure is linear, the
algorithm synthesizes a dynamic programming algorithm
from a ptLTL formula in linear time with the size of the
formula. The boolean operations used above are usually
very efficiently implemented on any microprocessor, and
the arrays of bits pre and now are small enough to be
kept in cache. Moreover, the dependencies between in-
structions in the generated “for” loop are simple to ana-
lyze, so a reasonable compiler can easily unfold and/or
parallelize it to take advantage of a machine’s resources.
Consequently, the generated code is expected to run very
fast. We shall next illustrate how such optimizations can
be part of the translation algorithm.

5.3 Optimizing the generated code

The generated code presented in Sect. 5.1 is not optimal.
Even though a smart compiler can in principle generate
good machine code from it, it is still worth exploring ways
to synthesize directly optimized code especially because
there are some attributes specific to the runtime observer
that a compiler cannot take into consideration.
A first observation is that not all the bits in pre are

needed but only those that are used at the next iteration,
namely 2, 3, and 6. Therefore, only a bit per temporal op-
erator is needed, which reduces significantly the memory
required by the generated algorithm. Then the body of
the generated “for” loop becomes after (blind) substitu-
tion (we do not consider the initialization code here):

state← update(state, si)
now[3]← r(state) or s(state)
now[2]← (pre[2] or q(state)) and

not (not now[3] and pre[3])
now[1]← p(state)
if ((not (now[1] and not pre[1]) or now[2]) = 0)

then output(‘‘property violated’’);

that can be further optimized by boolean simplifications:

state← update(state, si)
now[3]← r(state) or s(state)
now[2]← (pre[2] or q(state)) and

(now[3] or not pre[3])
now[1]← p(state)
if (now[1] and not pre[1] and not now[2])

then output(‘‘property violated’’);

The most expensive part of the code above is the function
calls, namely, p(state), q(state), r(state), and s(state).
Depending on the runtime requirements, the execution
time of these functions may vary significantly. However,
since one of the major concerns of monitoring is to af-
fect the normal execution of the monitored program as
little as possible, especially in the inline monitoring ap-
proach, one would of course want to evaluate the atomic
predicates on states only if really needed, or rather to
evaluate only those that, probabilistically, add a mini-
mum cost. Since we do not want to count on an opti-
mizing compiler, we prefer to store the boolean formula
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as some kind of binary decision diagram, more precisely
as a term over the conditional operation _?_ : _, where
“e1?e2 : e3” means: “if e1 then e2 else e3”. For example,
pre[3] ? pre[2] ? now[3] : q(state) : pre[2] ? 1 : q(state)
(see [18] for a formal definition). Therefore, one is faced
with the following optimization problem:

Given a boolean formula ϕ using propositions a1, a2,
..., an of costs c1, c2, ..., cn, respectively, find a (_?_ :
_)-expression that optimally implements ϕ.

We have implemented a procedure in Maude, on top of
propositional calculus, that generates all correct (_?_ : _)
expressions for ϕ, admittedly a potentially exponential
number in the number of distinct atomic propositions
in ϕ, and then chooses the shortest in size, ignoring the
costs. Applied on the code above, it yields:

state← update(state, si)
now[3]← r(state) ? 1 : s(state)
now[2]← pre[3] ? pre[2] ? now[3] :

q(state) : pre[2] ? 1 : q(state)
now[1]← p(state)
if (pre[1] ? 0 : now[2] ? 0 : now[1])

then output(‘‘property violated’’);

We would like to extend our procedure to take the eval-
uation costs of predicates into consideration. These costs
can be provided by the user of the system, calculated au-
tomatically by a static analysis of predicates’ code, or
even estimated by executing the predicates on a sample of
states. However, based on our examples so far, we conjec-
ture at this incipient stage that, given a boolean formula
ϕ in which all the atomic propositions have the same cost,
the probabilistically runtime optimal (_?_ : _)-expression
implementing ϕ is exactly the one that is smallest in size.
A further optimization would be to generate machine

code directly instead of using a compiler. Then the ar-
rays of bits now and pre can be stored in two registers,
which would be all the memory needed. Since all the op-
erations executed are bit operations, the generated code
is expected to be very fast. One could even imagine hard-
ware implementations of past-time monitors, using the
same ideas, to enforce safety requirements on physical
devices.

5.4 Implementation of offline and inline monitoring

In this section, we briefly describe our efforts to imple-
ment the above-described algorithm to create monitors
for observing the execution of Java programs in PaX.
We present two approaches that we have pursued. In the
offline approach, we create a monitor that runs in paral-
lel with the executing program, potentially on a different
computer, receiving events from the running program and
checking on the fly that the formulae are satisfied. In this
approach, the formulae to be checked are given in a sep-
arate specification. In the inline approach, formulae are
written as comments in the program text and then ex-
panded into Java code inserted after the comments.

5.4.1 Offline monitoring

The code generator for offline monitoring has been writ-
ten in Java, using JavaCC [24], an environment for writ-
ing parsers and for generating and manipulating abstract
syntax trees. The input to the code generator is a spe-
cification given in a file separate from the program. The
specification for our example looks as follows (the default
interpretation of intervals is “strong”):

specification Example is

P = start(p) -> [q,end(r|s));

end

Several named formulae can be listed; here we have
only included one, named P. The translator reads this
specification and generates a single Java class, called
Formulae, which contains all the machinery for eval-
uating all the formulae (in this case one) in the spe-
cification. This class must then be compiled and in-
stantiated as part of the monitor. The class contains
an evaluate() method that is applied after each state
change and that will evaluate all the formulae. The class
constructor takes as parameter a reference to the ob-
ject that represents the state such that any updates
to the state by the monitor, based on received events,
can be seen by the evaluate() method. The gener-
ated Formulae class for the above specification looks as
follows:

class Formulae{

abstract class Formula{

protected String name; protected State state;

protected boolean[] pre; protected boolean[] now;

public Formula(String name,State state){

this.name = name; this.state = state;

}

public String getName(){return name;}

public abstract boolean evaluate();

}

private List formulae = new ArrayList();

public void evaluate(){

Iterator it = formulae.iterator();

while(it.hasNext()){

Formula formula = (Formula)it.next();

if(!formula.evaluate()){

System.out.println("Property " +

formula.getName() + "violated");

}}}

class Formula_P extends Formula{

public boolean evaluate(){

now[8] = state.holds("s");

now[7] = state.holds("r");

now[6] = now[7] || now[8];

now[5] = !now[6] && pre[6];

now[4] = state.holds("q");

now[3] = (pre[3] || now[4]) && !now[5];

now[2] = state.holds("p");

now[1] = now[2] && !pre[2];

now[0] = !now[1] || now[3];

System.arraycopy(now,0,pre,0,9);

return now[0];

}
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public Formula_P(State state){

super("P",state);

pre = new boolean[9]; now = new boolean[9];

pre[8] = state.holds("s");

pre[7] = state.holds("r");

pre[6] = pre[7] || pre[8];

pre[5] = false;

pre[4] = state.holds("q");

pre[3] = pre[4] && !pre[5];

pre[2] = state.holds("p");

pre[1] = false;

pre[0] = !pre[1] || pre[3];

}

}

public Formulae(State state){

formulae.add(new Formula_P(state));

}

}

The class contains an inner abstract3 class Formula
and, in the general case, an inner class Formula_X
extending the Formula class for each formula in the
specification, where X is the formula’s name. In our
case, there is one such Formula_P class. The abstract
Formula class declares the pre and now arrays, with-
out giving them any size, since this is formula spe-
cific. An abstract evaluate method is also declared.
The class Formula_P contains the real definition of this
evaluate() method. The constructor for this class in
addition initializes the sizes of pre and now depending
on the size of the formula and also initializes the pre
array.
To handle the general case where several formulae

occur in the specification, and hence many Formula_X
classes are defined, we need to create instances for all
these classes and store them in some data structure
where they can be accessed by the outermost evaluate()
method. The formulae list variable is initialized to con-
tain all these instances when the constructor of the
Formulae class is called. On each invocation, the outer-
most evaluate()method goes through this list and calls
evaluate() on each single formula object.

5.4.2 Inline monitoring

The general architecture of PaX was mainly designed
for offline monitoring to accommodate applications where
the source code is not available or where the moni-
tored process is not even a program but some kind
of physical device. However, it is often the case that
the source code of an application is available and that
one is willing to accept extra code for testing pur-
poses. Inline monitoring actually has higher precision
because one knows exactly where an event was emit-
ted in the execution of the program. Moreover, one can

3 An abstract class is a class where some methods are abstract
because they have no body. Implementations for these methods will
be provided in extending subclasses.

even throw exceptions when a safety property is vio-
lated, as in Temporal Rover [10], so the running pro-
gram has the possibility to recover from an erroneous
execution or to guide its execution to avoid undesired
behaviors.
To provide support for inline monitoring, we de-

veloped some simple scripts that replace temporal anno-
tations in Java source code by actual monitoring code,
which throws an exception when the formula is violated.
In [14], we show an example of expanded code for future-
time LTL. The “for” loop and the update of the state in
the generic algorithm in Sect. 5.1 are not needed anymore
because the atomic predicates use directly the current
state of the program when the expanded code is reached
during the execution. In [4], the tool Java-MoP is de-
scribed, which implements the presented algorithm as
a logic plug-in for inline monitoring (as well as for offline
monitoring).
The following code snippets illustrate the inline ap-

proach. Assume a class A that defines four integer vari-
ables and a method m that contains the past-time tempo-
ral logic formula from above. Now the propositions p, q, r,
and s are defined to refer to the four variables. The inten-
tion is that whenever the program point of the comment
is reached, the formula will be evaluated.

class A{

int a,b,c,d;

void m(){

...

/* @monitor

proposition p = a>0;

proposition q = b>0;

proposition r = c>0;

proposition s = d>0;

property P = start(p) -> [q,end(r|s));

*/

...

}

}

This class is now automatically translated as follows,
where code representing the semantics of the formula has
been inserted at the position of the formula comment and
in the constructor:

class A{

int a,b,c,d;

boolean[] pre = new boolean[9];

boolean[] now = new boolean[9];

public A(){

pre[8] = d>0;

pre[7] = c>0;

pre[6] = pre[7] || pre[8];

pre[5] = false;

pre[4] = b>0;

pre[3] = pre[4] && !pre[5];

pre[2] = a>0;

pre[1] = false;

pre[0] = !pre[1] || pre[3];

}
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void m(){

...

now[8] = d>0;

now[7] = c>0;

now[6] = now[7] || now[8];

now[5] = !now[6] && pre[6];

now[4] = b>0;

now[3] = (pre[3] || now[4]) && !now[5];

now[2] = a>0;

now[1] = now[2] && !pre[2];

now[0] = !now[1] || now[3];

System.arraycopy(now,0,pre,0,9);

if(!now[0])throw Violated("P");

...

}

}

It is essentially the same code as in the offline case except
that the looping constructs have been removed.
It is inline monitoring that motivated us to optimize

the generated code as much as possible as in Sect. 5.3.
Since the running program and the monitor are a single
process now, the time needed to execute the monitoring
code can significantly influence the otherwise normal ex-
ecution of the monitored program.

6 Conclusion

Two efficient algorithms for monitoring safety require-
ments expressed using past-time linear temporal logic
were presented, one based on rewriting and implemented
in Maude and the other based on dynamic programming,
synthesizing specialized monitors from formulae. They
both check that a finite sequence of events emitted by
a running program satisfies a formula. Operators conve-
nient for monitoring were considered and shown to be
equivalent to standard past-time temporal operators.
These algorithms have been implemented in PathEx-

plorer, a runtime verification tool currently under devel-
opment. The synthesis algorithm has also been imple-
mented (as a plug-in) in the Java-MoP tool [4], which
is a general framework for supporting program monitor-
ing for user-provided logics; and in the JMPaX tool [35],
which extends part of this work to partial-order models
instead of simple traces.
It is our intention to investigate how the presented

algorithms can be refined to work for a logic that com-
bines past- and future-time temporal logic and that can
refer to real-time and data values. Other kinds of runtime
verification are also investigated such as, for example,
techniques for detecting error potentials in multithreaded
programs. Recent work on detecting high-level data races
is described in [2].
A number of experiments have been carried out with

PathExplorer on a planetary rover application written in
35,000 lines of C++. The experiments range from concur-
rency analysis (deadlock and data race analysis) to mon-

itoring of temporal logic formulae combined with test-
case generation, as described in [1]. A model checker is
used to generate test cases, where a test case consists
of input to the application plus a set of temporal for-
mulae that the execution of the application on that in-
put must satisfy. When running this testing environment,
hundreds of test cases are generated, and the execution
of these are monitored against the generated formulae.
Initial experiments have been made with a logic that
combines past- and future-time temporal logic and sup-
ports real-time and data reasoning. A bug was detected
in the rover application in the very first such experiment
we made. A thread did not detect a premature termi-
nation of a certain task in a timely manner. The pro-
grammer had forgotten to insert this termination check
and was reminded by a single run of the testing envi-
ronment. It is planned to have this testing environment
become part of the rover application programmer’s test-
ing toolbox.
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