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Abstract
Perovskite solar cells (PSCs) have garnered significant interest in recent years due to their high energy conversion efficiency, 
unique properties, low cost, and simplified fabrication process. However, the reactivity of these devices to external factors 
such as moisture, water, and UV light presents significant challenges for their commercial viability, potentially compro-
mising their long-term stability and functionality. To overcome these limitations, researchers have focused on two primary 
strategies: surface passivation and additive engineering. Recent research developments have shown that surface passivation 
and additive engineering using conducting polymers (CPs), metal-organic framework materials (MOFs), and inorganic 
additives have significantly improved the operability of perovskite solar cells (PSCs). CPs form resilient interactions with 
perovskite grains, enhancing film stability through cross-link bonds. MOFs possess a unique network of functional holes 
that interact with multiple perovskite layers, maintaining morphology and improving interlayer charge transport. Inorganic 
additives suppress defects at grain boundaries, promoting the formation and growth of perovskite absorbers while providing 
mechanical protection. These advancements contribute to overcoming the reactivity limitations of PSCs and bring us closer 
to the commercialization of this technology. The review focuses on the advancements in similar materials, their passivation 
principles, and the resulting effects on PSC performance. Key aspects covered include the device structure, targeted defects, 
passivation processes, and synthesis outcomes. By providing a comprehensive overview, the review aims to assist in the 
selection and synthesis of novel materials.
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Introduction

Hybrid organic-inorganic perovskite solar cells (PSCs) 
have achieved remarkable efficiency levels, with recent 
advancements pushing the efficiency up to 25.8% [1–4]. 
Perovskite solar cells (PSCs) possess distinct intrinsic 
properties that contribute to their excellent optoelectronic 
performance. These properties include a high absorption 
coefficient, tunable band gap, lower exciton binding ener-
gies, efficient charge transport over long paths, and sig-
nificant dielectric constants [5–8]. Furthermore, the ease 
of fabrication through solution processing and sequential 
layer deposition contributes to lower production costs 

for large-scale device manufacturing [6, 9, 10]. Through 
techno-economic study, perovskite photovoltaic (PV) mod-
ules have a low levelized cost of energy (LCOE) of up to 
0.05 USD per KWh provided the model lifetime can be 
increased to 15–20 years [11, 12].

The long-term stability and operability of perovskite 
solar cells (PSCs) present a major challenge to their com-
mercialization. PSC stability is affected by the reactivity 
and degradation of the perovskite active layer when exposed 
to moisture and oxygen in the environment [13, 14]. Fur-
thermore, working temperature and UV luminance have 
quite an impact on cell performance. Life cycle assessment 
of the PSC devices indicates lead toxicity after degrada-
tion to be a significant environmental challenge. Several 
intrinsic defects, such as the recombination of charge car-
rier recombination of uncoordinated lead atoms, deteriorate 
the optoelectronic performance of modules [14–20]. As a 
result, strategies to overcome the limitations and significant 
improvement in PSC performance are required [21].
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PSC performance can be increased through additive engi-
neering and surface passivation strategies [22–30]. Additive 
engineering is mainly focused on improving the morpho-
logical nature of the perovskites. In this, additives, including 
organic, inorganic, and metal-organic frameworks (MOFs), 
can be directly added to the perovskite precursor solution. 
Surface passivation involves the incorporation of interfa-
cial layers within the solar cell structure to improve stabil-
ity. Passivation can be accomplished in two ways: chemi-
cally and physically [31, 32]. Chemical passivation refers 
to using interfacial species to reduce defect trap states and 
optimize charge transmission within the perovskite absorber 
layer. Physical passivation involves the introduction of an 
interfacial layer near the active perovskite absorber to iso-
late specific functional groups and enhance the stability of 
the cell. Photoelectrodes, crucial in solar energy applica-
tions, are materials, often semiconductors, that convert light 
energy into either electrical or chemical energy. They are 
integral to solar cells, enabling the conversion of sunlight 
into electricity, and play a key role in processes like water 
splitting for hydrogen production and environmental appli-
cations [33–37].

This review extensively covers approaches for additive 
engineering and the passivation of imperfections of PSCs 
using conducting polymers, MOFs, and inorganic additives. 
This study highlights the progress made by various research 
groups in minimizing imperfections and addressing carrier 
recombination challenges in perovskite solar cells. The study 

also emphasizes the significance of functional group bond-
ing in improving device performance.

Conducting polymers (CPs) for passivation 
of PSCs

CPs have received much interest due to their economic 
importance, good environmental stability, electrical con-
ductivity, and superior mechanical and optical properties as 
represented in Fig. 1 [38, 39]. Organic polymers that transfer 
energy via metallic or semiconductor activity are called ICPs 
(intrinsically conducting polymers). The electrical properties 
of these materials could be adjusted using essential organic 
syntheses or advanced dispersion techniques compatible 
with PSC systems [40, 41]. Conductive polymers, commonly 
referred to as “polymer blacks,” are characterized by their 
linear backbone structure (Fig. 2). Examples of such poly-
mers include polyacetylene, polypyrrole, and polyaniline, as 
well as their copolymers [42].

The conductivity of conducting polymers arises from 
several processes. These polymers consist of consecutive 
 sp2 hybridized carbon centers, with each center possessing 
one valence electron in a pz orbital. These orbitals are per-
pendicular to the three sigma bonds formed by the carbon 
atoms. The Pz orbitals of the carbon centers in CPs combine 
to form a delocalized set of orbitals that extends across the 
entire molecule. This delocalization enables the movement 

Fig. 1  Conducting polymers 
and their composites in hybrid 
perovskite electronics [42]
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of electrons throughout the polymer, contributing to its 
conductivity. When CPs are doped through oxidation, the 
electrons in the delocalized orbitals experience increased 
mobility. This doping process involves the removal of some 
unpaired electrons, leading to improved conductivity by 
facilitating the movement of charges within the material. The 
conjugated p-orbitals in CPs form a one-dimensional elec-
tronic band. When this band is partially emptied, the elec-
trons within it become highly active. This phenomenon is a 
result of the unique electronic structure of conducting poly-
mers, which contributes to their distinctive electrical proper-
ties. CPs have the ability to establish consistent and predict-
able interactions with perovskite grains, thereby enhancing 
the stability of the film. These interactions help to improve 
the overall stability of the film and mitigate the impact 
of external factors on the device’s performance [43]. The 
p-conjugated framework present in polymers with double 
and single bonds plays a crucial role in facilitating enhanced 
charge transfer. This is achieved through the alteration of 
functional groups within the polymer structure. By modify-
ing the functional groups, the charge transfer characteristics 
of the polymer can be optimized, leading to improved con-
ductivity and overall performance [44]. The excellent solu-
bility of CPs in polar solvents helps distribute the precursor 
solution for uniform interlayer coverage. Indeed, conduct-
ing polymers have higher charge transfer which significantly 
enhances the PSC power conversion efficiency (PCE) when 
used as charge-transporting layers [45, 46].

Because of their relatively high molecular weights, 
CPs need not volatilize, which helps them passivate the 
crystal grain boundaries during perovskite film anneal-
ing. Adding polymeric materials increases the grain size 
and homogenous nucleation, slowing perovskite crystal 
formation [47–51]. The functional groups on the polymer 
surface facilitate the formation of a Lewis coordination 
complex between  Pb2+ ions and the halide ions of the per-
ovskite material at the crystal surface. This interaction is 
crucial for enhancing the stability of the perovskite solar 
cell. As a result, structural imperfections are minimized, 
with a reduction in localized nonradiative recombination 
[5, 52–54]. In addition, the hydrophobic functionalization 
of CPs provides protection to the crystal grains by prevent-
ing moisture ingress. This hydrophobicity plays a crucial 
role by reducing the detrimental effects of moisture on the 
device. Table 1 depicts the significance of CP additions and 
their targeted effects. The application of the critical CPs is 
highlighted in subsequent subsections.

Conducting polymers significantly enhance perovskite 
solar cells, leveraging their high conductivity for efficient 
charge transport and improving overall performance. Their 
hydrophobic nature ensures high resistance to moisture, con-
tributing to the stability of perovskite films. The low solubil-
ity, when coupled with chemical modifications, enhances 
material stability. Overcoming the challenging processabil-
ity of conducting polymers involves utilizing self-assembly 
characteristics and scaffold structures. Doping these poly-
mers further improves conductivity, targeting enhanced 
device efficiency. The unique electrical and optical proper-
ties of conducting polymers optimize crystal morphology, 
crystal growth, and surface passivation, advancing perovs-
kite solar cell technology. Serving as scaffolds for perovs-
kite films, conducting polymers provide structural support, 
facilitating the formation of high-quality films. Encouraging 
reactions between  PbI2 and MAI is another contribution, 
promoting the development of stable perovskite structures. 
In summary, conducting polymers play a crucial role in 
improving key aspects of perovskite solar cells, including 
conductivity, hydrophobicity, solubility, and processability 
(see Table 1).

Fig. 2  Structural illustration of different conducting polymers [42]

Table 1  CPs and their contribution to PSC performance [55]

Material type Property Improvement

Conjugated and conductive polymers 1. High conductivity
2. Hydrophobicity
3. Low solubility
4. Challenging processability
5. Conductivity can be improved by doping
6. Solubility can be improved by chemical modi-

fication

1. Optimization of crystal morphology
2. Crystal growth effect
3. Surface passivation via electron pair coordination
4. Self-assembly characteristics
5. Scaffold for perovskite film
6. Encourage the reaction between  PbI2 and MAI
7. High resistance to moisture
8. Include unique electrical and optical properties
9. Enhance heat stability
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Polyaniline (PANI)

Polyaniline (PANI) is the most promising and investigated 
CP, with excellent stability, processability, flexible conduct-
ing, and optical characteristics. PANI conductivity is highly 
potent and provides metal-like conductivity at a pH of three 
[56]. PANI becomes conductive only when tolerably oxi-
dized and behaves as an insulating layer once completely 
oxidized [57]. Figure 3 shows the different structures of 
PANI. PANI can be classified into three oxidation states: 
leucoemeraldine (fully reduced state), emeraldine (interme-
diate state), and pernigraniline (fully oxidized state). This 
classification is based on the varying degrees of oxidation 
that the polymer can undergo, which influences its elec-
trical and optical properties. PANI can also absorb UV-A 
light wave in its emerald state, protecting PSCs from UV 
degradation.

Kim et al. [59] incorporated the PANI layer between the 
electron transfer layer (ETL)/perovskite interface using solu-
tion spin coating at precise concentrations. The layer could 
passivate the interlayer faults while improving the crystal-
line characteristics of the perovskite layer. Consequently, the 
UVA light did not reach the interlayer, thereby limiting the 
 Pb2+ ions at the interface. In this study, the concentration, 
thickness, and drying conditions of the PANI passivation 
layer were carefully controlled and varied as experimental 
parameters. This allowed for a systematic investigation of 
the influence of these factors on the performance of the 
device. By incorporating an interlayer of 65 nm, the PSC 
achieved a high open-circuit voltage (VOC) of 0.99 V and a 
power conversion efficiency (PCE) of 15.1%.

Figure 4 illustrates PANI perovskite devices with better 
moisture and temperature resistance upon aging tests and 
the structure of PANI incorporated PSC with its J–V curves 
having different concentrations of PANI used [59, 60]

Table 2 shows data for improvements in PCE for a speci-
fied device structure using PANI as additives. Naji et al. [60] 
improved the properties of the ZnO-ETL layer by combining 
ZnO nanoparticles with specific amounts of PANI with the exact 
device structure as shown in Fig. 4b. The cross-linking served 
as a bridge between the perovskite granules, reducing carrier 
accumulation and producing exceptional moisture resistance. 
The presence of PANI increased the energy barrier for nuclea-
tion and growth of the perovskite material. This was achieved 
by promoting the formation of a Lewis base framework between 
PANI and the perovskite precursor. The PSC ETL containing 
4% PANI (optimum concentration) achieved the highest effi-
ciency, reaching 17.39% as shown in Fig. 4c. This indicates 
the positive impact of incorporating PANI into the ETL on the 
overall performance of the solar cell. The treated films indicate 
substantial enhancement in morphology of the interface.

Zheng et al. [61] implemented PANI as a precursor addi-
tive. The quality of the perovskite film exhibited significant 
improvement, characterized by a refined crystalline structure, 
enhanced optical absorption, and a uniform surface morphol-
ogy. These enhancements led to faster photoluminescence 
(PL) quenching and improved charge transfer within the film. 
This suggests that the optimized film properties contribute to 
enhanced performance and efficiency of the perovskite solar 
cell. The addition of PANI to the device led to a substantial 
improvement in the PCE, increasing it from 16.96 to 19.09%. 
Furthermore, the device exhibited reduced hysteresis, indicat-
ing improved stability and reliability.

Mei et al. [62] introduced PSCs with PANI as hole transport 
layer (HTL). Here, bifunctional, economical HTL based on 
electrochemically formed PANI with dodecyl benzene sulfonic 
acid was utilized for synergetic modification of the perovs-
kite/HTL interface. The small-area inverted PSC incorporat-
ing PANI achieved the highest PCE among PANI-based cells, 
reaching 20.7%. Moreover, this work included a demonstration 
of PANI doped with chlorine as an HTL. Chlorine acts as a 
bridge between the perovskite/PANI interface and significantly 
improves the optoelectronic properties. The PANI-doped cells 
in this work were found to obtain higher results compared to 
earlier research works on PANI passivation.

Abdelmagid et al. [63] reported the synthesis of polyani
line:poly(styrenesulfonate) (PANI:PSS) with different PSS 
doping concentrations. This PANI:PSS material was used 
as a hole extraction layer in an inverted perovskite device, 
contributing to its efficient operation. The study found that 
reducing the content of poly(styrenesulfonate) (PSS) in the 
polyaniline:poly(styrenesulfonate) (PANI:PSS) composite 
resulted in increased conductivity of the hole transport 
layer (HTL). Due to better hole extraction, cells with the Fig. 3  Structural illustration of different forms of polyaniline [58]
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highest performance had a short circuit current (Jsc) of 
22.5 mA/cm [2], Voc of 0.87 V, fill factor (FF) of 0.42, 
and PCE of 8.22%.

Lee et al. [64] presented the utilization of camphorsul-
fonic acid-doped polyaniline (PANI-CSA) as a hole trans-
port layer (HTL) in inverted PSCs. The introduction of 
PANI-CSA as the HTL aimed to enhance the hole extraction 
capabilities of the device, thereby improving its overall per-
formance. PANI-CSA, when exposed to m-cresol, acted as 
a secondary dopant and solvent, facilitating the formation of 
a highly conductive and uniform film. This effect was attrib-
uted to the extension of the chain configuration of PANI-
CSA in the presence of m-cresol, resulting in improved film 
properties. The PANI-CSA-based device achieved a maxi-
mum efficiency of 15.42%, while devices with alternative 
HTLs reached a maximum efficiency of 14.11%. The per-
ovskite/HTL interface significantly increased the device’s 
resistance to moisture exposure.

Lim et al. [65] reported the fabrication of hybrid per-
ovskite solar cells (PSCs) using a water-soluble, self-doped 
conducting polymer called poly(4-styrenesulfonate)-g-pol-
yaniline (PSS-g-PANI) as a hole extraction layer (HEL). 
This novel approach aimed to enhance the performance of 
PSCs by incorporating PSS-g-PANI as an efficient HEL 
material. The incorporation PSS-g-PANI layer as HEL in 
the PSCs provided several advantages which included the 
ability to fabricate the layer at low temperatures using a 
solution-based method, a high absorption coefficient, and a 

low energy barrier when integrated with the perovskite lay-
ers. The PSS-g-PANI molecules exhibited higher solubility 
in water compared to traditional PEDOT:PSS molecules. 
Moreover, they demonstrated good stability over a wide pH 
range, enabling the fabrication of a HEL with minimal sur-
face defects. PEDOT: PSS-based cell efficiency rose from 
7.8 to 12.4% when PSS-g-PANI:PFI was used. This deeper 
level of energy states reduced the likelihood of charge loss 
at the interface between PSS-g-PANI:PFI and MAPbI3 in 
the perovskite solar cells [66]. PSS-g-PANI demonstrated 
favorable energy level alignment and high transmittance, 
resulting in improved device properties. Overall, the incor-
poration of PSS-g-PANI positively influenced the perfor-
mance of the devices.

Poly(3‑hexylthiophene) (P3HT)

Poly(3-hexylthiophene) (P3HT) has garnered significant inter-
est in the field due to its advantageous properties, including 
high charge transfer capability, ease of fabrication, afford-
ability, improved environmental stability, and conductivity 
[67–71]. Electron delocalization along this polymer backbone 
causes electrical conductivity. Apart from their conductivity, 
these materials exhibit optical properties that align well with 
the structure of perovskite solar cells (PSCs). They display 
vibrant colors in response to external stimuli such as solvent 
changes, temperature variations, applied voltage, and interac-
tions with other molecules. The intriguing interplay between 

Fig. 4  a Schematic process for 
aging tests of untreated and 
PANI perovskite films [61]. b 
Schematic representation of the 
prepared PSC. c The J–V tests 
of the PSCs [60]
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contorting the polymer backbone and disrupting bond forma-
tion is responsible for both the color and conductivity vari-
ations observed in these materials. This unique mechanism 
makes them highly attractive as interlayers that exhibit diverse 
optical and electrical responses [72–74]. Despite its funda-
mental differences from the high-performing class of polymers 
based on the donor acceptor (DA) mechanism, it has demon-
strated significant influence in the passivation of PSCs.

Xie et al. [75] used a single additive technique to treat 
perovskite layers by incorporating P3HT in chlorobenzene 
(Fig. 5). Adding P3HT improved surface morphology and 
passivated the perovskite defects, increasing carrier mobil-
ity. Moreover, the graded heterojunction formed between 

perovskite and P3HT resulted in improved hole extraction 
capabilities, leading to a notable increase in the power con-
version efficiency (PCE) from 12.72 to 15.57%. Additionally, 
the study included a flexible PSC device fabrication, which 
showed increased PCE from 11.81 to 13.54%. This study suc-
cessfully developed a high-efficiency carbon-based PSC with-
out the need for a hole transport layer (HTL), by creating a 
heterojunction structure. SEM (scanning electron microscope) 
visualizations indicated improved morphological character-
istics of perovskite films after treatment. Furthermore, the 
treatment of perovskite with P3HT resulted in a shift of the 
valence band energy closer to the work function of carbon, 
indicating improved alignment at the interface. Incorporating 
P3HT as an anti-solvent additive improved the energy band 
alignments of the treated films, which is anticipated to enhance 
the performance of the devices. In our previous reported work, 
we developed a perovskite solar cell (PSC) device utilizing 
P3HT as a gradient heterojunction layer (GHL) at the interface 
between the perovskite and HTL, as shown in Fig. 6 [76]. The 
insertion of the GHL at the perovskite interface can passivate 
uncoordinated  Pb2+ ions, minimize non-radiative recombina-
tion losses, and reduce the hydrophilicity of the perovskite 
solar cell, resulting in improved device performance. This PSC 
had a higher PCE than untreated cells, a longer lifetime, and 
fewer pinholes and imperfections. The work led to an increase 
in PCE of up to 14.3% compared to 13.2% in pristine samples.

Fig. 5  Structure of P3HT [77]

Fig. 6  a The structure of PSC, b fabrication of P3HT GHL, and c the P3HT molecules in grain boundaries at the perovskite/GHL interface [76]
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Figure 7 shows FESEM imaging of PSCs with and 
without GHL. Incorporating the GHL improves the mor-
phology of perovskite. Compared to untreated samples, 
treated samples had a more homogeneous distribution 
and fewer pinholes and flaws. Figure 8 shows the con-
tact angle for the devices. The hydrophobic nature of the 
P3HT molecules in the GHL prevents moisture and water 
ingress, resulting in a higher contact angle value com-
pared to untreated films.

Jiang et al. [78] employed P3HT with chlorobenzene as 
an antisolvent for spin coating the perovskite film. P3HT 
molecules managed to infiltrate along the perovskite crys-
tal structure, filling pinholes and patching up perovskite 
layer defects. The perovskite valence band (VB) was thus 
modified to produce a level of energy more aligned with the 
HTL. As previously demonstrated, the GHL layer contain-
ing P3HT and perovskite allows for faster hole migration 
and increases charge transmission efficiency. The highest-
performing solar cell achieved an impressive PCE of 20.0%. 
Additionally, the incorporation of the hydrophobic mixture 
layer has improved the stability of the device.

Wang et al. [79] employed P3HT to enhance the  CsPbBr3/
carbon interlayer in perovskite cells, allowing for greater 
energy conversion. The results of the systematic analyses 

demonstrated that the P3HT interlayer could substantially 
repress charge recombination and improve hole transport 
ability. As a result, the device achieved a 27% improvement 
in PCE over the untreated device.

Hybrid poly(3,4‑ethylene‑dioxythiophene) 
polystyrene sulfonate (PEDOT:PSS)

PEDOT:PSS conductive polymers have gained significant inter-
est due to their high conductivity, optical transparency, ease of 
production, and biocompatibility. It is a two ionomer polymer 
combination. Polystyrene sulfonate, a sulfonated polystyrene 
carrying a negative charge, is one component of this mixture. 
The other component PEDOT is a polythiophene-based cross-
linked polymer that transports net positive charge. The charged 
macromolecules combine to generate a macromolecular salt 
[80]. PEDOT:PSS stands out as one of the most efficient con-
ductive organic materials. Despite having less electrical mobil-
ity than silicon, it can be used in PSC devices via stress-relief 
structures and is sufficiently flexible. Low-cost processing, 
such as roll-to-roll processing, is feasible with PEDOT:PSS 
[81]. PEDOT:PSS is extensively employed as a HTL in PSCs 
because of its excellent hole selectivity along with zwitterionic 
nature, which allows for solution-based multilayer deposition 

Fig. 7  Field emission scanning 
electron microscopy of a pris-
tine sample and b samples with 
P3HT-based GHL layer [76]

Fig. 8  Contact angle for a 
P3HT GHL and b pristine film 
[76]
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[82]. One of the most significant drawbacks of PEDOT:PSS is 
open circuit voltage losses caused by incorrect chemical inter-
action with perovskites. Moreover, energy level mismatch leads 
to losses in PCE.

Qi et al. [83] investigated the use of three different poly-
mer isoforms of PANI, namely, PANI-carbazole, PANI-phe-
noxazine, and PANI-phenothiazine, to modify the interface 
between perovskite and PEDOT:PSS (Fig. 9) as the HTL. 
The device energy alignment after treatment indicates a 
wider bandgap to improve the overall performance of the 
PSC. This resulted in an increase in the absorbance of the 
film. Moreover, the morphology of the films showed signifi-
cant uniformity and crystallinity. Modified MAPbI3 PSCs 
had an increased Voc and an improved PCE of 21.06%.

Wu et  al. [85] introduced potassium citrate into the 
PEDOT:PSS film, resulting in a significant enhancement 
of the photoluminescence (PL) intensity and confirming 
effective passivation. The  I– coordinated with the  Pb2+ at 
the perovskite layer, improving the contact. The citrate group 
could confine the residual  Pb2+ for passivation, while the 
free  I– was collected back by  K+ . In this study, device per-
formance is enhanced from 16.31 to 19.66%. The improve-
ment was due to the modification of the interface caused by 
the complex formations of the  K+ and citrate groups.

Wang et al. [86] introduced a poly(triaryl amine) PTAA 
layer between perovskite and PEDOT:PSS HTL to suppress 
charge recombination and speed up hole transfer. With an 
optimum content of 0.75 mg/ml of the PTAA layer, a PCE 
of 19.04% could be achieved. The optoelectronic character-
istics and stability of the PSC system have also improved 
dramatically compared to previous works. The energy band 
alignment improved the transit of holes from the perovskite 
film to the PEDOT:PSS layer while avoiding recombina-
tion at the interfaces. Moreover, an increase in contact angle 
(47.1°) was observed for treated cells compared to untreated 
cells (4.6°).

Zhou et al. [87] presented a novel synergistic strategy for 
creating stable inverted PSC using PEDOT:PSS HTL, which 
had better conductivity, lower electrode work function, and 
excellent morphology. Furthermore, S-acetylthiocholine 
chloride was used instead of the more expensive PCBM ([6, 
6] -phenyl-C61-butyric acid methyl ester) as a passivation 
layer. Effective passivation of surface charge defects on the 
perovskite film was observed. This comprehensive approach 
prolongs the recombination lifetime and lowers the charge 
trap density. Passivated devices outperformed PCBM in 
terms of environmental and thermal stability. Consequently, 
the best cell had an efficiency of 20.06%, while the untreated 
cell had an efficiency of 18.77%.

The preceding research established that conducting poly-
mers (CPs) are viable passivating additives for PSCs because 
of their outstanding electrical and ionic conductivity, high 
stability, and ability to interface with perovskite materials 
[88, 89]. CPs can operate as a layer of protection, preventing 
moisture, oxygen, and other contaminants from entering the 
PSCs. They can also improve the electrical contact between 
the interlayers, potentially increasing device performance. 
However, more research is required to enhance deposition 
processes and comprehend the underlying mechanisms of 
the passivation process. The following section discusses 
the significance of metal-organic framework materials 
(MOFs) in PSC fabrication and the significant advance-
ments reported.

Metal‑organic frameworks (MOFs) 
for passivation of PSCs

Nanoscale metal-organic framework (MOF) compounds pos-
sess unique physical and chemical properties applicable in vari-
ous fields such as magnetism, fluorescence, nonlinear optics, 
adsorption, separation, catalysis, and hydrogen storage [88, 
90–94]. As shown in Fig. 10, MOFs are porous, hybrid materi-
als composed of metal ions coordinated with organic ligands, 
resulting in a three-dimensional structure. Functionalized 

Fig. 9  The chemical structure of PEDOT:PSS [84]

Fig. 10  Schematic of the metal organic framework (MOF) structure 
[98]
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MOFs can be tailored for specific applications through ligand 
modifications, functional group adjustments, and metal ion 
doping. These modifications enhance properties, such as 
increased surface area, accessible pore structure, adjustable 
pore diameters, and a higher density of active metal sites. As a 
result, MOFs exhibit superior molecule transport capabilities 
compared to other porous materials [89, 95–97].

Perovskite absorber layers are sensitive to factors like 
humidity, temperature, pressure, light, electric field, and 
chemical environment, which can affect their stability 
and performance. The degradation of perovskite materi-
als is directly linked to their instability, both functionally 
and physically. In this sense, including MOFs in perovs-
kite structures by additive engineering can considerably 
improve the commercialization prospect for PSCs. They 
are identified according to different groups based on their 
crystal structure: IRMOFs [99], MILs [100], PCNs [101], 
ZIFs [102], UIOs [103, 104], and more. Figure 11 shows 
the three-dimensional structure of various MOF groups.

According to reports, MOFs are used in PSCs in the fol-
lowing ways: (a) incorporated into the ETL, (b) incorporated 
into the HTL, (c) Added to perovskite precursor, and (d) for 
interfacial modification.

The ETL plays a crucial role in PSCs by facilitating elec-
tron transport and blocking holes. Titanium dioxide  (TiO2) 

is a commonly employed ETL in PSCs due to its favorable 
electronic properties, suitable energy gap, transparency, 
and cost-effectiveness. However,  TiO2 does have some 
limitations, including low conductivity and the presence of 
defects such as oxygen vacancies and metal interstitials at 
surface [106]. Incorporating MOFs here would improve the 
porosity of the ETL and make it more conducive for charge 
transfer operations.

The HTL is critical in encouraging electron separation, 
modifying charge carrier motion and recombination and 
perovskite crystallization, and establishing ohmic contact 
at the back contact electrode. At present, 2,2′,7, 7′-tetra-
kis- (N, N-di-4-methoxyphenylamino)-9,9′-spirobifluorene 
(spiro-OMeTAD) is the widely utilized HTL for its excel-
lent stability and an acceptable level of energy. However, 
the lower intrinsic charge mobility may impose limitations 
on its overall performance [107–109]. The combination of 
MOF and HTL can enhance the oxidation of spiro-OMeTAD 
and facilitate charge transport by optimizing band alignment.

MOF materials have made notable progress in PSC 
interface engineering by serving as a microporous scaffold 
to regulate the formation of perovskite layers (Fig. 12). 
This approach enhances the contact at the ETL/perovs-
kite interface, leading to improved crystallinity and film 
quality [110].

Fig. 11  Schematic structures of MOFs. a IRMOF-1 based on 3D-[Zn4O(bdc)3] compound. b MIL-100 based on Fe and Ni. c PCN-12 based on 
Cu d ZIF-71 based on Zn. e CPLs-55 based on Zn f UiO-66 based on Zr [105]
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MOFs as ETL modifiers

Table 3 shows standard work recently reported by various 
researchers on MOFs. Wu et al. [93] used a thiol-complexed 
conjugated MOF ZrL3 as ETL for an inverted PSC. The 
MOF demonstrated n-type electron exchange behavior and 
exhibited an energy level suitable for the ETL/perovskite 
interface. By preferentially interacting with the carboxyl 
groups, Zr(iv) ions facilitated the formation of dense, self-
supporting thiol arrays that provided steric protection and 
stabilization around the Zr(iv)-oxo cluster. The abundance of 
thiol groups on the MOF is especially important as they can 
form robust networks through chemically bonded disulfide 
connections, effectively trapping metal ions like lead and tin. 
By incorporating functionalized MOF materials, a signifi-
cant amount of  Pb2+ ions that were lost from damaged per-
ovskite solar cells could be effectively collected and immo-
bilized as water-insoluble solids. This approach not only 
improved the operational stability of the solar cells but also 
helped mitigate lead leakage concerns associated with the 
use of perovskite materials. The incorporation of functional-
ized MOF materials resulted in a remarkable enhancement 
in the PCE of the cells, reaching a high value of 22.02%.

Ahmadian-Yazdi et al. [111] utilized zeolitic imidazolate 
framework-8 (ZIF-8) as an interlayer between the  TiO2 and 
perovskite (see Table 3). In contrast to the mesoporous  TiO2, 
ZIF-8 film possessed all the characteristics required to bene-
fit from a more straightforward synthesis process. This layer 
significantly increased perovskite crystallite size and grain 
structure. SEM visualization of perovskite films after treat-
ment with ZIF-8 layers indicates larger grain size and better 
crystal alignment. The MOF addition is supposed to allow 
homogeneous crystallization of perovskites at layer borders. 
Additionally, the formation of hydrogen bonds between the 
methyl group in the ZIF-8 structure and the halide ions of 
the perovskite structure enhanced the interconnectivity and 
cohesion among individual perovskite crystals. The treated 
cell attained PCE of 16.8%, which was adequate compared 
to previous research groups.

Sadegh et al. [112] employed MOF zinc stannate (ZSO) 
as an ETL(see Table 3). The fabrication of this layer was 
achieved using the chemical bath deposition method (CBD). 
CBD facilitated the formation of a perovskite layer with 
enhanced surface coverage and larger grain size, leading to 
reduced recombination losses. The incorporation of MOF 
at the ETL/perovskite interface improved charge extraction, 

Fig. 12  Various applications of 
MOFs reported so far [105]
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resulting in exceptional photovoltaic performance, reduced 
hysteresis, and reliable device repeatability. The utilization 
of modified ZSO ETL in PSCs led to a notable enhance-
ment in efficiency, with a significant increase in open circuit 
voltage, resulting in a remarkable improvement from 19.3 to 
21.3% compared to conventional ZSO-based devices. Con-
tact angle measurement of the PSCs indicated an increase in 
hydrophobicity in the order of (a) FTO (< 3°), (b) bare ZSO 
ETL (39°), and (c) CBD-modified ZSO ETL (53°).

Nguyen and Bark [113] successfully prepared doped  TiO2 
with trimesic acid (H3BTC) as a MOF (see Table 3). Doping 
with Co significantly improved the morphological features 
of the  TiO2 layer that would be employed in the PSC device. 
After device treatment, the MOF could suppress the excita-
tion and ejecting of electrons, thereby gaining higher con-
ductivity. It boosted device efficiency by up to 15.75% by 
improving bandgap alignment and decreasing surface layer 
flaws at the ETL/perovskite interface.

Ji et al. [114] utilized nanofilm of polyethylenimine ethoxylated 
(PEIE) and tellurophene-based MOF  (Cd3(C6H2TeO4)3·4DMF 
framework. In this work, the nondestructive passivation of  TiO2 
was successful (see Table 3). After modifying the ETL layer, nota-
ble adjustments were observed in the shape and crystallinity of the 
perovskite film, while minimizing the trap states in the  TiO2 layer. 
These modifications resulted in the successful development of 
highly efficient and stable PSCs, achieving an impressive power 
conversion efficiency (PCE) of 22.22%. AFM (atomic force 
microscopy) and SEM visualizations of the PEIE modification 
layer along with 2D MOF indicated formation of a giant perovs-
kite crystal, finer crystal lattice, and elimination of the negative 
effect of PEIE island in the ETL.

Similarly, Liu et al. [115] introduced mesoporous metal 
oxides  TiO2/Al2O3/NiO layered MOF in printable PSCs (see 
Table 3). The study focused on utilizing a triple cationic 
perovskite with cesium cation (Cs). Introducing Cs into the 
perovskite composition, along with the use of MOF, offers 
several advantages. The partial replacement of formamidin-
ium (FA) and methylammonium (MA) with Cs increases the 
energy band gap and exciton energy of the perovskite layer. 
Cesium incorporation also contributes to enhanced carrier 
longevity and diffusion length, leading to improved charge 
transport within thick mesoscopic layers. These modifica-
tions are instrumental in achieving higher performance and 
efficiency in perovskite solar cells.

MOFs as HTL modifiers

Wang et al. [116] incorporated novel Li-TFSI MOF (namely, 
Li-TFSI@NH2-MIL-101) as HTL for resisting reaction with 
water molecules (see Table 3). Li-TFSI, present in spiro-
OMeTAD to promote hole conductivity, harms device sta-
bility. Li-TFSI, owing to its hydrophilic properties, has the 
ability to transiently convert into a liquid state when exposed 

to water for a brief period of time. The presence of water 
or moisture in the environment can lead to uncontrolled 
oxidation of spiro-OMeTAD, which can negatively impact 
the reproducibility of the system. Using the MOF reduces 
the hydrophilicity of the PSC device by increasing the con-
tact angle from 74.53 to 84.60°. The PSCs treated with Li-
TFSI@NH2-MIL-101 achieved a high PCE of 19.01% with 
a reduced Li salt loading mass. The presence of ammonium 
groups (-NH2) in  NH2-MIL-101 enhanced the interaction 
with uncoordinated  Pb2+ ions, leading to passivation of 
trap regions and reduced ion migration at the perovskite/
HTL interface. This improved the stability of the devices. 
Additionally, the incorporation of MOF in the HTL layer 
improved energy alignment within the device.

Zhang et al. [117] constructed a functional layer HTM-
FJU-17 by integrating a capsule of the  (Me2NH2) + metal-
organic framework (FJU-17) into HTM (see Table  3). 
HTM-FJU-17, with its MOF reticular framework, effec-
tively passivated defects in the perovskite layer by fill-
ing organic cation vacancies. The uniform distribution of 
 (Me2NH2) + ions within the MOF structure contributed to 
this passivation process. Furthermore, the MOF anionic 
framework could stabilize oxidized HTM, increasing hole 
mobility. The HTM-FJU-17-treated PSCs indicated reduced 
charge recombination, leading to an improvement in power 
conversion efficiency (PCE) from 18.32 to 20.34%.

Geng et al. [118] constructed a composite material Co-
NC(HCl) fabricated by heating ZIF-67 and etching it with HCl 
(see Table 3). A series of HTM-free PSC structures were cre-
ated by combining this paste with conductive carbon (CC). The 
results show that incorporating the composite interface sup-
pressed charge recombination and promoted hole separation. 
In the ambient atmosphere, the incorporation of HTM-FJU-17 
resulted in a significant improvement in the maximum power 
conversion efficiency (PCE) of the device, reaching 10.72%. 
This represents a notable 43% enhancement compared to the 
untreated device. The enhanced performance of the device can 
be attributed to the unique morphology of the Co-NC(HCl) 
composite. Numerous pinholes and flaws were removed from 
the perovskite boundary in the untreated device after passi-
vation. The shape of the films also improved after utilizing a 
treated carbon-based counter electrode.

Hazeghi et al. [119] synthesized and employed core-shell 
CuO@NiO nanoparticles to synthesize HTL (see Table 3). 
Cu-Ni-BTC nanospheres were successfully synthesized and 
utilized to create a core-shell CuO@NiO HTL. This hybrid 
structure combined the benefits of both NiO and CuO inor-
ganic semiconductors, resulting in improved hole mobility and 
stability. When compared to the NiO HTL, the PSC with the 
CuO@NiO HTL exhibited a higher conversion efficiency of 
10.11%, a significant improvement of approximately 15%. The 
exceptional performance of the PSC incorporating the core-
shell CuO@NiO HTL can be attributed to several factors. 
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First, the favorable energy alignment between the HTL and the 
perovskite layer facilitated efficient charge carrier extraction. 
Second, the increased conductivity of the CuO@NiO HTL 
improved charge transport within the device. Additionally, the 
decreased defect density of the HTL contributed to reduced 
charge carrier recombination. Experimental studies revealed 
that the MOF nanoparticles utilized in the core-shell structure 
exhibited fewer defect states compared to NiO nanoparticles, 
further enhancing the device performance by minimizing 
recombination losses.

Zhou et al. [120] incorporated perovskite with indium-
based MOF  [In12O(OH)16(H2O)5(btc)6]n (In-BTC) hetero-
junction (see Table 3). The unique interlinked micropores and 
terminal oxygen sites of In-BTC facilitated the preferential 
crystallization of perovskite within its regular cavities. This 
phenomenon led to the formation of perovskite films with 
improved morphological characteristics and reduced grain 
defects. The controlled crystallization process within the In-
BTC framework resulted in enhanced film quality, contributing 
to the overall performance and stability of perovskite solar 
cells. The incorporation of In-BTC into the perovskite solar 
cell structure led to notable enhancements in interfacial elec-
trical contact, photo-response, and environmental resilience. 
These improvements translated into a higher fill factor of 0.79 
and an elevated power conversion efficiency (PCE) of 20.87% 
compared to the untreated device. The modified PSC benefited 
from the superior properties of In-BTC, resulting in improved 
device performance and stability.

MOFs as interlayer and precursor modifiers

Chang et al. [121] proposed a novel approach to enhance 
the performance of mixed lead-tin perovskite materials by 
employing two specific metal-organic frameworks (MOFs), 

namely, UiO-66 and UiO-66-NH2 (see Table 3). In contrast 
to UiO-66, the presence of an electron-donating amine group 
in UiO-66-NH2 facilitated interaction with under-coordi-
nated metal cations within the perovskite layer, leading to 
effective passivation and improved device performance, as 
depicted in Fig. 13. The precursor solution employed a con-
centration of 20 mg/ml for the MOF additive.

Interfacial engineering via molecular doping resulted in 
a high PCE of 13.93% and significantly increased ambient 
stability. This strategy also applies to low-bandgap (1.3 eV) 
perovskites, deriving high performance. In contrast to the 
untreated device deterioration, the PSC containing UiO-
66-NH2 could tolerate more air exposure. SEM analysis 
revealed that both the treated and untreated devices exhib-
ited similar grain sizes of approximately 400 nm and surface 
roughness of around 30 nm.

The J–V curves of the PSC are generally showing 
improved efficiency when MOFs are added as shown in 
Fig. 14a. This is attributed to the immobilization effect 
of ZrL3 on leaked  Pb2+ ions as shown in schematic of the 
degradation process of PVSCs in Fig. 14b [110]. Similar 
improvement in efficiency and improved crystalline struc-
ture and morphology is also reported by Lee et al. [122], 
as shown in Fig. 14c–f [123]. It shows the XRD patterns, 
SEM-EDS, J–V curves, and degradation profile of the pris-
tine perovskite film and the studied hybrid films. Basically, 
they demonstrated the working of inverted PSCs utilizing 
perovskite/Zr MOF heterojunction [122]. They investigated 
the utilization of two chemically stable Zr-MOFs, UiO-66, 
and MOF-808, as interlayers in perovskite solar cells. The 
MOFs exhibited the ability to spread throughout the per-
ovskite material, leading to a grain-locking mechanism that 
enhanced defect passivation and improved the film’s resist-
ance to moisture ingress. SEM imaging of both treated and 

Fig. 13  Schematic of the defect 
sites and the passivation effect 
of MOF UiO-66-NH2 [121]
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untreated perovskite solar cell films after aging revealed 
notable differences (see Fig. 14d). The MOF-treated device 
exhibited larger perovskite grains, improved lattice structure, 
and reduced defects compared to the untreated device as 
shown in Fig. 14c. The 3D porous structure of the MOFs 
facilitated the incorporation of small perovskite nanocrys-
tals, ensuring the presence of efficient charge-transport path-
ways across the MOF scaffolds. The superior and enhanced 
PCE of 17.01% was achieved for UiO-66-modified PSCs, 
while the MOF-808-modified PSCs achieved an enhanced 
PCE of 16.55%, surpassing the performance of the untreated 
device. Additionally, the hybrid film exhibited enhanced 
ambient stability, addressing one of the key challenges in 
perovskite solar cell technology.

Essentially, MOFs possess unique properties that make 
them valuable for numerous applications. In the context 
of perovskite solar cells (PSCs), several research studies 
have highlighted the significance of MOFs. By incorpo-
rating MOFs as additives, researchers have demonstrated 
the ability to passivate defects, enhance charge transport, 
and improve the overall functionality of PSCs. MOFs and 
MOF-derived materials can be used at various locations in 
PSCs to improve the layer properties. Furthermore, they are 
appealing materials for PSCs because bandgaps can be eas-
ily adjusted by changing the components by solution synthe-
sis. Essentially, their porous structures can act as protective 
barriers, improving stability by shielding perovskite layers 
from environmental factors. MOFs with scaffold structures 
facilitate controlled perovskite film growth, ensuring uni-
formity and enhanced device efficiency. Additionally, MOFs 
contribute to improved charge transport properties, reducing 
carrier recombination and optimizing overall conductivity. 
Their selective gas permeability can prevent the ingress 
of detrimental gases. Tailored optical properties of MOFs 

complement perovskite materials, enhancing light absorp-
tion and spectral response. Furthermore, MOFs can serve 
as nucleation sites, encouraging controlled perovskite crys-
tal formation. The integration of MOFs thus addresses key 
challenges in perovskite solar cells, promising advances in 
stability, efficiency, and overall performance. Thus, MOFs 
have a tremendous potential to address the device stability 
issue to popularize and further commercialize third-gener-
ation solar cells, and further research is required to study 
such improvements.

Inorganic additives for passivation of PSCs

Polycrystalline perovskite absorbers commonly exhibit sur-
face and grain boundary imperfections, which can adversely 
impact the performance of PSCs. These imperfections, 
depicted in Fig. 14, include impurities, interstitial vacancies, 
and undercoordinated ions. They act as nonradiative recombi-
nation sites, leading to a decrease in overall PSC performance. 
Additionally, these defects can affect the morphology of the 
perovskite crystals and the absorption capacity of each layer 
within the PSC structure (Fig. 15). It is crucial to address and 
mitigate these defects to improve the efficiency and stabil-
ity of PSCs. As a result, much work has been carried out on 
organic compounds like acid base adducts [124–130], poly-
mers [23, 131–134], fullerene derivatives [135–137], organic 
solvents [138–140], organic halides, ionic liquids [141–145], 
and graphene and derivatives [138].

The chemical passivation of perovskite crystal surfaces 
using organic compounds is typically susceptible to degrada-
tion when exposed to various stressors, including UV light, 
temperature, and humidity. This fragility limits their long-
term stability in PSCs. Moreover, organic materials may not 

Fig. 14  a J–V curve of the champion PVSC with ZrL3. b Schematic 
of the degradation process of PVSCs and the immobilization effect 
of ZrL3 on leaked  Pb2+ ions [93]. c XRD patterns. d The SEM-EDS 

images (red is I and green is Zr). e J–V curves of control, UiO-66, 
and MOF-808 added PSCs. f The real-time images of the hybrid film 
stored in ambient condition (25 °C and RH: 60 ± 5%) [123]
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possess the mechanical robustness required for achieving 
compact structures in perovskite absorbers [147]. The qual-
ity of passivation in perovskite materials is influenced by 
the coordination of functional groups within the passivating 
material. The specific arrangement and bonding of these 
groups play a crucial role in determining the effectiveness 
of passivation. By optimizing the coordination chemistry, it 
is possible to enhance the passivation quality and improve 
the performance and stability of perovskite solar cells. Pas-
sivation by inorganic materials is becoming more popular 
due to this improved coordination. This section focuses on 
recent advancements in the performance of PSCs through 
the use of inorganic passivating materials. By optimizing 
the coordination chemistry, researchers aim to improve the 
overall performance and stability of PSCs. The most com-
monly utilized inorganic passivation materials for PSCs are 
classified as follows [148]:

1. Lead group containing materials, such as  PbSO4 and 
PbS, create comprehensive bandgap materials

2. Alkali metal halide materials, such as  KPF6, NaF, KI, 
and RbI, are primarily used for defect removal in inter-
stitial ions

3. Transition metal halide materials, such as  NiCl2 and 
 NbF5, to passivate Pb-I anti-site defects

4. Halide based materials, such as  CdI2,  GeI2,  ZnI2, and 
Cd(SCN2H4)2Cl2, passivate vacancies, under coordi-
nated anions.

5. Hydrophobic materials like thioctic acid (TA) form a 
protective layer against moisture and oxygen

Table 4 shows standard work recently reported by vari-
ous researchers on inorganic additives. Chen et al. [149] 
introduced oleylamine (OA) derived  PbSO4(PbO)4 quan-
tum dots on HTL interface to passivate perovskites as well 

as improve the morphology of the films (see Table 4). The 
quantum dots have demonstrated multiple functions in 
enhancing the performance. These functions include pas-
sivating uncoordinated  Pb2+ and  I− ions on the perovskite 
surface, forming robust hydrogen bonds with organic cati-
ons, and improving the chemical stability of the perovs-
kite layer. The incorporation of quantum dots in PSCs has 
shown promising results in enhancing both the efficiency 
and stability of the devices. SEM imaging of the treated 
PSCs revealed improved surface morphology with fewer 
surface defects. Notably, the treated PSC device exhibited 
a higher PCE ranging from 20.02 to 16.86%, surpassing 
the performance of the untreated sample.

Yang et al. [150] used lead sulfate on the perovskite/HTL 
interface for physical protection (see Table 4). The introduc-
tion of a water insoluble lead (II) oxysalt effectively stabi-
lized both the surface and bulk of the perovskite material by 
interacting with sulfate ions. This treatment improved the 
water tolerance of perovskite films by forming solid chemi-
cal connections and reducing defect density. As a result, 
the treated device demonstrated an extended charge carrier 
lifetime and enhanced solar cell efficiency, reaching 21.1%.

Wang et al. [151] performed interface modulation by potas-
sium hexafluorophosphate  (KPF6) at different concentrations 
to promote charge carrier extraction and reduce charge recom-
bination (see Table 4). A layer of  KPF6 was inserted between 
the  SnO2 quantum dot ETL and the perovskite layer. The  KPF6 
reacted with the perovskite, causing reorientation and redis-
tribution of the organic cation groups. It also reacted with the 
 SnO2 quantum dots, passivating interface defects and suppress-
ing nonradiative recombination. PSCs treated with 0.5 mg/ml 
 KPF6 achieved a PCE of over 21%.

Bi et al. [152] employed  KPF6 to modify ETL/perovs-
kite interface (see Table 4). Similar to previous research, 
 KPF6 improved the interfacial contact between the  SnO2 

Fig. 15FF  The possible surface 
defects of perovskite [146]
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layer and the perovskite layer through hydrogen and coor-
dination bonds. This modification resulted in a higher 
device efficiency of 21.39% from 19.66% of untreated 
device. The modified ETL layer showed improved surface 
quality without imperfections or pinholes.

Gong et al. [153] demonstrated that by dissolving  NiCl2 
into a perovskite precursor solution,  PbI3− anti-site defects 
could be passivated (see Table 4). Due to the differing solu-
bility of  NiCl2 and  PbI2, it was discovered that the addition 
of  Ni2+ could considerably develop poly porous  PbI2 films, 
favoring MAI penetration and, therefore, forming bigger 
crystals. Here, the perovskite grain growth and defect pas-
sivation are accomplished simultaneously. As a result, a 3% 
 Ni2+ addition-based PSC with improved cell stability may 
achieve a PCE of 20.6% under ambient conditions.

Wu et al. [154] modified the defects in the perovskite 
layer using cadmium iodide  (CdI2) between the ETL/
perovskite interface (see Table 4). The addition of Cd-I 
interactions effectively stabilized iodine ions and reduced 
surface iodine shortage in the perovskite layer. This led to 
improved operating stability and reduced interfacial charge 
recombination loss. Blade-coated PSCs treated with Cd-I 
achieved a high power conversion efficiency (PCE) of 
21.9%. The functional groups  Cd2+ ,  I− , and Cd-I played 
a crucial role in passivation. The thermal annealing pro-
cess of the perovskite layer resulted in iodine vacancies on 
the surface, leading to nonradiative charge recombination 
and poor photocurrent. The Cd-I bond in the perovskite 
layer effectively stabilized iodide ions, compensating for 
the iodine deficiency and improving overall performance.

Table 4  Some data for improvements in PCE for inorganic additives for passivation of PSCs

Sr. no. Name of additive 
(structure)

Perovskite + location Type of additive Passivation effect on PCE (%) (% 
improvement)

References

1 Oleyl amine coated 
lead sulfate 
 (PbSO4(PbO)4)

MAPbI3 HTL interface Inorganic non-halide 
(lead containing 
substance)

Uncoordinated  Pb2+ 21.1 (12.83) [149]

2 Lead sulfate  (PbSO4) Cs0.05FA0.81MA0.14PbI2.55Br0.45 
perovskite/HTL interface

Inorganic non-halide 
(lead containing 
substance)

Uncoordinated  Pb2+ 
and  I−

20.02 (18.74) [150]

3 Potassium hexafluoro-
phosphate  (KPF6)

(CsI)0.04(FAI)0.82(PbI2)0.86(MA
PbBr3)0.14 between ETL and 
the perovskite layer

Inorganic halide 
(alkali metal halides)

SnO2/perovskite 
interlayer

21 (23.23) [151]

4 Potassium hexafluoro-
phosphate  (KPF6)

FA0.88Cs0.12PbI3−x(PF6)x ETL/
perovskite interface

Inorganic halide 
(alkali metal halides)

SnO2/perovskite 
interlayer

20.39 (3.72) [152]

5 Nickel chloride  (NiCl2) MAPbI3 into perovskite precur-
sor solution

Inorganic halide (tran-
sition metal halides)

δ-Phase 20.56 (12.35) [153]

6 Cadmium iodide 
 (CdI2)

MAPbI3 ETL/perovskite 
interface

Inorganic halide Iodine vacancies 21.9 (8.41) [154]

7 Thioctic acid (TA) MAPbI3 ETL interface Organic non-halide 
(hydrophobic materi-
als)

Pb-I anti-site defects 20.4 (17.24) [155]

8 Lead sulfide  (PbSx) MAPbI3 Inorganic non-halide 
(lead containing 
substance)

Uncoordinated  Pb2+ 18.54 (12.36) [156]

9 Potassium iodide (KI) Cs0.06FA0.79MA0.15Pb(I0.85B
r0.15)3

Inorganic halide 
(alkali metal halide)s

Iodide Frenkel defect 17.55 (2.39) [157]

10 Rubidium iodide (RbI) MA0.5FA0.5PbI3 Inorganic halide 
(alkali metal halides)

Stability and 
hysteresis

21.8 (26.01) [158]

11 Niobium fluoride 
 (NbF5)

FA0.85MA0.15Pb3 Inorganic halide (tran-
sition metal halides)

δ-Phase 20.56 (12.34) [159]

12 Zinc iodide  (ZnI2) CsPbI2Br Inorganic halide Grain boundary 
defects

12.16 (19.09) [160]

13 Titanium oxide nano-
particles  (TiO2)

MAPbI3 Inorganic non-halide 
(oxides)

Ion transports 17.42 (8.19) [161, 162]

14 Zinc phthalocyanine 
(ZnPC)

(ZnPc)0.5MAn-1PbnI3n+1 Inorganic non-halide 
(hydrophobic materi-
als)

MA+ migration 19.6 (4.25) [163]
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Chen et al. [155] demonstrated a cross-linkable small 
organic molecule thioctic acid (TA), anchored to ETL 
interface through complex bonds (see Table 4). Following 
thermal treatment, a robust continuous polymer (Poly(TA)) 
was formed in situ, acting as a bifacial passivation agent 
to reduce defects significantly. The addition of this layer 
has the potential to enhance charge extraction efficiency 
and improve the water and light resistance of the perovskite 
film. The carboxylic acid molecule (COOH) in the addi-
tive can coordinate with the surface of  TiO2, leading to 
improved performance. The presence of the ‘S’ type func-
tional group in the  TiO2-Poly (TA) layer contributes to the 
formation of a high-quality perovskite film. As analyzed, 
contact angle increased dramatically from 30 to 102°, which 
aided in creating high-quality perovskite films. The poly 
(TA)-based device achieved a remarkable power conversion 
efficiency (PCE) of 20.4%, one of the highest reported for 
MAI-based perovskite, with minimal hysteresis.

Inorganic materials offer superior adhesion properties 
compared to organic materials, addressing the challenge 
of poor coupling between organic materials and perovs-
kite layers. Strengthening the chemical connections with 
inorganic materials improves fault passivation, enhances 
stability, and provides mechanical protection, enhancing 
durability of PSCs. Inorganic materials are emerging as a 
potential strategy for passivation in perovskite solar cells 
(PSCs). Recent advancements demonstrate the diverse 
topologies and passivation effects of different inorganic 
materials. Some materials are effective within the perovs-
kite layer, while others work at the interface. Combin-
ing these materials can yield promising results. Double-
sided inorganic passivation, such as TA, offers intriguing 
research opportunities. Inorganic passivation materials 
with synergistic effects and the ability to passivate mul-
tiple faults and both sides can significantly enhance PSC 
performance and stability.

Summary and outlook

To achieve commercial viability, further advancements 
are needed to enhance the performance of perovskite 
solar cells (PSCs). While certain aspects like systematic 
engineering, structural design, charge transport, and elec-
trode materials have made significant progress, additional 
research is required to improve stability and long-term 
operability. The enhancement in efficiency as well as sta-
bility is conceivable by addition of novel additive materi-
als. It will lead to alter the surface morphology as well as 
crystalline structure. This review focuses on recent stud-
ies investigating the passivation of PSCs using neoteric 
energy materials, such as conducting polymer additives, 
MOFs, and other inorganic materials.

In conducting polymers, specific polymer structures 
with multiple required additive qualities must be formed 
by combining specific polarity gradations and then chang-
ing the polymer structures themselves. In reaction to envi-
ronmental crises, technologies should be developed to use 
eco-friendly biodegradable polymers and environmentally 
sustainable materials above those that improve device per-
formance. Essentially, conducting polymers considerably 
improve perovskite solar cell performance, leveraging 
their high conductivity for efficient charge transport and 
improving overall performance. The hydrophobicity of 
conducting polymers maintains high resistance to mois-
ture, leading to superior stability. Actually, its low solubil-
ity, together with chemical modifications, augments mate-
rial stability. Overcoming the challenging process-ability 
of conducting polymers involves utilizing self-assembly 
characteristics and scaffold structures. Polymer doping can 
further enhance conductivity, leading to improved supe-
rior efficiency. Essentially, due to its exclusive properties 
(both electrical as well as optical), conducting polymers 
enhance crystal morphology, crystal growth, and surface 
passivation. Serving as scaffolds for perovskite films, 
conducting polymers provide structural support, facili-
tating the formation of high-quality films. Encouraging 
reactions between  PbI2 and MAI is another contribution, 
promoting the development of stable perovskite structures. 
In summary, conducting polymers play a crucial role in 
improving key challenges of perovskite solar cells, includ-
ing conductivity, hydrophobicity, solubility, and process-
ability (see Table 1). Especially, PANI as additive imparts 
perovskite devices with better moisture and temperature 
resistance as discussed in detail.

Conversely, MOFs have distinct characteristics and are 
used in various locations throughout the PSC. MOFs are 
attractive for PSCs due to their tunable bandgaps, which 
can be easily adjusted by varying the components in 
straightforward synthesis processes. They exhibit varied 
physical and chemical characteristics that synergistically 
act on interstitial defects and thus they are a good choice 
for passivation additives in the future. By incorporating 
MOFs as additives, several researchers have demonstrated 
the ability to passivate defects, enhance charge transport, 
and improve the overall functionality of PSCs. MOFs 
can be used as additive at various locations in PSCs to 
enhance the quality of perovskite layer, charge transfer, 
and recombination mitigation. Additionally, they are inter-
esting materials for PSCs as bandgaps can be simply tuned 
by altering the components. Besides, the porous structure 
of MOFs can act as protective barriers, improving stability 
by guarding perovskite layers from environmental factors. 
MOFs with scaffold structures facilitate controlled perovs-
kite film growth, ensuring uniformity and enhanced device 
efficiency. The addition of MOFs therefore addresses vital 
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challenges in PSCs, favorable improvements in stabil-
ity, efficiency, and overall performance. MOFs have an 
incredible potential to solve the device stability problem 
of PSCs.

Finally, inorganic compounds compensate for the inad-
equacies of organic additives by creating stronger bonds 
and playing a mechanical role in perovskite layer protec-
tion. To comprehensively impact PSC commercialization, 
various inorganic materials should be integrated and applied 
in device production methods.

In the current review article, different categories of 
materials used as an additive, namely, conducting poly-
mers, MOFs, and inorganic additives are deliberated in 
depth. It is apparent that the maximum improvement (in 
both the PCE as well as stability) is relatively achieved 
by MOFs. Especially, zirconium-based MOFs led to 
superior improvement.

There is a great prospective for the commercial accom-
plishment of perovskite solar cells; if appropriate, additive 
materials are utilized appropriately during the fabrication 
of PSCs. Therefore, the existing review is to a great extent 
useful as a handy guide for further application of particular 
type of additive for the given perovskite.

In inference, the field of passivation studies holds 
immense potential for advancing photovoltaics. These types 
of passivating strategies can be useful for developing a PSC 
with a longer ambient operation lifetime leading to com-
mercialization. So, further work on more such passivating 
strategies is required to be carried over in the near future. 
With the continuous development of new materials, there 
is a promising possibility for perovskite solar cells to rival 
traditional silicon solar cells, contributing to the resolution 
of energy challenges in the near future.
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