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Abstract
All-solid-state lithium-ion batteries are a promising next-generation technology because they have higher energy densi-
ties than their liquid-electrolyte counterparts. Halogen-rich argyrodite, specifically  Li5.4(PS4)(S0.4Cl1.0Br0.6), was recently 
shown to have higher ionic conductivities compared with those of other argyrodite-like sulfides. Although the  Li5.4(PS4)
(S0.4Cl1.0Br0.6) in Li |  Li5.4(PS4)(S0.4Cl1.0Br0.6) | Li(Ni0.8Co0.1Mn0.1)O2–Li5.4(PS4)(S0.4Cl1.0Br0.6) batteries have shown good 
electrochemical stability, the low discharge capacity limits the application of the battery. In continuation, this study exam-
ined the potential of a carbon additive for altering the electronic conductivity of the cathode and enhancing the capacity of 
Li |  Li5.4(PS4)(S0.4Cl1.0Br0.6) | Li(Ni0.8Co0.1Mn0.1)O2–Li5.4(PS4)(S0.4Cl1.0Br0.6) batteries. After a 50-cycle charge/discharge, 
the carbon additive (0.1 C) enhanced the discharge capacity from 3.1 to 167 mAh/g, resulted in a capacity retention rate 
and coulombic efficiency of 95.4% and 99.9% when using 0.1 C and 0.5 C, respectively, and increased the resistance of the 
battery from 53 to 56 Ω. Therefore, the all-solid-state battery employing high-ion-conductive  Li5.4(PS4)(S0.4Cl1.0Br0.6) and a 
carbon-modified cathode showed improved capacity. This study provides a proven framework for developing all-solid-state 
batteries employing halogen-rich argyrodite  (Li7-α(PS4)(S2-αXα); α > 1) with enhanced ionic conductivities.
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Introduction

Various high-performance lithium-ion rechargeable batter-
ies, such as all-solid-state batteries, have been developed to 
address the demand for technological development under 
the challenges of climate change [1] and realize a sustain-
able carbon-neutral society [2–4]. The performance of all-
solid-state batteries mostly depends on the electrochemical 

properties and lithium-ion conductivity of the electrolyte [5]. 
Although conventional all-solid-state lithium-ion batteries 
have low-rate capabilities and energy densities, recent stud-
ies have demonstrated that lithium–phosphorus–sulfide solid 
electrolytes (SE) show improved ionic conductivity [6–8] 
and may be easily integrated into battery production because 
of their mechanical softness [9] and facile processing [10].

Among the phosphorus sulfides, we have discovered 
various  Li7-αPS6-αXα (X = Cl, Br, I) argyrodites that exhibit 
high ionic conductivities [11–17], denoted as  Li7-α(PS4)
(S2-αXα) [18]. In a  Li7-x–y(PS4)(S2-x-yClxBry) system [18], 
 Li5.4(PS4)(S0.4Cl1.0Br0.6) showed excellent electrochemical 
stability in Li |  Li5.4(PS4)(S0.4Cl1.0Br0.6) | Li(Ni0.8Co0.1Mn0.1)
O2–Li5.4(PS4)(S0.4Cl1.0Br0.6) batteries. Nevertheless, the dis-
charge capacity of this battery (140 mAh/g) was still lower 
than those of other all-solid-state batteries (> 140 mAh/g) 
[19].

To explain the low discharge capacity, we measured the 
electronic and ionic conductivities of cathode mixtures. 
Changing the amount of cathode active material from 70 to 
90 wt% increased the electronic conductivity of the cathode 
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mixture, but reduced its ionic conductivity. Unfortunately, 
both high electronic and lithium-ion conductivities are nec-
essary for generating an effective composite cathode. In 
addition, much predomination of electronic conductivity 
contributes to the discharge capacity [19].

Several studies have attempted to enhance the capacity 
of various sulfide solid electrolytes using a carbon additive 
(CA) to increase the electronic conductivity of the cath-
ode [20–42]. The discharge capacity of the Li | β-Li3PS4 
| Li(Ni0.6Co0.2Mn0.2)O2–β-Li3PS4 battery increased with 
a CA-modified cathode. However, the capacity retention 
rate was ~ 85% after 50 cycles [23]. Similarly, the retention 
rate of the In-Li |  Li6.0(PS4)(S1.0Cl1.0) | Li(Ni0.6Co0.2Mn0.2)
O2–Li6.0(PS4)(S1.0Cl1.0) battery was 79% after 50 cycles [42]. 
With a CA, the capacity decreased with repeated cycles, 
although the initial capacity was high [23]. The decreased 
capacity after cycling was likely related to a decomposition 
reaction of SE, although the mechanism remains unclear 
[43, 44]. However, it is unclear whether an all-solid-state 
battery with a CA-modified cathode can maintain a consist-
ent capacity after cycling.

We hypothesized that a CA-modified cathode would 
enhance the capacity of an all-solid-state battery using a 
high ion-conductive  Li5.4(PS4)(S0.4Cl1.0Br0.6) solid electro-
lyte. We previously showed that batteries with a cathode 
mixture consisting of 70 wt% active material and 30 wt% 
 Li5.4(PS4)(S0.4Cl1.0Br0.6) had the lowest capacity [19]; how-
ever, the capacity of the battery may be rescued by adding 
CA to increase the electronic conductivity of the cathode 
mixture [19]. Unfortunately, the effects of CA cathode modi-
fications in all-solid-state  Li5.4(PS4)(S0.4Cl1.0Br0.6) batteries 
are unclear. To increase the battery capacity, the cathode 
mixture should preferably have a high active material ratio. 
However, we selected 70 wt% active material and 30 wt% 
 Li5.4(PS4)(S0.4Cl1.0Br0.6) to investigate the effect of elec-
tronic conductivity on capacity during cycling. We measured 
the changes in the discharge capacity and capacity retention 
rates of the Li |  Li5.4(PS4)(S0.4Cl1.0Br0.6) | Li(Ni0.8Co0.1Mn0.1)
O2–Li5.4(PS4)(S0.4Cl1.0Br0.6)–CA battery using cycling tests, 
followed by impedance analysis to evaluate the battery 
resistance during cycling.

Methods

Synthesis of solid electrolyte and cathode mixture

Li5.4(PS4)(S0.4Cl0.1Br0.6) powder and  LiNbO3-coated 
Li(Ni0.8Co0.1Mn0.1)O2 were synthesized and the thickness 
of the coated layer (4.2 nm) was calculated, as we have pre-
viously described [18, 19]. Mixed cathode powders were 
prepared using  LiNbO3-coated Li(Ni0.8Co0.1Mn0.1)O2, 
 Li5.4(PS4)(S0.4Cl1.0Br0.6), and CA (Li100, Denka) in weight 

ratios of 70:30:0 (0 vol%), 70:30:3.4 (5 vol%), 70:30:7.2 
(10 vol%), and 70:30:21.5 (25 vol%), respectively. CA made 
from acetylene black was selected in this study because it 
has previously been reported to maintain a high-capacity 
retention rate even after cycling [20]. The densities for 
Li(Ni0.8Co0.1Mn0.1)O2 and  Li5.4(PS4)(S0.4Cl1.0Br0.6) were 
selected as previously described [19] and the CA load was 
2.16 g/cm3 [45]. The volume ratios were calculated from 
these densities and weight ratios. Volume ratio is used to 
describe the percolation of ions and electrons within a three-
dimensional composite cathode [46]. The cathode mixtures 
were placed in a  ZrO2 pot (45 ml) containing a  ZrO2 ball 
(2.0 mm diameter; 34 g) in an argon-filled glovebox for dry 
ball-milling. The mixing condition was the same as in our 
previous study [19].

All‑solid‑state battery fabrication 
and electrochemical measurements

We fabricated a battery with a Li |  Li5.4(PS4)(S0.4Cl1.0Br0.6) 
| Li(Ni0.8Co0.1Mn0.1)O2–Li5.4(PS4)(S0.4Cl1.0Br0.6)–CA struc-
ture. The total amount of cathode active material was 18 mg. 
Lithium foil (10 mm diameter, 0.2 mm thickness; Honjo 
Metal, Osaka, Japan) was used as the anode. The solid elec-
trolyte (100 mg) was pressed into 10-mm-diameter pellets at 
300 MPa. The cathode mixtures were pressed into 10-mm-
diameter pellets at 600 MPa to form a cathode electrode 
layer. Finally, lithium metal was attached to the opposite side 
of the cathode and pressed at 100 MPa.

Electrochemical measurements were performed while 
the battery pellets were loaded at 20 MPa using a screw 
and torque wrench. The battery was charged and discharged 
between 2.5 and 4.3 V at 298 K using a potentio-galvanostat  
(VMP-3, Biologic, Seyssinet-Pariset, France). The atmos-
phere contained less than 1 ppm moisture and oxygen. The 
current density was fixed at 0.24 or 1.2 mA/cm2, correspond-
ing to 0.1 C and 0.5 C, respectively. Impedance spectra were 
collected using the potentio-galvanostat. The charge and 
discharge capacity values at the 1st, 2nd, 10th, 20th, 30th, 
40th, and 50th cycles were measured at 0.1 C. The values 
at all other cycles were measured at 0.5 C to accelerate the 
capacity degradation. Impedance spectra were collected at 
the 1st, 10th, 20th, 30th, 40th, and 50th cycles under a state 
of charge (SOC) of 0%, 50%, and 100%. Before conduct-
ing the impedance measurements, the charge and discharge 
operations were stopped for 5 min. Impedance spectra were 
measured for the open-cell state with a voltage amplitude of 
10 mV over a frequency range of  106 to 0.01 Hz at 298 K. 
All measurements were conducted under 1 ppm of mois-
ture and oxygen. For an all-solid-state battery comprising 
a sulfide solid electrolyte, 300 to 600 MPa can be applied 
to manufacture the pellet and 10 to 70 MPa during cycling 
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[18, 19, 47–49]. Impedance spectra were fitted using Zmeam 
software (Zmeam_v109002) [50].

Ionic and electronic conductivity measurements 
of cathode mixtures

The ionic and electronic conductivities of the cathode mix-
tures were measured as previously described [19]. The ionic 
conductivities of the cathode mixtures were measured using 
an electron-blocking cell with a Li |  Li5.4(PS4)(S0.4Cl1.0Br0.6) 
| Li(Ni0.8Co0.1Mn0.1)O2–Li5.4(PS4)(S0.4Cl1.0Br0.6)–CA | 
 Li5.4(PS4)(S0.4Cl1.0Br0.6) | Li structure. Cathode mixtures 
(total weight: 200 mg) sandwiched with 50 mg of  Li5.4(PS4)
(S0.4Cl1.0Br0.6) from both sides were pressed into 10-mm-
diameter pellets at 600 MPa. Subsequently, Li foil (10 mm 
φ, thickness: 0.2 mm; Honjo Metal) was applied on both 
ends and pressed at 100 MPa. Constant voltages (Eapp_i) 
of 10, 20, 30, 40, and 50 mV were applied for 2 h. The 
resistance of the electron-blocking cell was calculated from 
the slope between Eapp_i and current using the current and 
voltage values obtained after 2 h. The electron-blocking 
cell resistance includes the solid electrolyte and mixture 
resistances. The resistance of the solid electrolyte and cell 
length of  Li5.4(PS4)(S0.4Cl1.0Br0.6) (equivalent to 16.2 Ω and 
7.4 ×  10−2 cm at 100 mg, respectively) were calculated [18] 
and subtracted from the electron-blocking cell resistance. 
The ionic conductivity was calculated using the surface 
area (0.785  cm2), subtracted resistance, and cell length. The 
measurements were performed while the electron-blocking 
cell was compressed at 20 MPa using a screw and torque 
wrench in an atmosphere with 1 ppm moisture and oxygen.

The electronic conductivity of the cathode compos-
ites was measured using an ion-blocking electrode of 
stainless steel (SUS) | Li(Ni0.8Co0.1Mn0.1)O2–Li5.4(PS4)
(S0.4Cl1.0Br0.6)–CA | SUS. The ion-blocking electrode (total 

weight: 200 mg) was pressed into 10-mm-diameter pellets 
under 600 MPa. Thereafter, constant voltages (Eapp_e) of 10, 
20, 30, 40, and 50 mV were applied to the electrode pellets 
for 2 h, and the resistance of the composite was calculated 
from the slope between Eapp_e and current. This calculation 
does not require correction of the solid electrolyte resistance. 
The measurements were performed while the electrode pel-
lets were compressed at 20 MPa using a screw and torque 
wrench in an atmosphere with 1 ppm moisture and oxygen.

Results and discussion

Charge and discharge capacities of Li |  Li5.4(PS4)
(S0.4Cl1.0Br0.6) | Li(Ni0.8Co0.1Mn0.1)O2–Li5.4(PS4)
(S0.4Cl1.0Br0.6)‑CA batteries

In our previous study, the battery using  LiNbO3-coated 
Li(Ni0.8Co0.1Mn0.1)O2 and  Li5.4(PS4)(S0.4Cl1.0Br0.6) in 
weight ratios of 70:30 without CA exhibited the low-
est discharge capacity among the batteries comprising 
different ratios of Li(Ni0.8Co0.1Mn0.1)O2 and  Li5.4(PS4)
(S0.4Cl1.0Br0.6) [19]. The discharge capacity and capacity 
retention rate of the battery using 70:30  LiNbO3-coated 
Li(Ni0.8Co0.1Mn0.1)O2 and  Li5.4(PS4)(S0.4Cl1.0Br0.6) after 
50 cycles were 3.1 mAh/g and 99.1%, respectively. Com-
pared with that when using 0 vol% CA in the cathode mix-
ture  [LiNbO3-coated Li(Ni0.8Co0.1Mn0.1)O2 and  Li5.4(PS4)
(S0.4Cl1.0Br0.6) in weight ratios of 70:30], the discharge 
capacity increased from 3.1 to 167 mAh/g after 50 cycles 
when using 5 vol% (Fig.  1a). The capacity retention 
rate and coulombic efficiency after 50 charge/discharge 
cycles were 95.4% and 99.9% when using 0.1 C and 0.5 
C, respectively. This represents a much higher capacity 
retention rate compared with that of the In-Li |  Li6.0(PS4)

Fig. 1  a Cycling durability (filled circles) and coulombic efficiency 
(asterisks) of the all-solid-state battery using (red) 0 vol%, (black) 5 
vol%, (blue) 10 vol%, and (orange) 25 vol% cathode mixtures meas-
ured at 0.1 C. b Charge/discharge curve of 2nd cycle at 0.1 C. The 

red, black, blue, and orange lines represent 0 vol%, 5 vol%, 10 vol%, 
and 25 vol%, respectively. c Capacity curve of all-solid-state battery 
using 5 vol% cathode at 3rd and 49th cycle charged/discharged at 0.5 
C
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(S1.0Cl1.0) | Li(Ni0.6Co0.2Mn0.2)O2–Li6.0(PS4)(S1.0Cl1.0) bat-
tery [42] after 50 cycles (79%). However, the discharge 
capacity decreased when the amount of CA exceeded 5 
vol%. The discharge capacity of the battery using 25 vol% 
was 25 mAh/g at most in the initial cycle and the battery 
suddenly short-circuited after 6 cycles. The first expla-
nation for this phenomenon is that decomposed products 
formed at the SE/CA interface, such as the decomposition 
of solid electrolyte observed by cyclic voltammogram in 
the Li | β-Li3PS4 | β-Li3PS4-CA configuration [43]. The 
bonding of terminal sulfur such as  PS4 tetrahedra in 
β-Li3PS4 was experimentally confirmed to be decomposed 
into bridged sulfur compounds (-S-) above 3.5 V [43, 44]. 
This indicated that  PS4 tetrahedra containing solid elec-
trolyte decomposed at high voltage. In our previous study, 
 Li5.4(PS4)(S0.4Cl1.0Br0.6) was stable above 10 V without 
CA. This suggests that an increased probability of reaction 
between the CA and  Li5.4(PS4)(S0.4Cl1.0Br0.6) exists in bat-
teries using the 25 vol% cathode. Notably, 10 vol% corre-
sponded to a high discharge capacity, almost equivalent to 
that at 5 vol%. This suggests that  Li5.4(PS4)(S0.4Cl1.0Br0.6) 
is stable and its decomposition is negligible in the 10 vol% 
cathode. The second explanation is that decomposed prod-
ucts were formed at the Li(Ni0.8Co0.1Mn0.1)O2/Li5.4(PS4)
(S0.4Cl1.0Br0.6) interface. We previously reported amor-
phous impurities generated at the Li(Ni0.8Co0.1Mn0.1)O2/
Li5.4(PS4)(S0.4Cl1.0Br0.6) interface during cycling, which 
increased impedance. Because we used a similar compo-
sition of cathode active material and solid electrolyte, we 
presumed that amorphous impurities formed in systems 
with high CA contents [19]. A third explanation is that 
impurities were generated at the Li(Ni0.8Co0.1Mn0.1)O2/
CA interface, though this requires validation [23]. Conse-
quently, we hypothesized that the short circuit in 25 vol% 
CA batteries was due to the decomposition reactions at 
the  Li5.4(PS4)(S0.4Cl1.0Br0.6)/CA and Li(Ni0.8Co0.1Mn0.1)
O2/Li5.4(PS4)(S0.4Cl1.0Br0.6) interfaces.

We previously measured the electronic and ionic con-
ductivities of cathode mixtures without CA and found that 
changing the cathode active material content from 70 to 
90 wt% promoted electronic conductivity while reducing 
ionic conductivity. Because electronic conductivity changed 
more drastically than ionic conductivity, it is likely that elec-
tronic conductivity was the key factor affecting discharge 
capacity [19]. We adjusted the amount of CA (from 0 to 
25 vol%) in the battery comprising 70:30  LiNbO3-coated 
Li(Ni0.8Co0.1Mn0.1)O2 and  Li5.4(PS4)(S0.4Cl1.0Br0.6) and 
found that the electronic conductivities of the cathode mix-
tures increased greatly from 2.6 ×  10−8 to 1.1 S/cm with a 
CA modification (Fig. 2).

The lithium-ion conductivity between 0 and 25 vol% was 
about 2.9 ×  108 times smaller than the electronic conductiv-
ity. The small degree of change in ionic conductivity was 

likely due to the weak influence on  Li5.4(PS4)(S0.4Cl1.0Br0.6) 
conduction path structure [18, 19].

The all-solid-state battery using the Li(Ni0.8Co0.1Mn1.0)
O2 and β-Li3PS4 cathode (ionic conductivity: ~ 0.1 mS/cm) 
mixture showed a high capacity (120 mAh/g) without CA 
[51–54]. In contrast, we measured 3.1 mAh/g after 50 cycles 
in our all-solid-state battery using a high-ion-conductive 
solid electrolyte,  Li5.4(PS4)(S0.4Cl1.0Br0.6) (12 mS/cm), with-
out a CA-modified cathode. Battery capacity may decrease 
even if the ionic or electronic conductivity of the cathode 
is high [55, 56], likely because the charge/discharge reac-
tion caused by charge transfer involves both lithium-ion and 
electron conduction in the electrode [55, 56]. These results 
emphasize the importance of the electronic conductivity 
of the cathode mixture when optimizing battery capacity 
in a system incorporating a high-ion-conductive  Li5.4(PS4)
(S0.4Cl1.0Br0.6) solid electrolyte. This high ionic conductivity 
is also attributed to the high discharge capacity at 0.5 C [55, 
56]. Compared with the discharge capacity (< 10 mAh/g) of 
the Li | β-Li3PS4 | Li(Ni0.8Co0.1Mn1.0)O2–β-Li3PS4 battery 
[51], the all-solid-state battery with 5 vol% CA recorded 137 
mAh/g and 134 mAh/g at the 3rd and 49th cycles, respec-
tively (Fig. 1c).

Impedance spectra of Li |  Li5.4(PS4)(S0.4Cl1.0Br0.6) 
| Li(Ni0.8Co0.1Mn0.1)O2–Li5.4(PS4)(S0.4Cl1.0Br0.6)‑CA 
batteries

Impedance spectra are shown in Fig. 3a–d. We previously 
reported that  Li5.4(PS4)(S0.4Cl1.0Br0.6) showed constant 
resistance at a high frequency due to its high chemical sta-
bility. However, we could not separate the bulk and grain 
boundary due to the measurement frequency region and 

Fig. 2  Ionic and electronic conductivities of the cathode mixture with 
increasing amounts of CA
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temperature [18.19], as previously reported [57]. In the  
present study, we found that  Li5.4(PS4)(S0.4Cl1.0Br0.6) was 
stable even at up to 10 vol% CA in the all-solid-state battery 
comprising Li |  Li5.4(PS4)(S0.4Cl1.0Br0.6) | Li(Ni0.8Co0.1Mn0.1)
O2–Li5.4(PS4)(S0.4Cl1.0Br0.6)-CA. Tables S1–S4 show the 
impedance estimates calculated using an equivalent circuit 
model (Fig. 4a–d).

In the battery using the highest capacity 5-vol% CA cath-
ode mixture, resistance increased from 53 to 56 Ω during 
50 cycles. We previously reported that the impedance of 
a high-capacity battery increased from 85 to 135 Ω during 
50 cycles [19], which was presumed to be due to the forma-
tion of amorphous impurities. We also found that  Li5.4(PS4)
(S0.4Cl1.0Br0.6) was stable against Li metal [18].  Li5.4(PS4)
(S0.4Cl1.0Br0.6) is electrochemically stable during cycling 
because the calculated resistances at high frequency using 
an equivalent circuit model remained unchanged during 50 
cycles (Fig. 4a–d), Tables S1–S4). Previous results indicated 
that the battery using the 5 vol% CA cathode mixture was 
highly stable after 50 cycles.

Assuming a homogeneous electrode, Warburg imped-
ance can be measured at low frequencies as a finite length 
of material diffusion [58, 59]. In all-solid-state batteries, the 
Warburg coefficient reflects the ease with which lithium-
ion diffuses within the electrode [60]. Warburg impedance 

did not appear when measuring impedance in a Li | SE | 
Li cell configuration after flowing a current equivalent to 
50% of SOC (Fig. S1). When the Warburg coefficients were 
compared, it was observed that lithium-ion tended to dif-
fuse more easily into positive electrodes incorporating 5  
and 10 vol% CA-modified cathodes. In contrast, Li diffu-
sion was limited at 0 and 25 vol% (Tables S1–S4), reflect-
ing the change in capacity. Although Warburg impedance 
in this study is assumed to be homogeneous in cathodes, 
actual cathodes are composites of cathode active materi-
als, solid electrolytes, and CA. In the case of a composite 
structure, macroscopic Li diffusion would be strongly influ-
enced by its morphology [58, 59]. However, we did not ana-
lyze morphology-dependent changes in Li diffusion during 
cycling because the pellets containing CA were too brittle 
to be observed via scanning electron microscopy (Fig. S2). 
Therefore, clarifying the relationship between cathode per-
formance, impedance spectra, and cathode morphology will 
be the next step in manufacturing high-performance com-
posite cathodes.

CA modification was previously reported to increase capac-
ity by increasing cathode active material [Li(Ni0.6Co0.6Mn0.6)
O2] utilization rates. However, as the utilization rate increased, 
deterioration reactions at the β-Li3PS4/CA interface pro-
gressed, causing a decrease in capacity during cycling [23]. 

Fig. 3  Impedance spectra of 
battery using a 0 vol%, b 5 
vol%, c 10 vol%, and d 25 vol% 
CA, respectively, after 50 cycles
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In this study, the utilization rate of Li(Ni0.8Co0.1Mn0.1)O2 
increased by adding CA, capacity decrease during cycling 
was small, and there was little increase in impedance, indi-
cating limited decomposition reactions at the  Li5.4(PS4)
(S0.4Cl1.0Br0.6)/CA interface.

Conclusion

This study evaluated the discharge capacity of an all-
solid-state battery with a Li |  Li5.4(PS4)(S0.4Cl1.0Br0.6) | 
Li(Ni0.8Co0.1Mn0.1)O2–Li5.4(PS4)(S0.4Cl1.0Br0.6)-CA struc-
ture. In conventional all-solid-state batteries, the initial 
capacity was high with a CA but decreased with cycling. 
The CA improved the electronic conductivity of the cath-
ode mixture and increased the discharge capacity from 3.1 
to 167 mAh/g after 50 cycles. The resistance of the bat-
tery increased from 53 to 56 Ω during 50 charge/discharge 
cycles. These findings demonstrate that the battery capacity 
of an all-solid-state battery employing a high-ionic conduc-
tive  Li5.4(PS4)(S0.4Cl1.0Br0.6) can be increased with a CA 
modification that enhances the electronic conductivity of  
the cathode. This study presents a proven framework for 
developing an all-solid-state battery comprising halogen-
rich argyrodite  (Li7-α(PS4)(S2-αXα); α > 1) with enhanced 

ionic conductivities by controlling the electronic conduc-
tivity of the cathode. We plan to further improve battery 
performance by elucidating the relationship between the bat-
tery performance, actual cathode structure, and impedance 
during cycling in a future study.
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