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Abstract
In the field of nanotechnology, titanium dioxide nanotubes (TiO2 NTs) are one of the most valued inventions. They were 
discovered in 1996, and have since been used in several fields including photocatalytic degradation of pollutants, hydrogen 
production, and dye-sensitized solar cells. This review provides a comprehensive overview of TiO2 NTs and their synthesis 
methods, highlighting recent progress and modifications that improve their properties. The influence of anodization param-
eters, the effect of annealing temperature, and modified TiO2 NT arrays, including doping and heterostructure were discussed 
also in detail. In addition, this article summarizes some of the recent advances in the applications of TiO2 nanotubes in 
photocatalysis, hydrogen production, dye-sensitized solar cells (DSSC), and the detection of heavy metal ions. Finally, the 
existing problems and further prospects of this renascent and rapidly developing field are also briefly addressed.
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Introduction

Nanotechnology has opened up new opportunities to design 
and develop materials with unique properties and applica-
tions. Recently, those materials have played an important 
role in new technologies to attain high-performance devices 
for various applications. The geometry, shape, and morphol-
ogy of the used nanomaterials significantly determine the 
performance of these devices. Transition metal oxide nano-
materials such as titanium dioxide (TiO2) [1–3] zinc oxide 
(ZnO) [4, 5], tungsten trioxide (WO3) [6, 7], ferric oxide 
(Fe2O3) [8, 9], and copper/cuprous oxides (CuO/Cu2O) [10] 
have extensively been investigated for various applications. 

Among all transition metal oxides, TiO2 is the most studied 
material because it has a wide range of functional proper-
ties. Various nanostructures of TiO2 have been successfully 
synthesized including; nanowires [11], nanoparticles [12], 
nanorods [13], nanosheets [14], nanotubes [15], and micro-
spheres [16] (Fig. 1). Nanotube structures have attracted sig-
nificant research interest due to their high specific surface 
area, enhanced charge transfer, stability, and remarkable 
photo-catalytic and photo-electrocatalytic properties. These 
unique characteristics make them promising candidates for 
various applications, including but not limited to photo-cat-
alytic [17–20], photo-electrochemical [21–23], water split-
ting [24–27], solar cells [28, 29], biomedicine [30], etc. The 
TiO2-based nanotubes were first reported in 1996 by Hoyer 
using the template-assisted method [31].

To achieve the desired properties and characteristics of 
TiO2 nanotubes, the synthesis method plays a critical role. 
Thus, several techniques have attracted considerable attention 
to synthesize the TiO2 nanotubes and ameliorate their propri-
eties. The most used technics to elaborate TiO2 nanotubes are 
the template-assisted method [32, 33], sol-gel process [34, 
35], electrochemical anodization of titanium (Ti) [36–46], 
and the hydrothermal method [47]. Each technique has its 
own advantages and limitations. Therefore, it is essential to 
have a good understanding of the different methods and their 
influencing factors to obtain the desired nanotube structure. 
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The fundamental principles of anodized TiO2 nanotubes 
were proposed in 1999 and 2001 by Zwilling et al. [48, 49] 
and Gong et al. [50], respectively. Since then, several studies 
focused on the determination of the optimal experimental 
conditions have been performed to efficiently obtain high-
quality TiO2, such as smooth and high-aspect-ratio nanotubes 
[51], highly ordered nanotubes by multistep anodization [52], 
tapered and conical-shaped nanotubes [53], free-standing and 
open-ended nanotubes [54, 55], and transparent nanotubes 
[56]. Despite these efforts, the wide band gap (> 3 eV) and 
the recombination of photo-generated charges are major 
disadvantages of TiO2. Several attempts to activate TiO2 
under visible light have been investigated. Many studies 
have reported that the absorption capacity of TiO2 can be 
increased from UV to visible range by doping or coupling 
the TiO2 with other semiconductors [57–60].

This review provides an analysis of the recent develop-
ments in TiO2 NTs synthesis methods and modifications 
that enhance their performance. Besides, the review aims to 
provide an overall understanding of the current state of the 
art, the novelty, and the future perspectives of TiO2 NTs, 
which can inspire further research and development of these 
materials for various practical applications.

Synthesis of TiO2 nanotubes

The synthesis of TiO2 nanotubes has been the subject of 
extensive research over the past few decades. Several meth-
ods have been developed to fabricate these nanotubes up to 
now, as shown in Fig. 2. The first method developed was 
the template-assisted method in 1996, followed by the sol-
gel method in 1998, the hydrothermal method in 1999, and 
the currently used electrochemical anodization method per-
formed in 2001 [61, 62].

Each of these methods has its advantages and disadvan-
tages, and the choice of method depends on the specific 
application and desired properties of the nanotubes. In the 
following sections, details of the methods used to synthe-
size TiO2 nanotubes and the parameters that influence their 
growth and properties were discussed.

Template‑assisted method

Template-assisted synthesis is an easy, cost-effective 
approach to fabricating TiO2 nanotubes. Porous materials, 
usually anodic aluminum oxide, were used as a template, 

Fig. 1   Different nanostructures 
of TiO2 (Derivated from refs. 
[11–16])

Fig. 2   The chronology of 
fabrication methods for TiO2 
nanotubes
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and TiO2 layers were deposited on their bottom. Firstly, the 
template surface is covered with a thin layer of gold, then  
the pores of the treated aluminum oxide are entirely filled 
with a poly(methyl)methacrylate polymer. Finally, the poly-
meric block is separated from the Al2O3 mold and used as 
the secondary template for the growth of the TiO2 nanotube 
arrays. After the deposition of TiO2, the second template is 
removed to obtain the TiO2 nanotubes. A template-assisted 
method is a mainly used technic to synthesize the TiO2 
nanotube arrays. Michailowski et al. [33] synthesized a 
TiO2 nanotube material via an impregnation-decomposition  
of titanium (IV) isopropoxide to TiO2 at 500  °C using 
anodic Al2O3 as a template. Additionally, Yuan et al. [63] 
revealed the synthesis of TiO2 nanotubes by template-based 
Ti(OC4H9)4 hydrolysis process using an anodic Al2O3 
membrane as a template between H2O and the Ti(OC4H9)4 
solution. Similar results are reported by immerging anodic 
Al2O3 in an aqueous (NH4)2TiF6 solution [64]. Liang et al. 
showed the synthesis of TiO2 nanotubes by deposing the 
TiCl4 on anodic Al2O3 using atomic layer deposition [65]. 
Liu et al. [66, 67] have produced a very innovative class of 
TiO2 photonic crystals functionalized nanoporous anodic 
alumina broadband-distributed Bragg reflectors for visible-
light-driven photocatalysis.

Sol‑gel method

The sol-gel method has been widely used to produce TiO2 
materials of high purity and homogeneity. In this method, 
a titanium precursor undergoes hydrolysis/condensation to 
form a sol, which then transforms into a gel. The solvent 
is then evaporated, and a xerogel is obtained. The xerogel 
is further processed through milling and heat treatment to 
produce highly crystalline TiO2.

To produce highly ordered TiO2 nanotubes, the sol-gel 
method is usually combined with another process, such 
as the hydrothermal or the template-assisted method. For 
instance, Pang et al. [68] have successfully obtained TiO2 
nanotubes via the sol-gel process in conjunction with the 
hydrothermal method to degrade Rhodamine B in an aque-
ous solution. Similarly, Liu et al. [69] used the nanorods 
of ZnO as a template to elaborate TiO2 nanotube arrays by 
the sol-gel process. The combination of the sol-gel method 
with other techniques has provided an effective means of 
producing highly ordered and functional TiO2 nanotubes for 
various applications.

Hydrothermal method

Hydrothermal treatment has received wider attention because 
it gave pure TiO2 nanotubes with a high crystallinity [70]. 
It consisted of mixing titanium dioxide powder and highly 

concentrated sodium hydroxide solution at a temperature 
below 150 °C and under high pressure using a Teflon-sealed 
autoclave [71, 72]. Using this method, the properties of the 
formed TiO2 nanotubes depend on many parameters, such as 
the starting materials [73], hydrothermal temperature [74], 
and post-treatment [75]. Xu et al. [76] obtained TiO2 nano-
tubes with a diameter of about 10 nm using the hydrothermal 
process at 110 °C after approximately 20 h. In another study, 
Dong et al. [77] successfully produced TiO2 nanotubes with 
multilayered sheets and an outer diameter varying from 10  
to 15 nm. Tsai and Teng [78] investigated the role of post-
treatment acidity on the properties of TiO2 nanotubes. It is 
found that with the increase in acidity, the TiO2 layer trans-
formed into nanotubes and eventually into the anatase phase 
during the post-treatment acid wash. In addition, it was 
reported that the main factor in the formation of the nano-
tubes is the acid-washing process [35, 79, 80]. Nevertheless, 
other researchers concluded that acid washing does not affect 
the properties of TiO2 nanotubes [81]. Tsai and Teng postu-
lated that the contradiction observed between these studies 
is due to the synthesis conditions such as the time and tem-
perature of NaOH treatment [78].

Anodization: an electrochemical synthesis strategy

Recently, the electrochemical technique has been the com-
monly used method to elaborate TiO2 nanotube layers. This 
method has many advantages, such as good mechanical 
adhesion strength and high electronic conductivity since the 
layer grows directly on the titanium metal substrate [82]. 
This method offers easy control of the thickness and mor-
phology of the TiO2 by adjusting the anodization parameters 
such as applied voltage, anodization time, electrolyte com-
position, and the temperature of the solution. The anodiza-
tion method can obtain a layer of TiO2 nanotubular with a 
controlled and uniform diameter. It has been demonstrated 
that different morphologies of TiO2 can be obtained depend-
ing on the anodization parameters (Fig. 3). Compact TiO2 
films are generally obtained in fluoride-free electrolytes, 
whereas nanoporous/nanotubular films can be prepared in 
electrolytes containing fluoride ions [83, 84]. Using the 
anodization method, Kulkarni et al. successfully obtained 
thick and adherent TiO2 nanotubes on the titanium surface. 
They showed that the thickness and diameter of the nano-
tubes depend on the anodization time and applied voltage 
[85]. However, Jankulovska et al. [86] successfully fabri-
cated TiO2 nanotubes with an internal diameter of 90 nm, an 
external diameter of 120 nm, and a length of approximately 
4 µm. In another study, Ghicov et al. [87] fabricated TiO2 
nanotubes in a fluoride-ion-containing phosphate electrolyte 
with diameters varied between 40 and 100 nm and lengths 
between 100 nm and 4 µm.
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Among all these methods, electrochemical anodization 
is the most effective way to produce highly ordered nanotu-
bular TiO2 films.

Influence of anodization parameters

The anodization method has focused on the formation of 
TiO2 nanotubes. All these showed that the synthesis of TiO2 
nanotubes is strongly influenced by anodization parameters, 
which have a significant impact on their morphology, com-
position, and structure. The ability to control these param-
eters has been a major focus of research to achieve desirable 
properties and performance of TiO2 nanotubes for various 
applications. In this section, the influence of these param-
eters on the formation of TiO2 nanotubes and their properties 
were reported with recent literature.

Effect of electrolyte composition

The composition and concentration of electrolytes sig-
nificantly affect the formation of nanotube arrays. Based 
on the electrolyte we use, the nanotubes are essentially 

classified into four generations: 1st generation of nano-
tubes prepared in hydrofluoric acid, which were only 
0.5 μm long and characterized as poorly self-organized 
[50, 89–91]. Second generation of nanotubes up to 5 μm 
long grown in an aqueous solution containing fluoride 
ions. 3rd generation of smooth and longer nanotubes, up 
to 100–1000 µm grown in organic solvents such as ethyl-
ene glycol [40, 92–94], glycerol [36, 51, 95–97], dime-
thyl sulfoxide [98], formamide or diethylene glycol [99], 
containing fluoride species (NH4F, NaF, and KF) and 
small amounts of water. The 4th generation nanotubes and 
nanopores have been developed in the last few years. A 
highly ordered hexagonal structure characterizes this gen-
eration. Yeonmi and Seonghoon [100] have improved the 
regular nanopores structure using two-step anodization. 
Macak et al. [101] developed highly hexagonal TiO2 nano-
tubes using a multi-step approach in other studies. Simi-
lar results have also been achieved by Albu et al. [102]. 
They produced the hexagonal self-ordered TiO2 nanotube 
of about 250 µm by operating within optimal anodiza-
tion parameters (F− concentration, anodizing voltage, and 
time). Table 1 summarizes the anodization conditions 
and the characteristics diameter (D), and length (L) of the 

Fig. 3   The schematic illus-
tration of anodization setup 
(Reprinted with permission 
from ref. [88], Copyright 1996, 
Royal Society Of Chemistry)
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resulting TiO2 nanotubes in different generations. Figure 4 
shows the morphology of TiO2 nanotubes depending on 
the generation.

Effect of applied voltage

The anodic charge is the critical factor controlling film 
thickness and pore diameter. Several studies showed that 
the diameter and length of the nanotube vary linearly with 
the electric charge applied during the anodization process 
[106–108]. For this reason, the morphology of the nano-
tube arrays can be predicted by applying the suitable voltage 
(Fig. 5) [36, 109–111]. The applied voltage usually ranges 
from 10 to 60 V and 5 to 30 V in organic and aqueous 
solutions, respectively [112, 113]. At low applied voltage, 
tubes of a few nanometers in diameter and a few hundred 
nanometers in length were obtained. At intermediary volt-
age, the ordered nanotubes are formed. If a higher voltage 
is applied, the dissolution rate is too high, resulting in high 
dissolution of the oxide layer and no tube formation could 
be observed [114]. Zakir et al. [36] reported that the highly 
ordered nanotubes are formed at 60 V, and the mean inner 
diameter of TiO2 nanotubes increased from 59 to 128 nm 
when the applied voltage was increased from 30 to 60 V. 
Other studies suggested that the linear relation between the 
inter-tube distance and anodization voltage is limited to low 
voltages [115], whereas at higher voltages, the dependence 
is not linear [116, 117].

On the other hand, the anodization voltage affects the 
photo-electrochemical and photo-catalytic activity of the 
TiO2 nanotubes. Sun et al. [44] investigated the effect of 
anodization voltage on photo-electrochemical properties 
and hydrogen production. The hydrogen production rate 
increased by increasing anodization voltage, and a maximum 
rate was denoted at 93.6 µmol/h.cm2 with photo-conversion 
efficiency of 3.51% for TiO2 formed at 50 V. Atyaoui et al. 
[118]. studied the photocatalytic activity of TiO2 nano-
tubes arrays on the degradation of Black Amido and shown 
that the photo-decolorization efficiency of about 100% is 
achieved after 30 min of irradiation using a nanotube formed 
at the optimal voltage of about 60 V.

Effect of anodization time

The duration of anodization affects the nanotubes princi-
pally in two aspects. Firstly, the formation or not of the 
nanotube structure, and secondly, the length of the nano-
tubes [119]. At the beginning of the anodization, a thin 
and compact TiO2 film is formed. In this case, if the dura-
tion is too short, a disordered porous layer is formed at 
the substrate surface. In addition, with an increase in the 
anodization time, porous structures progressively become 
thicker, converting into the TiO2 nanotube array [112, 120]. 
If the duration is sufficient, highly nanotube arrays can be 
formed [109]. If the other anodization parameters are kept 
constant, the length of the nanotubes increases over time 

Table 1   Evolution of TiO2 nanotubes from the 1st to 4th generation

Electrolyte Anodization conditions Characteristics of NTs Ref

1st Generation - Aqueous solution + 0.5 wt% HF 20 V
20 mins

D = 60 nm
L = 250 nm

[50]

2nd Generation - Aqueous solutions of fluoride salts; (0.5 wt% 
NaF + 0.5 M H3PO4 + 0.5 M Na2SO4 + 0.2 M sodium 
citrate)

20 V
18 h

Organized nanotube
D = 110 nm
L = 2.6 μm

[103]

3rd Generation - Glycerol + 1.48 wt% NH4F 60 V
1 h

Organized nanotube
D = 128 nm
L = 1.5 μm

[36]

- Ethylene glycol + 0.3 wt % NH4F + 2 vol.% H2O 60 V
18 h

Organized nanotube
D = 100 nm
L = 45 μm

[104]

- Glycerol + 0.3 wt% NH4HF2 30 V
2 h
Annealing (500 °C)

D = 100 nm [105]

4th Generation Ethylene glycol + 0.3 wt% NH4F + 2 vol% H2O Pure Ti
Two-step anodization
50 V
1st step;
• Freshly electrolyte
• 1 h
2ndstep;
• Freshly electrolyte
• 30 minutes

Hexagonal shape
D = 75 nm
L = 6 μm

[24]
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Fig. 4   Evolution of the anodized TiO2 nanotube from 1st to 4th generation (Derivated from refs. [50, 102–104] with permission from their publishers)
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[88, 109, 121]. However, the growth rate of nanotubes is 
reduced with anodization time because of the decreasing 
diffusion rate of [TiF6]2− within the nanotube [112]. Ghicov 
et al. [87] also suggested that after reaching a stable condi-
tion between nanotube growth at the metal/TiO2 interface 
and electrochemical/chemical dissolution at the top of the 
tube, we will no longer find an increase in nanotube length 
(Fig. 6a). Macak et al. [101] showed that the wall thickness 
and inner tube diameter is not a constant along the TiO2 
nanotube and that the inner tube diameter increases from 
50 nm at the bottom to 110 nm at the tube top, while the 
wall thickness decreased from 65 to 12 nm. Bervian et al. 
[122] have suggested that the anodization duration is less 
than 30 min, a compact TiO2 structure will occur and the 
nanotube structure is not yet formed until reaching 60 min 
of anodization time, using a mixture of fluorinated glycerol 
and ethylene glycol electrolyte. The average length of the 
nanotubes was varied between 650 nm to 6 µm by changing 

the anodization time from 1 to 3 h. This study also shows 
that the length of the nanotubes plays a crucial role in the 
photo-electrochemical water splitting properties of TiO2 
and that the best performance is obtained using nanotubes 
formed at 120 min. Figure 6b show that the photo-current 
response increases with anodization duration to reach a 
maximum for TiO2 nanotubes formed at 60 min, while the 
photocurrent response decreased when the anodization 
duration reached to 120 min. This result was explained by 
a simple transfer of photo-generated electrons from TiO2 
to the counter electrode in the TiO2 NTs formed at 60 min.

Effect of electrolyte temperature

The electrolyte temperature affects the growth and quality 
of TiO2 nanotube arrays by affecting the oxide growth rate 
and, consequently, the wall thickness and the length of the 
nanotubes [28, 45, 123]. Wang and Lin published the first 

Fig. 5   Linear relationship between the applied voltage and nanotube parameters (Reprinted with permission from refs. [95, 111], Copyright 
2010 and 2012, Elsevier)

Fig. 6   Evolution of length (a) and photo-current responses (b) of TiO2 nanotubes prepared at different anodization duration (Reprinted with per-
mission from ref. [21, 87])
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work demonstrating the effect of electrolyte temperature in 
an aqueous and non-aqueous electrolyte on the anodic TiO2 
properties [91]. In an aqueous electrolyte, a slight decrease 
in internal diameter was observed with increasing tempera-
ture while the external diameters remained unchanged [124]. 
This can be due to the fact that the etching of TiO2 induced 
by the electric field and fluoride ions is similar, while the 
rate of oxide formation is higher than at low temperatures 
[91]. Prida et al. suggest that in aqueous solutions, low 
temperatures inhibit the growth of TiO2 nanotubes [45]. In 
organic electrolytes containing fluoride ions, the tempera-
ture between 0 and 40 °C is the most range of temperature 
suitable for the growth of highly ordered TiO2 nanotubes 
[125]. In addition, the outer diameter of the nanotubes fab-
ricated in glycerol/NH4F (0.14 M) electrolyte was signifi-
cantly increased by increasing the temperature of the elec-
trolyte from 0 °C to 40 °C [126]. These suggestions can 
be explained by the fact that at low temperatures, the ionic 
mobility of fluorine in some organic electrolytes is reduced, 
resulting in a slower dissolution of the formed TiO2 and, 
consequently, a smaller nanotube diameter [91].

Effect of fluoride ion (F−) concentration

The presence of fluorides in the electrolyte affects strongly 
the anodization process. On one hand, complexation 
occurs with Ti4+ ions that are ejected at the TiO2/electro-
lyte interface to form a water-soluble complex [TiF6]2− and 
on the other hand by chemical attack of the formed TiO2 
[127–129]. Various studies showed that three different elec-
trochemical characteristics can be obtained depending on 
the fluoride concentration [88, 95, 130–132]. At low fluo-
ride concentrations, a stable compact oxide layer is formed 
after anodization [133]. At higher fluoride concentrations, 
the Ti4+ formed immediately reacts with the abundant fluo-
ride to form soluble [TiF6]2− and no oxide formation can 
be observed [134]. For the intermediate fluoride concentra-
tions, the growth of the NTs layers is controlled by a com-
petition between the formation of a compact oxide layer and 
the chemical dissolution of the oxide by F− ions [135–137].

Effect of water content

In addition to the applied voltage and the anodization time, 
the water content is another crucial factor in the electrochem-
ical anodization process of titanium because the growth of 
one-dimensional nanotubes can be accelerated by enhancing 
the corrosive effect [138]. Water is the source of oxygen to 
form efficiently TiO2 during the anodization process, but it 
is also an essential factor for the formation of tubes rather 
than pores [139]. The effect of water on oxide formation has 

been studied by many researchers. Wei et al. [140] suggested 
that the transition from nanopores to nanotubes is favored 
by increasing the water content from 0 to 0.7% in NH4F 
(0.05 M) -containing ethylene glycol electrolyte at an ano-
dization voltage of 20 V. Yin et al. [141] showed that when 
the water content is in the range of 4–12%, the TiO2 NTs are 
growth with a reasonable rate and that the barrier layer thick-
ness increases while the growth rate decreases with increas-
ing water content in NH4F (0.25 wt.%)-containing ethylene 
glycol electrolyte. When the water content is beyond 12%, 
compact titania is formed.

Effect of annealing temperature

The morphology and crystallinity of the TiO2 nanotube 
arrays, as well as their optical and electrical properties, 
depend on the annealing temperature [142–146]. Varghese 
et al. [147] published the first comprehensive study dem-
onstrating the effect of annealing temperature on anodized 
TiO2 nanotubes, demonstrating that the NTs were stable 
up to 580 °C when annealed in an oxygen atmosphere. 
Other previous studies showed that the as-prepared TiO2 
is amorphous and could be transformed to anatase or rutile 
phase, or mixtures of the phases relying when be annealed 
on specific temperature [120, 148, 149]. The amorphous 
character of mesoporous TiO2 results in low thermal stabil-
ity and limits their applications. In contrast, the crystallized 
structures offer enhanced thermal properties and improved 
electrical, optical, and catalytic properties [150]. Sun et al. 
[151] showed that at a temperature less than 450 °C, the 
TiO2 nanotubes consist of a pure anatase phase, while the 
rutile phase starts to appear at 550 °C so that a mixture of 
anatase and rutile phases are detected between 550 °C and 
750 °C (Fig. 7a). Recently, Gavrilin et al. [152] studied the 
influence of thermal treatment in vacuum and air on the 
structural properties of multi-walled anodic TiO2 NTs. It 
was found that the composition of samples annealed in the 
air was different from those annealed in a vacuum. Talla 
et al. [153] synthesized TiO2 NTs and annealed them in dif-
ferent atmospheres, such as air, nitrogen, oxygen, and vac-
uum at 450 °C. They reported that the atmosphere affected 
the phase composition of TiO2 and that the transformation 
from the anatase into rutile is retarded in a vacuum and the 
anatase phase remained the dominant phase even at 800 °C.

Tighineanu et al. [154] have investigated the effect of 
annealing treatment on the conductivity of anodic TiO2 
nanotube arrays. This study demonstrates that the resist-
ance of the TiO2 layer decreases when the amorphous 
nanotube arrays are converted into the anatase phase at 
about 350–450  °C. Similar results are found by Bakri 
et al. [155], who show that the resistivity decreases from 
1.40 × 105 to 7.19 × 102 Ω·cm by varying the annealing 
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temperature between 300 and 900 °C (Fig. 7b). Zhao et al. 
[156] show that the extinction coefficient and the refractive 
index increase with the increase in the annealing tempera-
ture. This study also shows that the anatase is the dominant 
phase until the temperature lower than 900 °C above the 
rutile phase becomes the dominant crystal phase.

Modified TiO2 nanotube arrays

Despite its excellent physical and chemical properties, the 
higher band gap of TiO2 makes this material almost inactive 
under visible light (Fig. 8a). In this regard, several studies 
have been made to: firstly broaden the absorption of TiO2 

Fig. 7   Evolution of phase composition, thickness, and resistivity of TiO2 after annealing at indicated temperatures (Reprinted with permission 
from refs. [151, 155], Copyright 2011 and 2017, American Chemical Society and AIP Publishing)

Fig. 8   Schematic of energy level and electron/hole separation of pure TiO2 (a), doping with metal (b), non-metal (c), coupling with semiconduc-
tors (d), and noble metals (e) (Reprinted with permission from refs. [157, 158], Copyright 2013 and 2012, Hindawi and De Gruyder)
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in the visible wavelength range and more efficient charge 
transfer by modifying its optical and electronic properties, 
and secondly to promote the separation between the elec-
trons and holes photo-generated and inhibit their recombina-
tion. To achieve these objectives, different approaches are 
proposed such as; firstly, doping of TiO2 with metal ions 
(Co2+, Fe2+, Ni2+, Cu2+, Zn2+, etc.) or non-metallic (C, S, 
N, P, etc.) is one of the typical approaches that have been 
widely applied (Fig. 8b, c). Or coupling the TiO2 with a 
semiconductor material with a narrow band gap (Fig. 8d). 
The decoration of TiO2 with different noble metals (Ag, Pt, 
Au, Pd, etc.) represents another approach (Fig. 8e). In the 
below subsections, some of the modifications were made 
to TiO2 nanotube arrays, including doping and heterostruc-
ture formation. These modifications have shown promising 
results in improving the properties and expanding the appli-
cations of TiO2 nanotubes.

Doping

Asahi et al. [159] reported for the first time the doping of 
TiO2 with nitrogen by sputtering in a nitrogen-containing 
gas mixture and showed that N-doped TiO2 exhibits photo-
electrochemical activity under visible light irradiation. 
Recently, other doping species, such as several non-metals 
such as fluorine [160–162], carbon [163, 164], phosphor 
[165, 166], sulfur [167–169], and boron [170, 171] have 
been inserted into TiO2 using different methods. These stud-
ies show that the visible-light activities of doped TiO2 were 
not only influenced by the value of the energy gap, the distri-
bution of impurity level, and the property of impurity levels 
but were also affected by the location of Fermi level and 
the energy in the edges of the band gap [172, 173]. It was 
found that doping TiO2 nanotubes with nitrogen received 
significant attention because of their improved charge trans-
fer properties. Different approaches have been published 
concerning the doping of TiO2, including the annealing of 
TiO2 in gaseous atmospheres [174], sputtering [175], sol-
gel [176], and anodization of titanium alloys [177]. Among 
these methods, heat treatment of TiO2 in gaseous atmos-
pheres of the dopant species is considered an easy one-step 
doping technique [174, 178]. Moreover, the surface of doped 
nanotubes exhibits significant photo-response in the visible 
range compared to undoped nanotubes. On the other hand, 
TiO2 doped with transition metal ions (Cu [179–181], Cr 
[182], Ni [183, 184], Zn [185, 186], Ag [181], Co [187], Zr 
[188], and Fe [22, 187]) has also been reported to broaden 
the visible light absorption range, and improve the conver-
sion efficiency by extending the lifetime of photo-generated 
electrons and holes. Choi et al. [189] studied the photo-
reactivity of quantum-sized TiO2 doped with metal ions.  
Doping with Fe, Mo, Ru, Os, Re, V, and Rh significantly 

increased the photo-reactivity efficiency of TiO2 nanotubes, 
while doping with Co and Al ions decreased the photo-
reactivity. In other studies, Momeni and Ghayeb [190]  
obtained Fe-TiO2 nanotube composites using iron (potas-
sium ferricyanide) to decorate anodic TiO2 nanotubes. They 
indicated that Fe doping accelerates the photocatalytic per-
formance of TiO2 nanotubes for water splitting.

Heterostructure

In recent years, many attempts have been made to extend 
the light absorption range of TiO2 nanotubes and reduce 
the charge carrier recombination, such as the formation of 
hetero-junctions between TiO2 nanotubes and narrow band 
gap semiconductors [191]. In 1986, Gerischer and Lübke 
fabricated the TiO2 photo-electrodes sensitized by thin 
deposit CdS semiconductor [192]. Recently, this approach 
is improved, and other semiconductors are used CdSe [193, 
194], Cu2O [195, 196], ZnO [197], WO3 [198], and BiOI 
[199]. Indeed, all these semiconductors can absorb part of the 
visible light. One of the following schemes to elaborate the 
p-n heterojunction for highly efficient photo-electrocatalytic 
devices is the direct deposition of p-type semiconductors on 
TiO2 nanotubes [196, 199]. Wang et al. [200] deposed p-type 
Cu2O on n-type TiO2 nanotube arrays to fabricate Cu2O/TiO2 
p-n heterojunction photo-electrodes using ultrasonic-assisted 
sequential chemical bath deposition. This study shows that 
the Cu2O/TiO2 p-n photo-electrodes exhibited higher photo-
conversion capacity and higher photo-electrocatalytic activity 
in the degradation of rhodamine B compared to single TiO2 
nanotubes. This result was explained by the efficient separa-
tion of photo-generated electrons and holes. Similar results 
have also been achieved by Davaslıoğlu et al. [198] using 
WO3/TiO2 p-n heterojunction photo-electrodes prepared 
by electrochemical deposition of WO3 on the TiO2 nano-
tubes array by subsequent cycling the potential between -0.6 
–1.0 V vs Ag/AgCl. However, the major disadvantage of this 
approach is that many narrow bandgap semiconductors are 
not stable, not only due to corrosion or photo-corrosion but 
also due to the instability of some of the materials under 
applied voltage.

Applications of TiO2 nanotubes

TiO2 nanotubes have attracted considerable attention due to 
their applications in photo-catalysis, water splitting, photo-
voltaic cells (solar cells), and other aspects.

This TiO2 nanotube is a promising material for these appli-
cations due to its multifunctional semiconductor properties 
which are based on its excellent physical and chemical behav-
ior, high specific surface area, and fast charge transfer [201].
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Photocatalysis

Today, one of the most useful applications of TiO2 is the photo-
catalytic degradation of toxic pollutants water contains [83, 
202, 203]. It has been shown that TiO2 nanotube layers can 
be more efficient photo-catalysts than comparable nanoparti-
cle layers. After Fujishima and Honda demonstrated, for the 
first time, the photo-electrochemical decomposition of water 
on TiO2 surfaces [204, 205]. TiO2 has been investigated for 
applications in heterogeneous catalysis [206, 207]. On the other 
hand, TiO2 has been used to convert carbon dioxide (CO2) into 
energy-intensive hydrocarbon compounds [208, 209]. Savchuk 
et al. [210] are studied the efficient conversion of CO2 in the gas 
phase to methane and methanol on the surface of TiO2-CuxO 
NTs. In another study, Park et al. [211] successfully reduced 
the CO2 to methane by photocatalysis using CuxO-TiO2 hybrid 
heterostructures under solar irradiation. The basic mechanisms 
of the photo-catalytic process can be explained as follows:

When the TiO2 is excited by UV light, the electrons of the 
valence band (VB) will move to the conduction band (CB). 
Then the holes and electrons photo-generated (Eq. 1) will be 
transported to the TiO2/solution interface and react with the 
adsorbed molecules. The photo-generated e−

CB
 could reduce the 

dye (Eq. 2) or react with electron acceptors such as adsorbed 
O2 on the TiO2 surface or dissolved in water, reducing it to 
the superoxide radical anion O∙−

2
 (Eq. 3). On the other hand, 

the photo-generated h+
VB

 can oxidize the organic dye (Eq. 4), 
or react with H2O (Eq. 5) or OH− (Eq. 6) to form OH• radi-
cals. The resulting OH• radical, being a very strong oxidizing 
agent, can oxidize most of the molecule dyes to the mineral 
end-products (Eq. 7) [14, 212–217].

Hydrogen production

Today, hydrogen energy is expected as a new clean energy 
source. In this regard, various technologies are proposed 

(1)TiO2 + hυ → TiO2 (e
−
CB

+ h+
VB

)

(2)Dye + e−
CB

→ Reduction products

(3)TiO2(e
−
CB
) + O2 → TiO2 + O∙−

2

(4)Dye + h+
VB

→ Oxidation products

(5)TiO2(h
+
VB

) + H2O → TiO2 + H+ + OH∙

(6)TiO2(h
+
VB

) + OH−
→ TiO2 + OH∙

(7)Dye + OH∙
→ Degradation

to produce hydrogen, but only some of them can be con-
sidered environmentally friendly. Recently, solar hydrogen 
produced by photo-catalytic water splitting has attracted 
considerable attention and has been widely studied due to 
its great potential for low-cost clean hydrogen production 
[218]. For this purpose, low-dimensional semiconductor 
nanostructures are recently developed and applied to solar 
energy conversion fields [219–221]. The photocatalytic 
hydrogen production from water, alcohols, or organic pol-
lutants with wide-gap semiconductors has been intensely 
studied [222]. TiO2 nanotubes have been intensively studied 
as photoanodes in photo-electrochemical cells for hydrogen 
production due to their semiconductor properties, physical 
and chemical stability, abundance, and low cost [223, 224]. 
Theoretically, for efficient hydrogen production from water 
by photo-catalysis, the CB level should be negative than the 
hydrogen production level (E(H2O/H2)) while the VB should 
be positive than the water oxidation level (E(O2/H2O)) [225]. 
Recent studies show that the hydrogen production rate is 
highly dependent on the electrolyte, light intensity, exter-
nal polarization, and the morphology and structure of TiO2 
[158]. Therefore, optimizing these parameters and funda-
mentally understanding their possible correlations is impor-
tant to clarify approaches to constructing a highly efficient 
cell for hydrogen production. Hattori et al. [226] have suc-
cessfully produced hydrogen from the photo-decomposition 
of ethanol using TiO2 nanotubes. Moreover, they found that 
the length of the nanotubes is the most important factor in 
this process. They showed that the amount of hydrogen pro-
duced increases with the increase in the length of the nano-
tube. Mor et al. [227] found a hydrogen generation rate of 
960 µmolcm−2 h−1 by using highly ordered TiO2 nanotubes 
arrays of about 224 nm in length and 22 nm in diameter for 
water splitting under a constant voltage of -0.4 V. Recently, 
Li et al. [228] reported an enhanced hydrogen generation 
rate of 3.507 mmol h−1 g−1 under simulated solar light by a 
mesoporous-structured anatase TiO2.

Solar cells applications

The TiO2 nanotubes are one of the most promising materials 
for dye-sensitized solar cells (DSSCs) due to their improved 
charge-collection efficiency and enhanced separation of 
photo-generated electrons/holes [229–232]. For this reason, 
the ordered TiO2 nanotubes significantly increase solar ener-
gy's conversion efficiency [233]. The DSSC consists of a 
layer of TiO2 nanotubes deposited on a conductive substrate, 
a counter electrode (Pt), an adsorbed dye as a sensitizer, and 
an electrolyte. On the TiO2 surface, adsorbed is a dye that 
serves as a light absorber and is attached to the TiO2 sur-
face by specific functional groups. For the choice of the dye 
molecule, the LUMO of the dye must be energetically placed 
slightly higher than the CB of TiO2. Under solar irradiation, 
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HOMO–LUMO transitions occur in the dye. Excited elec-
trons can then be injected from the LUMO (of the Dye) 
into the CB of the TiO2 electrode [158]. However, the over-
all power conversion efficiency of the dye-sensitized TiO2 
nanotubes solar cells remained relatively low. Paulose et al. 
[234] found a conversion efficiency of about 4.24% using 
highly-ordered TiO2 nanotube films sensitized by a mon-
olayer of N719 under AM 1.5 sunlight source. These results 
can be explained by the incomplete coverage of the dye mol-
ecules on the TiO2 nanotubes and insufficient electrolyte 
infiltration into the nanotubes [235, 236]. In another study, 
Mor et al. [56] compared the photo-conversion of anodic 
TiO2 nanotubes formed on titanium substrate and nanotubes 
formed on FTO glass. They found that solar cells fabricated 
with nanotubes formed on the titanium surface have higher 
charge transfer efficiency and dye absorption than solar cells 
fabricated with nanotubes formed on FTO glass. Tsvetkov 
et al. [34] compared the photoconversion of the pure and 
Nb-doped TiO2 nanotubes and nanoparticles. They found 
that the doping of TiO2 nanostructures leads to an additional 
about 14% in CPE and that DSSCs based on Nb-doped TiO2 
NTs have an efficiency of 8.1%, which is 35% higher than 
that of a cell using TiO2 nanoparticles. An open-ended TiO2 
NT ordering by anodization of titanium for the application 
of PE of DSSCs was prepared by Zhu et al. [237] The device 
obtained by using this material showed a PCE of 7.7%. In 
another study, Peighambardoust et al. [238] examined the 
effect of some parameters such as; annealing temperature 
and dopant on the efficiency of TiO2 NTs electrodes for 
DSSCs, they found that the increasing of annealing tempera-
ture from 480 to 520 °C and doping of NTs improve the cell 
efficiency up to 70% and 40%, respectively.

Detection of heavy metal ions and organic pollutants

Toxic heavy metal ions such as Pb2+ and As3+, as well as 
organic pollutants present in water and soil, are a source 
of danger for the environment and human beings. Many 
methods have been developed to assess the environmental 
impact and control the amount of pollutants in water and 
soil, such as flame atomic absorption spectrometry, graph-
ite furnace atomic absorption spectrometry, atomic fluores-
cence spectrometry, and inductively coupled plasma atomic 
emission spectrometry, etc. Recently, the sensors offered a 
new technique for monitoring heavy metals and organic pol-
lutants. A modified TiO2 nanotube array has been reported 
as a sensor for detecting heavy metals and organic pollutants 
in water. Liu et al. [239] have developed a DNA-modified 
TiO2 nanotube array sensor to determine Pb2+ in water. The 
results showed that the concentrations detected by DNA-
modified TiO2 nanotubes were similar to those obtained by 
the atomic absorption spectrometry method. They also found 
that the modified TiO2 nanotube sensor possesses a wide 

linear calibration between 0.01 nM and 160 nM with detec-
tion limits of about 3.3 pM. Yang et al. [240] fabricated Au 
shrub-modified TiO2 nanotube arrays as a novel and use-
ful sensor to determine the arsenic concentration in water. 
The results showed a high sensitivity between the current 
changes and the arsenic concentration with a value of 25.7 
µA/cm2 corresponding to 5 µg/L of As3+. Cai et al. [241] 
reported molecularly imprinted polymer-modified TiO2 
nanotube arrays as a sensor to detect perfluorooctane sul-
fonate in water. The results showed that this sensor has good 
selectivity. Moreover, the direct detection of perfluorooctane 
sulfonate by electrocatalytic reduction reaction was achieved 
with a detection limit of 86 ng/mL.

Conclusion and future perspectives

The developments of the last decades have highlighted the 
importance of TiO2-based materials. The different types of 
TiO2 nanostructures, the synthesis strategies of TiO2 nano-
tubes, and their applications in energy and environment 
fields have been discussed in this review. Ordered nanotubes 
have been synthesized by anodization and by regulating the 
operating conditions. These structures have considerably 
improved their performances and have found many appli-
cations in various fields. TiO2-based materials have been 
widely used in photocatalytic applications, and solar-cell and 
continue to be active in other applications such as sensing, 
hydrogen production, etc.

As TiO2 is a wide band gap (> 3 eV), the optimal use of 
solar energy is one of these materials' main challenges, reduc-
ing its photocatalytic performance. Therefore, doping with 
appropriate materials, development of composites, and new 
structural morphologies are expected to be developed in the 
coming days and will hopefully solve the problems mentioned 
above. Many innovative and cost-effective synthesis strategies 
are expected to emerge in the future. Preparing low-cost mate-
rials with high stability and environmentally friendly and with 
improved light adsorbed properties needs to be discovered to 
fulfill future needs. The development and commercialization 
of such light-harvesting materials will help to solve, to some 
extent, our ever-increasing energy needs and the environmen-
tal problems facing the world today.

In conclusion, TiO2 nanotubes have demonstrated sig-
nificant advantage in various technological fields, such as 
medicine, energy, and the environment. The review has dis-
cussed different synthesis methods and techniques for pre-
paring highly ordered TiO2 nanotubes with improved per-
formance. However, there are still challenges to overcome, 
including reducing the band gap of TiO2 for optimal use of 
solar energy and developing low-cost, stable, and environ-
mentally friendly materials. The future of TiO2 nanotubes 
looks promising, and further research and innovation are 
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expected to improve their performance and commercializa-
tion, contributing to a more sustainable future for our energy 
needs and the environment.
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