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Abstract
Getting the direct methanol fuel cell (DMFC) closer to mass production requires the creation of a high-performance and 
long-lasting proton exchange membrane (PEM). In this study, self-healable PEMs, Nafion-poly(vinyl alcohol)/phospho-
tungstic acid (N-PVA/HPW), were prepared through a simple freezing–thawing method. HPW acted as proton conductors, 
while PVA with reversible hydrogen bonds contributed to the self-repair ability of the membrane. The proton conductivity 
of the N-PVA/HPW membranes was found to be comparable to that of the pristine Nafion membrane owing to the addi-
tional proton-conducting sites and improved water retention provided by the HPW. Along with this, the packed structure of 
the mixed-matrix membranes led to a lower methanol permeability in all the N-PVA/HPW membranes compared to recast 
Nafion. As a result, N-PVA/HPW20 membrane with acceptable proton conductivity (0.062 S  cm−1) and reduced methanol 
permeability (2.75 ×  10−6  cm2  s−1) achieved the highest selectivity, where selectivity is a well-known indicator of a mem-
brane’s suitability for use in DMFC. The N-PVA/HPW20 membrane successfully recorded a peak power density of 2.7 mW 
 cm−2, which is 10.7% higher than the value of recast Nafion. Another highlight of these mixed-matrix membranes is their 
ability to recover up to 93% of their initial methanol barrier properties after being damaged. This fascinating self-healing 
property of the membrane is believed to have the potential to extend the service life of DMFC.
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Introduction

Climate change and depletion of fossil fuel have forced the 
world to find mitigations to safeguard the environment while 
the world continues to strive for economic growth for its 
population [1]. Exploration into alternative energy sources 
such as fuel cells, which produce electricity from chemical 
energy without a combustion reaction, has caught a great 
deal of attention to address global energy and environmen-
tal issues. Fuel cells are a viable option for meeting the 

diversified energy demands of today in a variety of sectors. 
Several types of fuel cells have been developed based on the 
electrolytes used, for instance, solid oxide (SOFC), molten 
carbonate (MFC), and polymer electrolyte membrane fuel 
cell (PEMFC) [2]. Direct methanol fuel cell (DMFC), which 
is a subcategory of PEMFC, has gained considerable inter-
est due to its relatively quick start-up, high power density, 
easy operation, and high energy conversion efficiency, all of 
which are generally applicable and advantageous in portable 
devices [3–6]. Additionally, substituting methanol for fossil 
fuel may favor decarbonization and satisfy energy needs.

One of the core components of DMFC, the proton 
exchange membrane (PEM), should significantly contrib-
ute to proton transport and prevent methanol fuel crossover 
through ionic channel. Nafion is the most commonly used 
PEM in DMFC because of its remarkable proton conduc-
tivity (0.01 S/cm) under hydrated conditions, as well as 
its excellent chemical and mechanical properties [7–10]. 
Nafion consists of a hydrophobic perfluorinated polyeth-
ylene backbone and hydrophilic sulfonic acid-terminated 
side chains. The sulfonic acid groups form a long-range 
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proton-conducting channel for efficient proton transport, 
while the hydrophobic parts contribute to the outstanding 
mechanical integrity of the Nafion [11].

Despite the widespread acceptance of DMFC as a poten-
tial energy source, its viability must be enhanced due to the  
severe methanol permeability and long-term performance deg-
radation of the Nafion membrane [12]. The ambiguity of the 
structural feature of Nafion impedes the scalability of DMFC  
application, as it favors protons for faster and more efficient 
transportation while promoting methanol permeation, which 
degrades cell performance. In hydrated state, the phase sepa-
ration between hydrophobic and hydrophilic domains provides 
spaces for methanol diffusion. Therefore, methanol fuel can 
diffuse over the Nafion membrane along the concentration gra-
dient. Moreover, electroosmosis drag, namely proton transpor-
tation along with solvent molecules like water and methanol, 
facilitates the penetration of methanol across PEM [13]. On  
the other hand, mechanical stress is also a factor that reduces 
the performance of Nafion membrane [14]. During fuel cell 
operation, Nafion membrane is subjected to fatigue stress as a 
result of variations in hydration level (wet and dry conditions), 
which cause the ionic cluster to expand and contract cycli-
cally. Consequently, the continuous and repetitive swelling 
and shrinking trigger the formation of tears, microcracks, and 
pinhole in the Nafion membrane. These mechanical defects 
would cause devastating deterioration of the membranes and 
gradually reduce the lifetime of PEM.

In view of these circumstances, PEM is required to be 
assessed in terms of its methanol barrier properties and its 
capacity to repair mechanical damages in addition to pro-
ton conductivity. Extensive efforts have been carried out 
to improve the properties of PEM in DMFC, including the 
addition of inorganic material such as metal oxides and 
metal organic frameworks (MOFs) to create more winding 
and tortuous pathways [15–22], the introduction of other 
polymer with a methanol sieving effect [5, 23–26], and the 
modification of Nafion surface with a methanol barrier layer 
[27–29]. Recently, practices of incorporation of materials 
with low methanol compatibility have been reported in the 
literature. The low methanol compatible polymers include 
polyaniline, polypyrrole, poly(vinylidene fluoride) (PVDF), 
and poly(vinyl alcohol) (PVA). Particularly, PVA has been 
actively developed as a Nafion modifier [26, 30, 31], owing 
to its excellent film-forming characteristics, hydrophilicity, 
and higher selectivity of water towards alcohol [32–34]. In 
all the cases, lower methanol permeability was observed 
(up to 90% less than Nafion), although at the expense of 
conductivity loss (about half of Nafion). Another excit-
ing discovery made in recent research demonstrated that 
Nafion-based membrane could acquire self-healing prop-
erties with the assistance of PVA [35]. PVA emerges as a  
self-healing polymeric material capable of executing self-
repair in response to damages, hence extending membrane 

lifespan and restoring its original functionality. Even so, 
very limited papers reported on the self-healing mechanism 
of PEM during the DMFC operation.

Herein, we synthesized self-healable Nafion-PVA blend 
membranes through freezing–thawing approach and pre-
sented a method for tailoring the proton conductivity of 
Nafion-PVA membrane by incorporating heteropoly acids 
(HPAs) as proton carriers. Freezing–thawing can physically 
promote crosslinking in polymer without the need for chemi-
cal crosslinkers, whereas the HPAs, such as phosphotungstic 
acid (HPW), are Bronsted acids and well-known superionic 
proton conductors in the fully hydrated states and room tem-
perature [36]. HPW has been shown to enhance water uptake 
and contribute to the construction of additional, intercon-
nected channels for proton migration [4, 36]. According to 
a study by Pourzare et al. [37], the inclusion of HPW into 
Nafion increased the proton conductivity by 39% compared 
to pure Nafion. The advantages of HPA were also supported  
by the study proposed by Abouzari-Lotf et al. [38], whose 
membrane obtained a selectivity of 20 times higher than 
Nafion 115. Nevertheless, no research has been conducted 
on the PEM composed of Nafion, PVA, and HPW synthe-
sized using the freeze–thaw method. Therefore, this work 
proposes Nafion-PVA blend membranes treated with HPW 
to impart self-healing property while simultaneously enhanc-
ing the selectivity of the membranes. The effects of various 
HPW loadings on membrane performance were also studied.

Experimental

Materials

Nafion dispersion (5% w/w in water and 1-propanol) and 
PVA (molecular weight of 146,000–184,000, > 99% hydro-
lyzed) were received from Thermo Fisher Scientific. Phos-
photungstic acid hydrate  (H3PW12O40.xH2O, HPW) and 
sulfuric acid  (H2SO4, 95–98%) were purchased from Sigma-
Aldrich, USA. Methanol (> 99.9%) was obtained from 
Merck, Germany. All chemical reagents were used without 
further purification.

Fabrication of membrane

Nafion-PVA blend membranes were prepared through a 
freezing–thawing process to induce physical crosslinking 
and self-healing properties without the use of chemical 
crosslinking agents. Firstly, a homogenous 5 wt% aqueous 
PVA solution was prepared by continuously heating and 
stirring 1 g of PVA in 20 mL of deionized water at 80 °C. 
Then, a mixture of Nafion and PVA solution at a weight ratio 
of 8:2 was prepared by heating Nafion dispersion to 70 °C 
and mixing it with an appropriate amount of PVA solution. 
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The mixture was then poured into a Teflon dish for casting, 
and a crosslinking network was established during freez-
ing at − 20 °C for 24 h, followed by thawing at room tem-
perature for 2 h, resulting in the formation of Nafion-PVA 
membranes (denoted as N-PVA). The membranes were sub-
sequently dried at 65 °C for 15 h. Separately, an appropriate 
weight of HPW was dissolved in deionized water to obtain 
solutions with concentrations of 10 wt%, 20 wt%, and 30 
wt%. The N-PVA membranes were then immersed for 24 h 
in the prepared HPW solutions to anchor the HPW into the 
polymer matrix. The resultant membranes were designated 
as N-PVA/HPWn, where n represents the weight percent of 
HPW solution. As a control, recast Nafion membrane was 
also prepared using the same procedure but without PVA 
and HPW. Prior to characterization testing, the synthesized 
membranes were activated by boiling in 1 M of sulfuric acid 
solution at 80 °C for 1 h, followed by multiple rinsing with 
deionized water [39].

Characterizations

Fourier transform infrared (FTIR)

The chemical structure of the membranes was determined 
using FTIR spectrometer (Nicolet iS10, Thermo Scien-
tific) with ATR sampling technique. The FTIR spectra were 
obtained in the range of 400–4000  cm−1 at room temperature.

X‑ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectrometer (K-Alpha XPS, Thermo 
Scientic) was used to analyze the chemical composition of 
the membranes and confirm the incorporation of phospho-
tungstic acid. XPS spectra were collected at room tempera-
ture with X-ray source of Al Kα.

Thermal gravimetric analysis (TGA)

The thermal degradation behavior of the membranes was 
analyzed using a thermogravimetric analyzer (PerkinElmer, 
STA 8000) at temperatures ranging from 30 to 800 °C with 
a heating rate of 10 °C  min−1 under nitrogen atmosphere.

Mechanical properties

The mechanical properties of the membranes were meas-
ured using a universal tensile machine (Shimadzu AGS-X) 
at room temperature. Before the measurement, the membrane 
was immersed in deionized water for 24 h at room temper-
ature [40]. The membrane was then cut into 60 × 10  mm2 
rectangular strips with the gauge length set to 20 mm. After 
removing the surface water of the sample, the analysis was 
carried out at a crosshead speed of 2 mm  min−1.

Water uptake (WU) and methanol uptake (MU)

Water and methanol uptake of the membranes were deter-
mined by measuring their dry (Wdry) and wet weights (Wwet). 
The synthesized membrane was dried to a constant weight 
in an oven, and then, its weight was measured to obtain 
Wdry. The dried sample was then soaked in deionized water 
for 24 h at room temperature. After 24 h of immersion, the 
weight of the membrane was measured with the surface 
water removed using tissue papers to estimate Wwet. The 
water and methanol uptake were calculated using Eq. (1).

Ion exchange capacity (IEC)

The membrane was dried to a constant weight prior to the 
test. To obtain the IEC, the membrane was immersed in a 
2-M NaCl solution for 48 h to substitute all  Na+ ions with  H+ 
ions. Afterward, the obtained solutions were titrated and neu-
tralized by a 0.01 M NaOH solution in the presence of a few 
drops of phenolphthalein indicator [41–43]. With the required 
volume of NaOH, the IEC was calculated using Eq. (2):

where VNaOH (mL) is the volume of consumed NaOH, MNaOH 
(mol  L−1) is the molar concentration of NaOH, and Wd (g) 
is the dry weight of the membrane.

Proton conductivity

Before the test, the membrane was hydrated in deionized 
water for at least 24 h. Proton conductivity measurement was 
performed on the membrane in a four-probe cell using an 
electrochemical impedance technique based on the determi-
nation of the ohmic resistance of the membrane. By apply-
ing a current sweep from 0 to 15 mA with a scan rate of 
0.25 mA/s, a graph of voltage against current was drawn. 
Equation (3) was used to determine proton conductivity:

where σ is the proton conductivity, L (cm) is the distance 
between two inner electrodes, R (Ω) is the membrane resist-
ance (or the gradient of the graph), w (cm) is the width of 
the membrane, and t (cm) is the thickness of the membrane.

Methanol permeability

A two-compartment diffusion cell was used to measure the 
permeation of methanol through the synthesized membranes. 

(1)WU or MU (%) =
Wwet −Wdry

Wdry

× 100%

(2)IEC (mmol g−1) =
VNaOH ×MNaOH

Wd

(3)� (S cm−1) =
L

R × w × t
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Before the experiment, the membrane was equilibrated in 
deionized water for 24 h. One compartment (A) of the cell 
was filled with a 2-M methanol solution, while the other com-
partment (B) contained deionized water. Both compartments 
held the same volume of liquids. Throughout the experiment, 
the liquids in both compartments were continuously stirred to 
maintain concentration uniformity. Multiple samples of solu-
tion from compartment B were extracted at different times, 
and their methanol concentrations were determined using a 
gas chromatography. The methanol permeability, PM, of the 
membrane was calculated using Eq. (4):

where S (M  s−1) is the rate of change of methanol concentra-
tion in compartment B, V  (cm3) is the volume of solution in 
each compartment, t (cm) is the membrane thickness, CMO 
(M) is the initial concentration of methanol solution, and A 
 (cm2) is the membrane effective area.

Selectivity

Selectivity is a crucial factor in characterizing and comparing 
the overall performance of PEM in DMFC by calculating the 
ratio between proton conductivity and methanol permeability, 
as shown in Eq. (5). A high selectivity ratio is desirable as it 
implies better electrochemical performance.

where ∅ is the selectivity, σ is the proton conductivity, and 
PM is the methanol permeability.

Self‑healing

Self-healing ability of the membrane was determined by first 
making a few holes in the membrane and then immersing it in 
a 2-M methanol solution for 4 h for healing purpose. After the 
healing process, the conditions of the membrane were exam-
ined using scanning electron microscopy (SEM). To measure 
the self-healing ability quantitatively, the methanol permeabil-
ity test was performed on the damaged and healed membranes.

Passive DMFC performance

The fuel cell performance test was carried out using an 
air-breathing single cell. The membrane was sandwiched 
between anode and cathode catalyst layers by hot press at 
135 °C under 20 kg  cm−2 for 2 min. The anode and cath-
ode contain 4 mg  cm−2 of PtRu and Pt, respectively. Effec-
tive membrane electrode assembly (MEA) surface area was 
2 × 2  cm2. The performance of the membrane in DMFC was 

(4)PM

(

cm2 s−1
)

=
SVt

CMOA

(5)∅
(

S s cm
3
)

=
�

P
M

evaluated at room temperature with a 2-M and 4-M methanol 
feed solution at the anode and air at the cathode.

Results and discussion

FTIR

The chemical structures of pristine Nafion, HPW, N-PVA, 
and N-PVA/HPW membranes were compared based on 
FTIR spectroscopy (Fig. 1). For the recast Nafion mem-
brane and N-PVA/HPW mixed-matrix membranes, the 
bands at 460   cm−1 and 1056   cm−1 corresponded to the 
symmetric stretching vibration of O–S–O and S–O, respec-
tively. Meanwhile, the peaks identified at 1200  cm−1 and 
1144  cm−1 represented, respectively, the asymmetric and 
symmetric stretching of S–O of the sulfonic groups in 
Nafion [44]. Moreover, the characteristic peak at 969  cm−1 
was assigned to the stretching vibrations of C–O–C  
groups, and the band observed at 632  cm−1 was attributed 
to the C–S stretching. On the other hand, N-PVA blend 
membrane and N-PVA/HPW mixed-matrix membranes 
possessed broad transmission peaks between 3300 and 
3600  cm−1 and 2923 and 2942  cm−1 which were ascribed 
to O–H stretching of hydroxyl groups and asymmetric C–H 
stretching, respectively, both indicating successful incorpo-
ration of PVA into the Nafion polymer matrix [45]. HPW is 
made of central  PO4 tetrahedron units surrounded by tung-
sten  (W3O13) units and connected by oxygen atoms [46, 
47]. Hence, there were four W–O characteristic stretch-
ing peaks displayed by the FTIR spectrum of pure HPW, 
which appeared at 1072  cm−1 (P–Oa), 972  cm−1 (W–Od 
terminal oxygen), 899  cm−1 (W–Ob–W corner oxygen) and 
746  cm−1 (W–Oc–W edge oxygen) [33, 48–51]. It could be 
observed that the FTIR spectrum of N-PVA/HPW in the 
region between 500 and 1250  cm−1 was quite similar to the 
pristine HPW, with the bands at 823  cm−1 and 1093  cm−1 
standing out due to the stretching mode of HPW. Com-
pared with pure HPW, N-PVA/HPW revealed shifting in 
peak positions and a decrease in peak intensity, signifying 
the possibility of hydrogen bonding and ionic interactions 
between HPW and functional groups in Nafion and PVA 
[36, 48]. N-PVA/HPW also demonstrated a shallower O–H 
band, indicating that the mixed-matrix membrane was more 
hydrophilic due to the presence of water crystals inside the  
crystal structure of HPW [51, 52].

XPS

XPS was used to determine the electronic states and 
chemical composition of N-PVA/HPW20 membrane. The 
characteristic peaks in XPS analysis (Fig. 2a) showed the 
presence of five relative elements within the energy range 
from 30 to 700 eV, including carbon (C1s), oxygen (O1s), 
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fluoride (F1s), sulfur (S2p), and tungsten (W4f). The C1s 
(Fig. 2b) was attributed to the alkyl carbon peak (C–C) 
and the ether carbon peak (C–O), which were observed at 
290.1 eV and 291.6 eV, respectively [53, 54]. Also, the peak 
around 293.9 eV and 296.5 eV was ascribed to C–F groups 
in Nafion [55]. The O1s spectra (Fig. 2c) could be used 
to infer several contributions from different chemical func-
tional groups. The peaks detected at 542.3 eV, 539.8 eV, 
and 537.1 eV corresponded to the oxygen series present in 
the ether functional group (C–O–C and C–O) and sulfonate 
group  (SO3

–) [56, 57]. Meanwhile, the sulfur in the sulfonate 
group of Nafion was shown by the peak at 173.7 eV in the 
S2p [50, 58] (Fig. 2d). The peak of F1s spectra (Fig. 2e) at 
693.1 eV is assigned to  CF2 or  CF3 groups in Nafion [54]. 
Lastly, the binding energy peak of W4f centered at 37.8 eV, 
which are attributed to the  PW12O40

3− in the Keggin struc-
ture of HPW [59], can be seen in W4f spectra (Fig. 2f), con-
firming the existence of W element in the sample.

TGA 

Thermal stabilities of recast Nafion, N-PVA, and N-PVA/
HPW membranes were analyzed, and the results are shown 
in Fig. 3. Nafion membrane exhibited three main degra-
dation stages whereas the N-PVA blend membrane and 
N-PVA/HPW mixed-matrix membranes share similar deg-
radation trend which consists of four steps of weight loss. 
The first weight loss for all samples at around 100 °C was 
attributed to the evaporation of water and solvents. The 

second degradation of the N-PVA and N-PVA/HPW mem-
branes starting from around 110 to 350 °C was correlated 
to the dehydration of hydroxyl groups from PVA [60]. 
The third weight loss region of mixed-matrix membranes 
between 350 and 450 °C indicated the degradation of sul-
fonic acid groups, while in recast Nafion, this was found 
between 300 and 400 °C. Compared to recast Nafion, the 
desulfonation temperature of mixed-matrix membranes 
was delayed, demonstrating greater thermal stability. 
Moreover, as the filler percentage of HPW increased, the 
weight loss decreased, showing that the thermal stability 
of the N-PVA/HPW membranes increased with HPW load-
ing. The last stage of weight loss, the decomposition of 
the polymer main chains, occurred after 420 °C for recast 
Nafion and 450 °C for N-PVA/HPW membranes resulted 
in the most significant weight loss [61]. The greater ther-
mal stability of the N-PVA/HPW membranes, as seen in 
Fig. 3, can be explained by the presence of the inorganic 
filler, which may interact with the sulfonic acid groups 
and therefore restrict the mobility of the polymer chains. 
Based on the TGA findings, the mixed-matrix membranes 
are thermally stable at temperatures below 250 °C, making  
them suitable for use in high-temperature DMFC.

Water and methanol uptake

Water and methanol uptake of recast Nafion, N-PVA, and 
N-PVA/HPW membranes with varying concentrations of 
HPW are expressed in Fig. 4. Adequate water uptake is 

Fig. 1  FTIR spectra of recast 
Nafion, N-PVA, N-PVA/HPW 
membranes, and pure HPW
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crucial for proton transport because water molecules act as 
proton carriers; protons combine with water molecules to 
form hydrated protons  (H3O+), which are then transported 
across the PEM [45]. Higher water uptake aids proton 

transport through diffusion; however, excessive water uptake 
can negatively affect the methanol barrier properties and 
mechanical strength of the membrane. From the results of 
water uptake by mixed-matrix membranes, an increasing 

Fig. 2  XPS analysis of a survey spectra, b C1s, c O1s, d S2p, e F1s, and f W4f spectra of N-PVA/HPW20 membrane
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trend was noticed as the membranes were treated with a 
higher concentration of HPW. Of the prepared N-PVA/
HPW membranes, N-PVA/HPW30 demonstrated the high-
est water uptake at 132.3%, which was around 6.4 times 
higher than recast Nafion (20.8%). The increment could 
be deduced from the hydrophilicity nature of HPW, and 

when the concentration of HPW in the treatment solution 
increased, more HPW was incorporated into the membrane. 
Having an abundance of O atoms, HPW interacts with water 
molecules through weak hydrogen bonding, which facili-
tates water adsorption of the mixed-matrix membranes [62]. 
Besides, the heteropolyanion groups  [PW12O40]3− (also 

Fig. 3  TGA analysis of Nafion 
117, N-PVA, and N-PVA/HPW 
membranes

Fig. 4  Water and methanol 
uptake of recast Nafion, N-PVA, 
and N-PVA/HPW membranes
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known as Keggin anion) in HPW are capable of attracting 
a large amount of water molecules into the membrane [36, 
46]. However, the water absorption site in the mixed-matrix 
membrane might be reduced due to the interactions between 
the hydroxyl groups in PVA blend and the terminal oxygen 
and the bridging oxygen in HPW [60]. This explains why the 
water sorption of mixed-matrix membranes was lower than 
that of N-PVA membrane (lowered by 1.14 to 1.67 times).

Methanol uptake is one of the key properties for PEM 
performance in DMFC, as it may reflect the methanol per-
meability of PEM. Low methanol uptake is favorable for 
reducing methanol loss across the membrane. Notably, the 
sorption ability of N-PVA/HPW membranes in methanol 
decreased from 82.4 to 70.7% as the HPW concentration 
increased. In addition, the methanol uptake of the three 
N-PVA/HPW membranes was lower than that of the N-PVA 
and the recast Nafion membranes. This behavior inferred 
that the addition of HPW promoted the electrostatic inter-
action and hydrogen bonding (between sulfonic groups and 
HPW, as well as between PVA and HPW), which led to a 
denser, more compact structure and the formation of a chan-
nel barrier. Additionally, the HPW disrupted the methanol 
transport pathway by blocking the voids of N-PVA/HPW 
matrix as a result of the larger Keggin anion in HPW [63].

Mechanical properties

Mechanical properties of membrane are related to both tem-
perature and water content. Membrane must have strong 
mechanical properties to withstand high compression for 
MEA fabrication [43]. Table 1 shows the tensile strength of 
pure Nafion, N-PVA, and N-PVA/HPW membranes in wet 
condition. The tensile strength of N-PVA reduced by about 
43.4% after the addition of PVA into recast Nafion. However, 
by treating the membrane with HPW solutions, the tensile 
strength was enhanced by 15.5 to 78.6%, with the largest 
improvement occurring in the N-PVA membrane treated 
with a 10 wt% HPW solution. The improvement was due to 
the formation of dynamic hydrogen bonds between the sul-
fonic acid groups in Nafion, the hydroxyl groups in PVA, 
and the oxygen-containing groups in HPW, which increased 
the crosslinking degree and created a compact structure [64].  
However, the mechanical properties deteriorated with increas-
ing HPW content. This was likely because the hydrophilic 

PVA and HPW absorbed more water within the membranes. 
In comparison to N-PVA, the elongation of N-PVA/HPW 
decreased by at least 26.2% with increasing tensile strength, 
as the addition of HPW increased the stiffness of the mem-
brane by increasing crosslinking and subsequently decreasing 
the mobility of the polymer chain, which could be proven by 
the increment in the value of Young’s modulus. In short, the 
mixed-matrix membranes are ductile and meet the mechanical 
requirements for MEA fabrication [43, 65].

IEC

IEC evaluates the surface charge of the membrane, which 
reveals its proton exchangeable capacities and, hence, its 
ability to conduct protons [33, 66]. The higher IEC value 
indicates the dominance of the Grotthuss mechanism, 
which favors the transfer of proton via proton hopping. 
However, excessive hydrophilic ion-conducting groups 
will inevitably increase water uptake and lead to mechani-
cal degradation of the membrane. As expected, the IEC 
of the mixed-matrix membranes increased gradually with 
increasing HPW content. According to Table 2, among the 
modified membranes, N-PVA/HPW30 showed the highest 
IEC value of 1.12 mmol  g−1, which is comparable to the 
value of recast Nafion (1.04 mmol  g−1). Although the IEC 
of the N-PVA/HPW10 (0.78 mmol  g−1) and N-PVA/HPW20 
(0.95 mmol  g−1) membranes was lower than recast Nafion 
membrane, their IEC values were superior to those of the 
N-PVA (0.73 mmol  g−1) membrane. This phenomenon is 
related to the enrichment of hydrophilic functional groups 
found in HPW. The strong acidity of HPW arises from the 
presence of polyanion  [PW12O40]3−, which significantly 
increases the positive charge accumulated on its surface 
[47]. As a result of the increasing charge, the IEC rises, 
which is favorable for the functioning of the fuel cell.

Proton conductivity

Proton conductivity correlates to the availability of ion 
exchange sites and water content of a membrane. This is 
because proton transport occurs through the Grotthuss mech-
anism, in which protons jump from one anionic group to the 
other via the formation and cleavage of hydrogen bonds; 
meanwhile, the vehicular mechanism involves the diffusion 

Table 1  Mechanical properties 
of recast Nafion, pristine N-PVA, 
and N-PVA/HPW membranes

Sample Thickness (mm) Tensile strength (MPa) Elongation (%) Young’s modulus (MPa)

Recast Nafion 0.20 6.36 ± 0.38 45.62 ± 4.70 14.27 ± 2.28
N-PVA 0.20 2.76 ± 0.23 88.43 ± 2.60 6.07 ± 0.51
N-PVA/HPW10 0.18 4.93 ± 0.96 61.43 ± 7.19 8.09 ± 1.78
N-PVA/HPW20 0.18 3.97 ± 0.01 63.90 ± 6.22 6.25 ± 0.60
N-PVA/HPW30 0.18 3.19 ± 0.69 65.25 ± 1.72 6.12 ± 0.13
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of protons together with water molecules [67]. As depicted in  
Fig. 5, the addition of PVA reduced the concentration of the 
sulfonic acid moiety required for proton transport, resulting 
in a considerable decrease in proton conductivity for N-PVA 
membrane. However, after treating with HPW, proton con-
ductivity was shown to be higher in all modified samples 
compared to the N-PVA membrane. This trend was more pro-
nounced as the HPW content was higher, in agreement with 
the literature documented by Mohanapriya et al. [63]. The 
N-PVA/HPW30 membrane achieved the highest proton con-
ductivity of 0.073 S  cm−1, which was mainly attributed to two 
possible reasons: (1) hydrophilic HPW exhibited high water 
uptake and (2) additional proton exchange sites provided by 
HPW. With increased water molecule absorption, protons 
might migrate more easily via vehicular mechanism [66]. 
Besides, the unique structure of HPW, which consists of anion 
groups, can contribute to the preferential proton transport, as 
protons can be coordinated to the oxygen atoms in HPW. The 
anion groups of HPW can also combine with hydrated protons 
 (H3O+), allowing hydronium ions to jump from one HPW to 
the neighboring HPW along the water-associated hydrogen  

bond [47]. Thus, the proton transmission is accomplished not 
only by the sulfonic acid groups but also the anion groups 
in HPW [51, 68, 69]. In a word, the strong intrinsic water 
absorption capacity and additional O sites of HPW promote  
the movement of proton along the PEM.

Methanol permeability

Another factor that might affect the performance of a PEM 
is the methanol crossover. The structural motifs of Nafion 
lead to a high methanol permeability [9], which can result 
in several adverse effects, for instance, a decrease in fuel 
efficiency, overpotential, cathode catalyst poisoning, and 
eventually depress the performance of DMFC. Figure 6  
demonstrates that methanol permeability increased with 
increasing HPW content because the membrane became 
more hydrophilic, as evidenced by the water uptake test 
results. The highest methanol permeability was observed 
for the N-PVA/HPW30 membrane at 3.2 ×  10−6  cm2  s−1, 
compared to the N-PVA (2.15 ×  10−6  cm2  s−1), N-PVA/
HPW10 (2.38 ×  10−6  cm2   s−1), and N-PVA/HPW20 
(2.74 ×  10−6  cm2   s−1). HPW is well-known for its high 
water uptake capacity, which facilitated methanol diffusion 
and caused the undesired methanol permeability. Despite 
the minor drop in the methanol uptake upon treatment 
with a higher concentration of HPW, the drastic increase 
in water absorption might widen the free volume of the 
polymer matrix, reduce the dimensional stability, and con-
tribute to a loose structure, thereby reducing the metha-
nol hindering effect [51, 69]. Nevertheless, the methanol 

Table 2  IEC of recast Nafion, pristine N-PVA membranes, and N-PVA  
treated with different weight percent of HPW solutions

Sample Recast 
Nafion

N-PVA N-PVA/
HPW10

N-PVA/
HPW20

N-PVA/
HPW30

IEC 
(mmol 
 g−1)

1.04 0.73 0.78 0.95 1.12

Fig. 5  Proton conductivity of 
recast Nafion, N-PVA, and 
N-PVA/HPW membranes
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permeability of the HPW-modified membranes was lower 
than that of recast Nafion (3.6 ×  10−6  cm2  s−1). This could 
be explained by the unique phase-separated nanostructure 
of Nafion, which is formed by the hydrophobic perfluori-
nated backbone and hydrophilic sulfonic acid groups [70]. 
The separation of the domains allowed the movement of 
methanol molecules, yielding a higher methanol permea-
bility in Nafion. On the other hand, the interaction of HPW 
with the blend membrane suppressed the phase separation 
of N-PVA/HPW, forming a relatively packed structure; 
therefore, methanol diffusion would be limited [71].

Self‑healing

Formation of mechanical damage is another major concern 
when developing PEM. This is a key factor to consider when 
operating PEM under cyclical swelling and shrinking condi-
tions. Thanks to the presence of PVA and its high degree 
of hydrophilicity, PEM could be endowed with self-healing 
properties. Figure 7 shows that all the PVA-loaded mem-
branes could repair the damages on the membranes after 4 h 
of self-healing process in a methanol solution. The mem-
branes were also subjected to a methanol permeability test 
to determine whether their original methanol-blocking prop-
erties could be restored. As illustrated in Fig. 8, the healed 
PVA-modified membranes demonstrated a methanol perme-
ability value comparable to that of the respective original, 
undamaged membranes. N-PVA, N-PVA/HPW10, N-PVA/
HPW20, and N-PVA/HPW30 recovered 86%, 83%, 85%, and 

93% of the methanol barrier function of intact membranes, 
respectively. This implied that PVA possessed a great poten-
tial to serve as a self-healing material. During the process, 
the fracture surface was brought into contact by the metha-
nol solution, and the broken chain migrated from one side 
to the other to promote the reformation of hydrogen bonds 
[72]. This interaction ended up joining the broken parts and 
allowed the restoration of the hydrogen bonds between PVA 
chains, Nafion, and HPW. Specifically, the recoverability 
of the N-PVA/HPW30 membrane increased drastically to 
93%, which could be attributed to the higher water holding 
capacity that rendered the higher polymer chain mobility. 
This promoted chain diffusion across the cut interface and 
increased the efficiency of self-healing. However, the high 
water uptake caused by the HPW’s superior acidity and 
unique structure (protonic Keggin-type polyoxometalates) 
would result in severe methanol crossover [68]. Since HPW 
has an antagonistic effect on self-healing ability and metha-
nol permeability, it is important to strike a balance between 
these two characteristics by controlling the HPW loading in a 
membrane to avoid negatively impacting PEM performance.

Selectivity

PEMs are always confronted with a trade-off between mem-
brane proton conductivity and methanol permeability as they 
are two inter-related phenomena. The factors which hinder the 
flow of methanol molecules through a PEM also impede the  
transport of water molecules and associated protons. Thus,  

Fig. 6  Methanol permeability 
of recast Nafion, N-PVA, and 
N-PVA/HPW membranes
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effort has been devoted in PEM with augmented ionic con-
ductivity without compromising the desirable methanol bar-
rier properties. Typically, selectivity, defined as the ratio of 
proton conductivity to methanol permeability, is used as the 
performance metric for PEM in DMFC. In general, a higher 

selectivity suggests that it would be an excellent PEM can-
didate. As shown in Fig. 9, the selectivity of HPW-modified 
membranes exceeded that of unmodified Nafion and N-PVA 
membranes. The N-PVA/HPW20 membrane demonstrated 
the highest selectivity with 2.2759 ×  104 S s  cm3 because of its  

(a) (b) (b)

(b) (b) (b)

Fig. 7  SEM image of a damaged membrane, as well as b (i) recast Nafion, (ii) pristine N-PVA, (iii) N-PVA/HPW10, (iv) N-PVA/HPW10, and 
(v) N-PVA/HPW30 after healing process

Fig. 8  Methanol permeability of 
original, damaged, and healed 
recast Nafion, N-PVA, and 
N-PVA/HPW membranes
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acceptable proton conductivity and tolerable methanol permea-
bility. The synergy effect of heteropoly acid and PVA for proton 
conductivity improvement and methanol barrier properties was 
evidenced by the fact that N-PVA/HPW20 provided new sites 
for proton transfer and reduced opportunity for the methanol 
permeation. HPW also contributed to the enhancement in water  

holding capacity that assisted in proton diffusion. In contrast,  
the selectivity of pristine Nafion membrane under the same 
conditions was 1.8568 ×  104 S s  cm3, which was 18.4% lower  
than N-PVA/HPW20, as the result of the high methanol per-
meability issue. Thus, N-PVA/HPW20 is seen as a promising  
alternative for use in DMFC applications due to the superior 

Fig. 9  Selectivity of recast 
Nafion, N-PVA, and N-PVA/
HPW membranes

Fig. 10  Polarization curves 
of recast Nafion and N-PVA/
HPW20 membranes



1489Journal of Solid State Electrochemistry (2023) 27:1477–1492 

1 3

selectivity of the mixed-matrix membrane and its unique self-
healing feature, which should increase the lifetime of DMFC.

Passive DMFC performance

It is well understood that a higher selectivity value results 
in a better membrane performance in DMFC. Hence, to elu-
cidate the improvement in selectivity in this work, N-PVA/
HPW20 was compared to the pristine Nafion membrane 
in a single-cell DMFC operating at room temperature and 
ambient pressure. Since the methanol concentration has a 
significant effect on electrical performance, two different 
methanol feed solutions were tested, with a concentration 
of 2 M and 4 M. The corresponding polarization and power 
density curves are displayed in Fig. 10. The output trend 
was the same for both membranes, with an increase in OCV 
and power density as methanol concentration was increased 
from 2 to 4 M. Using a 4-M methanol solution, N-PVA/
HPW20 delivered a peak power density of 2.70 mW  cm−2 
at a load current density of 17.92 mA  cm−2, while DMFC 
assembled with recast Nafion membrane produced a maxi-
mum power density of 2.41 mW  cm−2 at a limiting current 
of 16.26 mA  cm−2. The lower performance observed with 
recast Nafion was probably due to the high rate of fuel cross-
over from anode to cathode. This again confirms that the 
reduced methanol permeability of the mixed-matrix mem-
brane improved DMFC performance. With its decreased per-
meability to methanol, the mixed-matrix membrane can be 
used in DMFCs with a high methanol concentration, hence 
increasing the power output. Table 3 compares the perfor-
mance of passive DMFC of several Nafion-based mem-
branes. The findings of this study are generally in agreement 
with the existing literature. Nonetheless, due to the variation 
in process parameters across research, it is difficult to draw 
any solid comparisons or conclusions.

Conclusion

For the purpose of creating a new self-healable mixed-matrix 
membrane, this study describes the synthesis of N-PVA 
membrane and its subsequent treatment with varying con-
centrations of HPW, as well as the resulting PEM proper-
ties. The results showed that the membrane properties such 
as water uptake, IEC, and proton conductivity were improved. 
The highest selectivity was achieved by N-PVA/HPW20 at 
2.2759 ×  104 S s  cm3 because of the interactions between the 
N-PVA blend and the  [PW12O40]3− anion through hydrogen 
bonds, which compact the structure and diminish the effect 
of the methanol crossover. In addition, the proton conduc-
tivity (0.062 S  cm−1) was moderately increased due to the 
hydrophilicity of HPW, which enhanced the water uptake of 
the membrane, while the polyanions of HPW provided more 
ionic exchangeable sites for proton transfer. In addition to 
its superior selectivity, the N-PVA/HPW20 membrane also 
demonstrated remarkable self-healing properties by recover-
ing 85% of its original methanol blocking function thanks to 
the reversible hydrogen bonds provided by PVA. Furthermore, 
HPW strengthened the mixed-matrix membrane thermally 
and mechanically. By the combined efforts of lower methanol 
permeability and comparable proton conductivity, the pas-
sive single cell based on N-PVA/HPW20 exhibited maximum 
power density of 2.7 mW  cm−2. In summary, the promising 
characterization results of N-PVA/HPW20 validated its pro-
spective applicability as a PEM candidate in DMFC.
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Table 3  Comparison of the passive DMFC performance of various Nafion-based membranes

Sample Catalyst loadings (mg  cm−1) Methanol 
concentration (M)

Current density 
(mA  cm−2)

Power density 
(mW  cm−2)

Reference

Anode Cathode

Nafion/silica/polyaniline 4 – 80wt% PtRu/C 4 – Pt/C 2 ~ 17 5 [73]
Nafion 115 4 – 1:1At% PtRu/C 2 – Pt/C 2 - 3.3 [74]
Analcime/Nafion 2 – PtRu/C 0.5 – 60% Pt/C 4 ~ 20 2.86 [75]
N-PVA/HPW20 4 – PtRu/C 4 – Pt/C 4 17.92 2.70 This work
Nafion 117 2 – PtRu/C 0.5 – 60% Pt/C 4 ~ 20 2.68 [75]
Nafion 117 2 – PtRu/C 0.5 – 60% Pt/C 2 ~ 16 2.56 [75]
Recast Nafion 4 – PtRu/C 4 – Pt/C 4 16.26 2.41 This work
Nafion 117 4 – 50% PtRu/C 2 – 50% Pt/C 4 ~ 15 2.2 [76]
Nafion 117 2 – 20wt% 1:1At% PtRu/C 2 – Pt/C 3 0.112 2.2 [77]
Nafion 117 - - 3 - 2 [78]
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