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Abstract
An electrochemical sensor for the detection of tartrazine (Tz), a synthetic azo dye customarily found in commercial soft 
drinks, is herein reported. This sensor is based on a carbon paste electrode (CPE) with gold nanoparticles (AuNP) anchored 
in carbon nanofibers (CNF). The CNF/AuNP nanocomposite was characterized by scanning electron microscopy (SEM), 
energy dispersive X-Ray spectroscopy (EDS), X-ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS). 
The electrochemical evaluation and detection of Tz was carried out by using differential pulse voltammetry (DPV) and cyclic  
voltammetry (CV). In terms of sensibility, the CNF/AuNP-CPE electrochemical sensor exhibits a linear range of 3.29 – 
49.50 µmol  L−1 with a coefficient of determination  r2 of 0.9946, a limit of detection (LOD) of 0.8 ± 0.07 µmol  L−1, and a 
limit of quantification (LOQ) of 2.64 ± 0.23 µmol  L−1. Furthermore, the proposed sensor exhibits excellent selectivity toward 
Tz in the presence of the sunset yellow dye, and other interferents such as sodium benzoate,  NaNO3,  NaHCO3, glucose and 
citric acid. In addition, a DFT computational study suggests that noncovalent interactions contribute to the stabilization of  
the Tz-AuNP assemblies at the electrode/electrolyte interface. The optimal reproducibility, repeatability, and sta-
bility during the Tz detection in commercial soft drinks makes CNF/AuNP-CPE an appealing electrode for  
analytical purposes.
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Introduction

Tartrazine (Tz) is a synthetic colorant commonly used in 
soft drinks due to its low cost and great stability under vis-
ible light, and in acidic media [1]. However, this synthetic 
dye must be strictly controlled by government laws due to 

potential risks to human health given the presence of azo 
groups  (R1-N = N-R2, where  R1 and  R1 can be either aryl 
or alkyl functional groups) susceptible to reductive cleav-
age leading to primary aromatic amines [2, 3]. Then, the 
maximum permitted level for Tz in food is 100 ppm [2, 4].

Several methods have been developed for the determina-
tion of Tz in water, such as absorption[5], photocatalytic 
degradation [6], HPLC [7], electroluminescence [8], etc. 
These methods are expensive and present a complex sample 
handling. Therefore, it is still a challenge to develop a sensi-
tive and simple method for Tz determination.

In recent years, electrochemical sensors have been raising 
attention for dye detection due to their low cost, suitability 
to detect different molecules, robustness, high sensitivity, 
selectivity, and reproducibility [9], where the drop in the 
price of electrodes manufacturing can be associated to the 
development of new technologies involving the use of car-
bon nanomaterials [10] and metallic nanoparticles [11, 12]. 
Currently, metal nanoparticles are used to increase sensitiv-
ity in electrochemical systems taking advantage of their high 
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surface/volume ratio, which increases the electrochemically 
active surface area [13]. As a support for the metallic nano-
particles, several carbon-based materials have been used. 
Particularly, for the detection of azo dyes, multi-walled [10, 
14] and single walled carbon nanotubes [15], graphene oxide 
[16], reduced graphene oxide [17], graphitic carbon [18], 
glassy carbon [19], graphite [20], hierarchical porous carbon 
[21], and carbon quantum dots [22] have been employed. 
However, to the best of our knowledge, carbon nanofibers 
(CNF) have not yet been used as supporting material for the 
electrochemical detection of food dyes.

CNF are interesting one-dimensional carbon materials 
widely used in solar cells and supercapacitors [23, 24]. They 
exhibit a unique nanofiber network structure, good conduc-
tivity and chemical stability [25]. However, they display a 
small surface area and a small number of active sites, result-
ing in a lower detection sensitivity [26, 27]. In this regard, 
gold nanoparticles (AuNP) are used to improve the Tz elec-
trochemical detection of CNFs. The use of these compos-
ite nanomaterial could help to obtain low detection limits, 
due to the high conductivity value of the AuNP (4 ×  105 S 
 cm−1) [28, 29], as well as the adsorbent capacity and the 
high surface area of CNF [30–32]. In addition, in recent 
years, AuNP have attracted increasing attention due to their 
electrocatalytic behavior leading to an improved sensitivity 
[33]. Moreover, AuNP-based sensors do not require the use 
of membranes, polymers or other materials for the forma-
tion and growth of the nanoparticle on the CNF electrode 
surface [34–36].

In this work a composite material based on AuNP sup-
ported on CNF is developed for the Tz electrochemical 
detection. This electrochemical sensor enables a rapid and 
high sensitivity detection of Tz in commercial drinks with-
out a sample pretreatment, making it an appealing device for 
quality monitoring.

Experimental

Reagents and Solutions

All solutions were freshly prepared using deionized water 
(resistivity ≥ 18.2 MΩ cm at 25 °C) obtained from a Milli-Q 
purification system (Millipore). A standard solution con-
taining 1000 mg  L−1 of Au  (HAuCl4) in HCl 2 mol  L−1) 
and potassium chloride KCl were obtained from Merck. 
Tz, Sodium Borohydride  (NaBH4), and iron salts 5.0 mmol 
 L−1  K4[Fe(CN)6]/K3[Fe(CN)6] were obtained from Sigma-
Aldrich. Sunset yellow, sodium benzoate,  NaNO3,  NaHCO3, 
glucose and citric acid were obtained from Sigma-Aldrich 
and Merck, respectively. Carbon nanofibers (graphitized 
(iron-free), composed of conical platelets, D × L 100 nm × 20 
– 200 μm) were obtained from Sigma Aldrich.

Phosphate buffer solutions of 0.1 mol  L−1 at pH 6, 7, 
8 and 9 were prepared using the salts  (NaH2PO4.H2O/
Na2HPO4.7H2O, Merck). Stock solutions of 1.0 ×  10–2 mol 
 L−1 of Tz were prepared, dissolving 53.43 mg of the com-
pound in 0.1 mol  L−1 of phosphate buffer at pH 8.

CNF/AuNP nanocomposite synthesis

250 mg of CNF was weighed and mixed with 200 mL of 
1 ×  10–4 mol  L−1 gold precursor standard solution at pH 9.5 
(the pH was adjusted with NaOH). Then, AuNP were syn-
thesized in situ using the procedure described in literature 
[37]. In the mixture, 5 mL of 0.01 mol  L−1  NaBH4 were 
added at room temperature for the formation and growth of 
AuNP on the CNF surface. Finally, the solution was heated 
to remove unreacted borohydride ions, and the composite 
obtained was centrifuged 3 times at 10,000 rpm in NaOH 
solution at pH 9.5. It was dried using an oven at 60 °C for 
24 h. The composite obtained was CNF/AuNP.

Preparation of CNF/AuNP paste electrode

To obtain the carbon paste electrode, 1 mL of 0.05 mol  L−1 
KCl was added and carefully mixed with 100 mg of CNF/
AuNP or CNF in a mortar and dried at ~ 50 °C for 15 min. 
Afterward, 80 µL of mineral oil were added to obtain a paste. 
The prepared paste was then packed into the cavity of the 
electrode (3 mm diameter and 1.5 mm deep). The modified 
carbon paste electrodes (CPE) were named CNF-CPE and 
CNF/AuNP-CPE, respectively.

Physicochemical and Electrochemical measurements

The morphology of CNF and CNF/AuNP composite were 
examined using a TESCAN LYRA3 FIB-SEM. The condi-
tions were: 25 kV, work distance of 8.5 mm and spot size 
of 60 µm. Energy-dispersive X-ray spectroscopy (EDS) 
was used to detect the AuNP in the composite at the same 
SEM conditions.

X-ray diffraction was used to characterize the crystal-
line phase and crystallite size of the samples. A PANalytical 
instrument Empyrean model was used to perform the meas-
urements. The conditions were: 20° ≤ 2θ ≤ 70°, step size of 
0.026° per each 250 s, slits of ½ (tube) and ¼ (detector) 
and detector model PIXcel 3D. To determine the crystalline 
sizes and lattice strain of AuNP, the Williamson-Hall (W–H) 
method has been applied [38].

Electrochemical measurements were performed by cyclic 
voltammetry (CV), differential pulse voltammetry (DPV) and 
electrochemical impedance spectroscopy (EIS) on a Poten-
tiostat–Galvanostat PGSTAT204 Autolab (Eco–Chemie, the 
Netherlands) using Nova software. Measurements were made 
using a glass electrochemical cell with a three-electrode 



1971Journal of Solid State Electrochemistry (2023) 27:1969–1982 

1 3

setup. A graphite bar was used as a counter electrode, and 
Ag/AgCl (3 mol  L−1 KCl) as a reference electrode.

Evaluation of CNF/AuNP/CPE sensor 
and the electrochemical detection of Tz

The electrochemical characterization of CNF/AuNP-CPE 
was performed at different pH (between 6 and 9) in pres-
ence of Tz using 0.1 mol  L−1 phosphate buffer solutions, by 
CV at a scan rate of 25 mV  s−1 and DPV using the following 
parameters: 75 mV of amplitude, 25 mV  s−1 of scan rate and 
30 s of conditioning time. EIS analyzes were carried out  
in a solution of  Fe2+/Fe3+ redox couple, in an electrolyte of  
5.0 mmol  L−1 and KCl 0.1 mol  L−1, using a frequency range 
between 0.1 and 100 kHz and an amplitude of 10 mV. The 
Chronoamperometric and Chronocoulometric analyzes were 
performed by an applied potential of 0.91 V for 120 s in the  
absence and in the presence of Tz. CV and DPV techniques 
were used to evaluate the stability, reproducibility, repeat-
ability, sensitivity, limits of detection (LOD), limits of quan-
tification (LOQ), and selectivity of the sensor in the pres-
ence of various interferents such as: sunset yellow, sodium 
benzoate,  NaNO3,  NaHCO3, glucose and citric acid, during 
the electrochemical detection of Tz. Finally, the Tz concen-
tration in peruvian soft drinks Inca  Kola® and  Cifrut® was 
determined by the optimized sensor, and it was validated by 
the UV–visible spectrophotometric technique.

Computational study of the gold‑tartrazine interaction

A density functional theory (DFT) computational study has 
been conducted to determine the most stable array of the  
tartrazine molecules interacting with the gold nanoparti-
cles at the electrode/electrolyte interface, and also to esti-
mate the intensity of the interactions involved. The DFT cal-
culations were carried out by using the Gaussian16 software 
[39], tightening self-consistent field convergence thresholds 
 (10–10 a.u.), and considering a 6-311G(d)/LANL2DZ basis 
set and the M06-2X functional [40]. For the  Au20 cluster we 
took as a starting point the tetrahedral symmetry structure 
proposed by Hensen and coworkers obtained from a DFT-
based genetic algorithm [41]. This structure agrees with pre-
vious quantum-chemical calculations as well as experimental  
IR data used to resolve the structure of neutral gas-phase gold  
clusters [42, 43]. The interaction energy is obtained by a frag-
ment calculation where the gold cluster and Tz energies are 
subtracted from the energy of the overall system. For this cal-
culation the counterpoise correction for the basis set super-
position error is considered [44]. The solvent effects of water  
were included according to the Polarizable Continuum Model  
(PCM) [45] where the solute is placed in a cavity of molecu-
lar shape, and the solvent dielectric response is projected on 
the surface of the cavity.

Results and discussions

Morphological and structural evaluation of CNF/
AuNP sensor

The morphologies of CNF and CNF/AuNP were explored 
using SEM images at different scales. Figure 1a and b show 
the CNF morphology, which exhibits similar features when 
compared with carbon nanotubes. The diameter of CNF 
varies between 80-110 nm, approximately. The CNF/AuNP 
shows a morphology similar to pure CNF (Fig. 1c and d). 
Through SEM, small agglomerations of AuNP between 
15–25 nm of sizes were identified (Fig. 1d). Furthermore, 
the AuNP clusters are not distributed evenly, enabling only 
a qualitative elemental identification by EDS (indicated by 
arrows in Fig. S1).

Figure 2 shows the X-ray diffractogram of the CNF/
AuNP composites. The CNF diffractogram (Fig. S2) shows 
a diffraction peak at 26.49° and another at 54.5°, which 
are consistent with the (002) and (004) plane reflections of 
graphite structure [46]. The crystalline structure of CNF/
AuNP composite showed well-defined Bragg peaks corre-
sponding to (111), (002) and (202) plane reflections of the 
Au material (face centered cubic (fcc) structure). Besides, 
the crystalline size of AuNP was approximately 7.5 nm, 
which showed a low crystalline order and low agglomeration 
when it is impregnated on the CNF surface (Fig. 1d) [47].

Electrochemical characterization of CNF/ 
AuNP‑CPE sensor

EIS and CV analysis were performed on CNF-CPE and 
CNF/AuNP-CPE (Fig. 3a and b), using the potassium hexa-
cyanoferrate solution [Fe(CN)6]3/4− redox couple 5.0 mmol 
 L−1 and KCl 0.1 mol  L−1 as supporting electrolyte. EIS was 
evaluated to determine the electron transfer behavior of Tz. 
The electrochemical results are shown in Fig. 3a. The inset 
displays the equivalent circuit model with the following 
values: electrolytic support resistance (Rs), charge transfer 
resistance (Rct), Warburg impedance  (W1 and  W2), and a 
phase element constant (CPE). From the Randles model it 
is obtained Rs = 33.5 Ω and Rct = 127.6 Ω; Rs = 22.4 Ω and 
Rct = 79.8 Ω for CNF-CPE and CNF/AuNP-CPE, respec-
tively (Table S1). Regarding the proposed equivalent circuit, 
the second resistance was identified as Rct. The decrease 
in Rct is due to the presence of AuNP on the CNF surface, 
indicating the enhancement of electron transfer between the 
CNF/AuNP-CPE sensor surface and the electrolyte solu-
tion [48]. This component is confirmed by the Tafel meas-
urement displayed in Fig. S3a. For CNF and CNF-AuNPs, 
185.9 and 99.8 Ω resistances were respectively obtained. 
The values fit the data from impedance analysis and the 
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low error percentage values in the selection of components 
confirm our equivalent circuit. Figure 3b shows the oxida-
tion/reduction of the  Fe2+/Fe3+ redox couple signal by CV, 
being sharper for the CNF/AuNP-CPE sensor. This indicates 
an improvement in the electron transfer and also indicates 
that the oxidative process between the sensor surface and the 
electrolyte solution is favored [49, 50].

To evaluate the transfer of electrons  (k0) on the surface of 
the CNF-CPE and CNF/AuNP-CPE electrodes, the estimation 
of the constant  k0 was made, since it is of great interest when 

examining the performance of electrode materials. The rate 
constant provides an indication of the rate of electron trans-
fer between an electroactive species and an electrode surface, 
whether the electrode material determines the overall rate of 
the electrochemical reaction. The value of k is obtained from 
Eq. 1 and Fig. S3a, where  i0 is the exchange current, n is the 
number of transferred electrons, F is the Faraday constant 
96,485 C  mol−1, A is the electrode electroactive area in  cm2 
and C the concentration of the species [51]. The value of  k0 
is 4.03 ×  10–6 and 7.50 ×  10–6 cm  s−1 for CNF-CPE and CNF/

Fig. 1  SEM images for the CNF at (a) and (b) and the CNF/AuNP at (c) and (d). The AuNP are identified qualitatively from EDS as indicated 
with arrows at (d) image
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AuNP-CPE electrodes, respectively. These values suggest that 
the CNF modified with the AuNP presents a better electron 
transfer. The results obtained here may have a relationship 
with the sensitivity during Tz dye detection.

The pH value of the supporting electrolyte has a signifi-
cant influence on the electrochemical behavior of Tz [16]. 
Therefore, it is important to evaluate the optimal pH value 
for Tz detection. The oxidation of Tz was evaluated at dif-
ferent pH values in the range of 6 to 9 by DPV (Fig. 4a). 
The results show a potential shift to negative values when 
the pH for CNF/AuNP-CPE increases, as expected [16, 17]. 
Furthermore, the oxidation peak potential  (Eoxid) is linear in 

(1)i
0
= nFAk0C

the pH range 6–9 (Supplementary Fig. S3). The linear equa-
tion is  Eoxid = 1.09 − 0.030pH  (r2 = 0.9594), and the value 
slope is − 30.02 ± 3.5 mV/pH [52]. These results are in good 
agreement to the Nernst equation (Eq. 2) of  Epc = E − 0.059/n 
pH, where n is the number of transfer electrons [53, 54].

where it can be deduced that the slope is different from the 
theoretical value (30 mV ≠ 59 mV). These values indicate 
that the Tz oxidation reaction occurs via a proton with 2 
transferred electrons in the process (reaction 2) [55, 56]. 
Furthermore, the slope -30 mV/pH indicated in Fig. S3b 
verifies that two electrons are transferred n = 1.96 ~ 2. [55, 
56]. In addition, the highest Tz current oxidation intensity 
is observed when pH is 8. Therefore, this pH was chosen for 
the following experiments.

The Fig. 4b presents the electrochemical evaluation of the 
CNF-CPE and CNF/AuNP-CPE compounds in the presence 
of 9.9 ×  10–5 mol  L−1 Tz, with an oxidation peak at 0.86 V, 
for the CNF-CPE sensor modified with the AuNP, which 
improves the Tz electrochemical detection. After obtaining 
the optimal electrolyte, the DPV parameters were optimized 
for Tz detection. Then, the amplitude  (Eamp = 150 mV), scan 
rate (ʋ = 25 mV  s−1), accumulation potential  (Ea = 1.5 V) 
and accumulation time  (ta = 60 s) were defined. [11, 57] 
(see Supplementary Fig. S4). The studies of the optimal 
parameters were carried out in the following way: The 
amplitude was evaluated in a range from 5 to 200 mV using 
a 9.9 ×  10–5 mol  L−1 solution of Tz while the other con-
ditions remained constant, the results are observed in Fig 
S4a, where it is observed that the   highest oxidation current 

(2)Epc = E −
0.059

n
pH

Fig. 2  X-Ray Diffraction pattern of CNF/AuNP

Fig. 3  a) Nyquist plot (OCP: 0.25 V), b) CV at 25 mV  s−1 of CNF-CPE and CNF/AuNP-CPE in 5.0 mmol  L−1 [Fe(CN)6]3/4− and 0.1 mol  L−1 KCl 
electrolyte
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is obtained at 150 mV of amplitude. The same procedure 
was performed to obtain the optimal parameters leading 
to an improvement of the Tz electrochemical detection by 
the CNF/AuNP-CPE sensor [58]. The results are shown in 
Fig. S4. 

Electrochemical determination of Tz

The CVs of the CNF/AuNP-CPE sensor were recorded in 
absence and presence of Tz at pH = 8 in the potential range 
from -0.2 V to 1.3 V vs Ag/AgCl (Fig. 5). Figure 5a presents 
the CV of the CNF without modifying, where the oxidation 
potential at 1.1 V (reaction 1) and the reduction potential 
at 0.5 V are observed. These peaks correspond to the redox 
reaction of AuNP on the CNF surface according to [59, 60]:

Figure 5b shows a Tz oxidation peak at 0.9 V detected by 
CNF-CPE and CNF/AuNP-CPE materials [56]. The CNF-
CPE material detects the Tz, through oxidation measure-
ments. In contrast, the CNF/AuNP-CPE sensor provides 
well-defined signals for the anodic current of Tz. This dem-
onstrates the synergistic effect of AuNP on CNF surface, 
due to the good conductivity and rapid electron transfer 

(Reaction 1)Au0 ↔ AuIII + 3e−

attributed by the AuNP, which is related to the decreasing 
in the overpotential reaction on the modified electrode sur-
face [34, 61]. The electrochemical process involved in Tz 
presents only one oxidation signal implying two electrons 
and one proton in the reaction, thus depicting an irrevers-
ible process. The electrochemical oxidation reaction of Tz 
is shown in reaction (2) [34, 62].

Chronoamperometry is one of the electrochemical meth-
ods most commonly used to study processes in chemically 
modified electrodes. For example, our CNF/AuNP-CPE sen-
sor in the detection of Tz, exhibits a potential of 0.91 V and 
t = 120 s, generating a noticeable increase in current due 
to the Tz molecule oxidation (Fig. 5c) [22, 34]. The inset 
in Fig. 5c shows the modification of those straight lines, 
increasing their intercept from 0.005 to 3.503 μA, due to 
detection of Tz by the CNF/AuNP-CPE sensor [22, 61].

Figure 5d shows the adsorbed charge by Tz on CNF/
AuNP-CPE surface, determined by chronocoulometric anal-
ysis. The extrapolation of the linear slope, from the chrono-
coulometric test, does not pass through the origin due to the 
double layer charge and the oxidation reaction on Tz (Eq. 3)

(Reaction 2)

(3)Q =
2nFAD

1∕2

O
C∗
O
t1∕2

�
1∕2

+ Qdl + nFAΓO

Fig. 4  DPV analysis of a) CNF/AuNP-CPE in phosphate buffer 0.1 mol  L−1 as supporting electrolyte at different pH values (6–9) in the presence 
of Tz 4 ×  10–4 mol  L−1, b) CNF-CPE and CNF/AuNP-CPE in the presence of 9.9 ×  10–5 mol  L−1 Tz at pH 8 at 75 mV and 25 mV s.−1
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where n is the stoichiometric number of electrons involved 
in the electrode reaction F is the Faraday constant 96,485 C 
 mol−1, A is the electrode electroactive area in  cm2, Do is the 
diffusion coefficient in  cm2  s−1, C∗

o
 is the concentration of 

the species in the solution in mol  cm−3, t is the time in s, Qdl 
is the capacitive charge and ΓO (mol  cm−2) is the faradaic 
component associated with the reduction and oxidation of 
the molecule adsorbed on the surface, ΓO [63]. The charge 
present on the CNF/AuNP-CPE was 9.91 μC and the amount 
of Tz charge adsorbed on the surface of CNF/AuNP-CPE 
was 77.95 μC [64].

Studies of scan rate effects

The effect of different scan rates was evaluated to observe 
the height variation of the anodic current for Tz detected 
by the CNF/AuNP-CPE sensor. Fig.  S5 shows the 

electrochemical analysis of Tz at 9.0 ×  10–4 mol  L−1 by CV at 
different scan rates from 0.01 to 0.2 V  s−1. It is observed that 
the scan rate linearly increases with the oxidation current 
(ipa) (Fig. 6S). In Fig. S6a, the same behavior is observed 
between the maximum Tz oxidation current (ipa) and the 
scan rate (υ), which is expressed as ipa (μA) = 3.35 + 83.70υ 
 (r2 = 0.9956), showing that the oxidation currents of Tz were 
enhanced with increasing scan rate from 0.01 to 0.2 V  s−1. 
A shift to more positive potentials was also observed, sug-
gesting that the reaction mechanism of Tz at the electrode 
gradually changed from an absorption process to a diffu-
sion one [11, 16]. Fig. S6b, indicates that ipa is proportional 
to the square root of the scan rate in the range of 0.01 to 
0.2 V  s−1, ipa(μA) = -1.75 + 4.55υ1/2  (r2 = 0.9416), suggest-
ing a diffusion controlled mechanism [61]. Fig. S6c presents 
the linear relationship of Log(ipa) with Log(υ). The linear 
equation is Log(ipa) = -4.405 + 0.510Log(υ)  (r2 = 0.9319). 

Fig. 5  Electrochemical evaluation of CNF/AuNP-CPE and CNF-CPE 
in a 0.1 mol  L−1 phosphate buffer pH 8. Analysis by cyclic voltamme-
try a) In the absence of Tz and b) in the presence of Tz at 25 mV  s−1; 

c) chronoamperometry analysis and d) chronocoulometry analysis in 
the absence and in the presence of 9.9 ×  10–5 mol  L−1 Tz at 0.91 V 
during 120 s
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The slope of the graph (Log(ipa) vs Log(υ)) is 0.51, suggest-
ing a mixed diffusion-adsorption controlled system (slope 
between 0.5 and 1.0) [34, 65]. In addition, Fig. S6d presents 
the linear relationship between Log(ipa) and Log(Epa). 
The linear equation is Log(ipa) = -3.54 + 26.58Log(Epa) 
 (r2 = 0.9761) which indicates a mixed diffusion-adsorption 
controlled system.

Fig. S6e shows the linear relationship between Epa and 
the logarithm of the scan rate, (Log(υ)). The linear equa-
tion for this relationship is: Epa = 0.925 + 0.038Log(υ), 

 (r2 = 0.9022). This indicates the irreversible nature of the 
electrochemical process of Tz [59]. Since the Tz reaction is 
an irreversible process, the number of electrons transferred 
in the reaction can be obtained from Eq. (4) through the 
difference between the Epa and  E1/2, which corresponds to 
the peak current, and the half of the peak current (α = 0.50), 
respectively [61].

(4)Epa − E 1

2

=
0.0477

�.n

Fig. 6  a) DPV analysis of the CNF/AuNP-CPE sensor in the presence of Tz at different concentrations, in a  phosphate buffer 0.1  mol  L−1 
pH = 8, at 150 mV, 25 mV  s−1,  ta = 60 s and  Ea = 1.5 V b) Calibration curve of the anodic current heights as a function of Tz concentrations

Table 1  Comparison of different modifications of working electrodes based on carbon for Tz detection

NA Not Available, CHIT/GO/MWCNTS/AuNPs/GCE: Chitosan-graphene oxide-multiwalled carbon nanotubes modified glassy carbon electrode. 
Nickel(II)-phthalocyanine-tetrasulfonic (NiTsPc), the Layer-by-Layer (LbL) film was constructed following the Au-(AuNPs-PAH/NiTsPc)5 archi-
tecture. Gr-PLPA/PGE: graphite-Poly(L-phenylalanine)-pencil graphite electrode, PGE: Pencil graphite electrode, PMel/GCE: Poly(melamine) 
electrodeposited on glassy carbon,  WS2/DNPs/GCE:  WS2-diamond nanoparticles modified glassy carbon electrode, SDSMCPE: Sodium dodecyl 
sulfate modified carbon paste electrode, TX-100MCPE: TX-100 modified carbon paste electrode, CHIT/CaONPs/MWCNTs/AuE: Chitosan-cal-
cium nanoparticles multiwalled  carbon nanotubes modified gold electrode, MWCNT–IL–CCE: multiwalled carbon nanotubes–ionic liquid–car-
bonceramic composite electrode.AuNPs/PDDA-Gr/GCE:Poly(diallyldimethylammoniumchloride) PDDA)  functionalized gold nanoparticles/
graphene(AuNPs/Gr)

Electrode Technique Linear range (µmol L−1) LOD (µmol L−1) Reference

CHIT/GO/MWCNTS/AuNPs/GCE DPV 10–100 mg/mL 2735.8 [16]
Au-(AuNPs-PAH/NiTsPc)5 DPV 1—9 0.12 [46]
Gr-PLPA/PGE DPV NA 1.54 [67]
PMel/GCE DPV 5–500 0.97 [68]
WS2/DNPs/GCE DPV NA 4.5 [69]
SDSM/CPE DPV 60–110 5.2 [70]
TX-100MCPE CV 6 – 100 1.11 [71]
CHIT/CaONPs/MWCNTs/AuE DPV 0.18 -188.7 1.69 [11]
AuNPs/PDDA-Gr/GCE DPV 0.075 – 5.0 0.05 [72]
MWCNT-IL-CCE DPV 3 – 70 1.10 [73]
CNF/AuNP-CPE DPV 3.29—49.5 0.80 This work
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The results suggest an electron transfer process (n = 1.94 ~ 2) 
in the rate-determining step of the Tz oxidation [59].

Calibration curve and Tz detection

The electrochemical detection of Tz by the CNF/AuNP-
CPE sensor was examined using DPV in a 0.1 mol  L−1 
phosphate buffer solution at pH 8.0 under optimized 
experimental conditions. The results are shown in Fig. 6a, 
where the addition of the Tz increases the current propor-
tionally. The results in Fig. 6b show that the oxidation cur-
rent linearly increases with the concentration of Tz [66]. 
The calibration curve obtained for the Tz response was 
Δi(µA) = -0.179 + 50110[Tz], with a correlation coefficient 
 r2 = 0.9946, a linear range between 3.29—49.5 µmol  L−1, 
LOD of 0.80 ± 0.07 µmol  L−1 and LOQ of 2.64 ± 0.23 µmol 
 L−1. These measurements were performed by triplicate. The 
LOD of the developed sensor was compared with different 
previous studies (Table 1), showing that our CNF/AuNP-
CPE sensor is within the working range and within the maxi-
mum permissible limits [16].

DFT Study of the interactions between Tz 
and the gold nanoparticles

The tetrahedral geometry attributed to the  Au20 cluster 
has been described as a structure of face-centered cubic 
bulk gold, with the twenty gold atoms on its surface and 
each of its four faces depicting a (111) plane [40, 62]. The 

constructed polyhedra is a tetrahedral pyramid with its four 
corners being low coordination sites. Four configurations 
were considered for the Tz-AuNP assemblies (See Fig. 7). 
The lowest energy (-46.6 kcal  mol−1) corresponds to a Tz 
parallel orientation relative to an  Au20 face (Fig. 7a) where 
phenyl and pyrazole moieties interact with the gold atoms 
displaying averaged interatomic distances of 3.35 Å, and 
3.37 Å, respectively. In this interacting assembly the nitro-
gen atoms of the azo group are the closest ones to Au at a 
distance of 3.32 Å, larger than the sum of van der Waals 
radii (3.21 Å) suggesting noncovalent interactions between 
the fragments, in line with a physisorption phenomenon. The 
second configuration (Fig. 7b) with the phenyl and pyrazole 
rings interacting with the AuNP exhibits a lower magnitude 
interaction energy (-41.9 kcal  mol−1), as a consequence of 
the Tz bent-shaped geometry-given the contacts involving 
the sulfonate and carboxyl groups toward the low coordi-
nate sites of the  Au20 cluster- which increases the distance 
between phenyl and the cluster, resulting in a less efffec-
tive interaction between the fragments. As expected, lower 

Fig. 7  Optimized geometries of Tz-AuNP systems calculated at the M06-2X/6-311G(d)/LANL2DZ level of theory. Interaction energies in kcal 
 mol−1 and interatomic distances in Angstroms

Table 2  Results of the RSD obtained by the reproducibility and repeat-
ability of the sensor

# Electrodes Reproducibility
(n = 10, 4 days) / % RSD

Repeatability
(n = 10) / % RSD

Electrode 1 6.95 5.69
Electrode 2 10.1 1.39
Electrode 3 8.32 2.41
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interaction energies (about 11 kcal  mol-1) are found for the 
side-to-face binding modes (Fig. 7c and d), where the Tz sul-
fonate groups interact with the central Au atoms of the clus-
ter face. In summary, DFT calculations reveal that a parallel 
orientation of the Tz molecule with respect to the surface 
of  Au20 is favored, with interatomic distances suggesting a 

physisorption at the electrode-solution interface of the CNF/
AuNP-CPE sensor.

Study of the reproducibility, repeatability 
and selectivity of the CNF/AuNP‑CPE sensor

Repeatability and reproducibility analysis of the CNF/AuNP-
CPE sensor by DPV using a Tz concentration of 4.75 ×  10–4 mol 
 L−1 in a phosphate buffer solution of 0.1 mol  L−1 at pH 8.0 and 
using 3 different electrodes, were performed by 10 consecu-
tive measurements (n = 10) in 4 different days. The applica-
tion of the analytical method yielded a relative standard devia-
tion (RSD) lower than 10%, as shown in Table 2. The results 
obtained showed that the proposed method exhibits an excellent 
precision when applied for Tz dye detection.

The selectivity analysis of the proposed sensor was per-
formed in the presence of the following interferents: sunset yel-
low (SY), sodium benzoate (SB),  NaNO3,  NaHCO3, glucose 
(Glu) and citric acid (CA) at a concentration of 1 ×  10–4 mol 
 L−1 in a phosphate buffer 0.1 mol  L−1 of pH 8 in presence of 
4.75 ×  10–4 mol  L−1 of Tz. Figure 8 presents the current vari-
ation percentage due to the interfering species presence. The 
percentage of relative standard deviation (%RSD) varies from 
94.8 to 113.5%, implying that the CNF/AuNP-CPE sensor is 
selective. This demonstrates that the CNF/AuNP-CPE sensor 
can be successfully applied for Tz dye detection in the pres-
ence of the aforementioned interfering compounds.

Fig. 8  DPV analysis of the CNF/AuNP-CPE sensor in the presence 
of different interferents in phosphate buffer 0.1  mol  L−1 pH = 8, at 
150 mV, 25 mV  s−1,  ta = 60 s and  Ea = 1.5 V

Fig. 9  Analysis of Tz in synthetic samples using a), b) the UV–visible spectrophotometric method and calibration curve; c), d) the electrochemi-
cal method and calibration curve and e) Validation of the electrochemical method
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Validation of the electrochemical method by UV–
visible spectrophotometry

Our sensor was validated using an UV–Vis analysis, and it 
was used as a comparative method for Tz quantification in 
synthetic and real samples. First, a calibration curve for Tz 
was constructed by the UV–visible technique in the same 
linear concentration range used for the DPV electrochemical 
technique (Fig. 9 and Table 3).

Figure  9a presents a maximum absorbance around 
430 nm of Tz [50, 74, 75]. From this UV–vis spectrum, 
an analytical curve was obtained, which exhibits a linear 
behavior with  r2 = 0.9995 in the concentration range between 
10.0 to 50.0 μmol  L−1 of Tz, from the following equation: 
A = -0.00303 + 0.02017[Tz] (Fig. 9b). In the same way, as 
observed in Fig. 9c, the electrode was analyzed by DPV with 
a concentration range between 10.0 to 50.0 μmol  L−1 of Tz, 
obtaining the following equation: Δi = -2.61 ×  10–7 + 2.97 
×  10–7[Tz], and a linear behavior with  r2 = 0.9977 (Fig. 9d).

Since the DPV method was evaluated at different lev-
els of Tz concentration in synthetic samples. These results 
are compared with those obtained by the spectrophoto-
metric method (Fig. 9e). The DPV validation by the spec-
trophotometric method was carried out by simple linear 
regression, obtaining a high coefficient of determination 
value  (r2) of 0.998, where the high percentage of the data 
is explained with the adjusted linear regression model: 
 CDPV = 0.002 + 0.999  CUV-vis. In addition, the linear regres-
sion slope presents an upper and lower confidence limits 
of + 1.071 and -0.928, respectively, where the obtained slope 
value is in good agreement with the ideal value of 1.0 for this 
model. On the other hand, the upper and lower confidence 

limits for the intercept are + 2.361 and -2.357, respectively. 
The values include the ideal value of zero, with a confidence 
level of 95%. Therefore, from the results is concluded that 
the spectrometric method is a useful analytical technique 
to validate the DPV analysis. The CNF/AuNP-CPE elec-
trochemical sensor provides reliability and good accuracy 
for a wide range of Tz concentrations [49, 76]. The results 
of the analysis of the real sample are indicated in Table 4, 
evaluating the Inca  Kola® and  Cifrut® soft drinks.

Conclusion

A new electrochemical sensor based on carbon nanofibers 
modified with AuNP was developed for Tz dye detection. 
The morphology of the AuNP on the surface of the CNF was 
observed by SEM. The crystallite size of the AuNP (face 
centered cubic structure) ranges between 15 and 20 nm. 
The CNF/AuNP-CPE presents excellent stability, repro-
ducibility and repeatability, with linear a range between 
3.29—49.5 µmol  L−1, with  r2 = 0.9946, with a low detection 
limit of 0.80 ± 0.07 µmol  L−1 and a limit of quantification 
of 2.64 ± 0.23 µmol  L−1. The robustness of the sensor selec-
tivity in the presence of various interfering species (sunset 
yellow, sodium benzoate,  NaNO3,  NaHCO3, glucose and 
citric acid) has been demonstrated. DFT calculations in a 
PCM solvent model reveal that a parallel orientation of Tz 
relative to the  Au20 surface is favored, where the interatomic 
distances involved suggest a physisorption phenomenon at 
the electrode-solution interface. Finally, the CNF/AuNP-
CPE sensor exhibits a rapid response, making it an appeal-
ing analytical tool for the detection and quantification of Tz 
dye in soft drinks.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10008- 023- 05438-5.
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Table 3  Analysis of Tz in synthetic samples using the electrochemical method and the UV–visible spectrophotometric method

Concentration of Tz added 
(µmol L−1)

Tz detected by electrochemical 
method (µmol L−1)

Recovered
(%)

Tz detected by UV–visible  
spectrophotometric (µmol L−1)

Recovered
(%)

10 9.72 97.20 9.63 96.63
20 20.19 100.95 20.32 101.60
30 30.73 102.43 30.22 100.73
40 39.03 97.57 40.01 100.02
50 50.30 100.60 49.79 99.58

Table 4  Analysis of Tz in soft drinks using the electrochemical method 
and the UV–visible spectrophotometric method

# Soft drinks Tz detected by  
electrochemical 
method (µmol L−1)

Tz detected by  
UV–visible  
spectrophotometric
(µmol L−1)

Cifrut 16.99 16.77
Inca Kola 47.59 47.60
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