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Abstract
The solid-state method is a mainly adopted large-scale preparation of  LiFePO4 cathode materials for Li-ion batteries but 
suffers from a challenge of irregular morphology and particle agglomeration. Herein, a graphene-supported  LiFePO4/C@G 
composite with uniform morphology and electronic conducting network was synthesized via a freeze-drying assisted solid-
state method without ball milling using the integrated  LiFePO4(OH) as precursor. The integrated  LiFePO4(OH) as precursor 
may avoid segregation of element caused by inhomogeneous mixing of raw materials in the process of solid-state preparation. 
The as-prepared graphene-coated  LiFePO4/C@G shows excellent electrochemical properties with a specific capacity of 156, 
154, 150, 145, 139, 132 mA h  g−1 at 0.1, 0.2, 0.5, 1, 2, 5 C and a capacity retention of around 97.0% for 200 cycles at 2 C. 
This can be attributed to uniform element distribution and continuous electronic conducting network. The freeze-drying 
assisted solid-phase method using  LiFePO4(OH) precursor and graphene is a promising route for production of  LiFePO4/C 
materials with excellent performances.
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Introduction

Lithium ferrous phosphate  (LiFePO4) cathode material is 
considered to be one of the most promising cathode materi-
als for lithium-ion power batteries due to the abundant raw 
materials, high safety, environmental friendliness. However, 
low electron conductivity and ion diffusion limit the elec-
trochemical properties of  LiFePO4 materials, hindering the 
commercialization process [1]. Effective strategy to improve 
the conductivity of  LiFePO4 is proven to be carbon coating 
along with preferential nanocrystallization [2–6] and ion 

doping [7–9], which can make the electrochemical perfor-
mances of  LiFePO4 materials reach a level of commercial 
application. At present, the cost and stability of its prepara-
tion process are still a bottleneck of limiting its large-scale 
application compared to conventional lead-acid and nickel-
hydrogen batteries [10, 11]. Therefore, it is essential for a 
wide industrial application to develop an inexpensive and 
facile solid-state method to produce a uniform  LiFePO4 
material without particle agglomeration.

Although many researchers have reported many pro-
cedures of synthesizing  LiFePO4, such as spray pyrolysis 
[12], combination of spray pyrolysis and ball-milling [13], 
spray drying [14], sol–gel [15], coprecipitation [16] and 
conventional solid-state reaction method [17], the synthe-
sis method of  LiFePO4 materials can be generally divided 
into solid state reaction and solution method. Solution 
method usually is accompanied with complex prepara-
tion process, leading to the high cost of preparation [10]. 
Accordingly, the large-scale preparation mainly adopts solid 
state method, although the solid state method encountered 
some application issues such as particle agglomeration with 
irregular morphology [5, 18]. In a conventional solid-state 
process of preparation, an iron source, phosphorus source 
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and Li source are used as starting materials for synthesizing 
 LiFePO4 materials. Before it is decomposed at a tempera-
ture ranging from 600 to 700 °C for 8–15 h, a precursor is 
usually obtained via mixing the starting materials through 
ball milling. The ball milling can help both homogeneity 
and reduction of the particle size. However, the ball mill-
ing often brings about irregular morphology and particle 
agglomeration, resulting in unstable electrochemical perfor-
mances [19]. In addition, ball milling also increases the cost 
of material preparation. To reduce irregular morphology 
and the particle agglomeration of  LiFePO4 materials in con-
ventional solid-state method, the introduction of integrated 
materials containing the Li, Fe, P elements as raw materials, 
such as  LiFePO4(OH), is very necessary. The  LiFePO4(OH) 
was first reported by Whittingham to be formed through the 
reaction of  FePO4⋅H2O and  CH3COOLi in hydrothermal 
process [20]. Subsequently it was found that nano-sized 
 LiFePO4 reacts with  H2O to form  LiFePO4(OH) in a wet 
environment [21, 22], and the  LiFePO4(OH) could still be 
reverse-reacted to  LiFePO4 after high-temperature heat 
treatment [22]. Next,  LiFePO4(OH) or LiFe(PO4)(OH)xF1−x 
was synthesized by solvothermal method [23–25]. After 
mixing it with carbon, the  LiFePO4(OH) was electrochemi-
cally active, with a specific capacity of 130 mA h  g−1 at 
0.1C. Another research on  LiFePO4(OH) has suggested 
that it can also be obtained by  FePO4  H2O through  H+/Li+ 
exchange [26]. In addition, the effective strategy to relieve 
the sluggish kinetics of  LiFePO4 is to integrate  LiFePO4 and 
graphitized carbonaceous materials with large contact area 
such as graphene and carbon nanotubes [27–29], which is 
widely applied for synthesizing high-rate hybrid electrodes 
with the least carbon content. For instance, the graphene-
modified  LiFePO4 materials were fabricated and promoted 
the improvement of its overall electrochemical performance 
[28, 30]. To the best of our knowledge, no research on using 
the integrated  LiFePO4(OH) as a precursor for synthesizing 
 LiFePO4 material has been reported. Based on the above 
considerations, we applied the integrated  LiFePO4(OH) 
compound containing Li, Fe, P elements as precursor, so 
that a morphology-inherited  LiFePO4 material with uniform 
element distribution can be obtained without ball milling.

Herein, a graphene-supported  LiFePO4/C@G com-
posite with uniform element distribution is successfully 
synthesized using the integrated  LiFePO4(OH) and the 
sucrose in graphene oxide (GO) suspension as raw mate-
rials. The as-prepared  LiFePO4/C@G exhibits excellent 
electrochemical performances due to uniform particle 
and electronic conducting network formed with graph-
ene and surface coating carbon layer. This provides a  
reference for large-scale preparation route of  LiFePO4/C 
materials.

Experimental

The  LiFePO4OH precursor was prepared by hydrother-
mal method using  FePO4⋅2H2O and  CH3COOLi as raw 
materials. Specifically, 0.006 mol of  CH3COOLi was dis-
solved in 120 ml of deionized water. Then, stoichiomet-
ric  FePO4⋅2H2O (0.006 mol) was added into the above 
solution under continuous stirring for 30 min. Then, the 
total solution was transferred into a 200 ml of stainless-
steel autoclave, sealed and heated at 180 °C for 72 h. The 
resultant product was washed with deionized water for sev-
eral times and was dried in a vacuum at 80 °C, before the 
 LiFePO4OH precursor was obtained. After it was mixed 
with 14 wt% of sucrose in 3 wt% graphene oxide (GO) 
suspension, the obtained mixture was freeze-dried and cal-
cined at 700 °C for 10 h under  N2 atmosphere. Finally, the 
 LiFePO4/C@G composite was obtained. The  LiFePO4/C 
was synthesized via the same procedure except without 
adding GO for comparison.

The crystalline phases of the samples were identified 
by a PANalytical X’PertPro X-ray diffractometer (Cu Kα 
radiation, 40 kV). The particle morphologies of the sam-
ples were examined by field emission scanning electron 
microscopy (FE-SEM, Hitachi S-4800). X-ray photoelec-
tron spectroscopy (XPS) data were collected by a PHI 
Quantera SXM spectrometer using the C 1 s peak with 
284.8 eV, and the corresponding fitted spectra were carried 
out by using XPSPEAK 4.1 software. Thermogravimetric 
analysis (TGA) was measured using STA 449F3 analyzer 
(NETZSCH Co.) under air atmosphere to obtain carbon 
content of composites at a heating rate of 10 °C  min−1.

The electrochemical tests were investigated by assem-
bling CR2016 coin-type cells. The cathode electrode was 
fabricated by coating aluminum foil with the slurry com-
posed of 80 wt% of active material  LiFePO4/C, 10 wt% of 
polyvinylidene binder and 10 wt% of Super-P in N-methyl-
2-pyrrolidone. After drying at 120 °C for 12 h in a vac-
uum, the electrode was punched into disc with the diam-
eter of 14 mm as the cathode. Lithium foil served as the 
counter electrode, and Celgard 2400 membrane was used 
as the separator. The electrolyte is consisted of a solution 
of 1 M  LiPF6 in EC and DMC (volume ratio of 1:1). The 
buttoned batteries (CR2016) were assembled in a glove 
box filled with argon. After the assembled batteries were 
laid aside for 3 h, the electrical performance of batteries 
were tested on the batteries tester (Land CT 2001A, Land 
Co. China) under a voltage range of 2.0 ~ 4.5 V. Cyclic vol-
tammetry and AC impedance spectroscopy measurements 
were performed at electrochemical workstation (CHI604E, 
Chenhua, China). The amplitude and frequency range of 
AC impedance are 5 mV and 0.1 ~ 100 kHz, respectively.
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Results and discussion

The preparation process is shown in Scheme 1. To solve 
component segregation of the raw materials and improve the 
consistency of the  LiFePO4 materials in mixing in solid-state 
preparation method of  LiFePO4 materials, a strategy was pro-
posed that the reaction phases were reduced in the mixing of 
raw materials through using  LiFePO4(OH) containing Li, Fe 
and P as precursor.  LiFePO4(OH) precursor was prepared by 
hydrothermal method using  FePO4 and  CH3COOLi as raw 

materials, followed by thermal conversion of  LiFePO4OH in 
the presence of sucrose in graphene oxide (GO) suspension as 
carbon sources for graphene-supported  LiFePO4/C composite.

Figure 1 presents XRD patterns of the  LiFePO4(OH) pre-
cursor, LFP/C and LFP/C@G samples. As shown in Fig. 1, 
the diffraction peaks of the as-prepared LiFePO4(OH) 
samples match well with the standard diffraction peaks of 
 LiFePO4(OH) (JCPDS No. 041–1376), indicating the high 
purity of the prepared  LiFePO4(OH) sample. 2θ = 17.82°, 
18.59°, 19.02°, 22.53°, 25.90°, 26.80°, 27.23°, 29.38° and 

Scheme 1  Schematic illus-
tration for synthesis of the 
LFP/C@G sample

Fig. 1  XRD patterns for the 
as-prepared samples (a) as 
well as XPS survey (b) and 
high-resolution elemental of 
Fe 2p (c) and C 1 s (d) for the 
LFP/C@G
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36.47° positions correspond to the characteristic diffraction 
peaks of (100), (011), (001), (− 101), (111), (021), (− 120), 
(101) and (− 201) crystal planes, respectively. In addition, 
the diffraction peaks of the obtained LFP/C and LFP/C@G 
samples from  LiFePO4(OH) also are well indexed to olivine 
structured  LiFePO4 with space group Pnma (JCPSD 83–2092). 
This indicates that  LiFePO4/C composites with high purity 
can be synthesized using  LiFePO4(OH) with Li, Fe and P ele-
ments as raw material. XPS spectrum was obtained to verify 
the elemental compositions and chemical states, shown in 
Fig. 1b–d. The XPS survey spectrums of the  LiFePO4/C@G 

sample show the typical peaks for Fe 2p, C 1 s, P 1 s and O 1 s, 
respectively. In the high-resolution spectrum of the Fe 2p, two 
peaks located at about 711 and 724 eV, matching to Fe  2p3/2 
and Fe  2p1/2, which may be ascribed to Fe (II) state [31]. In 
Fig. 1d, the peak for C 1 s at 284.7, 286.1 and 288.7 eV can be 
regarded as C–C band, C–O band and O–C = O band, which 
evidences the presence of the modified graphene [30].

Figure 2 shows SEM images of the  LiFePO4(OH) precursor 
and carbon-coated  LiFePO4/C material. As seen from Fig. 2a, 
 LiFePO4(OH) precursor possesses uniform spindle-shaped 
morphology with 2 μm in length and 300 nm in width. There is 
a smooth surface with no other impurity phase on the material 
particles. In Fig. 2b, SEM images of the carbon-coated LFP/C 
sample shows little different morphology compared with the 
 LiFePO4(OH) precursor. This indicates that the morphology of 
LFP/C materials can be regulated by  LiFePO4(OH) precursor. 
In order to further improve the rate performance of LFP/C, GO 
was added to the LFP/C sample, and its SEM was shown in 
Fig. 2c. In Fig. 2c, graphene can be observed in the LFP/C@G 
sample, indicating that the graphene is successfully coated on 
the surface of LFP/C particles. The EDS results of LFP/C@G 
in Fig. 2d show that C, P and Fe are uniformly distributed 
in the LFP/C@G sample. Therefore, the  LiFePO4(OH) pre-
cursor can be used as raw materials for synthesizing uniform 
 LiFePO4/C materials without the ball milling, which is ben-
eficial for engineering application [32, 33].

Figure 3 shows rate capability and cycling performances 
of the LFP/C and LFP/C@G samples synthesized from 
 LiFePO4(OH) precursor. In Fig. 3a, the LFP/C sample shows 

Fig. 2  SEM image of  LiFePO4(OH) raw material (a), LFP/C (b) and 
LFP/C@G (c) as well as EDS images (d) of the LFP/C@G

Fig. 3  Charge/discharge curves 
for LFP/C (a) and LFP/C@G 
(b) as well as their rate capabil-
ity (c) and cycling performance 
(d)
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an initial specific capacity of 158 mA h  g−1 at rate of 0.1 C 
(close to theoretical capacity of 170 mA h  g−1), indicating 
a high purity of the as-prepared LFP/C sample, while the 
LFP/C sample just maintains a specific capacity of 135 and 
106 mA h  g−1 at a high rate of 2 and 5 C, respectively and 
shows a great polarization with merely a voltage platform of 
2.5 V at 5 C, indicating that the rate performance of the LFP/C 
sample needs to be further improved. It is worthy of mentioning 
that the carbon content of the LFP/C and LFP/C@G samples is 
calculated to be 1.49 and 4.37 wt% from the thermogravimetric 
(TGA) curves (Fig. S1), respectively [34]. Therefore, the infe-
rior rate performance of LFP/C sample may be mainly due to 
the low electronic conductivity resulting from less carbon con-
tent of only 1.49 wt%. To further improve the rate performance 
of the LFP/C sample, GO was added to the LFP/C sample for 
synthesizing the graphene-supported  LiFePO4/C composite 
(LFP/C@G). In Fig. 3b, the LFP/C@G delivers a specific 
capacity of 156, 154, 150, 145, 139, 132 mA h  g−1 at 0.1, 0.2, 
0.5, 1, 2 and 5 C with a higher voltage platform of 3.3 V at 5 
C, showing excellent rate performance (Fig. 3c). As shown in 
Fig. 3d, the specific capacity of the LFP/C@G sample drops 
from 131 to 127 mA h  g−1 in the 200 cycles at 2 C, showing a 
longer capacity retention of 97.0% compared with the LFP/C 
(capacity retention of 89.2%), indicating better cycling stability 
for LFP/C@G. The above electrochemical results demonstrate 
that a  LiFePO4 material with excellent electrochemical per-
formances can be obtained using  LiFePO4(OH) as precursor 
combined with graphene modification.

Electrochemical impedance spectroscopy (EIS) of the 
as-prepared samples was performed in the fully discharged 
(lithiation) state, as shown in Fig. 4. The EIS profiles consist 
of a partially overlapped semicircle in the high-frequency 
region followed by a sloping line in the low-frequency region. 
The semicircle in the high- and middle-frequency regions is 

due to the charge-transfer resistance (Rct). The sloping line 
in the lower frequency represents the Warburg impedance 
(Ws) associated with lithium-ion diffusion in the bulk of the 
electrode [35, 36]. By fitting data, the charge-transfer resist-
ance of LFP/C and LFP/C@G samples was approximately 
68 and 130 Ω, respectively, indicating better kinetic behavior 
of the LFP/C@G sample. The EIS result validates that the 
superior rate performance of LFP/C@G sample results from 
the improved electrochemical reaction kinetics.

Conclusion

In summary, we prepared a graphene-supported  LiFePO4/C@G 
composite with uniform morphology and electronic conducting 
network via a freeze-drying assisted solid-phase method using 
the integrated  LiFePO4(OH) as precursor. The as-prepared 
LFP/C samples show a similar spindle-shaped morphology as 
the  LiFePO4(OH) precursor, indicating a feasibility for regula-
tion of the  LiFePO4/C morphology by  LiFePO4(OH). Moreover, 
the graphene-supported  LiFePO4/C@G shows better electro-
chemical properties with a specific capacity of 156, 154, 150, 
145, 139, 132 mA h  g−1 at 0.1, 0.2, 0.5, 1, 2, 5 C, which benefits 
from the synergetic effect of uniform  LiFePO4(OH) as precursor 
and continuous graphene electronic conducting network. The 
freeze-drying assisted solid-phase method using  LiFePO4(OH) 
as precursor without ball milling provides a new insight for solv-
ing the problem of particle agglomeration caused by ball mill-
ing in solid-state method. The strategy would apply to olivine 
materials with other transition metals (Mn, Co or Ni).
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