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Abstract
We present new insights into the electrochemical properties of three metal sulfides MCr2S4 (M = Cr, Ti, Fe) probed as anode 
materials in sodium-ion batteries for the first time. The electrodes deliver decent reversible capacities and good long-term 
cycle stability, e.g., 470, 375, and 524 mAh g−1 are obtained after 200 cycles applying 0.5 A g−1 for M = Cr, Ti, and Fe, 
respectively. The reaction mechanisms are investigated via synchrotron-based X-ray powder diffraction and pair distribution 
function analyses. The highly crystalline educts are decomposed into Na2S nanoparticles and ultra-small metal particles 
during initial discharge without formation of intermediate NaCrS2 domains as previously reported for CuCrS2 and NiCr2S4. 
After a full cycle, the structural integrity of MCr2S4 (M = Cr, Ti, Fe) is not recovered. Thus, the Na storage properties are 
attributed to redox reactions between nanoscopic to X-ray amorphous conversion products with only local atomic correla-
tions M···S/S···S in the charged and M···M/Na···S in the discharged state.

Keywords  Anode materials · Chromium sulfides · High-energy X-ray diffraction · Pair distribution function · Reaction 
mechanism · Sodium-ion batteries

Introduction

An uneven and geopolitically problematic Li world distribu-
tion as well as today’s indispensability of rechargeable  
lithium-ion batteries (LIBs) in mobile electronics, e.g., 
smartphones and electric vehicles, causes the continuous rise 
in Li demand and call for alternative electrical energy stor-
ages [1–4]. One widely studied promising candidate is the  
sodium-ion battery (SIB), because Na is very cheap, highly 
abundant, and easily accessible, supporting a green and eco-
nomic chemistry for battery production [5–10]. Although 
the electrochemical properties of Na+/Na are similar to Li+/
Li, the greatest challenge for SIBs is the identification of 

an appropriate anodic electrode material, because untreated 
graphite as utilized in LIBs is unsuitable for SIBs [10–13]. 
Conversion-type electrodes promise high energy densities 
[14, 15], because the components are commonly reduced to  
their elemental state via formation of alkali metal salts such 
as Na3P [16, 17], NaCl [18, 19], or Na2Ch (e.g., Ch = O,  
S, Se) [20–26]. Several  transition metal sulfides (TMSs) 
have been identified as  promising  anode materials 
for SIBs and exhibit  good electrochemical properties if 
cycled vs. Na+/Na, such as high cycle life, good rate capa-
bility and superior energy densities [27]. Prominent exam-
ples are, e.g., FeS2 [28–31], Fe3S4 [32–34], CuFeS2 [35], 
CoS [36–38], NiS [39–41], NiCo2S4 [42–45], or VS2 [46]. 
Few investigations addressed the application of Cr sulfide 
electrodes in SIBs, i.e., NaCrS2 [47] and NaCr2/3Ti1/3S2 [48] 
as cathodes or CrPS4 [49] and CuCrP2S6 [50], CuCrS2 [21], 
and NiCr2S4 [22] as anodes. The two latter exhibit pseudo-
layered structures composed of [CrS2]x− slabs alternat-
ing with layers containing tetrahedrally coordinated Cu+ 
or octahedrally coordinated Ni2+ cations, respectively [51, 
52]. These arrangements provide Na storage via revers-
ible sodium insertion–transition metal extrusion by gen-
eration of crystalline NaCrS2-like intermediates similar to 
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lithium insertion–copper extrusion reactions earlier found for 
Cu2.33V4O11 [53], CuTi2S4 [54], CuCrS4 [54], or CuCr2Se4 
[55]. Such charge storage mechanisms show similarity to 
intercalation/deintercalation reactions widely utilized in com-
mercial LIBs [2, 56–59] because discharge/charge processes 
require only small volume changes compared to full conver-
sion. Hence, the contacts between the reaction products and 
the current collectors remain well-preserved yielding higher 
cycle life. The transition metal extrusion additionally boosts 
the electrodes cycle life by generation of nanosized, electri-
cally conducting metals such as Cu or Ni [21, 22]. These 
investigations prompted us to take a closer look at compara-
ble Cr sulfides.

Compounds with the general composition MCr2S4 
(M = 3d transition metals) crystallize either in the Cr3S4 
structure type (Fig.  1a, space group (SG) I12/m1, no. 
12) (M = Ti, V, Cr, and Ni) or in the spinel structure type 
(Fig. 1b, SG Fd3m, no. 227) (M = Mn, Fe, Co, Cu, and Zn) 
[60, 61]. The Cr3S4 structure type can be described as an 
ordered defect variant intermediate between the NiAs and 
CdI2 structure types: Edge-sharing CrS6 octahedra form 
fully occupied layers with the stoichiometry CrS2 and 50% 
of octahedral sites between these [CrS2]x− slabs are occupied 
by M2+, and 50% are empty [62]. Thus, compounds crystal-
lizing in this structure type are regarded as layer-like materi-
als (Fig. 1a). The precise structural description is, however, 
more complicated for each MCr2S4, because the cation dis-
tributions M2+/3+:Cr3+/2+ in fully and half occupied layers 
depend on the choice of M [52, 63, 64]. For example, Ti and 
Cr atoms share octahedral sites in fully occupied layers and 
remaining Cr atoms are located in the half occupied layers 
for TiCr2S4 as revealed by neutron scattering experiments 
[65]. The few investigations about accurate cation distribu-
tions in monoclinic M1M2X4 (M = Ti, V, Cr, Ni; X = S, Se, 
Te) indicate that the site preference in fully occupied layers 
decreases in the order Ti > Cr ≈ V > Ni [52]. In contrast, 
the spinel structure is composed of S2− anions arranged in a 
close-packed fcc lattice with M2+ cations occupying 1/8 of 
the tetrahedral and Cr3+ cations 1/2 of the octahedral voids 

(Fig. 1b) [66–69]. The thermodynamically favored arrange-
ment of cations in MCr2S4 mainly depends on the octahedral 
site preference energy (OSPE) of M2+/3+ [70]. Thus, high 
OSPEs (e.g., V2+ and Ni2+) drive crystallization in the Cr3S4 
structure type, whereas low OSPEs (e.g., Fe2+ and Zn2+) 
prefer crystallization in the spinel structure [70].

We selected Cr3S4 (CS) and TiCr2S4 (TCS), both crystal-
lizing in the Cr3S4-type, as well as cubic FeCr2S4 (FCS) for 
our investigations. High theoretical capacities Q(CS) = 754.3 
mAh g−1, Q(TCS) = 765.4 mAh g−1, and Q(FCS) = 744.2 
mAh g−1 are calculated for full conversion reaction of all 
cations to their elemental states according to the following:

here, we present the first study about electrochemical perfor-
mances of the title compounds as anode materials for SIBs 
analyzed by galvanostatic discharge–charge (GDC) cycling 
and cyclic voltammetry (CV). Moreover, new insights into 
charge storage properties during Na uptake and release of 
Cr sulfides in terms of a structural, mechanistic view are 
presented by results of synchrotron-based, high-energy 
X-ray powder diffraction (XRPD), and total scattering X-ray 
experiments to calculate pair distribution functions (PDFs).

Experimental

Synthesis of pristine materials

The pristine materials were synthesized by high-temperature 
solid-state reactions. Stoichiometric amounts of Cr (Alfa 
Aesar, 99%), Fe (Alfa Aesar, 99.9%), Ti (Chempur, 99.5%), 
and S (Chempur, 99.999%) corresponding to Cr3S4, TiCr2S4, 
and FeCr2S4 were each mixed and ground in mortars. The 
mixtures were placed in quartz tubes, which were sealed 
under vacuum (< 10−4 mbar) and heated at 450 °C for 24 h 
and subsequently at 800 °C (FCS) or 1000 °C (CS, TCS) for 
72 h in a furnace before cooling to room temperature. Each 

(1)MCr
2
S
4
+ 8 Na

+
+ 8 e

−
→ M

0
+ 2 Cr

0
+ 4 Na

2
S

Fig. 1   Crystal structures of 
a monoclinic MCr2S4 with S 
(yellow atoms), Cr (in gray and/
or red octahedra), M = Ti, V, Ni, 
Cr (in gray and/or red octahe-
dra) and b cubic MCr2S4 with 
S (yellow atoms), Cr (in blue 
octahedra), M = Mn, Fe, Co, Cu, 
Zn (in green tetrahedra). Cre-
ated with Vesta v3 [71]
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product was crushed in a mortar, followed by characteriza-
tion with XRPD. For CS and FCS, pellets were pressed and 
annealed at 800 °C (FCS) and 1000 °C (CS) for 168 h again, 
cooled to room temperature and crushed in mortars.

Electrochemical characterization

Film electrodes were prepared by suspending mixtures of 70 
wt% MCr2S4, 20 wt% Super C65 carbon (Timcal), and 10 
wt% polyvinylidene difluoride (PVDF) (Solvay) in N-methyl-
2-pyrrolidone (Fisher Bioreagens, 99.8%) in a Retsch 
MM400 ball mill for 20 min at 15 Hz. The suspensions 
were spread on carbon coated Cu foil via doctor-blade cast-
ing method. Afterwards, they were dried for > 24 h at room 
temperature and at 60 °C in vacuum for about 12 h. For ex 
situ characterization, pellet electrodes were prepared by first 
mixing 70 wt% MCr2S4 and 30 wt% Super C65 (Timcal) in a 
Retsch MM400 ball mill for 30 min at 10 Hz and then press-
ing parts of these mixtures into pellets. Swagelok®-type test 
cells were assembled in an Ar-filled glovebox. In each cell, 
either a circular electrode disk (d = 10 mm, active material 
mass m(CS) = 1.5–2.1 mg cm−2, m(TCS) = 1.4–1.5 mg cm−2, 
and m(FCS) = 1.3–1.6  mg  cm−2) or pellet electrode 
(d = 10 mm, active material mass m(CS) = 12–25 mg cm−2, 
m(TCS) = 17–24 mg cm−2, and m(FCS) = 12–22 mg cm−2) 
was covered by a Celgard® membrane and two glass fiber 
filter disks (Whatman) as separators, wetted by 1 m sodium 
trifluoromethanesulfonate NaCF3SO3 (Sigma-Aldrich, 
98%) in bis(2-methoxyethyl)ether (diglyme, Acros, 99 + %, 
anhydrous) as electrolyte solution, and layered by a cir-
cular Na metal disk as the counter electrode. GDC meas-
urements were performed on a Neware BTS 3000 and an 
MTI BST8-WA battery analyzer applying constant cur-
rent constant voltage (CCCV) mode for performance tests 
(film electrodes). A current density of 0.1 A g−1 was always 
applied for the 1st cycle and the end current of the CCCV  
mode. For ex situ characterization (pellet electrodes), cur-
rent rates of I(CS) = 18.9 mA g−1, I(TCS) = 19.1 mA g−1,  
and I(FCS) = 18.6 mA g−1 were chosen for GDC interrup-
tions, corresponding to an uptake or release of 8 Na/MCr2S4 
(Eq. 1) in 40 h (C/40). CV curves (film electrodes) were 
recorded in the potential range 3.0–0.1 V with a scan rate 
v = 0.1 mV s−1 on a Biologic VSP potentiostat.

Material characterizations

Initial characterization of pristine samples was carried out 
by in-house XRPD (PANalytical Empyrean diffractometer 
with PIXcel 1D detector, Cu-Kα radiation, Debye–Scherrer 
geometry), energy-dispersive X-ray spectroscopy (EDX) and 
scanning electron microscopy (SEM) (Zeiss Gemini Ultra-
55Plus with Oxford SD detector), and elemental analysis 
(Elementar vario MICRO Cube). The final pristine products 

and ex situ samples, obtained at distinct GDC interruption 
points, were packed in glass capillaries (d = 0.7 mm, Hil-
genberg, Germany) in an Ar-filled glovebox and sealed 
with beeswax. High-energy (~ 60 keV) synchrotron-based 
experiments were performed at beamline P02.1, PETRA III 
(DESY, Hamburg): XRPD patterns and total scattering data 
were collected in Debye–Scherrer geometry at a wavelength 
of λ(CS) = λ(TCS) = 0.20703 Å and λ(FCS) = 0.20697 Å 
utilizing a Perkin Elmer XRD1621 amorphous silicon area 
detector placed at sample to detector distances of 1015(1) 
mm (XRPD) and 356(1) mm (total scattering). For calibra-
tion, to account for instrumental line broadening (XRPD) 
and for Q-damping (PDF), LaB6 (NIST 660b) was measured 
as standard applying the same conditions. An empty capil-
lary was measured to subtract glass contributions from the 
total scattering patterns. Raw data processing was performed 
with DAWN Science [72] and total scattering data were 
transformed into atomic PDFs, G(r), applying Qmax = 24 Å−1 
using xPDFsuite [73]. Joint refinements of XRPD and PDF 
data were performed for the pristine samples using Topas 
Academic v6 [74, 75]. For the XRPD patterns, 9th order pol-
ynomial functions were applied to model backgrounds and 
Thompson-Cox-Hasting pseudo-Voigt profiles to contribute 
for instrumental line broadening [76]. For the PDF data, 
pseudo-Voigt Q-damping functions were applied to account 
for instrumental parameters and spherical peak shape func-
tions with lower cutoff were used to consider the transition 
from correlated (small r values) to uncorrelated (high r val-
ues) atomic motion. Lattice parameters, atomic positions, 
Debye–Waller (DW) factors, and site occupancy factors 
(SOF) were co-refined during global optimization applying a 
weighting scheme such that parts of χ2 were about equal for 
the XPRD and PDF data sets [77, 78]. Special coordinates 
and SOFs of S atoms were fixed during the refinements. 
ICSD structure data were used for simulation of reference 
patterns and for starting parameters of the refinements: Cr3S4 
(ICSD-16722), TiCr2S4 (ICSD-42907), FeCr2S4 (ICSD-
625938), Cr2O3 (ICSD-25781), Na2S (ICSD-644959), 
bcc-Cr (ICSD-64711), bcc-Fe (ICSD-64795), and hcp-Ti 
(ICSD-43416).

Results and discussion

Characterization of pristine compounds

The stoichiometry was determined by EDX yielding com-
positions of Cr3.00(6)S4.00(6), Ti0.99(9)Cr2.04(8)S3.97(6), and 
Fe0.98(2)Cr2.03(7)S3.99(9) in line with nominal values (Table S1 
and Fig. S1). Further elemental analysis demonstrates good 
agreement of the S content in all compounds with expected 
values (Table S2). The layered nature of CS and TCS is 
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clearly visible in the SEM images, whereas the product FCS 
exhibits no specific particle shape morphology (Fig. S2).

In accordance to literature, the compounds CS and TCS 
crystallize in the monoclinic SG I12/m1, whereas FCS 
crystallizes in the cubic SG Fd3m (cf. “Introduction”).  

This is evidenced by joint Rietveld-like least-squares refine-
ments of XRPD and PDF data yielding good agreement of  
the averaged long-range structure and local order for all 
compounds (Fig. 2, structural parameters in Table 1). For 
CS, minute amounts of Cr2O3 (≈ 1.0 wt%) were detected,  

Fig. 2   Results of joint Rietveld-like least-squares XRPD-PDF refinements: a, c, and e XRPD patterns for CS, TCS, and FCS, respectively, each 
co-refined with corresponding PDFs shown in b, d, and f. Details are listed in Table 1
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presumably resulting from reaction of Cr with the quartz 
ampoule. Moreover, the refinement reveals the presence of 
about 3% Cr atoms on Wyckoff position 2a, which represents 
the empty octahedral sites in the ideal Cr3S4 structure type 
(Table 1). Lattice parameters and atomic fractional coordi-
nates are in good agreement with previous results reported 
for this compound [79]. For TCS, it is not possible to distin-
guish between Ti and Cr via XRPD; hence, both elements 
are refined together (Fig. 2c, d). In contrast to CS, no atoms 
are located on site 2a in TCS (Table 1). For the joint XRPD-
PDF refinement of FCS (Fig. 2e, f), the positions of Fe and 
Cr were fixed to tetrahedral and octahedral sites, respectively 
(cf. “Introduction”). The results for TCS and FCS demon-
strate phase-pure products and yield structural parameters 
in accordance to values reported for TCS [65, 79] and FCS 
[66, 80–85].

Electrochemical properties in SIBs

GDC (Fig. 3a, b) and CV (Fig. 3c, d) profiles were recorded 
during the 1st, 2nd, and 5th cycle using film electrodes in 
Na half-cells. The main electrochemical features are summa-
rized in Table 2. During initial discharge of the CS electrode, 
one pronounced pseudo-plateau is visible around 0.41 V 
(GDC, Fig. 3a), which corresponds to a narrow cathodic 
peak in the 1st CV cycle (Fig. 3c). Although the capacities 
during the 1st discharge (8.0 Na/CS, CV; 8.3 Na/CS, GDC) 
match with the expected value for ideal conversion (8.0 Na/

CS, cf. Eq. 1), contributions of chemical side-reactions and 
formation of a solid electrolyte interphase (SEI) must be 
considered. Thus, a full conversion reaction of CS is hin-
dered applying the selected conditions, which will be further 
discussed in the next chapter. Irreversible redox reactions 
of Cr3+ cations and SEI formation cause an irreversible 
capacity loss of 30% in the 1st GDC cycle close to values 
reported for Na/CuCrS2 (33%) [21], Na/NiCr2S4 (28%) [22], 
and Na/CuV2S4 (27.5%) [86], where very similar cell and 
electrode conditions were applied. One pronounced, peak is 
observed in the subsequent cathodic and anodic CV curves 
(Fig. 3c, d and Table 2) demonstrating that a single, revers-
ible redox event between Crx+ cations and Cr0 accounts for 
the high capacities obtained after the 1st GDC and CV cycle 
(capacities fade < 2%, cf. Table 2). Almost equal capacities 
are delivered during subsequent cycles and correspond to ≈ 
6 Na/CS uptake and release. Hence, the redox reaction in Eq. 
(2) most likely occurs:

Discharging the FCS electrode in the 1st cycle yields a 
pronounced pseudo-plateau at 0.43 V (GDC, Fig. 3a), which 
corresponds to the narrow cathodic CV peak at 0.36 V 
(Fig. 3c). Both electrochemical features are comparable 
to those observed for CS but higher discharge capacities 
are achieved (9.3 Na/FCS, CV; 9.7 Na/CS, GDC). Thus, a 
full conversion reaction (Eq. 1) occurs in addition to SEI 

(2)3 Cr
0
+ 6 Na

+
⇌ 3 Cr

2+
+ 6 Na

0

Table 1   Structural parameters 
co-refined from XRPD and PDF 
for a CS, b TCS, and c FCS at 
room temperature. Estimated 
standard deviations are given in 
parentheses

a WP Wyckoff position
b DW Debye Waller factor
c SOF site occupancy factor

Atom WPa x y z DWb(Å2) SOFc

(a) CS (Cr3S4); impurities: 1.0 wt% Cr2O3; Rwp (XRPD) = 3.8%, Rwp (PDF) = 10.1%
SG: I12/m1; a = 5.9682(1) Å, b = 3.4308(1) Å, c = 11.3252(2) Å, β = 91.295(1)
Cr1 2a 0.0 0.0 0.0 0.73(3) 0.09(1)
Cr2 2c 0.0 0.0 0.5 0.73(3) 0.98(1)
Cr3 4i 0.0201(1) 0.0 0.2418(1) 0.68(2) 0.98(1)
S1 4i 0.3389(3) 0.0 0.8649(1) 0.77(2) 1.0
S2 4i 0.3314(3) 0.0 0.3785(1) 0.73(3) 1.0
(b) TCS (TiCr2S4); Rwp (XRPD) = 4.0%, Rwp (PDF) = 9.9%
SG: I12/m1; a = 5.9618(1) Å, b = 3.4115(1) Å, c = 11.3573(2) Å, β = 91.292(1)
Cr1/Ti1 2a 0.0 0.0 0.0 0.76(3) 0.00(1)
Cr2/Ti2 2c 0.0 0.0 0.5 0.76(3) 1.00(1)
Cr3/Ti3 4i 0.0226(1) 0.0 0.2416(1) 0.62(2) 0.99(1)
S1 4i 0.3389(2) 0.0 0.8679(1) 0.67(2) 1.0
S2 4i 0.3324(3) 0.0 0.3816(1) 0.77(2) 1.0
(c) FCS (FeCr2S4); Rwp (XRPD) = 2.1%, Rwp (PDF) = 9.0%
SG: Fd3m; a = 9.9953(1) Å
Fe 8a 0.0 0.0 0.0 0.77(1) 1.00(1)
Cr 16d 0.125 0.125 0.125 0.73(3) 1.00(1)
S 32e 0.3845(1) 0.3845(1) 0.3845(1) 0.72(1) 1.0
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Fig. 3   Electrochemical properties of Na/CS (blue), Na/TCS (red), and 
Na/FCS (green) test cells in the potential window 3.0–0.1  V: GDC 
profiles in the a 1st, b 2nd, and 5th cycle applying a current density 

of 0.1 A g−1; CV curves in the c 1st, d 2nd, and 5th cycle applying a 
scan rate of 0.1 mV s−1

Table 2   Main redox events, capacities and corresponding Na uptake/
release observed during the 1st, 2nd, and 5th cycle of GDC (I = 0.1 A 
g−1) and CV (v = 0.1 mV  s−1) measurements for Na/CS, Na/TCS, and 

Na/FCS cells. GDC potentials were extracted using differential capacity 
dQ/dV analysis of respective curves in Fig. 3a, b, whereas CV capacities 
were calculated by integration of respective curves in Fig. 3c, d

Peak labels are given in round parentheses: w weak, m medium, s strong, vs very strong, sh shoulder

Cycle no Redox potentials vs. Na+/Na (V) Capacity (mAh g−1); Na uptake/release 
(x Na+)

Discharge Charge Discharge Charge

GDC CV GDC CV GDC CV GDC CV

CS 1 0.41 (vs) 0.29 (vs) 1.15 (s) 1.19 (s) 782; 8.3 754; 8.0 545; 5.8 558; 5.9
2 0.51 (s) 0.48 (s) 1.13 (s) 1.16 (s) 545; 5.8 558; 5.9 532; 5.6 554; 5.9
5 0.51 (s) 0.48 (s) 1.13 (s) 1.16 (s) 536; 5.7 547; 5.8 530; 5.6 551; 5.8

TCS 1 0.22 (vs) 0.14 (vs) 1.10 (m), 1.49 (m) 1.11 (m), 1.50 (m) 755; 7.9 652; 6.8 522; 5.5 470; 4.9
2 0.54 (s) 0.51 (s), < 0.1 1.10 (m), 1.48 (m) 1.06 (m), 1.48 (m) 492; 5.1 483; 5.1 474; 5.0 462; 4.8
5 0.54 (s) 0.52 (s) 1.18 (m), 1.47 (m) 1.05 (m), 1.47 (m) 476; 5.0 469; 4.9 471; 4.9 468; 4.9

FCS 1 0.43 (vs) 0.36 (vs) 1.25 (s), ~ 1.6 (sh) 1.25 (s), ~ 1.6 (sh) 906; 9.7 867; 9.3 674; 7.2 658; 7.1
2 0.53 (s), 0.97 (m) 0.51 (s), 0.81 (s) 1.19 (s), ~ 1.6 (sh) 1.24 (s), ~ 1.6 (sh) 676; 7.3 668; 7.2 650; 7.0 649; 7.0
5 0.53 (s), 1.00 (m) 0.49 (s), 0.79 (m) 1.19 (s), ~ 1.6 (sh) 1.26 (s), ~ 1.6 (sh) 650; 7.0 638; 6.9 639; 6.9 640; 6.9
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formation leading to an irreversible capacity loss of 26% 
during the 1st cycle. In contrast to CS, two cathodic peaks 
and two less resolved anodic events are observed in sub-
sequent CV cycles (Fig. 3c, d and Table 2). This observa-
tion strongly indicates that Fe and Cr both participate in 
the redox reactions. The reversible capacities obtained in 
the 2nd to 5th GDC and CV cycles (capacities fade < 5%, 
cf. Table 2) correspond to a shuttle of ≈ 7 Na/FCS. Taking 
also the observations for CS into account (Eq. 2), a redox 
reaction according to Eq. (3) may be formulated for FCS:

The lowest reduction voltage of the three metal sulfides 
during the initial discharge is observed for TCS, also exhib-
iting a less distinct pseudo-plateau (GDC, Fig. 3a) and a 
broader cathodic CV peak (Fig. 3c) compared to CS and 
FCS. This point towards a higher internal resistance for the 
TCS electrodes resulting in a larger polarization voltage. 
The conversion process of TCS is obviously incomplete if 
discharged to 0.1 V, clearly evidenced by the interruption at 
Vlow = 0.1 V of the cathodic event (1st CV curve, Fig. 3c). 
This is further confirmed by the initial discharge capaci-
ties (6.8 Na/TCS, CV; 7.9 Na/TCS, GDC), which is smaller 
than expected (Eq. 1). Again, additional contributions from 
SEI formation and chemical side-reactions need to be con-
sidered, in particular because the irreversible capacity loss 
(31%, TCS) during the 1st GDC cycle is close to the findings 
for CS and FCS. During subsequent GDC and CV cycles, 
the TCS electrodes deliver the smallest capacities of the 
three sulfides (Table 2) and ≈ 5 Na/TCS are reversibly shut-
tled (capacity fade < 4%). The incomplete reduction in the 
1st cycle also causes a cathodic peak located at 0.1 V in the 
2nd CV cycle (Fig. 3d). In contrast to the results for CS, 

(3)Fe
0
+ 2 Cr

0
+ 7 Na

+
⇌ Fe

3+
+ 2 Cr

2+
+ 7 Na

0

two anodic CV signals are clearly visible for TCS indicat-
ing that both metal centers, Ti and Cr, participate in the 
redox reactions. We note that the reduction of Ti cations to 
elemental state was recently observed during discharge of 
TiO2 [87] and TiS2 [88] anodes. However, only one cathodic 
CV signal occurs after the 1st cycle for TCS. The area of 
the one cathodic CV peak corresponds to the sum of the 
two anodic CV peak areas; thus, the reduction of Ti and 
Cr cations seems to occur at a similar voltage vs. Na+/Na. 
However, a distinct assignment of electrochemical features 
to redox pairs remains speculative for TCS.

GDC performance tests were conducted for all electrode 
materials to evaluate long-term (Fig. 4a and Table 3) and 
rate stabilities (Fig. 4b and Table 4). Applying a current rate 
of 0.5 A g−1 after the 1st cycle (I1st = 0.1 A g−1), all elec-
trodes deliver high capacities for 200 cycles accompanied 
by Coloumbic Efficiencies > 99% after the 5th cycle. The 
highest capacities are observed for FCS but it decreases by 
14% (to 524 mAh g−1 ≈ 5.6 Na/FCS) until the 200th cycle. 
These high capacities can be explained by an almost full 
conversion reaction as discussed further below (XRPD and 
PDF analyses). In contrast, CS exhibits the best long-term 
stability and 5.0 Na/CS (470 mAh g−1) are reversibly shut-
tled after 200 cycles corresponding to a superior capacity 
retention of 93%. As evidences further below (XRPD and 
PDF analyses), the crystalline material CS is completely 
decomposed to X-ray amorphous products during sodiation 
and insulating Na2S does not crystallize, which boosts the 
long-term stability. Although the TCS electrode delivers the 
lowest capacities during cycling, e.g., 375 mAh g−1 (≈ 3.9 
Na/TCS, capacity retention: 85%) after 200 cycles, this elec-
trode offers the best rate capability in SIBs comparing the 
three sulfides. For example, the TCS electrode still delivers 
264 mAh g−1 (≈ 2.8 Na/TCS, capacity retention: 58%) at a 

Fig. 4   GDC performance tests of Na/CS (blue), Na/TCS (red), and Na/FCS (green) test cells in the potential window 3.0–0.1 V: a long-term sta-
bility tests applying a current density of 0.5 A g−1 (1st cycle: I = 0.1 A g−1) and b charge capacities of rate capability tests
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current rate of 3.0 A g−1, whereas the charge storage at this 
high rate is significantly worse using CS (125 mAh g−1 ≈ 
1.3 Na/CS, capacity retention: 24%) or FCS (92 mAh g−1 ≈ 
1.0 Na/FCS, capacity retention: 15%). The poor rate perfor-
mance of the CS and FCS electrodes might result from dif-
fusion limiting processes at higher current rates, but detailed 
studies about the reaction kinetics are necessary in future 
work. Comparing the overall performance of MCr2S4 elec-
trodes (rate capability, cycle life, and magnitude of capacity, 
cf. Tables 3 and 4), NiCr2S4 offers the best electrochemical 
properties [22].

Structural changes during the 1st GDC cycle

The sodium storage mechanisms during the 1st GDC cycle 
were investigated at selected interruption points (Fig. 5) 
by high-energy XRPD (Fig. 6) and PDF (Fig. 7) analyses. 
Ex situ samples were collected using pellet electrodes. A 
comparison (Fig. S3) of the initial galvanostatic discharge 

profiles to 0.1 V using common film electrodes with and 
pellet electrodes without PVDF (cf. “Experimental”) dem-
onstrates that smaller capacities are obtained (≈ 6.8 Na/CS, 
≈ 6.0 Na/TCS, and ≈ 7.3 Na/FCS) for the latter. This is not 
surprising since (i) PVDF contributes to SEI formation in 
SIBs, i.e., additional Na is consumed by decomposition of 
PVDF into NaF [22, 89–91] and (ii) different cell conditions 
influence the electrochemical kinetics, i.e. the electron and 
Na+ ion diffusion. Thus, we selected a potential window of 
3.0–0.01 V (Fig. 5), also because the former electrochemi-
cal experiments indicated that the full conversion is incom-
plete for CS and TCS at V = 0.1 V. Even so, the capaci-
ties obtained by discharging the pellet electrodes to 0.01 V 
(Fig. 5) demonstrate full conversion only for FCS (≈ 8.0 Na/
FCS) and incomplete conversion for CS and TCS (≈ 7.4 Na/
CS, ≈ 7.1 Na/TCS).

The results from XRPD (Fig. 6, cf. Figs. S4, S5 and S6) 
evidence that the sodium insertion–transition metal extru-
sion mechanism found for CuCrS2 [21] and NiCr2S4 [22] 

Table 3   Results of long-term stability tests (I = 0.5 A g−1): charge capacities after several cycles for Na cells using CS, TCS, and FCS electrodes. 
Results for NiCr2S4 electrodes are shown for comparison. The capacity retention is related to the capacity of the 2nd cycle

CS TCS FCS NiCr2S4 [22]

Cycle number Capacity 
(mAh g−1)

Capacity 
retention (%)

Capacity 
(mAh g−1)

Capacity 
retention (%)

Capacity 
(mAh g−1)

Capacity 
retention (%)

Capacity 
(mAh g−1)

Capacity 
retention 
(%)

2 504 100 441 100 611 100 593 100
10 490 97 431 98 597 98 581 98
50 479 95 390 88 562 92 548 92
100 473 94 379 86 543 89 539 91
150 472 94 379 86 542 89 553 93
200 470 93 375 85 524 86 558 94

Table 4   Results of rate capability tests: charge capacities after every 10th cycle for Na cells using CS, TCS, and FCS electrodes. Results for 
NiCr2S4 electrodes are shown for comparison. The capacity retention is related to the capacity of the 10th cycle applying the 1st rate

CS TCS FCS NiCr2S4 [22]

Current density 
(A g−1)

Capacity 
(mAh g−1)

Capacity 
retention (%)

Capacity 
(mAh g−1)

Capacity 
retention (%)

Capacity 
(mAh g−1)

Capacity 
retention (%)

Capacity 
(mAh g−1)

Capacity 
retention 
(%)

0.1 521 100 456 100 610 100 612 100
0.2 491 94 420 92 536 88 579 95
0.5 460 88 393 86 467 77 550 90
0.7 443 85 382 84 436 71 534 87
1 420 81 367 80 409 67 521 85
1.5 376 72 345 76 354 58 505 83
2 314 60 323 71 273 45 492 80
3 125 24 264 58 92 15 468 76
5 35 7 110 24 39 6 399 65
0.1 499 96 427 94 454 74 583 95
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is not applicable to CS, TCS and FCS: During discharge, 
neither formation of nanocrystalline metals is observed nor 
reflections related to an intermediate NaCrS2-phase appear. 
During uptake of 6 Na per formula unit (C4, T4, and F4 in 
Fig. 6), the reflection intensities of the educts successively 
decrease. For CS, these reflections completely vanish at 6 
Na/CS and two small reflections at ≈ 4.63° and ≈ 6.66° 2θ 
appear (marked with asterisks in Fig. 6a). They cannot be 
related to any known phases with compositions including 
Cr, S, and Na but indicate the formation of an intermediate 
at this point. Very small reflections, which does not change 

for the CS XRPD series (marked with “x” in Fig. 6a), corre-
spond to the Cr2O3 impurity already detected in the pristine 
material, not taking part in Na storage as an electric isola-
tor [92]. Even after discharge to 0.01 V (C5), XRPD does 
not yield distinct evidence for the formation of nanoscopic 
Na2S or for crystalline, elemental Cr. However, very broad 
signals around ≈ 5.6° 2θ and ≈ 9.7° 2θ may be caused by 
ultra-small, X-ray amorphous Cr particles (cf. Fig. S4). The 
charged sample (C6) contains only X-ray amorphous prod-
ucts (besides crystalline Cr2O3). These findings are typical 
phenomena reported for conversion-type materials. For TCS, 

Fig. 5   GDC profiles using pellet electrodes in Na cells for a CS, b TCS, and c FCS. The interruption points for ex situ investigations are marked 
with M1–M6 (M = C, T, and F)

Fig. 6   Evolution of XRPD patterns collected at interruption points M1–M6 (M = C, T, and F; cf. Fig. 5) for a CS, b TCS, and c FCS pellet elec-
trodes during the 1st GDC cycle
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a comparable picture is obtained including a charge storage 
mechanism via generation of X-ray amorphous conversion 
products (Figs. 6e and S5). The formation of nanocrystalline 
Na2S is observed between 4 and 7 Na/TCS (T3–T5). At 6 
Na/TCS (T4, V ≈ 0.1 V), pronounced reflections of the start-
ing material are still detected. These reflections remain after 
uptake of 7 Na/TCS (T5) and after a full cycle (T6) with 
smaller scattering intensity, unambiguously demonstrating 
the incomplete conversion at the selected conditions for 
TCS. This explains the lower capacities detected for TCS in 
all electrochemical GDC and CV tests compared to CS and 
FCS. Also during discharge of the FCS electrode, neither 
crystalline elemental Fe nor Cr is observed (Figs. 6f and S6). 
The formation of nanocrystalline Na2S is, on the contrary, 
clearly evidenced after an uptake of 8 Na/FCS (F5), and 
the charge product (F6) is again X-ray amorphous. More 
distinct reflections for Na2S at full discharge are a good hint 
that the conversion of FCS is in an advanced state after full 
discharge compared to CS and TCS, which explains the 

higher capacities observed during GDC and CV tests for Na/
FCS cells. The crystallization of an insulating Na2S matrix 
observed for FCS and TCS is accompanied by additional 
volume expansion, forcing the contacts between X-ray amor-
phous products and the electric conductor to break. This 
explains the worse capacity retention observed for FCS and 
TCS during long-term cycling (Fig. 4 and Table 3) compared 
to CS.

Atomic PDFs corresponding to the samples M1–M6 of 
CS, TCS, and FCS are shown in Fig. 7, representing the 
evolution in the averaged local environments (1.9–3.9 Å) 
during Na uptake and release (cf. Fig. S7 for r = 1 to 21 Å). 
In agreement with the observations from XRPD, a look 
at the mid-range order (Fig. S7) confirms that all samples 
lose their structural integrity and barely any total scatter-
ing intensity is observed at r > 7 Å after uptake of 6 Na 
per formula unit (M4–M6). Hence, only very small conver-
sion products account for the charge storage properties after 
initial structural disintegration. Total scattering intensities 

Fig. 7   Evolution of PDFs corresponding to the interruption points 
M1–M6 (M = C, T, and F; cf. Fig.  5) for a CS, b TCS, and c FCS 
pellet electrodes during the 1st GDC cycle. Vertical color lines rep-
resent main, averaged interatomic connections expected in crystalline 

MCr2S4 (M = Cr, Fe, and Ti: M-S, S···S and M···M), Na2S (Na-S), 
hcp-Ti, bcc-Cr, and bcc-Fe. The color labels correspond to the separa-
tions in the local environments of expected products shown at the top. 
Chemical structures were created with Vesta v3 [71]
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corresponding to M–S (M = Cr, Ti, Fe) bonds decrease dur-
ing all initial discharge processes (Fig. 7). In addition, very 
short interatomic separations M···M and S···S, which are 
apparent in the pristine compounds MCr2S4, completely dis-
appear after discharging to 0.01 V (for TCS and FCS already  
at 6 Na/MCS). Thus, these conversion products are not 
related to the pristine materials, but after charging the elec-
trodes to 3.0 V (M6), PDF peaks reappear in the short range 
at very similar positions as observed for the pristine com-
pounds. Hence, the local environments of the charged prod-
ucts resemble that expected for very small metal sulfides. 
Because the charge products lost their structural integrity in 
the mid- to long-range order, a relation to particular sulfidic 
phases is obviously speculative. The PDFs of all discharged 
samples (V = 0.01 V, M5) are comparable to each other 
and point towards the formation of Na–S bonds as well as 
metal–metal separations in the elemental metals. However, 
differentiation between PDF signals corresponding to similar 
bonds in the first shells of bcc-Cr, bcc-Fe, and hcp-Ti is not 
possible because the PDFs represent histograms of all intera-
tomic distances in the sample. Representatively, PDFs and 
XRPD patterns corresponding to the discharged and charged 
state of FCS electrodes in the 2nd cycle are shown in Fig. S8. 
Although no reflections of Na2S are visible in the XRPD pat-
tern after the 2nd discharge, the local environments in both 
discharged products (1st and 2nd cycle) are very similar as 
the PDFs are almost superimposable. Also, the PDFs and 
XRPD patterns of the charged samples in the 1st and 2nd 
cycle are very similar evidencing a high reversibility of the 
charge storage mechanism involving very small conversion 
products.

Conclusion

In this comparative study, the three highly crystalline chro-
mium sulfides Cr3S4 (CS), TiCr2S4 (TCS), and FeCr2S4 
(FCS) were analyzed as anode materials in SIBs for the first 
time. Galvanostatic and voltammetric investigations provide 
insights into the Na storage properties and extend the over-
all picture for sulfidic SIB-anodes. The three metal sulfides 
offer good long-term stability with high capacity retention 
between 0.1 and 3.0 V and deliver remarkably high capaci-
ties even after 200 cycles at 0.5 A g−1. From the results 
of CV, we propose reversible redox reactions (Eqs. 2 and 
3) for discharge and charge processes after the 1st cycle. 
Moreover, analyses of high-energy X-ray diffraction pat-
terns and pair distribution functions provide a fundamental 
understanding of structural changes during the 1st cycle. In 
contrast to the Na insertion–Cu/Ni extrusion mechanisms 
observed for CuCrS2 [21] and NiCr2S4 [32], neither crystal-
line NaCrS2-like intermediates nor crystalline Cr, Ti, or Fe 
is formed during discharge of Na/CS, Na/TCS, or Na/FCS 

cells. During Na uptake, these metal sulfides are directly 
decomposed into X-ray amorphous conversion products 
embedded in a nanocrystalline Na2S matrix, and structural 
integrity of the sulfides is not recovered during Na release. 
We conclude that the charge storage reactions occur on a 
very small nanoscale for the three title compounds and rather 
depend on the metals redox activity than on the structure of 
the starting compounds.
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